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Preface.

The theory presented in this Monograph establishes the first mathematically rigorous

result on the global nonlinear stability of self-gravitating matter under small perturbations.

Indeed, it allows us to exclude the existence of dynamically unstable, self-gravitating mas-

sive fields and, therefore, solves a long-standing open problem in General Relativity.

We establish that Minkowski spacetime is nonlinearly stable in presence of a massive

scalar field under suitable smallness conditions (for, otherwise, black holes might form). We

formulate the initial value problem for the Einstein-massive scalar field equations, when the

initial slice is a perturbation of an asymptotically flat, spacelike hypersurface in Minkowski

space, and we prove that this perturbation disperses in future timelike directions so that

the associated Cauchy development is future geodesically complete.

Our method of proof which we refer to as the Hyperboloidal Foliation Method, extends

the standard ‘vector field method’ developed for massless fields and, importantly, does not

use the scaling vector field of Minkowski space. We construct a foliation (of the interior

of a light cone) by spacelike and asymptotically hyperboloidal hypersurfaces and we rely

on a decomposition of the Einstein equations expressed in wave gauge and in a semi-

hyperboloidal frame, in a sense defined in this Monograph. We focus here on the problem

of the evolution of a spatially compact matter field, and we consider initial data coinciding,

in a neighborhood of spacelike infinity, with a spacelike slice of Schwarzschild spacetime.

We express the Einstein equations as a system of coupled nonlinear wave-Klein-Gordon

equations (with differential constraints) posed on a curved space (whose metric is one of

the unknowns).

The main challenge is to establish a global-in-time existence theory for coupled wave-

Klein-Gordon systems in Sobolev-type spaces defined from the translations and the boosts

of Minkowski spacetime, only. To this end, we rely on the following novel and robust
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techniques: new commutator estimates for hyperboloidal frames, sharp decay estimates for

wave and Klein-Gordon equations, Sobolev and Hardy inequalities along the hyperboloidal

foliation, quasi-null hyperboloidal structure of the Einstein equations, as well as integration

arguments along characteristics and radial rays. Our proof also relies on an iterative

procedure involving the components of the metric and the Klein-Gordon field, and on a

hierarchy of low- and high-order energy estimates, which distinguishes between the metric

components and between several levels of time dependency and regularity for the metric

coefficients and the massive field.

Philippe G. LeFloch (Paris) and Yue Ma (Xi’an)
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1. Introduction

1.1. The nonlinear stability problem for the Einstein-Klein-Gordon system. We

consider Einstein’s field equations of General Relativity for self-gravitating massive scalar

fields and formulate the initial value problem when the initial data set is a perturbation of

an asymptotically flat, spacelike hypersurface in Minkowski spacetime. We then establish

the existence of an Einstein development associated with this initial data set, which is

proven to be an asymptotically flat and future geodesically complete spacetime. Recall

that, in the case of vacuum spacetimes or massless scalar fields, such a nonlinear stability

theory for Minkowski spacetime was first established by Christodoulou and Klainerman

in their breakthrough work [12], which was later revisited by Lindblad and Rodnianski

[46] via an alternative approach. Partial results on the global existence problem for the

Einstein equations was also obtained earlier by Friedrich [22, 23].

Let us emphasize that the vacuum Einstein equations are currently under particularly

active development: this is illustrated by the recent contributions by Christodoulou [11] and

Klainerman and Rodnianski [36] (on the formation of trapped surfaces) and by Klainerman,

Rodnianski and Szeftel [37] (on the L2 curvature theorem). The Einstein equations coupled

with massless fields such as the Maxwell field were also extensively studied; see for instance

Bieri and Zipser [6] and Speck [54]; existence under slow decay conditions was established

by Bieri [6].

The present Monograph offers a new method for the global analysis of the Einstein

equations, which we refer to as the Hyperboloidal Foliation Method and allows us to

investigate the global dynamics of massive fields and, especially, the coupling between

wave and Klein-Gordon equations. This method was first outlined in [39, 41], together

with references to earlier works, especially by Friedrich [22, 23], Klainerman [33], and

Hörmander [27]. We hope that the present contribution will open a further direction of

research concerning matter spacetimes, which need not be not Ricci-flat and may contain

massive fields. In this direction, we refer to LeFloch et al. [5, 8, 25, 38, 43] for existence

results on weakly regular matter spacetimes.
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The nonlinear stability problem for self-gravitating massive fields, solved in the present

Monograph1, was a long-standing open problem for the past twenty five years since the

publication of Christodoulou-Klainerman’s book [12]. In the physics literature, blow-up

mechanisms were proposed which suggest possible instabilities for self-gravitating mas-

sive fields. While the most recent numerical investigations [49] gave some confidence that

Minkowski spacetime should be nonlinearly stable, the present work provides the first

mathematically rigorous proof that dynamically unstable solutions to the Einstein equa-

tions do not exist in presence of massive fields (under suitable smallness conditions specified

below). On the other hand, nonlinear stability would not hold when the mass is sufficiently

large, since trapped surfaces and presumably black holes form from (large) perturbations

of Minkowski spacetime [11].

Mathematically, the problem under consideration can be formulated (in the so-called

wave gauge, see below) as a quasilinear system of coupled nonlinear wave-Klein-Gordon

equations, supplemented with differential constraints and posed on a curved spacetime.

The spacetime (Lorentzian) metric together with the scalar field defined on this spacetime

are the unknowns of the Einstein-matter system. The Hyperboloidal Foliation Method

introduced in this Monograph leads us to a global-in-time theory for this wave-Klein-

Gordon system when initial data are provided on a spacelike hypersurface. Our proof is

based on a substantial modification of the so-called vector field method, which have been

applied to massless problems, only. Importantly, we do not use the scaling vector field of

Minkowski spacetime, which is required to be able to handle Klein-Gordon equations.

In order to simplify the presentation of the method, in this Monograph we are inter-

ested in spatially compact matter fields and, therefore, we assume that the initial data

coincide, in a neighborhood of spacelike infinity, with an asymptotically flat spacelike slice

of Schwarzschild spacetime in wave coordinates. Our proof relies on several novel con-

tributions: sharp time-decay estimates for wave equations and Klein-Gordon equations

1We present here our method for a restricted class of initial data, while more general data as well as

the theory of fpRq–modified gravity are treated in [42].
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on a curved spacetime, Sobolev and Hardy’s inequalities on hyperboloids, quasi-null hy-

perboloidal structure of the Einstein equations and estimates based on integration along

characteristics and radial rays. We also distinguish between low- and high-order energies

for the metric coefficients and the massive field.

We refer to [39, 40, 41] for earlier work by the authors and to the companion work [42] for

an extension to more general data and to the theory of modified gravity. We focus on p3`1q-

dimensional problems since this is the dimension of main interest. As already mentioned,

in the context of the Einstein equations, hyperboloidal foliations were introduced first by

Friedrich [22, 23]. Of course, hyperboloidal foliations can be introduced in any number of

dimensions, and should also lead to interesting results (see [47] in p2` 1q dimensions), but

we do not pursue this here since the Einstein equations have rather different properties in

these other dimensions.

