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Abstract

The posterior probabilities available under standard Bayesian statistics are computable, apply to

small samples, and coherently incorporate previous information. Modifying their priors according to

results from algorithmic information theory adds the advantage of implementing Occam’s razor, giving

simpler distributions of data higher prior probabilities.
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Two general formalisms for data analysis based on Bayes’s theorem include standard Bayesian statistics

and Solomonoff’s approach to universal distributions under algorithmic information theory. The posterior

probabilities available under the former are computable and explicitly represent previous knowledge in terms

of a probability distribution. While lacking those advantages, Solomonoff’s use of universal distributions

implements Occam’s razor by assigning more prior probability to strings of symbols that are simpler in the

sense of having lower Kolmogorov complexity.

In this note, the two approaches are combined to make their advantages simultaneously applicable to

data analysis, inference, and decision. The complexity of each stochastic process under consideration will

determine its prior probability for Bayesian inference and decision making consistent with Occam’s razor.

That prior probability of a process will be defined as the limit of its probability that an observation coincides

with a symbol distributed according to a universal prior under algorithmic information theory.

To make that precise, consider a stationary process Xθ,1, Xθ,2, . . . such that the law of Xθ,t is a probability

mass function fθ,t on a finite alphabet X for all t = 1, 2, . . . and for each parameter value θ in a set Θ. Finite

strings of length τ are written as Xτ
θ := (Xθ,1, . . . , Xθ,τ). The length of any string x is ℓ (x). Throughout,

log = log2. Convergence in probability and weak convergence as τ → ∞ are both denoted by
weak
−−−→ (see

Billingsley, 1999, p. 27).

Let ϑ denote a random variable with distribution π0, a probability measure on the measurable space

(Θ,H), where H is a σ-field of subsets of Θ. For any H ∈ H, π0 (H) is then P (ϑ ∈ H), the probability of

the hypothesis that the process Xϑ,1, Xϑ,2, . . . is in {(Xθ,1, Xθ,2, . . . ) : θ ∈ H}. Since π0 enables but does

not depend on the complexity considerations of Occam’s razor, it is called the blunted prior distribution. It

incorporates application-specific information into the universal prior M , defined such that M (x) is the algo-

rithmic probability that a given universal monotonic Turing machine generates output beginning with x from

a random program (Hutter, 2006, §2.4.1). M is a universal lower semicomputable continuous semimeasure

rather than a probability measure (Li and Vitányi, 2008, §4.5).

According to the Solomonoff measure S, the conditional probability of a symbol followed by τ previous

symbols based on M is

S (xτ +1|x
τ ) =

S
(
xτ +1

)

S (xτ )
∝

M
(
xτ +1

)

M (xτ )
, (1)

normalized such that
∑

y∈X
S (y|xτ ) = 1, as required for S (•|xτ ) to be a probability mass function, for all
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xτ ∈ X τ (Li and Vitányi, 2008, §4.5.3). While S is incomputable and was originally intended for making

predictions without any blunted π0 (Solomonoff, 1978, 2008) or other explicit reliance on prior knowledge

(Rathmanner and Hutter, 2011, §10.1), the leverage of such a π0 leads to a computable posterior distribution

suitable for predictions and other Bayes actions, decisions that minimize posterior expected loss.

Let Uθ,τ +1 be a random variable distributed according to the random probability mass function S (•|Xτ
θ )

for each θ ∈ Θ. For any H ∈ H and t = 1, 2, . . . , the τ-whetted probability πτ (H) and the whetted probability

π (H) that ϑ ∈ H are defined by

πτ (H) := P (ϑ ∈ H|Xϑ,τ +1 = Uϑ,τ +1) (2)

π (H) :=
π0 (H)

∫
H
dπ0 (θ|H) 2−H(θ)

∫
dπ0 (θ) 2−H(θ)

, (3)

where the function H on Θ gives the entropy rate H (θ) := limτ→∞ H (Xθ,1, . . . , Xθ,τ) / τ on the basis of the

Shannon entropy H (Xθ,1, . . . , Xθ,τ) for each θ ∈ Θ. Equations (2)-(3) define two prior probability measures

on (Θ,H), the τ -whetted distribution πτ and the whetted distribution π. Describing both with the same

adjective will be justified by πτ
weak
−−−→π.

