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DEPTH MAPS CODING WITH ELASTIC CONTOURS AND 3D SURFACE PREDICTION

Marco Calemme’, Pietro Zanuttighz, Simone Milani?, Marco Cagnazzol , Beatrice Pesquet-Popescu

I Télécom Paristech, France

ABSTRACT

Depth maps are typically made of smooth regions separated
by sharp edges. Following this rationale, this paper presents
anovel coding scheme where the depth data is represented by
a set of contours defining the various regions together with
a compact representation of the values inside each region.
A novel coding scheme based on elastic curves allows to
compactly represent the contours exploiting also the tempo-
ral consistency in different frames. A 3D surface prediction
algorithm is then exploited in order to obtain an accurate esti-
mation of the depth field from the contours and a subsampled
version of the data. Finally, an ad-hoc coding strategy for the
low resolution data and the prediction residuals is presented.
Experimental results prove how the proposed approach is
able to obtain a very high coding efficiency outperforming
the HEVC coder at medium-low bitrates.

Index Terms— Depth Maps, Contour Coding, Elastic
Deformation, Segmentation, HEVC

1. INTRODUCTION

Depth maps can be represented by means of grayscale images
and compressed with standard image compression tools. Bet-
ter results can be obtained by exploiting ad-hoc approaches
tailored to the specific properties of these representations
and in particular the fact that depth maps are usually made
by a set of smooth surfaces separated by sharp edges. The
proposed compression scheme follows this rationale and is
based on the idea of representing the depth field as a set
of contours constraining the various regions together with a
compact representation of the depth field inside each region.
This allows to preserve the sharp edges between the vari-
ous surfaces, a relevant property since the positive impact of
contour-preserving compression techniques on synthesized
images, obtained through DIBR approaches [1], has been
recently confirmed by means of subjective tests [2].
Segmentation information has been widely used for depth
compression but the coding of the segments shape is criti-
cal and most available approaches are not able to propagate
the information across multiple frames. An efficient contour
coding technique has recently been proposed in [3]: it uses
elastic deformation of curves in order to exploit the temporal
or inter-view redundancy of object contours and code more
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efficiently the contour information to be used for depth com-
pression. After the main discontinuities have been captured
by the contour description, the depth field inside each region
is smooth and can be efficiently predicted from just a small
number of samples. For this task we exploited an approach
derived from [4].

The general workflow of the proposed approach is shown
in Fig. 1. The first step is the segmentation of the depth
maps in order to extract the main objects and structures in
the scene. The segment contours are then compressed using
the approach described in [3] and the average depth value in
each segment is stored. The depth maps and the segmentation
data are subsampled and the difference between the subsam-
pled representation and the segment averages is compressed
using a differential prediction scheme followed by the HEVC
coder. Then a surface prediction algorithm derived from [4]
is used to predict the input depth maps from the subsampled
data and the contours. Finally, the residuals between the pre-
diction and the input depth map are lossy compressed using
the HEVC coder.
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Fig. 1. Overview of the proposed approach.
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2. RELATED WORK

Many depth coding approaches exploits the key idea that
depth maps are made of smooth regions divided by sharp
edges. A possible solution is to exploit a segmentation of the
depth map in order to decompose it into a set of homogeneous
regions that can be represented by simple models or low res-
olution approximations. Examples of approaches belonging
to this family are [5, 4, 6]. The approach of [5] adopts a



segmentation of the depth image followed by region-based
coding scheme, while the solution in [4] exploits segmenta-
tion followed by a linear prediction scheme, and finally, the
scheme in [6] exploits a scalable decomposition into progres-
sive silhouettes.

Another possibility is to exploit adaptive interpolation
schemes able to correctly handle edge regions, for exam-
ple the approach in [7] subsamples the depth information
and then reconstructs it with an adaptive interpolating fil-
ter. The coding scheme in [8] exploits platelets with sup-
port areas adapted to the object boundaries. Wavelet-based
schemes have also been used, the solution in [9] uses an edge-
preserving lifting scheme while the approach in [10] exploits
a breakpoint field representing crack edges in order to avoid
filtering across the edges in the wavelet reconstruction. The
idea of exploiting crack edges is used also in [11].

Notice that these families of approaches need a represen-
tation of the segmentation or edge information that can have
a relevant impact on the total bitrate, for this task efficient
contour coding schemes are needed. Typical contour coding
techniques rely on chain coding and differential chain cod-
ing [12], or on polygon approximation [13]. Even if they are
quite effective, these techniques do not exploit the temporal
redundancy of contours of the same objects in different time
instants or views.

Color data can also been used to assist the compression
of depth information as in [14], [15], [16] and [17]. The cod-
ing of depth videos has also been considered, e.g., in [18] the
idea that pixels with similar depth have similar motion is ex-
ploited. In addition, the approach in [19] performs an object
classification on the scene and adapts the depth coding strat-
egy according to the motion characteristics.