For a different approach to the nonlinear stability of massive fields, we refer the reader to

an ongoing research project by Q. Wang (outlined in ArXiv:1607.01466) which is aimed at

generalizing Christodoulou-Klainerman’s geometric method. An important recent devel-

opment is provided by Fajman, Joudioux, and Smulevici [18, 19], who recently introduced

a new vector field method based on a hyperboloidal foliation and aimed at dealing with

global existence problems for massive kinetic equations; for this technique, we also refer to

Smulevici [53]. Hyperboloidal foliations are also useful to analyze the blow-up of solutions

for, for instance, focusing wave equations, as investigated by Burtscher and Donninger [7].

Furthermore, we also recall that nonlinear wave equations of Klein-Gordon-type posed

on possibly curved spacetimes have been the subject of extensive research in the past

two decades, and we will not try to review this vast literature and we refer the interested

reader to, for instance, Bachelot [3, 4], Delort et al. [16, 17], Katayama [30, 31], and Shatah

[51, 52], as well as Germain [24] and Ionescu and Pasauder [29]; see also [27, 28, 55] and the

references cited therein. Importantly, the use of hyperboloidal foliations leads to robust

and efficient numerical methods, as demonstrated by a variety of approaches by Ansorg

and Macedo [1], Frauendiener [20, 21], Hilditch et al. [26, 56], Moncrief and Rinne [48],

Rinne [50], and Zenginoglu [57, 58].
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1.2. Statement of the main result. We thus consider the Einstein equations for an

unknown spacetime pM, gq, that is,

(1.1) Gαβ :“ Rαβ ´
R

2
gαβ “ 8π Tαβ,

where Rαβ denotes the Ricci curvature of pM, gq, R “ gαβRαβ its scalar curvature, and

Gαβ is referred to as the Einstein tensor. Our main unknown in (1.1) is a Lorentzian

metric gαβ defined on a topological 4-manifold M . By convention, Greek indices α, β, . . .

take values 0, 1, 2, 3, while Latin indices i, j, . . . takes values 1, 2, 3 (as, for instance, in (1.5)

below). In this work, we are interested in non-vacuum spacetimes when the matter content

is described by a massive scalar field denoted by φ : M Ñ R with potential V “ V pφq.

The stress-energy tensor of such a field reads

(1.2) Tαβ :“ ∇αφ∇βφ´
´1

2
∇γφ∇γφ` V pφq

¯

gαβ.

Recall that from the contracted Bianchi identities ∇αGαβ “ 0, we can derive an evolution

equation for the scalar field and, in turn, formulate the Einstein–massive field system as

the system of quasilinear partial differential equations (in any choice of coordinates at this

stage)

(1.3a) Rαβ “ 8π
`

∇αφ∇βφ` V pφq gαβ
˘

,

(1.3b) lgφ´ V
1
pφq “ 0.

Without loss of generality, throughout we assume that the potential is quadratic in φ, i.e.

(1.4) V pφq “
c2

2
φ2,

where c2 ą 0 is referred to as the mass density of the scalar field. The equation (1.3b) is

nothing but a Klein-Gordon equation posed on an (unknown) curved spacetime.

The Cauchy problem for the Einstein equations can be formulated as follows; cf., for

instance, Choquet-Bruhat’s textbook [9]. First of all, let us recall that an initial data set

for the Einstein equations consists of a Riemannian 3-manifold pM, gq, a symmetric 2-

tensor field K defined on M , and two scalar fields φ0 and φ1 also defined on M . A Cauchy
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development of the initial data set pM, g,K, φ0, φ1q, by definition, is a p3` 1q-dimensional

Lorentzian manifold pM, gq satisfying the following two properties:

‚ There exists an embedding i : M Ñ M such that the (pull-back) induced metric

i˚pgq “ g coincides with the prescribed metric g, while the second fundamental form

of ipMq Ă M coincides with the prescribed 2-tensor K. In addition, by denoting

by n the (future-oriented) unit normal to ipMq, the restriction (to the hypersurface

ipMq) of the field φ and its Lie derivative Lnφ coincides with the data φ0 and φ1

respectively.

‚ The manifold pM, gq satisfies the Einstein equations (1.3a) and, consequently, the

scalar field φ satisfies the Klein-Gordon equation (1.3b).

As is well-known, in order to fulfill the equations (1.3a), the initial data set cannot be

arbitrary but must satisfy Einstein’s constraint equations:

(1.5) R ´KijK
ij
` pKi

iq
2
“ 8πT00, ∇i

Kij ´∇jK
l
l “ 8πT0j,

where R and ∇ are the scalar curvature and Levi-Civita connection of the manifold pM, gq,

respectively, while the mass-energy density T00 and the momentum vector T0i are deter-

mined from the data φ0, φ1 (in view of the expression (1.2) of the stress-energy tensor).

Our main result established in the present Monograph can be stated as follows.

Theorem 1.1 (Nonlinear stability of Minkowski spacetime for self-gravitating massive

fields. Geometric version). Consider the Einstein-massive field system (1.3) when the ini-

tial data set pM, g,K, φ0, φ1q satisfies Einstein’s constraint equations (1.5) and is close

to an asymptotically flat slice of the (vacuum) Minkowski spacetime and, more precisely,

coincides in a neighborhood of spacelike infinity with a spacelike slice of a Schwarzschild

spacetime with sufficiently small ADM mass. The corresponding initial value problem ad-

mits a globally hyperbolic Cauchy development, which represents an asymptotically flat and

future geodesically complete spacetime.

We observe that the existence of initial data sets satisfying the conditions above was

established by Corvino and Schoen [15]; see also Chrusciel and Delay [14] and the recent
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review [13]. Although the main focus therein is on vacuum spacetimes, it is straightforward

to include matter fields by observing1 that classical existence theorems [9] provide the

existence of non-trivial initial data in the “interior region” and that Corvino-Schoen’s

glueing construction is purely local in space.

We are going to formulate the Einstein-massive field system as coupled partial differential

equations. This is achieved by introducing wave coordinates denoted by xα, satisfying the

wave equation lgx
α “ 0 (α “ 0, . . . , 3). From (1.3), we will see that, in wave coordinates,

the Ricci curvature operator reduces to the wave operator on the metric coefficients and,

in fact, (cf. Lemma 4.1, below)

(1.6a) rlghαβ “ Fαβph; Bh, Bhq ´ 16πBαφBβφ´ 16πV pφqgαβ,

(1.6b) rlgφ´ V
1
pφq “ 0,

where rlg :“ gαβBαBβ is referred to as the reduced wave operator, and hαβ :“ gαβ ´mαβ

denotes the curved part of the unknown metric. The nonlinear terms Fαβph; Bh, Bhq are

quadratic in first-order derivatives of the metric. Of course, that the system (1.6) must

be supplemented with Einstein’s constraints (1.5) as well as the wave gauge conditions

lgx
α “ 0, which both are first-order differential constraints on the metric.

In order to establish a global-in-time existence theory for the above system, several major

challenges are overcome in the present work:

‚ Most importantly, we cannot use the scaling vector field S :“ rBr ` tBt, since the

Klein-Gordon equation is not kept conformally invariant by this vector field.

‚ In addition to null terms which are standard in the theory of quasilinear wave

equations, in the nonlinearity Fαβph; Bh, Bhq we must also handle quasi-null terms,

as we call them, which will be controlled by relying on the wave gauge condition.