Example 1. Suppose Θ is a countable set such as the set of nonnegative integers. For any θ ∈ Θ and t =

1, 2, . . . , the τ-whetted probability πτ (θ) and the whetted probability π (θ) that the process is Xθ,1, Xθ,2, . . .

are, with π0 (θ) := π0 ({θ}),

πτ (θ) := πτ ({θ}) = P (ϑ = θ|Xϑ,τ +1 = Uϑ,τ +1)

π (θ) := π ({θ}) =
π0 (θ) 2

−H(θ)

∑
i∈Θ π0 (i) 2−H(i)

. (4)

Example 2. In the finite-Θ setting, suppose Xθ,1, Xθ,2, . . . are mutually independent, Θ = X = {1, 2, . . . ,m},

π0 (θ) = 1/m, and fθ,t (x) = 1/θ if x ≤ θ but fθ,t (x) = 0 if x > θ for all θ, x = 1, 2, . . . ,m and t = 1, 2, . . . .

The entropy rate H (θ) is the entropy −
∑m

x=1 fθ,t (x) log fθ,t (x) = log θ under independence. Thus, accord-

ing to equation (4), the whetted distribution is given by π (θ) ∝ m−12− log θ = m−1θ−1.

Under ergodicity, the τ -whetted distribution converges to the whetted distribution, which is computable

since π0 and fθ,t are computable.
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Theorem 1. If the process Xθ,1, Xθ,2, . . . is ergodic for every θ ∈ Θ, then πτ
weak
−−−→π.

Proof. Let H denote any continuity set in H. For any t = 1, 2, . . . ,

πτ (H) =
P (ϑ ∈ H)P (Uϑ,τ +1 = Xϑ,τ +1|ϑ ∈ H)

P (Uϑ,τ +1 = Xϑ,τ +1)
=

π0 (H)
∫
H
dπ0 (θ|H)P (Uθ,τ +1 = Xθ,τ +1)

P (Uϑ,τ +1 = Xϑ,τ +1)
. (5)

The key factor is
∫
H
dπ0 (θ|H)P (Uθ,τ +1 = Xθ,τ +1), in which

P (Uθ,τ +1 = Xθ,τ +1) =
∑

x∈X

P (Xθ,τ +1 = x)P (Uθ,τ +1 = Xθ,τ +1|Xθ,τ +1 = x)

=
∑

x∈X

fθ,τ +1 (x)P (Uθ,τ +1 = x|Xθ,τ +1 = x) =
∑

x∈X

fθ,τ +1 (x)E (S (x|Xτ
θ ) |Xθ,τ +1 = x)

= E (S (Xθ,τ +1|X
τ
θ )) = E

(
S (Xθ,τ +1)

S (Xτ
θ )

)
(6)

for all θ ∈ H. Since Xθ,1, Xθ,2, . . . is an ergodic process, C (Xτ
θ | τ) / τ

weak
−−−→H (θ), where C (x| τ ) is the Kol-

mogorov complexity of a sequence x conditional on ℓ (x) = τ (Horibe, 2003). That implies C (Xτ
θ ) / τ

weak
−−−→H (θ)

(cf. Li and Vitányi, 2008, p. 605), for there are constants c1, c2 > 0 that satisfy

C (xτ | τ)− c1 ≤ C (xτ ) ≤ C (xτ | τ ) + 2 log τ +c2 ∀x
τ ∈ X τ

with the lower bound from Li and Vitányi (2008, p. 119) and the upper bound from Cover and Thomas

(2006, Theorem 14.2.3). Writing oP (Uτ ) for any random sequence such that oP (Uτ ) /Uτ
weak
−−−→ 0 given a

random sequence Uτ (Serfling, 1980, §1.2.5),

C (Xτ
θ )

τ
+ oP (1) =

C (Xτ
θ | τ)

τ
+ oP (1) = H (θ) .

Relations between C and M (Uspensky, 1992; Uspensky and Shen, 1996) entail that there are a c3 > 0 and

a c4 > 2 satisfying

C (xτ )− log τ −c3 ≤ − logM (xτ ) ≤ C (xτ ) + c4 log τ ∀xτ ∈ X τ ,
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yielding (− logM (Xτ
θ )− C (Xτ

θ )) / τ
weak
−−−→ 0 and thus

− logM
(
Xτ +1

θ

)
− (− logM (Xτ

θ )) = (τ +1)

(
C
(
Xτ +1

θ

)

τ +1
+ oP (1)

)
− τ

(
C (Xτ

θ )

τ
+ oP (1)

)

= (τ +1) (H (θ) + oP (1))− τ (H (θ) + oP (1))
weak
−−−→H (θ) .

