
HAL Id: hal-01423603
https://hal.science/hal-01423603

Submitted on 30 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Counting Aliases
Marius Bozga, Radu Iosif, Yassine Lakhnech

To cite this version:
Marius Bozga, Radu Iosif, Yassine Lakhnech. Counting Aliases. [Research Report] VERIMAG. 2004.
�hal-01423603�

https://hal.science/hal-01423603
https://hal.archives-ouvertes.fr

Counting Aliases

Marius Bozga, Radu Iosif and Yassine Lakhnech

December 30, 2016

Abstract

Our contribution is the development and study of a first order interpreted logic (κAL)
in which we can express shape properties of recursive data structures and compute weakest
preconditions. We show that, in general, the satisfiability problem of κAL is undecidable.

1 Alias Logic with Counters

1.1 The Storeless Heap Model

We view program heaps as directed labeled graphs in which vertices are objects and edges model
pointers between objects. More precisely, we model the heap as a finitely rooted directed graph
i.e., a graph in which the number of vertices with no incoming edges is non-zero and finite. We
associate these vertices a special meaning, that of program variables. Next, assume that the
edges of the graph are labeled with symbols from a finite alphabet Σ such that, for each vertex
in the graph, the outgoing edges are labeled with different symbols. These edges model the
selector variables i.e, the pointer fields. Consider now a designated node ι which is connected
to the entry points by means of some special edges labeled v1, . . . , vk. Let Π be the set of root
labels i.e., Π = {v1, . . . , vk}. Formally, the graph is a tuple G = 〈V,E, ι,Π,Σ〉, where V denotes
the original set of vertices (ι 6∈ V), E ⊆ ({ι} × Π × V) ∪ (V × Σ × V) is the edge relation, ι is
the root node, Π is the root alphabet and Σ the edge alphabet.

Now each vertex v ∈ V can be associated a deterministic finite state automaton Av =
〈V ∪ {ι}, E, ι, v〉 where V and E are the set of states and transition relation respectively, ι the
initial state and v the final state. The language Lv recognized by this automaton uniquely
identifies v, and therefore the graph G can be uniquely represented (modulo isomorphism) by
the set {Lv | v ∈ V }. For historical reasons we call this the storeless representation of G. The
following definition captures the concept, where · is the concatenation of words extended to
languages pointwise:

Definition 1 (Heap) Given a finite root alphabet Π and a selector alphabet Σ, such that Π ∩
Σ = ∅, a heap M⊆ P(Π ·Σ∗) is either the empty set or a finite set {L1,L2, . . . ,Ln} satisfying
the following conditions, for all 1 ≤ i, j ≤ n:

(D1) non-emptiness: Li 6= ∅, and (D’1) rooting: ∀r ∈ Π . {r} ∈ M
(D2) prefix closure and right regularity:

∀x ∈ Li [∀y, z ∈ Σ+[x = y · z ⇒ ∃ 1 ≤ k ≤ n [y ∈ Lk and Lk · z ⊆ Li]]]

(D3) determinism: i 6= j ⇒ Li ∩ Lj = ∅,

1

Other approaches in the literature consider the languages in the heap as equivalence classes
of a prefix-closed right-regular relation (alias), in the sense of the Myhill-Nerode Theorem. In
the following we denote by S(Π,Σ) the family of all heaps over the root alphabet Π and selector
alphabet Σ. In the rest of the paper we shall use the sets Π and Σ, as in Definition 1, without
further explanation. Special attention will be devoted to the one-selector case i.e., when ||Σ|| = 1.

1.2 Syntax and Semantics

a, b ∈ Π ∪ Σ

x, y ∈ Σ∗

κ, λ ∈ V ars

t := κ | n ∈ N | t1 + t2

σ := a | xt | σ1 · σ2 | σ−11 σ2

ϕ := t1 = t2 | σ1 ≤ σ2 | σ13σ2
| ϕ1 ∧ ϕ2 | ¬ϕ | ∀κ.ϕ(κ)

(a)

M ∈ S(Π,Σ)

ν : V ars→ N
[[t1 = t2]]M,ν = 1 ⇐⇒ ν(t1) = ν(t2)

[[σ1 ≤ σ2]]M,ν = 1 ⇐⇒ ν(σ1) ≤ ν(σ2)

