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Abstract—Multi-view video plus depth is emerging as the
most flexible format for 3D video representation, as witnessed
by the current standardization efforts by ISO and ITU. The
depth information allows synthesizing virtual view points, and
for its compression various techniques have been proposed. It
is generally recognized that a high quality view rendering at
the receiver side is possible only by preserving the contour
information since distortions on edges during the encoding
step would cause a sensible degradation on the synthesized
view and on the 3D perception. As a consequence recent
approaches include contour-based coding of depths. However,
the impact of contour-preserving depth-coding on the perceived
quality of synthesized images has not been conveniently studied.
Therefore in this paper we make an investigation by means
of a subjective study to better understand the limits and the
potentialities of the different techniques.

Our results show that the contour information is indeed
relevant in the synthesis step: preserving the contours and
coding coarsely the rest typically leads to images that users
cannot tell apart from the reference ones, even at low bit
rate. Moreover, our results show that objective metrics that
are commonly used to evaluate synthesized images may have a
low correlation coefficient with MOS rates and are in general
not consistent across several techniques and contents.

Keywords-perceived quality, quality assessment, 3D video,
multiple-views-plus-depth, contour coding, elastic curves.

I. INTRODUCTION

The video-plus-depth representation for multi-view video

sequences (MVD) consists of several views of the same

scene with their associated depth information, which is the

distance from the camera for every point in the view [1].

Depth information allows synthesizing virtual view points,

for such applications as 3D television and free-viewpoint

video, but it requires ad-hoc compression techniques, since

those developed for texture images are not well suited for

depths. As a consequence, MVD compression has attracted

a huge amount of research effort in the last years, while ISO

and ITU are jointly developing an MVD coding standard [2].

A key point in depth images compression is that they

are not meant to be visualized but only used for rendering

of virtual views. Various techniques have been specifi-

cally proposed to code the depth information associated

to the views and recent approaches include contour-based

and object-based coding of depths. This approach seems

reasonable because the properties of depth maps differ

greatly from the ones of texture images. Objects within a

depth map are usually arranged along planes in different

perspectives; as a consequence there are areas of smoothly

varying levels, separated by sharp edges which correspond

to object boundaries. It is generally recognized that a high

quality view rendering at the receiver side is possible only

by preserving the contour information [3], [4], [5], since

distortions on edges during the encoding step would cause

a sensible degradation on the synthesized view and on the

3D perception. The typical artifact consists in fact in a slight

displacement of an object, with clear sharp edges. This leads

to low scores for objective metrics like PSNR, which are

very sensitive to this kind of errors, and at the same time the

visual quality is claimed to be high. We want to investigate

this claim by conducting for the first time a subjective quality

assessment test to compare an object-based technique and a

hybrid block-based techniques for the coding of depth maps.

In a previous work we proposed a technique using elas-

tic deformation of curves to losslessly encode the object

contours, and shape-adaptive wavelet to represent the inner

parts of the objects [6]. In a practical bit-rate range, this

technique proved to be competitive with HEVC [7], state-

of-the-art for hybrid block-based coding techniques, in terms

of objective quality metrics (PSNR and SSIM). At that

time, only very preliminary subjective evaluations were

performed for this technique. Just like other contour-based

methods, this techniques present totally different artifacts in

synthesized images with respect to HEVC, and their impact

is difficult to evaluate with classical metrics like the PSNR.

We have thus set up a subjective test to make a quality

assessment of synthesized views.

II. CODING OF DEPTH MAPS

Lossless contour coding using elastic curves. Srivastava

et al. [8] introduced a framework to model a continuous

evolution of elastic deformations between two reference

curves. According to the interpretation of the elastic metric,

it is relatively easy to compute the geodesic between two

curves: it consists in a continuous set of deformations

that transforms one curve into another with a minimum

amount of stretching and blending, and independently from

their absolute position, scale, rotation and parametrization.

The referred technique thus interpolates between shapes

and makes the intermediary curves retain the global shape

structure and the important local features such as corners

and bends. An example of the geodesic connecting two



curves is shown in Fig. 1. We show in black two contours

extracted from a MVD sequence, corresponding to views 1

and 8. The curves in red are the contours extracted from

the intermediate views, while in dashed blue we show a

sampling of the elastic geodesic computed between the two

extreme curves. The elastic deformations along the geodesic

reproduce very well the deformations related to a change of

viewpoint or a temporal evolution of an object in a sequence,

given the initial and final shapes.
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Figure 1. Geodesic path of elastic deformations b̃s from the curve i0

to i1 (in dashed blue lines). b3 is one of the contours bt extracted from
the intermediate frames between the two reference ones, a good matching

elastic curve b̃0.2 along the path is highlighted.