‚ The structure of the nonlinearities in the Einstein equations must be carefully

studied in order to exclude instabilities that may be induced by the massive scalar

field.

1The authors thank J. Corvino for pointing this out to them.
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In addition to the refined estimates on the commutators for hyperboloidal frames1 and the

sharp L8-L8 estimates for wave equations and Klein-Gordon equations already introduced

by the authors in the first part [41], we need the following new arguments of proof (further

discussed below):

‚ Formulation of the Einstein equations in wave gauge in the semi-hyperboloidal

frame.

‚ Energy estimates at arbitrary order on a background Schwarzschild space in wave

gauge.

‚ Refined estimates for nonlinear wave equations, that are established by integration

along characteristics or radial rays.

‚ Estimates of quasi-null terms in wave gauge, for which we rely on, both, the tensorial

structure of the Einstein equations and the wave gauge condition.

‚ New weighted Hardy inequality along the hyperboloidal foliation.

A precise outline of the content of this Monograph will be given at the end of the following

section, after introducing further notation.
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2. Overview of the Hyperboloidal Foliation Method

2.1. The semi-hyperboloidal frame and the hyperboloidal frame. Consider the p3`

1q-dimensional Minkowski spacetime with signature p´,`,`,`q. In Cartesian coordinates,

we write pt, xq “ px0, x1, x2, x3q with r2 :“ |x|2 “ px1q2 ` px2q2 ` px3q2, and we use the

partial derivative fields B0 and Ba, as well as the Lorentz boosts La :“ xaBt ` tBa and their

“normalized” version La
t
“ xa

t
Bt ` Ba. We primarily deal with functions defined in the

interior of the future light cone from the point p1, 0, 0, 0q, denoted by

K :“ tpt, xq { r ă t´ 1u.

To foliate this domain, we consider the hyperboloidal hypersurfaces with hyperbolic radius

s ą 0, defined by

Hs :“
 

pt, xq { t2 ´ r2
“ s2; t ą 0

(

with s ě 1. In particular, we can introduce the following subset of K limited by two

hyperboloids (with s0 ă s1)

Krs0,s1s :“
 

pt, xq { s2
0 ď t2 ´ r2

ď s2
1; r ă t´ 1

(

whose boundary contains a section of the light cone K.

With these notations, the semi-hyperboloidal frame is, by definition,

(2.1) B0 :“ Bt, Ba :“
xa

t
Bt ` Ba, a “ 1, 2, 3.

Note that the three vectors Ba generate the tangent space to the hyperboloids. For some

of our statements (for instance in Proposition 3.15), It will be convenient to also use the

vector field BK :“ Bt `
xa

t
Ba, which is orthogonal to the hyperboloids (and is proportional

to the scaling vector field).

Furthermore, given a multi-index I “ pαn, αn´1, . . . , α1q with αi P t0, 1, 2, 3u, we use the

notation BI :“ BαnBαn´1 . . . Bα1 for the product of n partial derivatives and, similarly, for
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J “ pan, an´1, . . . , a1q with ai P t1, 2, 3u we write LJ “ LanLan´1 . . . La1 for the product of

n Lorentz boosts.

Associated with the semi-hyperboloidal frame, one has the dual frame θ0 :“ dt´ xa

t
dxa,

θa :“ dxa. The (dual) semi-hyperboloidal frame and the (dual) natural Cartesian frame

are related via

Bα “ Φα1

α Bα1 , Bα “ Ψα1

α Bα1 , θα “ Ψα
α1 dx

α1 , dxα “ Φα
β1θ

α1 ,

in which the transition matrix
`

Φβ
α

˘

and its inverse
`

Ψβ
α

˘

are

`

Φβ
α

˘

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0

x1
{t 1 0 0

x2
{t 0 1 0

x3
{t 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

,
`

Ψβ
α

˘

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 0 0

´x1
{t 1 0 0

´x2
{t 0 1 0

´x3
{t 0 0 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

With this notation, for any two-tensor Tαβ dx
α b dxβ “ Tαβθ

α
b θβ, we can write Tαβ “

Tα1β1Φ
α1

α Φβ1

β and Tαβ “ Tα1β1Ψ
α1

α Ψβ1

β . We also have the similar decompositions Tαβ “

Tα
1β1Φα

α1Φ
β
β1 and Tαβ “ Tα

1β1Ψα
α1Ψ

β
β1 .

Lemma 2.1 (Decomposition of the wave operator). For every smooth function u defined

in the future light-cone K, the flat wave operator in the semi-hyperboloidal frame reads

(2.2) lu “ ´
s2

t2
BtBtu´

3

t
Btu´

xa

t

`

BtBau` BaBtu
˘

`
ÿ

a

BaBau.

Within the future cone K, we introduce the change of variables x0 “ s :“
?
t2 ´ r2 and

xa “ xa and the associated frame which we refer to as the hyperboloidal frame :

(2.3) B0 :“ Bs “
s

t
Bt “

x0

t
Bt “

?
t2 ´ r2

t
Bt, Ba :“ Bxa “

xa

t
Bt ` Ba “

xa

t
Bt ` Ba.
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The transition matrices between the hyperboloidal frame and the Cartesian frame read

`

Φ
β

α

˘

“

¨

˚

˚

˚

˚

˚

˝

s{t 0 0 0

x1{t 1 0 0

x2{t 0 1 0

x3{t 0 0 1

˛

‹

‹

‹

‹

‹

‚

,
`

Ψ
β

α

˘

:“
`

Φ
β

α

˘´1
“

¨

˚

˚

˚

˚

˚

˝

t{s 0 0 0

´x1{s 1 0 0

´x2{s 0 1 0

´x3{s 0 0 1

˛

‹

‹

‹

‹

‹

‚

,

so that Bα “ Φ
β

αBβ and Bα “ Ψ
β

αBβ. Observe also that the dual hyperboloidal frame is

dx0 :“ ds “ t
s
dt´ xa

s
dxa and dxa :“ dxa, while the Minkowski metric in the hyperboloidal

frame reads

`

mαβ
˘

“

¨

˚

˚

˚

˚

˚

˝

´1 ´x1{s ´x2{s ´x3{s

´x1{s 1 0 0

´x2{s 0 1 0

´x3{s 0 0 1

˛

‹

‹

‹

‹

‹

‚

.

A given tensor can be expressed in any of the above three frames: the standard frame

tBαu, the semi-hyperboloidal frame tBαu, and the hyperboloidal frame tBαu. We use Ro-

man letters, underlined Roman letters and overlined Roman letters for the correspond-

ing components of a tensor expressed in different frame. For example, TαβBα b Bβ also

reads TαβBα b Bβ “ TαβBα b Bβ “ T
αβ
Bα b Bβ, where T

αβ
“ Ψ

α

α1Ψ
β

β1T
α1β1 and, moreover,

by setting M :“ maxαβ |T
αβ|, in the hyperboloidal frame we have the uniform bounds1

ps{tq2 |T
00
| ` ps{tq |T

a0
| ` |T

ab
| ÀM .

