Marius Bozga

Radu Iosif

Yassine Lakhnech

Counting Aliases

come

Other approaches in the literature consider the languages in the heap as equivalence classes of a prefix-closed right-regular relation (alias), in the sense of the Myhill-Nerode Theorem. In the following we denote by S(Π, Σ) the family of all heaps over the root alphabet Π and selector alphabet Σ. In the rest of the paper we shall use the sets Π and Σ, as in Definition 1, without further explanation. Special attention will be devoted to the one-selector case i.e., when ||Σ|| = 1.

Syntax and Semantics

a, b ∈ Π ∪ Σ x, y ∈ Σ * κ, λ ∈ V ars t := κ | n ∈ N | t 1 + t 2 σ := a | x t | σ 1 • σ 2 | σ -1 1 σ 2 ϕ := t 1 = t 2 | σ 1 ≤ σ 2 | σ 1 3σ 2 | ϕ 1 ∧ ϕ 2 | ¬ϕ | ∀κ.ϕ(κ) (a) M ∈ S(Π, Σ) ν : V ars → N [[t 1 = t 2]] M,ν = 1 ⇐⇒ ν(t 1) = ν(t 2) [[σ 1 ≤ σ 2]] M,ν = 1 ⇐⇒ ν(σ 1) ≤ ν(σ 2) [[σ 1 3σ 2]] M,ν = 1 ⇐⇒ ∃X ∈ M . ν(σ 1), ν(σ 2) ∈ X [[ϕ 1 ∧ ϕ 2]] M,ν = min([[ϕ 1]] M,ν , [[ϕ 2]] M,ν) [[¬ϕ]] M,ν = 1 -[[ϕ]] M,ν [[∀κ.ϕ(κ)]] M,ν = min{[[ϕ(κ)]] M,ν[κ→i] | i ∈ N} (b)
Figure 1: Alias Logic with Counters: Syntax and Semantics

We denote by δ(σ) ∆ = σ3σ the fact that σ is a defined path in the heap i.e., [[δ(σ)]] M,ν if there exists a node X ∈ M such that ν(σ) ∈ X.

Expressing Heap Properties

One can characterize any finite heap structure (up to isomorphism) in the purely propositional fragment of κAL, that is, using only formulas that do not contain counter variables. In other words, for any given structure M we can build a formula φ M whose unique model is M.

However, without using first order quantification, there is no way to express properties involving the presence of paths of unbounded length in the heap. Without attempting to be exhaustive, this section shows how such properties can be specified in alias logic with counters. We first give some properties of paths, and then combine them into specifications of recursive data structures.

Path properties

A basic property is reachability between two given nodes. Due to the basic nature of our logic, we can express the existence of a path composed of an unbounded number of repetitions of a given sequence. With the conventions from Figure 1 (a), we have:

REACH(σ, τ, x) ∆ = ∃κ . σx κ 3τ
Obviously, more complicated reachability schemes can be described with the aid of more existentially quantified variables. On the other hand, it is impossible to write a formula such that, given two sequences with no counters σ, τ ∈ Π • Σ * , is satisfied by every heap in which the node pointed to by τ is reachable from the node pointed to by σ. This shows a basic limitation of our logic. Experience shows however, that in reasoning about data structures that occur during executions of programs, the capability of characterizing general reachability is not needed as much as the ability of describing the succession of selector fields occurring along a certain path. The REACH(σ, τ, x) predicate can be strengthened by stating the existence of a unique path between σ and τ which is a repeating sequence of x's:

REACH!(σ, τ, x) ∆ = ∃κ . σx κ 3τ ∧ ∀λ . λ < κ → |x| i=0 a∈Σ\{xi} ¬σx λ x 0...i-1 a3σx λ x 0...i-1 a
The existence of a non-trivial cycle containing a node pointed to by σ and composed of more than one repetitions of sequence x can be stated as follows:

CY CLE(σ, x) ∆ = ∃κ . κ > 0 ∧ σx κ 3σ ∧ ∀λ < κ . ¬σx λ 3σ
A strict version of this predicate, call it CY CLE!(σ, x) is obtained following the example of REACH!(σ, τ, x).

In the upcoming discussion we shall also need the predicate SHARE(σ, τ, x) ∆ = ∃κ, λ . σx κ 3τ x λ expressing the fact that σ and τ share a common node via x-paths.