[[σ13σ2]]M,ν = 1 ⇐⇒ ∃X ∈M . ν(σ1), ν(σ2) ∈ X
[[ϕ1 ∧ ϕ2]]M,ν = min([[ϕ1]]M,ν , [[ϕ2]]M,ν)

[[¬ϕ]]M,ν = 1− [[ϕ]]M,ν

[[∀κ.ϕ(κ)]]M,ν = min{[[ϕ(κ)]]M,ν[κ→i] | i ∈ N}

(b)

Figure 1: Alias Logic with Counters: Syntax and Semantics

We denote by δ(σ)
∆
= σ3σ the fact that σ is a defined path in the heap i.e., [[δ(σ)]]M,ν if

there exists a node X ∈M such that ν(σ) ∈ X.

1.3 Expressing Heap Properties

One can characterize any finite heap structure (up to isomorphism) in the purely propositional
fragment of κAL, that is, using only formulas that do not contain counter variables. In other
words, for any given structure M we can build a formula φM whose unique model is M.

However, without using first order quantification, there is no way to express properties
involving the presence of paths of unbounded length in the heap. Without attempting to be
exhaustive, this section shows how such properties can be specified in alias logic with counters.
We first give some properties of paths, and then combine them into specifications of recursive
data structures.

Path properties

A basic property is reachability between two given nodes. Due to the basic nature of our logic,
we can express the existence of a path composed of an unbounded number of repetitions of a
given sequence. With the conventions from Figure 1 (a), we have:

REACH(σ, τ, x)
∆
= ∃κ . σxκ3τ

Obviously, more complicated reachability schemes can be described with the aid of more exis-
tentially quantified variables. On the other hand, it is impossible to write a formula such that,
given two sequences with no counters σ, τ ∈ Π ·Σ∗, is satisfied by every heap in which the node

2

pointed to by τ is reachable from the node pointed to by σ. This shows a basic limitation of
our logic. Experience shows however, that in reasoning about data structures that occur during
executions of programs, the capability of characterizing general reachability is not needed as
much as the ability of describing the succession of selector fields occurring along a certain path.
The REACH(σ, τ, x) predicate can be strengthened by stating the existence of a unique path
between σ and τ which is a repeating sequence of x’s:

REACH!(σ, τ, x)
∆
= ∃κ . σxκ3τ ∧ ∀λ . λ < κ→

|x|∧
i=0

∧
a∈Σ\{xi}

¬σxλx0...i−1a3σx
λx0...i−1a

The existence of a non-trivial cycle containing a node pointed to by σ and composed of more
than one repetitions of sequence x can be stated as follows:

CY CLE(σ, x)
∆
= ∃κ . κ > 0 ∧ σxκ3σ ∧ ∀λ < κ . ¬σxλ3σ

A strict version of this predicate, call it CY CLE!(σ, x) is obtained following the example of
REACH!(σ, τ, x).

In the upcoming discussion we shall also need the predicate SHARE(σ, τ, x)
∆
= ∃κ, λ . σxκ3τxλ

expressing the fact that σ and τ share a common node via x-paths.

Recursive data structures

A more interesting application of the κAL logic is the characterization of an infinite class of
heaps corresponding to a recursive data type specification. For instance, the class of simply
linked lists with forward selector n and pointed to by σ are characterized by the following
predicates:

LISTl(σ, n)
∆
= REACH(σ, σnl, n) LIST (σ, n)

∆
= ∃κ . LISTκ(σ, n)

NCLISTl(σ, n)
∆
= LISTl(σ, n) ∧ ¬σnl+13σnl+1

The LISTl predicate states the existence of a path of length l starting with σ consisting of a
succession of l cells linked by n selectors, the LIST predicate states that σ points to some simply
linked n-list, and NCLISTl ensures that the list is non-circular, by asserting the finiteness of
the n-path.

Doubly linked lists are expressed as follows. The forward pointer is denoted in the following
by n and the backward pointer by p.

DLISTl(σ, n, p)
∆
= ¬σp3σp ∧ LISTl(σ, n) ∧ ∀λ . 0 < λ ≤ l→ σnλp3σnλ−1

In analogy with simply linked lists, a non-cyclic doubly linked list can be specified by adding
the ¬σnl+13σnl+1 conjunct at the end of the definition.