The continuous mapping theorem then yields

M
(
Xτ +1

θ

)

M (Xτ
θ )

= 2−(− logM(Xτ +1

θ )−(− logM (Xτ
θ ))) weak

−−−→ 2−H(θ).

∴ lim
τ→∞

P (Uθ,τ +1 = Xθ,τ +1) ∝ 2−H(θ)

according to equations (1) and (6) since exp
(
−
(
M
(
Xτ +1

θ

)
− M (Xτ

θ )
))

is bounded. From equation (5),

πτ (H) converges to a quantity proportional to π0 (H)
∫
H
dπ0 (θ|H) exp (−H (θ)). Since

∫
dπτ (θ) = 1 for all

τ = 1, 2, . . . , it follows that πτ (H) → π (H) for every continuity set H in H. The portmanteau theorem

makes that equivalent to πτ
weak
−−−→π.

Since θ 7→ 2−H(θ) in equation (3) is mathematically equivalent to a likelihood function and yet does

not depend on any data, it is an example of a prior likelihood function, the logarithm of which is a “prior

support” function as defined by Edwards (1992). As likelihood is defined only up to a multiplicative constant,

L (•) = c2−H(•) for any c > 0 may be called the whetted likelihood function. It relates the whetted and

blunted probability densities by (dπ/dη) (θ) ∝ L (θ) (dπ0/dη) (θ) for any θ ∈ Θ , where η is any measure that

dominates π0 and π. In the sense that the use of the whetted likelihood justifies the frequent claim that the

prior probability density should be higher for simpler hypotheses, it resembles the simplicity postulate, which

requires laws with fewer free parameters to have higher prior probabilities (Jeffreys, 1948, pp. 100-101).

Example 3. Let Xθ,1, Xθ,2, . . . denote independent Bernoulli variates of unknown probability θ of success.

By independence, the entropy rate H (θ) is the entropy, −θ log θ− (1− θ) log (1− θ). The resulting whetted

likelihood L (θ) = θθ (1− θ)(1−θ) is the dashed curve in Figure 1. The other two plotted curves are the

products of L (θ) and the likelihood functions of the binomial distribution for n = 1 and n = 10 observations,

all successes. (The finite sample size n should not be confused with τ , which goes to infinity.) If π0 is uniform,

the density of π is proportional to L (θ), differing markedly from Jeffreys’s prior density, instead proportional
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Figure 1: Likelihood functions for the binomial probability as θ. The whetted likelihood function is combined
with the likelihood function for n = 0 (dashed), n = 1 (dotted), and n = 10 (solid) consecutive successes.

to θ−1/2 (1− θ)
−1/2

(Robert et al., 2012, p. 73), and the posterior density is proportional to the likelihood

functions in Figure 1.

Example 4. Consider the two-state Markov chain Xθ,1, Xθ,2, . . . with probability transition matrix



1− θ θ

φ 1− φ


 ,

where θ has a uniform blunted prior distribution π0 and φ is known. The entropy rate of the process is

H (θ) =
φ

θ + φ
(− logΛ (θ)) +

θ

θ + φ
(− logΛ (φ)) ,

where Λ (•) = •• (1− •)
(1−•)

(Cover and Thomas, 2006, pp. 73, 78), which is the whetted likelihood function

of Example 3. The whetted prior distribution is determined by

π (θ) ∝ L (θ) = (Λ (θ))
φ

θ+φ (Λ (φ))
θ

θ+φ .

To extend the whetted distribution to continuous random variables, let Yθ,1, Yθ,2, . . . denote a stationary

process such that, for all θ ∈ Θ and t = 1, 2, . . . , the distribution of Yθ,t is a Riemann-integrable probability

density function gθ,τ on an interval Y for all τ = 1, 2, . . . . The differential whetted probability π̃ (H) that

ϑ ∈ H is

π̃ (H) :=
π̃0 (H)

∫
H
dπ0 (θ|H) 2−h(θ)

∫
dπ0 (θ) 2−h(θ)

,
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in which h (θ) is the differential entropy rate h (θ) := limτ→∞ h (Yθ,1, . . . , Yθ,τ ) / τ , where h (Yθ,1, . . . , Yθ,τ ) is

the differential entropy of Yθ,1, . . . , Yθ,τ for every θ ∈ Θ. In analogy with L, the function θ 7→ L̃ (θ) = c2−h(θ)

for any c > 0 is called the differential whetted likelihood function.