Supposing that the encoder and the decoder share a rep-

resentation of the initial and final shape, they can reproduce

exactly the same geodesic path between them. Then, the

decoder will use a suitable point of the geodesic, i.e. one

of the dashed curves in Fig. 1, as context [9] to encode an

intermediary contour (one of the solid curves in the same

figure). The encoder will only have to send a value in [0, 1]
to let the decoder identify this curve. The lossless coding of

the contour is performed through an arithmetic coder, and

the input symbol probability distribution is modified on the

fly according to the elastic prediction [6].

Object-based depth maps coding technique. A segmen-

tation map of the scene with different objects can be coded

with our lossless contour coding technique, and this map

can be used in conjunction with an object-based coding tech-

nique to code the depth images. The method proposed in [6]

relies on the SA (Shape Adaptive) Wavelet Transform [10],

followed by SA SPIHT (Set Partitioning In Hierarchical

Trees) [11], followed by an arithmetic coder for the SPIHT

symbols (memoryless, without context). This provides an

entirely Intra technique for the inner part of the objects.

From now on we will refer to this technique as “CC”,

contour coding.

Advantages of lossless coding. The validity of the object-

based approach is suggested by the relevance of the contour

information in the synthesis step. A minimum bit budget

is needed for a lossless representation of contours and this

initial cost may be a relevant fraction of the total rate
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Figure 3. Contents of the different sequences and their resolution.

dedicated to the depth map. One question that arises is

whether the benefits of a lossless contour will actually be

perceived as relevant against its bit-rate cost. We investigated

on this subject by simply skipping the lossless coding part

in our coding technique and using the elastic prediction to

directly generate the segmentation map to feed the object-

based coder. We rely on the SA SPIHT block to correct the

possible imprecision of the coded depth map.

This technique allows the rates to be lowered dramatically,

however the quality of the synthesized images obtained from

the depths compressed with this simple technique must be

carefully evaluated. From now on we will refer to this

technique as “NR”, no refinement.

A concise scheme of the two methods is shown in

Fig. 2. As inputs we have a depth image and its extracted

contours, plus two reference contours to perform the elastic

interpolation. First the elastic prediction is performed (EP

block); then in case of method CC it is used in conjunction

with the original contours of the depth image to perform

the lossless contour coding (LLCC block); the depth image

in input, with the coded (method CC) or predicted contours

(method NR), arrange a segmentation map (Segm. block),

and its objects are coded with a SA wavelet transform (SA

WT block), followed by SA SPIHT.

III. PRODUCTION OF TEST MATERIAL

The multiview sequences beergarden (provided by

Philips), lovebird (ETRI/MPEG Korea Forum) and mobile

(Philips) have been used for test, an example for each content

is shown in Fig. 3. We produced the test material by

content frames view L goal view R crop

beergarden 54-58 5 5.25 6 840×896
lovebird 1-5 6 7 8 1024×768

mobile 43-47 3 3.75 4 720×536

Table I
FRAMES USED FOR COMPRESSION AND SYNTHESIS FOR EACH

SEQUENCE.
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Figure 2. Coding scheme for the techniques CC (Contour Coding) and NR (No Refinement). The block EP performs the elastic prediction and takes
as input two reference contours; the LLCC block performs the lossless contour coding using an original contour and its elastic prediction as context; the
Segm. block arranges the segmentation map of the depth image with the coded or predicted contours, and it passes the objects of the segmentation map to
the SA WT block, which performs the shape adaptive wavelet transform, followed in its turn by the shape adaptive SPIHT, represented by the SA SPIHT
block.

compressing the selected images using the techniques CC,

NR, and HEVC. For HEVC, used in mode Intra, we have

chosen as QPs: 27, 38, 44, 51. QP 51 is the maximum

level of compression allowed, corresponding to the smallest

bit-rate for HEVC. For CC, the use of SA-SPIHT allows

to chose the exact bit-rate, so we have chosen the lowest

possible rate and the bit-rates corresponding to QPs 51, 44,

and 38. And as for NR, we have chosen again the lowest

possible rate and other two to match the low rates of the

two other techniques. Details about the frames and views

used for each sequence are reported in Tab. I. Moreover the

whole dataset is available on the authors’ website [12].

The use of the technique NR for this test is important

to evaluate the effects of contour coding on the synthesized

image. We will show in fact that the precision of the contour

leads to remarkable gains in terms of perceived quality.