2.2. Spacetime foliation and initial data set. We now discuss the construction of the

initial data by following the notation in [9, Sections VI.2 and VI.3]. We are interested in a

time-oriented spacetime pM, gq that is endowed with a Lorentzian metric g with signature

p´,`,`,`q and admits a global foliation by spacelike hypersurfaces Mt » ttu ˆ R3. The

foliation is determined by a time function t : M Ñ r0,`8q. We introduce local coordinates

adapted to the above product structure, that is, pxαq “ px0 “ t, xiq, and we choose the

basis of vectors pBiq as the ‘natural frame’ of each slice Mt, and this also defines the ‘natural

1Here and in the rest of this paper, the notation A À B is used when A ď CB and C is already known

to be bounded (at the stage of the analysis).
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frame’ pBt, Biq on the spacetime M . By definition, the ‘Cauchy adapted frame’ is ei “ Bi

and e0 “ Bt ´ βiBi, where β “ βiBi is a time-dependent field, tangent to Mt and is called

the shift vector, and we impose the restriction that e0 is orthogonal to each hypersurface

Mt. The dual frame pθαq of the Cauchy adapted frame peαq, by definition, is θ0 :“ dt and

θi :“ dxi ` βidt and the spacetime metric reads

(2.4) g “ ´N2θ0θ0
` gijθ

iθj,

where the function N ą 0 is referred to as the lapse function of the foliation.

We denote by g “ gt the induced Riemannian metric associated with the slices Mt and

by ∇ the Levi-Civita connection of g. We also introduce the second fundamental form

K “ Kt defined by

KpX, Y q :“ ´gp∇Xn, Y q

for all vectors X, Y tangent to the slices Mt, where n denotes the future-oriented, unit

normal to the slices. In the Cauchy adapted frame, it reads

Kij “ ´
1

2N

´

xe0, gijy ´ gljBiβ
l
´ gilBjβ

l
¯

.

Here, we use the notation xe0, gijy for the action of the vector field e0 on the function gij.

Next, we define the time-operator D0 acting on a two-tensor defined on the slice Mt by

D0Tij “ xe0, Tijy´TljBiβ
l´TilBjβ

l, which is again a two-tensor on Mt. With this notation,

we have

K “ ´
1

2N
D0g.

In order to express the field equations (1.3) as a system of partial differential equa-

tions (PDE) in wave coordinates, we need first to turn the geometric initial data set

pM, g,K, φ0, φ1q into a “PDE initial data set”. Since the equations are second-order, we

need to know the data gαβ|tt“2u “ g0,αβ, Btgαβ|tt“2u “ g1,αβ, φ|tt“2u “ φ0, Btφ|tt“2u “ φ1,

that is, the metric and the scalar field and their time derivative evaluated on the initial

hypersurface tt “ 2u. We claim that these data can be precisely determined from the

prescribed geometric data pg,K, φ0, φ1q, as follows. The PDE initial data satisfy:

‚ 4 Gauss-Codazzi equations which form the system of Einstein’s constraints, and
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‚ 4 equations deduced from the (restriction of the) wave gauge condition.

For the PDE initial data we have to determine 22 components, and the geometric initial

data provide us with pgab, Kab, φ0, φ1q, that is, 14 components in total. The remaining

degrees of freedom are exactly determined by the above 8 equations. The well-posedness

of the system composed by the above 8 equations is a trivial property. In this work, we are

concerned with the evolution part of the Einstein equations and our discussion is naturally

based directly on the PDE initial data set.

The initial data sets considered in the present article are taken to be “near” initial

data sets generating the Minkowski metric (i.e. without matter field). More precisely, we

consider initial data sets which coincide, outside a spatially compact set t|x| ď 1u, with an

asymptotically flat, spacelike hypersurface in a Schwarzschild spacetime with sufficiently

small ADM mass. The following observation is in order. The main challenge overcome

by the hyperboloidal foliation method applied to (1.6) concerns the part of the solution

supported in the region Kr2,`8q or, more precisely, the global evolution of initial data posed

on an asymptotically hyperbolic hypersurface. (See [42] for further details.) To guarantee

this, the initial data posed on the hypersurface tt “ 2u should have its support contained

in the unit ball tr ă 1u. Of course, in view of the positive mass theorem (associated with

the constraint equation (1.5)), admissible non-trivial initial data must have a non-trivial

tail at spatial infinity, that is,

(2.5) mS :“ lim
rÑ`8

ż

Σr

`

Bjgij ´ Bigjj
˘

nidΣ,

where n is the outward unit norm to the sphere Σr with radius r. Therefore, an initial

data (unless it identically vanishes) cannot be supported in a compact region.

To bypass this difficulty, we make the following observation: first, the Schwarzschild

spacetime provides us with an exact solution to (1.3), that is, the equations (1.6) (when

expressed with wave coordinates). So, we assume that our initial data g0 and g1 coincide

with the restriction of the Schwarzschild metric and its time derivative, respectively (again
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in wave coordinates) on the initial hypersurface tt “ 2u outside the unit ball tr ă 1u. Out-

side the region Kr2,`8q, we prove that the solution coincides with Schwarzschild spacetime

and the global existence problem can be posed in the region Kr2,`8q.

We can also formulate the Cauchy problem directly with initial data posed on a hy-

perboloidal hypersurface. This appears to be, both, geometrically and physically natural.

As we demonstrated earlier in [39], the analysis of nonlinear wave equations is also more

natural in such a setup and may lead us to uniform bounds for the energy of the solutions.

Yet another approach would be to pose the Cauchy problem on a light cone, but while it

is physically appealing, such a formulation would introduce spurious technical difficulties

(i.e. the regularity at the tip of the cone) and does not appear to be very convenient from

the analysis viewpoint.

The Schwarzschild metric in standard wave coordinates px0, x1, x2, x3q takes the form

(cf. [2]):

(2.6) gS00 “ ´
r ´mS

r `mS

, gSab “
r `mS

r ´mS

ωaωb `
pr `mSq

2

r2
pδab ´ ωaωbq

with ωa :“ xa{r. Furthermore, in order to distinguish between the behavior in the small

and in the large, we introduce a smooth cut-off function χ : R` Ñ R (fixed once for all)

satisfying χpτq “ 0 for τ P r0, 1{3s while χpτq “ 1 for τ P r2{3,`8q.

Definition 2.2. An initial data set for the Einstein-massive field system posed on the

initial hypersurface tt “ 2u is said to be a spatially compact perturbation of Schwarzschild

spacetime or a compact Schwarzschild perturbation, in short, if outside a compact set it

coincides with the (vacuum) Schwarzschild space.

The proof of the following result is postponed to Section 4.2, after investigating the

nonlinear structure of the Einstein-massive field system.