3. CONTOUR CODING

Srivastava et al.[20] introduced a framework to model a con-
tinuous evolution of elastic deformations between two refer-
ence curves. According to the interpretation of the elastic
metric, it is relatively easy to compute the geodesic between
two curves: it consists in a continuous set of deformations
that transform one curve into another with a minimum amount
of stretching and bending, and independently from their ab-
solute position, scale, rotation and parametrization. The re-
ferred technique thus interpolates between shapes and makes
the intermediary curves retain the global shape structure and
the important local features such as corners and bends. An
example of the geodesic connecting two curves is shown in
Fig. 2. We show in black two contours extracted from a MVD
sequence, corresponding to views 1 and 8. The curves in red
are the contours extracted from the intermediate views, while
in dashed blue we show a sampling of the elastic geodesic
computed between the two extreme curves. The elastic defor-
mations along the geodesic reproduce very well the deforma-
tions related to a change of viewpoint or a temporal evolution

of an object in a sequence, given the initial and final shapes.
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Fig. 2. Geodesic path of elastic deformations b, from the
curve ig to 71 (in dashed blue lines). b3 is one of the contours
b; extracted from the intermediate frames between the two
reference ones, a good matching elastic curve bo.2 along the
path is highlighted.
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The lossless coding of the contour is performed through
an arithmetic coder, and the input symbol probability distri-
bution is modified on the fly according to the context provided
by the elastic prediction [3].

Supposing that the encoder and the decoder share a rep-
resentation of the initial and final shape, they can reproduce
exactly the same geodesic path between them. Then, the de-
coder will use a suitable point of the geodesic, i.e. one of the
dashed curves in Fig. 2, as context [21] to encode an inter-
mediary contour (one of the solid curves in the same figure).
The encoder will only have to send a value in [0, 1] to let the
decoder identify this curve. Moreover, accurate probability
values are obtained “following” the elastic prediction, so the
decoder needs also a correspondence between the points of
the curve b and its elastic prediction b to relate each point of b
to a portion of b. An example of the result of the association
of the two curves is given in Fig. 3.

Fig. 3. Extracts from the curves b (red) and b (dashed blue).
The correspondences between the two curves are indicated
with thin dotted black lines. The vector p represents the most
probable future direction.

As we compute the most probable future direction p, a
distribution is defined for each symbol using the von Mises
statistical model, and an efficient representation of the curve
is obtained using these distributions in conjuction with an
arithmetic coder.



4. DEPTH CODING

After the segmentation and the coding of the segment con-
tours, the next step is the subsampling of depth data. The
depth map is simply subsampled according to a regular grid
(see Fig. 4c) and the average depth values in the segments are
subtracted from the subsampled data. The sampling factor A
is selected according to the resolution and the amount of detail
of the depth data. In the experimental set-up presented in Sec-
tion 5, sampling grids of 16 x 16 or 32 x 32 were used. The
subsampled data is basically a low resolution depth map of
size (W/A) by (H/A), where W and H are the dimensions
of the original depth map. This information is compressed in
lossless way in order to prevent blurring on the edges and av-
eraging between neighboring samples of different segments,
which would make useless the benefits of the segmentation
step. In order to obtain a high coding gain, the samples of
the first depth image (Intra depth frame) are first scanned on a
raster order and converted into a sequence of couples (r, 1) ac-
cording to a run-length coding strategy. Then, both runs and
lengths are coded using a Lempel-Ziv 78 algorithm, which
permits obtaining good coding gains with a limited complex-
ity. For the following frames, a DPCM strategy is tailored in
order to exploit temporal redundancy. Depth samples are first
predicted from the previous frames (zero-motion prediction),
and the prediction residual is coded like depth samples of the
Intra depth frame.

Although technical literature provides many other exam-
ples of more effective coding strategies, the very low reso-
lution of the input images permits obtaining very small file
sizes.

c) d)

Fig. 4. a) Sample depth map from the Dancers sequence; b)
segmented depth map; c) detail of the segmented depth map
with the subsampling grid (red dots represent the position of
the grid samples); d) depth map predicted from the contour
and the low resolution samples.

The high resolution contour information and the low res-
olution depth data can be used to produce a very accurate pre-
diction of the input high resolution depth map. For this step
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Fig. 5. Grid samples: the 5 possible configurations. The un-
known yellow pixel is estimated by using only the green pix-
els (plus the orange ones in case c).

we used an approach derived from [4] that here we briefly de-
scribe. The key idea is that the depth map is made of a set of
smooth surfaces represented by the segmented regions. For
each region a set of samples is available, i.e., the subsampled
depth map pixels belonging to that region. Each pixel p; of
the high resolution depth map is thus surrounded by 4 samples
of the grid (see Fig. 5) and the idea is to predict it by interpo-
lating only the grid samples belonging to the same region. If
all the 4 samples belong to the same region of p;, the estima-
tion of p; is simply given by the bilinear interpolation of the
4 samples. When instead the sample is close to the contour
of one of the segmented regions, some of the 4 samples could
belong to different regions and the value of p; is estimated by
interpolating only the values of the grid samples that belong
to the same region. Up to the symmetry and excluding the
trivial case of samples that correspond to grid points, there
are 5 possible cases (see Fig. 5).