Recursive data structures

A more interesting application of the κAL logic is the characterization of an infinite class of heaps corresponding to a recursive data type specification. For instance, the class of simply linked lists with forward selector n and pointed to by σ are characterized by the following predicates:

LIST l (σ, n) ∆ = REACH(σ, σn l , n) LIST (σ, n) ∆ = ∃κ . LIST κ (σ, n) N CLIST l (σ, n) ∆ = LIST l (σ, n) ∧ ¬σn l+1 3σn l+1
The LIST l predicate states the existence of a path of length l starting with σ consisting of a succession of l cells linked by n selectors, the LIST predicate states that σ points to some simply linked n-list, and N CLIST l ensures that the list is non-circular, by asserting the finiteness of the n-path.

Doubly linked lists are expressed as follows. The forward pointer is denoted in the following by n and the backward pointer by p.

DLIST l (σ, n, p) ∆ = ¬σp3σp ∧ LIST l (σ, n) ∧ ∀λ . 0 < λ ≤ l → σn λ p3σn λ-1
In analogy with simply linked lists, a non-cyclic doubly linked list can be specified by adding the ¬σn l+1 3σn l+1 conjunct at the end of the definition.

However, trees are difficult to specify using this logic. Some classes of trees can be specified as extensions of lists. These trees can only grow unbounded along a fixed (bounded) number of directions. Again, this shows a limitation of the expressive power of our logic.

Reverse List Loop Invariant

Consider the program REVERSE in Figure 2. The input of the program is a non-cyclic list N CLIST l (i, n) and the output is a non-cyclic list N CLIST l (j, n) containing the cells of the first list in reverse order. Here l is a free logical variable that represents the length of the input list. In order to check that both input and output lists have the same length l, one needs to assert the following loop invariant, at line [1]:

∃κ , κ . N CLIST κ (i, n) ∧ N CLIST κ (j, n) ∧ κ + κ = l ∧ ¬SHARE(i, j, n)
Running the program on few small inputs is enough to convince the reader that the above is indeed the loop invariant needed for proving the validity of the triple

{N CLIST l (i, n)} REVERSE {N CLIST l (j, n)}

Undecidability of the Full Logic

In this section we prove the undecidability of the satisfiability problem for the κAL logic by reduction to the theory of integer arithmetic with addition and multiplication. In the following, let N = N, 0, S, +, • be the theory of natural numbers, where S is the successor function x → x + 1 and 0, +, • are interpreted as zero, addition and multiplication in N. A first-order sentence is valid in N if and only if it is true when all the arithmetic symbols occurring in the sentence are interpreted in N1 . It is well known that the set of all valid sentences over N is not recursive, or, in other words, that the theory is undecidable.

We shall not reduce κAL directly to N , but to the equivalent theory D = N, 0, S, +, | , where | is an infix binary predicate symbol, and the rest of the symbols are as before. Given x, y ∈ N, x|y is true if and only if x divides y.

To describe the reduction of D to κAL, let ϕ be any (possibly open) formula of D. By tr(ϕ) we denote the translation of ϕ into κAL. We denote by x, y, . . . the variables of ϕ and by κ x , κ y , . . . the corresponding variables in κAL. The letters t, u are used to denote terms in D. Let us fix Π = {v} and Σ = {a, b} for the purposes of the proof.

We first translate ϕ into an equivalent formula ϕ , composed of atomic propositions of the form v|u, v = u, x = S(v) or x = v + u, with x variable and v, u either variables or constants from N. To do this, we first write the formula in prenex normal form ϕ

= Q 1 x 1 . . . Q n x n . ψ.
Then ψ is obtained from ψ by repeating the following steps until a fixpoint is reached:

1. choose a subterm θ of ψ of the form S(t) or t + u.

2. let ψ be ψ[y/θ] ∧ y = θ where y is a fresh variable.

It is easy to see that the number of iterations is linear in the size of ψ. The resulting formula will be ϕ

= Q 1 x 1 . . . Q n x n ∃y 1 . . . y m . ψ . For example [∀x 1 , x 2 S(x 1 + x 2) = S(x 1) + x 2] = ∀x 1 , x 2 ∃y 1 , y 2 , y 3 , y 4 . y 1 = x 1 + x 2 ∧ y 2 = S(y 1) ∧ y 3 = S(x 1) ∧ y 4 = y 3 + x 2 ∧ y 2 = y 4 .
Without losing generality, we can consider that ϕ is in positive normal form i.e., the only negations being relative to atomic propositions. The translation of ϕ into κAL is defined recursively on the structure of the equivalent formula ϕ . Table 3 gives the translation of the atomic propositions and their negations. The other constructions are as follows: tr(∃x . ϕ) All formulas tr(ϕ) are interpreted over models of a certain kind. Precisely, we consider all a-lists starting with v, out of which some b-lists might branch. However an element of a b-list may not be the start of another a-list. This is encoded in the following:

∆ = ∃κ x . tr(ϕ), tr(ϕ 1 ∨ ϕ 2) ∆ = tr(ϕ 1) ∨ tr(ϕ 2) and tr(ϕ 1 ∧ ϕ 2) ∆ = tr(ϕ 1) ∧ tr(ϕ 2). ϕ tr(ϕ) tr(¬ϕ) x = S(v) ∃κ∀λ λ = κ x → ¬va κ b λ 3va κ b κx ∧ va κ b tr(v) b3va κ b κx ∀κ ¬va κ b tr(v) b3va κ b κx x = v + u ∃κ∀λ λ = κ x → ¬va κ b λ 3va κ b κx ∧ va κ b tr(v) b tr(u) 3va κ b κx ∀κ ¬va κ b tr(v) b tr(u) 3va κ b κx v|u ∃κ ∀λ λ < tr(v) → ¬va κ 3va κ b λ ∧ va κ 3va κ b tr(v) ∧ va κ 3va κ b tr(u) ∀κ ¬va κ b tr(v) 3va κ b tr(u) v = u tr(v) = tr(u) tr(v) = tr(u)
Θ ∆ = ∀κ > 0 δ(va κ) → ∀κ ≤ κ ∀λ ≤ 0 δ(va κ b λ) → ∀µ > 0 ¬δ(va κ b λ a µ)
The crux of the translation is the interpretation of the divides predicate. Basically, v|u if there exists a non-trivial b-cycle of period v in the heap, and u is the length of some path along this cycle. If we consider the κAL formula tr(x|y), the first two conjuncts mean that κ x and κ y are the lengths of some paths along the same b-cycle, and the third conjunct states that κ x is the least such length i.e., the period of the cycle. All cycles needed to interpret the various occurrences of the | operator in ϕ are linked in a simply linked a-list pointed to by v. This explains the role of the existentially quantified variable κ: it gives the position of the corresponding b-cycle in the a-list. Since κAL formulas are interpreted over models of S(Π, Σ), the deterministic condition (C2) from Definition 1 ensures that there is only one b-cycle from the node reached by va κ , for a given κ. We have thus reduced an arbitrary validity problem in D to a satisfiability problem in κAL . A decision procedure for κAL would answer the former problem and, since D is equivalent to N , contradict the fact that N is undecidable.

Theorem 1 A formula ϕ of D is valid if and only if the corresponding κAL formula Θ ∧ tr(ϕ) is satisfiable. As a result, κAL is undecidable.

Proof: We remind that an open formula ϕ(x) of N is valid iff for every valuation of the free variables ν, ν(ϕ) holds, where ν(ϕ) is a shorthand for ϕ[ν(x)/ x]. The proof goes by induction on the structure of ϕ. The atomic propositions and their negations are intuitive.

• if ϕ = ∃x ψ then ϕ(x) is valid iff ϕ(n) is valid for some n ∈ N. By induction hypothesis this is true iff tr(ϕ(n)) is satisfiable iff ∃κ x tr(ϕ) is satisfiable.

• if ϕ = ψ 1 ∨ ψ 2 then for each valuation ν we have that either ν(ϕ 1) is true or ν(ϕ 2) is true. The first case is equivalent, by the induction hypothesis with tr(ν(ψ 1)) being satisfiable, hence tr(ν(ψ 1)) ∨ tr(ν(ψ 2)) ≡ ν(tr(ψ 1) ∨ tr(ψ 2)) is satisfiable. The second case yields the same result. Hence tr(ψ 1) ∨ tr(ψ 2) is satisfiable in general.

• if ϕ = ψ 1 ∧ ψ 2 then ϕ is valid iff ψ 1 is valid and ψ 2 is valid. By the induction hypothesis, this is equivalent to tr(ψ 1) and tr(ψ 2) being satisfiable. A model of tr(ψ 1) ∧ tr(ψ 2) can

 Figure 2: List Reversal Program

Figure 3 :

 3 Figure 3: Translation of D into κAL

For simplicity we used a semantic notion of validity. Nevertheless, the proofs in this section go through also when the term valid means deductible from the set of Peano axioms.