Proposition 2.3. Let pgαβ, φq be a solution to the system (1.6) whose initial data is a

compact Schwarzschild perturbation, then pgαβ ´ gSαβq is supported in the region K and

vanishes in a neighborhood of the boundary BBK :“ tr “ t´ 1, t ě 2u.
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2.3. Coordinate formulation of the nonlinear stability property. We introduce the

restriction

H˚
s :“ Hs XK

of the hyperboloid to the light cone and we consider the energy functionals

Eg,c2ps, uq : “

ż

Hs

´

´ g00
|Btu|

2
` gabBauBbu`

ÿ

a

2xa

t
gaβBβuBtu` c

2u2
¯

dx,

E˚g,c2ps, uq : “

ż

H˚s

´

´ g00
|Btu|

2
` gabBauBbu`

ÿ

a

2xa

t
gaβBβuBtu` c

2u2
¯

dx,

and, for the flat Minkowski background,

EM,c2ps, uq : “

ż

Hs

´

|Btu|
2
`
ÿ

a

|Bau|
2
`
ÿ

a

2xa

t
BauBtu` c

2u2
¯

dx,

E˚M,c2ps, uq : “

ż

H˚s

´

|Btu|
2
`
ÿ

a

|Bau|
2
`
ÿ

a

2xa

t
BauBtu` c

2u2
¯

dx.

We have the alternative form

EM,c2ps, uq “

ż

Hs

´

ps{tq2|Btu|
2
`
ÿ

a

|Bau|
2
` c2u2

¯

dx

“

ż

Hs

´

|Btu` px
a
{tqBau|

2
`
ÿ

aăb

|t´1Ωabu|
2
` c2u2

¯

dx,

where Ωab :“ xaBb ´ x
bBa denotes the spatial rotations. When the parameter c is taken to

vanish, we also use the short-hand notation E˚g ps, uq :“ E˚g,0ps, uq and Egps, uq :“ Eg,0ps, uq.

In addition, for all p P r1,`8q, the Lp norms on the hyperboloids endowed with the (flat)

measure dx are denoted by

}u}p
Lpf pHsq

:“

ż

Hs

|u|pdx “

ż

R3

ˇ

ˇu
`
?
s2 ` r2, x

˘
ˇ

ˇ

p
dx

and the LP norms on the interior of Hs by

}u}p
LppH˚s q

:“

ż

HsXK

|u|pdx “

ż

rďps2´1q{2

ˇ

ˇu
`
?
s2 ` r2, x

˘
ˇ

ˇ

p
dx.

We are now in a position to state our main result for the Einstein system (1.6). The

principal part of our system is the reduced wave operator associated with the curved metric
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g and we can write the decomposition

(2.7) rlg “ gαβBαBβ “ l`Hαβ
BαBβ,

in which Hαβ :“ mαβ´gαβ are functions of h “ phαβq. When h is sufficiently small, Hαβphq

can be expressed as a power series in the components hαβ and vanishes at first-order at

the origin. Our analysis will (only) use the translation and boost Killing fields associated

with the flat wave operator l in the coordinates under consideration.

Theorem 2.4 (Nonlinear stability of Minkowski spacetime for self-gravitating massive

fields. Formulation in coordinates). Consider the Einstein-massive field equations (1.6)

together with an initial data set satisfying the constraints and prescribed on the hypersurface

tt “ 2u:

(2.8)
gαβ|tt“2u “ g0,αβ, Btgαβ|tt“2u “ g1,αβ,

φ|tt“2u “ φ0, Btφ|tt“2u “ φ1,

which, on tt “ 2u outside the unit ball tr ă 1u, is assumed to coincide with the restriction

of Schwarzschild spacetime of mass mS (in the wave gauge (2.6)), i.e.

gαβp2, ¨q “ gSαβ, Btgαβp2, ¨q “ φp2, ¨q “ Btφp2, ¨q “ 0 in
 

r “ |x| ě 1
(

.

Then, for any sufficiently large integer N , there exist constants ε0, C1, δ ą 0 and such that

provided

(2.9)
ÿ

α,β

}Bg0,αβ, g1,αβ}HN ptră1uq ` }φ0}HN`1ptră1uq ` }φ1}HN ptră1uq `mS ď ε ď ε0

holds at the initial time, then the solution associated with the initial data (2.8) exists for

all times t ě 2 and, furthermore,

(2.10)

EMps, B
ILJhαβq

1{2
ď C1εs

δ, |I| ` |J | ď N,

EM,c2ps, B
ILJφq1{2 ď C1εs

δ`1{2, |I| ` |J | ď N,

EM,c2ps, B
ILJφq1{2 ď C1εs

δ, |I| ` |J | ď N ´ 4.
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2.4. Bootstrap argument and construction of the initial data. We will rely on a

bootstrap argument, which can be sketched as follows. We begin with our main system

(1.6) supplemented with initial data on the initial hyperboloid H2, that is, gαβ|H2 , Btgαβ|H2 ,

φ|H2 , and Btφ|H2 . First of all, since the initial data is posed on tt “ 2u and is sufficiently

small, we need first to construct its restriction on the initial hyperboloid H2. Since the

data are compactly supported, this is immediate by the standard local existence theorem

(see [39, Chap. 11] for the details). We also observe that when the initial data posed on

tt “ 2u are sufficiently small, i.e. (2.9) holds, then the corresponding data on H2 satisfies

the bounds

}BaB
ILJhαβ}L2pH˚2 q

` }BtB
ILJhαβ}L2pH˚2 q

ď C0 ε, |I| ` |J | ď N,

}B
ILJφ}L2pH˚2 q

` }BtB
ILJφ}L2pH˚2 q

ď C0 ε, |I| ` |J | ď N.

We outline here the bootstrap argument and refer to [39, Section 2.4] for further details.

Throughout we fix a sufficiently large integer N and we proceed by assuming that the

following energy bounds have been established within a hyperbolic time interval r2, s˚s:

(2.11a)
EMps, B

ILJhαβq
1{2
ď C1εs

δ, N ´ 3 ď |I| ` |J | ď N,

EM,c2ps, B
ILJφq1{2 ď C1εs

1{2`δ, N ´ 3 ď |I| ` |J | ď N,

(2.11b) EMps, B
ILJhαβq

1{2
` EM,c2ps, B

ILJφq1{2 ď C1εs
δ, |I| ` |J | ď N ´ 4,

and, more precisely, we choose

s˚ :“ sup
!

s1

ˇ

ˇ for all 2 ď s ď s1, the bounds (2.11) hold
)

.

Since standard arguments for local existence do apply (see [39, Chap. 11]) and, clearly, s˚

is not trivial in the sense that, if we choose C1 ą C0, then by continuity we have s˚ ą 2.

By continuity, when s “ s˚ at least one of the following equalities holds:

(2.12)

EMps, B
ILJhαβq

1{2
“ C1εs

δ, N ´ 3 ď |I| ` |J | ď N,

EM,c2ps, B
ILJφq1{2 “ C1εs

1{2`δ, N ´ 3 ď |I| ` |J | ď N,

EMps, B
ILJhαβq

1{2
` EM,c2ps, B

ILJφq1{2 “ C1εs
δ, |I| ` |J | ď N ´ 4.
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Our main task for the rest of this work is to derive from (2.11) the improved energy bounds

:

(2.13)

EMps, B
ILJhαβq

1{2
ď

1

2
C1εs

δ, N ´ 3 ď |I| ` |J | ď N,

EM,c2ps, B
ILJφq1{2 ď

1

2
C1εs

1{2`δ, N ´ 3 ď |I| ` |J | ď N,

EMps, B
ILJhαβq

1{2
` EM,c2ps, B

ILJφq1{2 ď
1

2
C1εs

δ, |I| ` |J | ď N ´ 4.