a) If all the 4 samples are inside the same region p; is simply
given by the bilinear interpolation of the 4 samples.

b) If p; is surrounded by 3 samples belonging to the same
region it is estimated by assuming that it lies on the plane
defined by the 3 points.

c¢) If p; is surrounded by 2 neighbors in the region and 2 out-
side (e.g., when it is close to an edge) a prediction of the
two points outside of the region is performed by assuming
that each of them lies on the line passing through the clos-
est available point and the symmetrical point with respect
to the available one (the orange points in Fig. 5¢). These
points are used to compute p; by bilinear interpolation.

d) If p; has just one neighbor in the same region the value of
this sample is taken as estimate.

e) If p; has no neighbors the average depth value of the region
is used.

This approach allows to obtain a very accurate prediction
of the input depth map, with only some small artifacts typi-
cally on the edges not captured by the segmentation.

Finally, the residual difference between the estimated and
actual depth map is computed and lossy compressed using
the HEVC coding engine. In this case, the main RExt profile
is used disabling lossless mode and enabling rate-distortion
optimization.
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5. EXPERIMENTAL RESULTS

The performance of the proposed approach was evaluated on
three different sequences with different resolutions and char-
acteristics. The first is the undo dancer sequence, an high
resolution (1920 x 1088) synthetic scene, the second is the
lovebird sequence, a real world sequence with a resolution
of 1024 x 768 and the third is the mobile sequence, another
synthetic scene with resolution 720 x 540. We compared the
proposed approach with the HEVC standard video coder and
with the segmentation-based depth coding approach of [4].
Fig. 6a shows the performance of the proposed and com-
peting approaches on the undo dancer sequence. There is a
large performance gain with respect to [4] at all bitrates. The
two approaches share the idea of exploiting segmentation and
low resolution approximation, but the contour coding strategy
of this work is more efficient than the arithmetic coder of [4]
and the proposed low resolution samples and residual com-
pression strategies largely outperform the JPEG2000 based
coding used in that work. The comparison with HEVC is
more though: at low and medium bitrates (up to 0.01 bpp)
the proposed approach is able to outperform HEVC thanks
to the efficient representation of the contours and to the very
low information content of the residuals. The performance
gain reaches around 2 dB at around 0.006 bpp. Notice how
the contours remain sharp and not blurred on the whole bi-
trate range while HEVC achieves this result only at high bi-
trates. Fig. 6b shows the results for the lovebird sequence:
even if the resolution is different and the scene is a real world
one (not synthetic), the results are very similar to the previous
one, with the proposed approach able to outperform [4] at all
bitrates and HEVC for bitrates up to 0.02 bpp corresponding
to around 53 dB. The mobile sequence (Fig. 6¢) is more chal-
lenging for our approach since the edges are already blurred
in the input depth maps. This reduces the effectiveness of
coding strategies based on the assumption of sharp edges be-
tween the various regions like the proposed one and [4] (that
on this sequence has very poor performances). However our
approach is still able to outperform HEVC at low bitrates.
The edge preserving capabilities of the proposed approach
are particularly evident when the depth is used for view warp-

PSNR

. Comparison of the performances of the proposed approach with the HEVC coder and with the method of Zanuttigh et
: a) Undo Dancer sequence, b) Lovebird sequence, c) Mobile sequence.

ing and interpolation. Fig. 7 shows a detail from a synthesized
view from two frames of the lovebird sequence. Depth data
compressed at around 0.008 bpp with both our approach and
HEVC have been used. From the figure it is clear how depth
compressed with the proposed approach leads to a better in-
terpolation, in particular notice how the regions close to the
people edges have much smaller artifacts. Other examples of
interpolation are contained in the additional material.

Fig. 7. Detail of an interpolated view from the lovebird se-
quence: a) using depth compressed with our approach; b) us-
ing depth compressed with HEVC.

6. CONCLUSION

In this paper we proposed a novel depth coding scheme. The
proposed scheme is able to exploit the temporal redundancy
through an efficient contour coding scheme based on elastic
curves. The depth field inside each region is efficiently com-
pressed by exploiting a surface interpolation scheme and effi-
cient coding schemes for both the low resolution depth and
the prediction residual. Experimental results demonstrated
that the proposed approach is able to properly preserve the
edges even at low bitrates, a very useful property for warp-
ing applications and that it is very effective at medium-low
bitrates, where it outperforms the HEVC coder.

Further research will be devoted to the replacement of the
segmentation masks with edge-based schemes able to work
also with partial and interrupted edges and to a better exploita-
tion of the temporal redundancy.
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