Moreover we used this technique at a very low bit rate as

the reference for the “very annoying” quality, for the evident

artifacts that it produces on the synthesized image. If the

predicted contour lies outside the object and the interior

part is coded very coarsely, we will produce a change in

the geometry of the scene, that will result in a ”gap” in

between the objects of the synthesized image.

Once the depths are compressed for two views, we used

them to generate new synthetic views in between the two

with the Depth-Image-Based Rendering (DIBR) software

[13], as shown in Fig. 4. The use of synthesized images

for the test is justified by the plausible scenario of Free

Viewpoint Video (FVV) [14].

To perform the elastic prediction we need two reference

curves, be them from two different views or two different

time instants of the same view. These curves represent a sort

of “intra” curves and they are coded independently from the

others (and losslessly, for the techniques CC and NR). The

gap or distance between the two reference curves along the

view or the time axis affects the final rate: the accuracy of

the prediction decreases with the distance, but at the same

time a wider gap between the two reference curves allows

a lower bit-rate. The distance of the reference curves for

the elastic prediction has to be chosen for the techniques

CC and NR. To better illustrate this concept, in Fig. 4 we

marked with a blue R the frames used to extract a reference

curve, a blue arrow representing the geodesic path from one

to another, and the distance from a reference curve to the

other is defined as the number of frames that exist in between

the two. For both the techniques the chosen value is three

frames in between the two reference ones and we perform

the elastic prediction along the time axis. The synthesis is

then performed using the compressed depths of two views

and their associated texture images.

Regarding the reference images, the unavailability of

intermediate views and the presence of evident synthesis

artifacts lead us to the use of synthesized reference im-

ages, obtained with the original uncompressed depths, as

suggested in [15].

Geodesic

path

R R

R R

Depth

Depth

Texture

Texture

views

time

Synthesis of

new views

Geodesic

path

Figure 4. Elastic prediction and synthesis scheme.

IV. EXPERIMENTAL SETUP

Test environment. The images were displayed on a DELL

P2210 screen, which has a resolution of 1680 × 1050
pixels. We set up a test space with mid gray non reflective



background, isolated from external sources of light, as

recommended in [16], [17]. To avoid direct light sources

in the field of view of the user, except for the screen, we

placed a lamp at 6500K color temperature behind the screen

to provide ambient illumination. The resulting ambient light

measured in front of the screen, when this was off, was

approximately of 10 cd/m2. Viewers participated to test

sessions one at the time, sitting in front of the screen at

a distance of its diagonal approximately, which corresponds

to an angular resolution of about 35 pixels per degree.

Test methodology. The subjective evaluation has been

performed following the Double Stimulus Impairment Scale

(DSIS) methodology [16]. For each “round” a pair of images

has been proposed to the user, stimuli A and B, in which the

stimulus A was always the reference, and stimulus B was the

image to be evaluated. The reference image is obtained using

uncrompressed depths in the synthesis step, while the image

to be evaluated is obtained with compressed depths. The

viewer was informed of the presence of the reference image

in the pair, and was asked to rate the quality of the second

image with respect to the first one, using a continuous scale

ranging from 0 to 100, in which five ranges were associated

with five distinct adjectives (“Very annoying”, “Annoying”,

“Slightly annoying”, “Perceptible”, “Imperceptible”).

Each image was shown for 7 seconds and preceded by a

gray screen to indicate the stimulus (A or B) for 1.5 seconds.

Every round was composed of: stimulus A, stimulus B,

stimulus A, stimulus B, voting screen. The voting screen

is a pop-up window on mid gray background. The voting

window contains a continuous slider with the five adjectives

on its side, and a text box that reports the rating value and

again the correspondent adjective with a larger font size to be

more evident.The pairs of stimuli were presented in random

order. The whole test took around 22 minutes to complete

for each user.

V. RESULTS

A panel of twenty people took part in our test, 6 women

and 14 men, aged from 23 to 32, with an average of 27.65

years. The subjects reported visual acuity or if needed wore

corrective glasses.

The subjective scores were screened in order to detect and

remove possible outliers, subjects whose scores differ greatly

from the others’. We followed the procedure described in

[16] for the DSIS test methodology. As we have not done

any assumption on the distribution characteristics, values

outside the interquartile range (from the 25% and the 75%

percentiles) for more than 1.5 times are labeled outliers, and

if there is an incidence of outliers in a subject’s score of more

than the 10%, he is considered an outlier and his scores are

not taken in account. In our results three subjects have been

marked as outliers and their scores have been discarded.