By comparing with (2.12), we will be able to conclude that the interval r2, s˚s extends to

the maximal time of existence of the local solution. Then by a standard local existence

argument, this local solution extends to all time values s.

2.5. Outline of the Monograph. We must therefore derive the improved energy bounds

(2.13) and, to this end, the rest of this work is organized as follows. In Section 3, we begin by

presenting various analytical tools which are required for the analysis of (general functions

or) solutions defined on the hyperboloidal foliation. In particular, we establish first an

energy estimate for wave equations and Klein-Gordon equations on a curved spacetime,

then a sup-norm estimate based on characteristic integration, and next sharp L8–L8

estimates for wave equations and for Klein-Gordon equations, as well as Sobolev and

Hardy inequalities on hyperboloids.

In Section 4, we discuss the reduction of the Einstein-massive field system and we es-

tablish the quasi-null structure in wave gauge. We provide a classification of all relevant

nonlinearities arising in the problem and we carefully study the nonlinear structure of the

Einstein equations in the semi-hyperboloidal frame.

Next, in Section 5 we formulate our full list of bootstrap assumptions and we write

down basic estimates that directly follow from these assumptions. In Section 6, we are in

a position to provide a preliminary control of the nonlinearities of the Einstein equations

in the L2 and L8 norms. In Section 7, we establish estimates which are tight to the wave

gauge condition.
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An estimate of the second-order derivatives of the metric coefficients is then derived

in Section 8, while in Section 9 we obtain a sup-norm estimate based on integration on

characteristics and we apply it to the control of quasi-null terms.

We are then able, in Section 10, to derive the low-order “refined” energy estimate for

the metric and next, in Section 11, to control the low-order sup-norm of the metric as well

as of the scalar field. In Section 12, we improve our bound on the high-order energy for

the metric components and the scalar field. In Section 13, based on this improved energy

bound at high-order, we establish high-order sup-norm estimates. Finally, in Section 14,

we improve the low-order energy bound on the scalar field and we conclude our bootstrap

argument.

3. Functional Analysis on Hyperboloids of Minkowski Spacetime

3.1. Energy estimate on hyperboloids. In this section, we need to adapt the tech-

niques we introduced earlier in [39, 41] to the compact Schwarzschild perturbations under

consideration in the present Monograph, since these techniques were established for com-

pactly supported initial data. Here, the initial data is not supported in the unit ball but

coincides with Schwarzschild space outside the unit ball. As mentioned in the previous sec-

tion, the curved part of the metric (for a solution of the Einstein-massive field system with

a compact Schwarzschild perturbation) is not compactly supported in the light-cone K,

while the hyperboloidal energy estimate developed in [39] were assuming this. Therefore,

we need to revisit the energy estimate and take suitable boundary terms into account.

Proposition 3.1 (Energy estimate. I). Let phαβ, φq be a solution of the Einstein-massive

field system associated with an initial data set that is a compact Schwarzschild perturbation

with mass mS P p0, 1q. Assume that there exists a constant κ ą 1 such that

(3.1) κ´1E˚Mps, uq
1{2
ď E˚g ps, uq

1{2
ď κE˚Mps, uq

1{2.
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Then, there exists a positive constant C (depending upon N and κ) such that the following

energy estimate holds (for all α, β ď 3, and |I| ` |J | ď N):

(3.2)

EMps, B
ILJhαβq

1{2
ď CEgp2, B

ILJhαβq
1{2
` CmS ` C

ż s

2

}B
ILJFαβ}L2pH˚τ q

dτ

` C

ż s

2

}rB
ILJ , Hµν

BµBνshαβ}L2pH˚τ q
dτ ` C

ż s

2

MαβrB
ILJhspτq dτ

` C

ż s

2

´

}B
ILJpBαφBβφq}H˚τ ` }B

ILJpφ2gαβq}H˚τ

¯

dτ,

in which MαβrB
ILJhspsq is a positive function such that

(3.3)

ż

H˚s

ps{tq
ˇ

ˇBµg
µν
Bν
`

B
ILJhαβ

˘

Bt
`

B
ILJhαβ

˘

´
1

2
Btg

µν
Bµ
`

B
ILJhαβ

˘

Bν
`

B
ILJhαβ

˘ˇ

ˇ dx

ďMαβrB
ILJhspsqE˚Mps, B

ILJhαβq
1{2.

The proof of this estimate is done as follows: in the exterior part of the hyperboloid

(i.e. Hs X Kc), the metric coincides with the Schwarzschild metric and we can calculate

the energy by an explicit expression. On the other hand, the interior part is bounded as

follows.

Lemma 3.2. Under the assumptions in Proposition 3.1, one has

(3.4)

E˚Mps, B
ILJhαβq

1{2
ď CE˚g p2, B

ILJhαβq
1{2
` CmS ` C

ż s

2

Mαβpτ, B
ILJhαβq dτ

` C

ż s

2

}B
ILJFαβ}L2pH˚τ q

dτ ` C

ż s

2

}rB
ILJ , Hµν

BµBνshαβ}L2pH˚τ q
dτ

` C

ż s

2

`

}B
ILJpBαφBβφq}L2pH˚τ q

` }B
ILJ

`

φ2gαβ
˘

}L2pH˚τ q

˘

dτ.

Proof. We consider the wave equation gµνBµBνhαβ “ Fαβ´16πBαφBβφ´8πc2φ2gαβ satisfied

by the curved part of the metric and differentiate it (with BILJ with |I| ` |J | ď N):

gµνBµBνB
ILJhαβ “´ rB

ILJ , Hµν
BµBνshαβ ` B

ILJFαβ

´ 16πBILJ
`

BαφBβφ
˘

´ 8πc2
B
ILJ

`

φ2gαβ
˘

.
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Using the multiplier ´BtB
ILJhαβ, we obtain the general identity

(3.5)

Bt
`

´ p1{2qg00
|BtB

ILJhαβ|
2
` p1{2qgabBaB

ILJhαβBbB
ILJhαβ

˘

´ Ba
`

gaνBνB
ILJhαβBtB

ILJhαβ
˘

“
1

2
Btg

µν
BµB

ILJhαβ ´ Bµg
µν
BtB

ILJhαβBνB
ILJhαβ

` rB
ILJ , Hµν

BµBνshαβBtB
ILJhαβ ´ B

ILJFαβBtB
ILJhαβ

` 16πBILJ
`

BαφBβφ
˘

BtB
ILJhαβ ` 8πc2

B
ILJ

`

φ2gαβ
˘

BtB
ILJhαβ.

For simplicity, we write u “ BILJhαβ andW :“
`

´p1{2qg00|Btu|
2`p1{2qgabBauBbu,´g

aνBνuBtu
˘

for the energy flux, while

F :“
1

2
Btg

µν
BµB

ILJhαβ ´ Bµg
µν
BtB

ILJhαβBνB
ILJhαβ

` rB
ILJ , Hµν

BµBνshαβBtB
ILJhαβ ´ B

ILJFαβBtB
ILJhαβ

` 16πBILJ
`

BαφBβφ
˘

BtB
ILJhαβ ` 8πc2

B
ILJ

`

φ2gαβ
˘

BtB
ILJhαβ.