However, trees are difficult to specify using this logic. Some classes of trees can be specified
as extensions of lists. These trees can only grow unbounded along a fixed (bounded) number of
directions. Again, this shows a limitation of the expressive power of our logic.

Reverse List Loop Invariant

Consider the program REVERSE in Figure 2. The input of the program is a non-cyclic list
NCLISTl(i, n) and the output is a non-cyclic list NCLISTl(j, n) containing the cells of the
first list in reverse order. Here l is a free logical variable that represents the length of the input
list. In order to check that both input and output lists have the same length l, one needs to
assert the following loop invariant, at line [1]:

3

∃κ′, κ′′ . NCLISTκ′(i, n) ∧NCLISTκ′′(j, n) ∧ κ′ + κ′′ = l ∧ ¬SHARE(i, j, n)

Running the program on few small inputs is enough to convince the reader that the above
is indeed the loop invariant needed for proving the validity of the triple

{NCLISTl(i, n)} REVERSE {NCLISTl(j, n)}

0 j := null;
1 while i 6= null do
2 k := i.n;
3 i.n := j;
4 j := i;
5 i := k;
6 od

Figure 2: List Reversal Program

2 Undecidability of the Full Logic

In this section we prove the undecidability of the satisfiability problem for the κAL logic by
reduction to the theory of integer arithmetic with addition and multiplication. In the following,
let N = 〈N, 0, S,+, · 〉 be the theory of natural numbers, where S is the successor function
x 7→ x + 1 and 0,+, · are interpreted as zero, addition and multiplication in N. A first-order
sentence is valid in N if and only if it is true when all the arithmetic symbols occurring in the
sentence are interpreted in N 1. It is well known that the set of all valid sentences over N is not
recursive, or, in other words, that the theory is undecidable.

We shall not reduce κAL directly to N , but to the equivalent theory D = 〈N, 0, S,+, | 〉,
where | is an infix binary predicate symbol, and the rest of the symbols are as before. Given
x, y ∈ N, x|y is true if and only if x divides y.

To describe the reduction of D to κAL, let ϕ be any (possibly open) formula of D. By
tr(ϕ) we denote the translation of ϕ into κAL. We denote by x, y, . . . the variables of ϕ and by
κx, κy, . . . the corresponding variables in κAL. The letters t, u are used to denote terms in D.
Let us fix Π = {v} and Σ = {a, b} for the purposes of the proof.

We first translate ϕ into an equivalent formula ϕ′, composed of atomic propositions of the
form v|u, v = u, x = S(v) or x = v + u, with x variable and v, u either variables or constants
from N. To do this, we first write the formula in prenex normal form ϕ = Q1x1 . . . Qnxn . ψ.
Then ψ′ is obtained from ψ by repeating the following steps until a fixpoint is reached:

1. choose a subterm θ of ψ of the form S(t) or t+ u.

2. let ψ′ be ψ[y/θ] ∧ y = θ where y is a fresh variable.

It is easy to see that the number of iterations is linear in the size of ψ. The resulting formula
will be ϕ′ = Q1x1 . . . Qnxn∃y1 . . . ym . ψ′. For example [∀x1, x2 S(x1 + x2) = S(x1) + x2]′ =
∀x1, x2∃y1, y2, y3, y4 . y1 = x1 + x2 ∧ y2 = S(y1)∧ y3 = S(x1)∧ y4 = y3 + x2 ∧ y2 = y4. Without
losing generality, we can consider that ϕ′ is in positive normal form i.e., the only negations being

1For simplicity we used a semantic notion of validity. Nevertheless, the proofs in this section go through also when
the term valid means deductible from the set of Peano axioms.

4

relative to atomic propositions. The translation of ϕ into κAL is defined recursively on the
structure of the equivalent formula ϕ′. Table 3 gives the translation of the atomic propositions

and their negations. The other constructions are as follows: tr(∃x . ϕ)
∆
= ∃κx . tr(ϕ), tr(ϕ1 ∨

ϕ2)
∆
= tr(ϕ1) ∨ tr(ϕ2) and tr(ϕ1 ∧ ϕ2)

∆
= tr(ϕ1) ∧ tr(ϕ2).