Example 5. Suppose Yθ,1, Yθ,2, . . . are independent variates drawn from the normal distribution with un-

known mean µ and unknown standard deviation σ, where θ = (µ, σ). Invariant measures that are limits of

prior probability density functions include the left Haar measure and the right Haar measure, with densities

proportional to σ−2 and σ−1, respectively (Kass and Wasserman, 1996). Since 2h(µ,σ) ∝ σ (Michalowicz

et al., 2013), the whetted likelihood is L̃ (µ, σ) ∝ σ−1. Thus, if π̃0 is the right Haar measure, then π̃ is the left

Haar measure, having a density proportional to L̃ (µ, σ)σ−1 ∝ σ−2. Using that π̃ as the prior, the posterior

predictive distribution of the next observation after observing n observations of sample mean µ̂ and unbiased

sample variance σ̂2 is the t distribution with parameters µ̂,
(
1− n−1

)
σ̂2, and n−1 (Held and Sabanés Bové,

2014, p. 301). Since the posterior distribution has a mean of µ̂, the Bayes estimate of µ under squared error

loss is µ̂ since that minimizes the posterior expected loss using π̃ as the prior. Like π of Example 3, this π̃

applies to small n as well as to large n.

The differential whetted probability is a limit of the following whetted probabilities that are themselves

limits in the sense of Theorem 1. Y1,Y2, . . . is a sequence of interval subsets of Y∞ := Y such that Yi ⊂ Yj

for i < j, and Yi (∆) is a partition of Yi into intervals of width ∆ > 0 for i = 1, 2, . . . and i = ∞. Denote by

Xθ,i,∆,t a random element with probability masses Qθ,t (Y
′|Yi) for all Y ′ ∈ Yi (∆), θ ∈ Θ, and t = 1, 2, . . . .

The entropy H (Xθ,i,∆,1, . . . , Xθ,i,∆,τ) and the whetted distribution for Xθ,i,∆,1, Xθ,i,∆,2 . . . are abbreviated

by H (θ, i,∆, τ) and πi,∆, respectively. That whetted distribution converges to π̃, the differential whetted

distribution, in the following sense.

Proposition 1. If limi→∞ H (θ, i,∆, τ) = H (θ,∞,∆, τ ) for all ∆ > 0 and τ = 1, 2, . . . and

lim
∆→0

lim
i→∞

lim
τ→∞

H (θ, i,∆, τ ) + log∆ = lim
τ→∞

lim
∆→0

lim
i→∞

H (θ, i,∆, τ ) + log∆

for all θ ∈ Θ, then, for all H ∈ H,

lim
∆→0

lim
i→∞

πi,∆ (H) = π̃ (H) .
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Proof. Since gθ,τ is Riemann integrable for all θ ∈ Θ and τ = 1, 2, . . . ,

lim
∆→0

H (θ,∞,∆, τ ) + log∆ = h (Yθ,1, . . . , Yθ,τ )

(Cover and Thomas, 2006, Theorem 8.3.1). Thus, H (θ, i,∆, τ) + log∆ → h (Yθ,1, . . . , Yθ,τ ) and, with

H (θ, i,∆, τ) / τ → H (θ, i,∆), which is the entropy rate of the process Xθ,i,∆,1, Xθ,i,∆,2, . . . ,

lim
∆→0

lim
i→∞

H (θ, i,∆) + 0 = lim
∆→0

lim
i→∞

lim
τ→∞

H (θ, i,∆, τ) / τ + lim
∆→0

lim
τ→∞

(log∆) / τ

= lim
τ→∞

(
lim
∆→0

lim
i→∞

H (θ, i,∆, τ ) + log∆
)
/ τ

= lim
τ→∞

h (Yθ,1, . . . , Yθ,τ ) / τ = h (θ) .

Substituting lim∆→0 limi→∞ H (θ, i,∆) for H (θ) in equation (3) completes the proof.
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