Then, by defining Div with respect to the Euclidian metric on R3`1, (3.5) reads DivW “ F

and we can next integrate this equation in the region Kr2,ss and write
ş

Kr2,ss
DivWdxdt “

ş

Kr2,ss
Fdxdt. In the left-hand side, we apply Stokes’ formula:

ż

Kr2,ss

DivWdxdt “

ż

H˚s

W ¨ ndσ `

ż

H˚2

W ¨ ndσ `

ż

Br2,ss

W ¨ ndσ,

where Br2,ss is the boundary of Kr2,ss, which is
 

pt, xq|t “ r ` 1, 3{2 ď r ď ps2 ´ 1q{2
(

. An

easy calculation shows that

(3.6)

ż

Kr2,ss

DivWdxdt “
1

2

´

E˚g ps, B
ILJhαβq ´ E

˚
g p2, B

ILJhαβq
¯

`

ż

3{2ďrďps2´1q{2

ż

S2
W ¨ p´

?
2{2,

?
2xa{2rq

?
2r2drdωds,

where dω is the standard Lebesgue measure on S2. Recall that gαβ “ gSαβ in a neighbor-

hood ofBr2,ss. An explicit calculation shows thatW “
`

p1{2qgS
abBaB

ILJhSαβBbB
ILJhSαβ, 0

˘
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on Br2,ss. We have

ż

3{2ďrďps2´1q{2

ż

S2
W ¨ p´

?
2{2,

?
2xa{2rq

?
2r2drdω

“ ´2π

ż ps2´1q{2

3{2

gS
ab
BaB

ILJhSαβBbB
ILJhSαβr

2drds

with hSαβ :“ gSαβ ´mαβ. This leads us to

d

ds

ż

Br2,ss

W ¨ ndσ “ ´
π

2
sps2

´ 1q2gS
ab
BaB

ILJhSαβBbB
ILJhSαβ

ˇ

ˇ

ˇ

ˇ

r“ s2´1
2

.

Assuming that mS is sufficiently small, we see that

ˇ

ˇgS
ab
BaB

ILJhSαβBbB
ILJhSαβ

ˇ

ˇ ď Cm2
Sr
´4
ď Cm2

Ss
´8, 3{2 ď r.

We have

(3.7)

ˇ

ˇ

ˇ

ˇ

d

ds

ż

Br2,ss

W ¨ ndσ

ˇ

ˇ

ˇ

ˇ

ď Cm2
Ss
´3.

Now, we combine DivW “ F and (3.6) and differentiate in s:

1

2

d

ds
E˚g ps, B

ILJhαβq `
d

ds

ż

Br2,ss

W ¨ ndσ “
d

ds

ż

Kr2,ss

F dxdt,

which leads us to

E˚g ps, B
ILJhαβq

1{2 d

ds

`

E˚g ps, B
ILJhαβq

1{2
˘

“ ´
d

ds

ż

Br2,ss

W ¨ ndσ `
d

ds

ż s

2

ż

H˚s

ps{tqF dxds.

Then, in view of (3.7) we have

(3.8) E˚g ps, B
ILJhαβq

1{2 d

ds

`

E˚g ps, B
ILJhαβq

1{2
˘

ď

ż

H˚s

ps{tq|F| dx` Cm2
Ss
´3.
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In view of the notation and assumptions in Proposition 3.1, we have

ż

H˚s

ˇ

ˇps{tqF
ˇ

ˇ dx ď

ż

H˚s

|ps{tqBtB
ILJhαβB

ILJFαβ|dx

`

ż

H˚s

|ps{tqBtB
ILJhαβrB

ILJ , Hµν
BµBνshαβ|dx` 16π

ż

H˚s

|ps{tqBtB
ILJhαβB

ILJpBαφBβφq| dx

` 8πc2

ż

H˚s

|ps{tqBtB
ILJhαβB

ILJ
`

φ2gαβ
˘

| dx`M rBILJhspsqE˚Mps, B
ILJhαβq

1{2

ď }ps{tqBtB
ILJhαβ}L2pH˚s q

`

}B
ILJFαβ}L2pH˚s q

` }B
ILJ , rHµν

BµBνshαβ}L2pH˚s q

˘

` C}ps{tqBtB
ILJhαβ}L2pH˚s q

`

}B
ILJpBαφBβφq}L2pH˚s q

` }B
ILJ

`

φ2gαβ
˘

}L2pH˚s q

˘

`M rBILJhspsqE˚Mps, B
ILJhαβq

1{2,

so that

ż

H˚s

ˇ

ˇps{tqF
ˇ

ˇ dx ď CE˚Mps, B
ILJhαβq

1{2

ˆ

}B
ILJFαβ}L2pH˚s q

` }B
ILJ , rHµν

BµBνshαβ}L2pH˚s q

` }B
ILJpBαφBβφq}L2pH˚s q

` }B
ILJ

`

φ2gαβ
˘

}L2pH˚s q
`M rBILJhspsq

˙

.

For simplicity, we write

Lpsq : “ }BILJFαβ}L2pH˚s q
` }B

ILJ , rHµν
BµBνshαβ}L2pH˚s q

` }B
ILJpBαφBβφq}L2pH˚s q

` }B
ILJ

`

φ2gαβ
˘

}L2pH˚s q
`M rBILJhspsq

and ypsq :“ E˚g ps, B
ILJhαβq

1{2. In view of (3.1), we have

E˚Mps, B
ILJhαβq

1{2
ď CκE˚g ps, B

ILJhαβq
1{2

and (3.8) leads us to ypsqy1psq “ CκypsqLpsq ` Cm2
Ss
´3. By Lemma 3.3 stated shortly

below, we conclude that (with mS “ ε and σ “ 2 therein)

ypsq ď yp0q ` CmS ` Cκ

ż s

2

Lpsqds.

By recalling (3.1), the above inequality leads us to (3.4). �
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Lemma 3.3. The nonlinear inequality ypτqy1pτq ď gpτqypτq ` C2ε2τ´1´σ, in which the

function y : r2, ss Ñ R` is sufficiently regular, the function g is positive and locally inte-

grable, and C, ε, σ are positive constants, implies the linear inequality

ypτq ď yp2q ` Cε
`

1` σ´1
˘

`

ż τ

2

gpηqdη.

Proof. We denote by I “ tτ P r2, ss|ypsq ą Cεu. In view of the continuity of y, I “
Ť

iPNpInXr2, ssq where In are open intervals disjoint from each other. For τ R I, ypτq ď Cε.

For τ P I, there exists some integer i such that τ P Ii X r2, ss. Let infpIi X r2, ssq “ s0 ě 2,

then on In X r2, ss,

y1pτq ď gpτq `
C2ε2τ´1´σ

ypτq
ď gpτq ` Cετ´1´σ.

This leads us to
ż τ

s0

y1pηqdη ď

ż τ

s0

gpηqdη ` Cε

ż τ

s0

s´1´σds ď

ż τ

2

gpηqdη ` Cε

ż 8

2

s´1´σds ď

ż τ

2

gpηqdη ` Cεσ´1

and ypτq ´ yps0q ď
şτ

2
gpηqdη ` Cεσ´1. By continuity, either s0 P p2, sq which leads us to

yps0q “ Cε, or else s0 “ 2 which leads us to yps0q “ yp2q. Then, we obtain

ypτq ď maxtyp2q, Cεu ` Cεσ´1
`

ż τ

2

gpηqdη.