ϕ tr(ϕ) tr(¬ϕ)

x = S(v)
∃κ∀λ λ 6= κx → ¬vaκbλ3vaκbκx∧

vaκbtr(v)b3vaκbκx
∀κ ¬vaκbtr(v)b3vaκbκx

x = v + u
∃κ∀λ λ 6= κx → ¬vaκbλ3vaκbκx∧

vaκbtr(v)btr(u)3vaκbκx
∀κ ¬vaκbtr(v)btr(u)3vaκbκx

v|u ∃κ ∀λ λ < tr(v)→ ¬vaκ3vaκbλ∧
vaκ3vaκbtr(v) ∧ vaκ3vaκbtr(u) ∀κ ¬vaκbtr(v)3vaκbtr(u)

v = u tr(v) = tr(u) tr(v) 6= tr(u)

Figure 3: Translation of D into κAL

All formulas tr(ϕ) are interpreted over models of a certain kind. Precisely, we consider all
a-lists starting with v, out of which some b-lists might branch. However an element of a b-list
may not be the start of another a-list. This is encoded in the following:

Θ
∆
= ∀κ > 0 δ(vaκ)→

(
∀κ′ ≤ κ ∀λ ≤ 0 δ(vaκ

′
bλ)→

(
∀µ > 0 ¬δ(vaκ

′
bλaµ)

))
The crux of the translation is the interpretation of the divides predicate. Basically, v|u if there
exists a non-trivial b-cycle of period v in the heap, and u is the length of some path along
this cycle. If we consider the κAL formula tr(x|y), the first two conjuncts mean that κx and
κy are the lengths of some paths along the same b-cycle, and the third conjunct states that
κx is the least such length i.e., the period of the cycle. All cycles needed to interpret the
various occurrences of the | operator in ϕ are linked in a simply linked a-list pointed to by
v. This explains the role of the existentially quantified variable κ: it gives the position of the
corresponding b-cycle in the a-list. Since κAL formulas are interpreted over models of S(Π,Σ),
the deterministic condition (C2) from Definition 1 ensures that there is only one b-cycle from
the node reached by vaκ, for a given κ. We have thus reduced an arbitrary validity problem in
D to a satisfiability problem in κAL . A decision procedure for κAL would answer the former
problem and, since D is equivalent to N , contradict the fact that N is undecidable.

Theorem 1 A formula ϕ of D is valid if and only if the corresponding κAL formula Θ∧ tr(ϕ)
is satisfiable. As a result, κAL is undecidable.

Proof: We remind that an open formula ϕ(~x) of N is valid iff for every valuation of the free
variables ν, ν(ϕ) holds, where ν(ϕ) is a shorthand for ϕ[ν(~x)/~x]. The proof goes by induction
on the structure of ϕ. The atomic propositions and their negations are intuitive.

• if ϕ = ∃x ψ then ϕ(x) is valid iff ϕ(n) is valid for some n ∈ N. By induction hypothesis
this is true iff tr(ϕ(n)) is satisfiable iff ∃κx tr(ϕ) is satisfiable.

• if ϕ = ψ1 ∨ψ2 then for each valuation ν we have that either ν(ϕ1) is true or ν(ϕ2) is true.
The first case is equivalent, by the induction hypothesis with tr(ν(ψ1)) being satisfiable,
hence tr(ν(ψ1)) ∨ tr(ν(ψ2)) ≡ ν(tr(ψ1) ∨ tr(ψ2)) is satisfiable. The second case yields the
same result. Hence tr(ψ1) ∨ tr(ψ2) is satisfiable in general.

• if ϕ = ψ1 ∧ ψ2 then ϕ is valid iff ψ1 is valid and ψ2 is valid. By the induction hypothesis,
this is equivalent to tr(ψ1) and tr(ψ2) being satisfiable. A model of tr(ψ1) ∧ tr(ψ2) can

5

be obtained by concatenating the a-lists from the models of tr(ψ1) and tr(ψ2). It can be
easily shown that this is still a model of both tr(ψ1) and tr(ψ2).

2

As a remark, the translation defined by tr proves actually the undecidability of the fragment
of κAL without addition but with order relation (>).

6