After the outlier removal, we verified that for each stim-

ulus the score distribution is unimodal and we computed

the Mean Opinion Scores (MOS), along with the 95%

confidence interval (CI), with the assumption that the scores

are following a t-Student distribution.

Objective measurements and perceived quality. In addi-

tion to the MOS, the images were also evaluated through dif-

ferent objective metrics. We considered pixel-based metrics:

Peak Signal-to-Noise Ratio (PSNR) and Weighted Signal-

to-Noise Ratio (WSNR) [18]; as well as non-pixel-based

metrics: Multi-scale Structural Similarity (MSSIM) [19] and

Visual Information Fidelity (VIF) [20]. In Fig. 5 the results

of our subjective test and all the considered objective metrics

are reported. Each column refers to a sequence, and each

row to a metric. In particular, the computed MOS scores

with their 95% CI are reported in the first row.

As we can see in Fig. 5, HEVC exhibits very regular

trends in its MOS scores. The resulting visible artifacts

are mainly edge fragmentation and blocking effect, which

disappear as the bit-rate increases. MOS scores of HEVC

generally vary from the “perceptible” to the “imperceptible”

range. The technique CC exhibits in general very high scores

compared to the other techniques (most of its scores are

in fact in the “Imperceptible” range), thus the coding of

the contours is generally worth its cost for the perceived

quality of the resulting synthesized images. This is especially

true if we compare the MOS scores of CC to the ones

of NR at the same bit-rate: imperfections in the contour

can lead to annoying artifacts and make the final quality

drop, even if they are diminished by a finer coding of the

interior part. Moreover we see that at low bit-rates a perfect

contour and a coarsely coded interior part tend to lead to an

excellent perception of the synthesized image. In contrast

to this assertion we find slightly lower scores at low bit-

rates for the content beergarden, where the proximity of the

objects to the camera demands a less coarse coding of the

interior part to reach a very high level of perceived quality.

Dealing with objective metrics, again in Fig. 5, at low

bit-rates HEVC generally shows better results. Pixel-based

metrics like PSNR are in fact very sensitive to the most

prominent artifact produced by the CC coding technique:

the different geometry of the scene, given by the coarsely

coded interior part, results in a slightly different disposition

of the objects, with respect to the image synthesized from

uncompressed depths. To a human observer it can be very

difficult to tell apart the two images, but even the shifting

of few pixels for an object or the background can cause

a low PSNR. On the other hand, in terms of PSNR, the

technique NR proves to be competitive with the technique

CC. The explanation lies in the fact that very localized

errors, especially if they affect the shape of the objects, are

perceived as annoying by a human observer, and the tested

objective metrics are not able to take this effect into account.

Apart from PSNR, also the more refined objective metrics

WSNR, MSSIM and VIF produce scores that can differ
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Figure 5. MOS scores with the 95% CI and different objective metrics for the three test sequences.



overall beergarden lovebird mobile NC CC HEVC

MSSIM 0.62 0.97 0.52 0.46 0.75 0.13 0.80
VIF 0.55 0.97 0.50 0.37 0.52 0.02 0.79

PSNR 0.56 0.96 0.50 0.35 0.52 0.15 0.75
WSNR 0.68 0.99 0.63 0.45 0.80 0.14 0.79

Table II
SPEARMAN CORRELATION COEFFICIENTS (IN MODULUS) CALCULATED FOR EACH CONTENT AND TECHNIQUE.

greatly from the scores produced during the subjective test.

The table II reports the Spearman correlation coefficients

(in modulus) calculated for each content and technique. The

metrics with the highest overall correlation coefficient are

WSNR (0.68) and MSSIM (0.62), followed by the PSNR

(0.56) and finally the VIF (0.55). While dealing with some

of the techniques or some of the contents these objective

metrics could provide a good subjective MOS prediction, but

they are not consistent across several techniques and con-

tents, in particular they showed a low correlation coefficient

for the method CC.

VI. CONCLUSIONS

This paper addresses the issue of evaluating the effects of

contour-preserving compression techniques on synthesized

images by means of a subjective test. We compared, with

subjective results and objective metrics, HEVC, the tech-

nique proposed in [6], and the presented simple technique

NR. The positive impact of contour preserving depth coding

was confirmed by our study. Moreover by the comparison of

subjective results and objective metrics it is also clear that

the quality assessment of synthesized images in MVD can

still present unresolved problems: algorithms can introduce

non-perceptible or non-annoying artifacts and commonly

used objective metrics can assign low scores for them

even if for a human observer the degradation is relatively

acceptable. Further experiments should be conducted to take

into account also temporal artifacts and 3D video perception.
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