�

To complete the proof of Proposition 3.1, we need the following additional observation,

which is checked by an explicit calculation (omitted here).

Lemma 3.4. The following uniform estimate holds (for all a, α, β, all relevant I, J , and

for some C “ CpI, Jq)

(3.9)

ż

HsXKc
|BaB

ILJhSαβ|
2dx`

ż

HsXKc
ps{tq|BtB

ILJhSαβ|
2dx ď Cm2

S.

Proof of Proposition 3.1. We observe that

Egps, B
ILJhαβq

ď E˚g ps, B
ILJhαβq ` C

ż

HsXKc
|BaB

ILJhSαβ|
2dx`

ż

HsXKc
ps{tq|BtB

ILJhSαβ|
2dx.
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Combining (3.4) with Lemma 3.4 allows us to complete the proof of (3.2). �

For all solutions to the Einstein-massive field system associated with compact Schwarzschild

perturbations, the scalar field φ is also supported in K. So the energy estimate for φ re-

mains identical to the one in [41].

Proposition 3.5 (Energy estimate. II). Under the assumptions in Proposition 3.1, the

scalar field φ satisfies

(3.10)

EM,c2ps, B
ILJφq1{2 ď CEg,c2p2, B

ILJφq1{2

`

ż s

2

ˇ

ˇrB
ILJ , Hµν

BµBνsφ
ˇ

ˇdτ `

ż s

2

M rBILJφspτq dτ,

in which M rBILJφspsq denotes a positive function such that

(3.11)

ż

Hs

ps{tq
ˇ

ˇBµg
µν
Bν
`

B
ILJφ

˘

Bt
`

B
ILJφ

˘

´
1

2
Btg

µν
Bµ
`

B
ILJφ

˘

Bν
`

B
ILJφ

˘
ˇ

ˇ dx

ďM rBILJφspsqEM,c2ps, B
ILJφq1{2.

3.2. Sup-norm estimate based on curved characteristic integration. We now re-

visit an important technical tool introduced first in Lindblad and Rodnianski [45]. This is

an L8 estimate on the gradient of solutions to a wave equation posed in a curved back-

ground. For our problem, we must adapt this tool to the hyperboloidal foliation and we

begin by stating without proof the following identity.

Lemma 3.6 (Decomposition of the flat wave operator in the null frame). For every smooth

function u, the following identity holds:

(3.12) ´lu “ r´1
pBt ` Brq

`

Bt ´ Br
˘

pruq ´
ÿ

aăb

`

r´1Ωab

˘2
u

with Ωab “ xaBb ´ x
bBa “ xaBb ´ x

bBa (defined earlier).

We then write Bt “
t
t`r
pBt ´ Brq `

xat
pt`rqr

Ba and thus

BtBt “
t2

pt` rq2
pBt ´ Brq

2
`

t

t` r
pBt ´ Brq

ˆ

xatBa
rpt` rq

˙

`
xat

rpt` rq
Ba

ˆ

t

t` r
pBt ´ Brq

˙

`

ˆ

xat

rpt` rq
Ba

˙2

`
Bt ´ Br

t` r
.
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Consequently, we have found the decomposition

(3.13)

rBtBtu “
t2

pt` rq2
pBt ´ Brq

2
pruq `

2t2

pt` rq2
pBt ´ Brqu`

rt

t` r
pBt ´ Brq

ˆ

xat

rpt` rq
Bau

˙

`
xat

pt` rq
Ba

ˆ

t

t` r
pBt ´ Brqu

˙

` r

ˆ

xat

rpt` rq
Ba

˙2

u`
rpBt ´ Brqu

t` r

“:
t2

pt` rq2
pBt ´ Brq

2
pruq `W1rus.

On the other hand, the curved part of the reduced wave operator HαβBαBβ can be

decomposed in the semi-hyperboloidal frame as follows:

Hαβ
BαBβu “ Hαβ

BαBβu`H
αβ
Bα
`

Ψβ1

β

˘

Bβ1u

“ H00
BtBtu`H

a0
BaBtu`H

0a
BtBau`H

ab
BaBbu`H

αβ
Bα
`

Ψβ1

β

˘

Bβ1u.

The “good” part of the curved wave operator (i.e. terms containing one derivative tangen-

tial to the hyperboloids) is defined to be

(3.14) Rru,Hs :“ Ha0
BaBtu`H

0a
BtBau`H

ab
BaBbu`H

αβ
Bα
`

Ψβ1

β

˘

Bβ1u,

and, with this notation together with (3.13),

(3.15) rHαβ
BαBβu “

t2H00

pt` rq2
pBt ´ Brq

`

pBt ´ Brqpruq
˘

`H00W1rus ` rRru,Hs.

Then, by combining (3.12) for the flat wave operator and (3.15) for the curved part, we

reach the following conclusion.

Lemma 3.7 (Decomposition of the reduced wave operator rlg). Let u be a smooth function

defined in R3`1 and Hαβ be functions in R3`1. Then the following identity holds:

(3.16)

´

pBt ` Brq ´ t
2
pt` rq´2H00

pBt ´ Brq

¯´

`

Bt ´ Br
˘

pruq
¯

“ ´r rlgu` r
ÿ

aăb

`

r´1Ωab

˘2
u`H00W1rus ` rRru,Hs

with the notation above.
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Now we are ready to establish the desired estimate of this section. For convenience, we

set

Kint :“
 

pt, xq|r ď
3

5
t
(

XK, Kint
rs0,s1s

:“
 

pt, xq P Kint
{ s2

0 ď t2 ´ r2
ď s2

1

(

and we denote by BBK
int
rs0,s1s

the following “boundary” of Kint
rs0,s1s

BBK
int
rs0,s1s

:“
 

pt, xq { r “ p3{5qt, p5{4qs0 ď t ď p5{4qs1

(

.

We will now prove the following sharp decay property for solutions to the wave equation

on a curved spacetime.

Proposition 3.8 (Sup-norm estimate based on characteristic integration). Let u be a

solution to the wave equation on curved spacetime ´lu ´HαβBαBβu “ F, where Hαβ are

given functions. Given any point pt0, x0q, denote by pt, ϕpt; t0, x0qq the integral curve of the

vector field

Bt `
pt` rq2 ` t2H00

pt` rq2 ´ t2H00Br

passing through pt0, x0q, that is, ϕpt0; t0, x0q “ x0. Then, there exist two positive constants

εs and a0 ě 2 such that for t ě a0

(3.17) |H00
| ď εspt´ rq{t,

then for all s ě a0 and pt, xq P KzKint
r2,ss one has

(3.18)

|pBt ´ Brqupt, xq| ď t´1 sup
BBKint

r2,ss
YBK

´

|pBt ´ Brqpruq|
¯

` Ct´1
|upt, xq|

` t´1

ż t

a0

τ |F pτ, ϕpτ ; t, xqq|dτ ` t´1

ż t

a0

ˇ

ˇMsru,Hs|pτ,ϕpτ ;t,xqqdτ,

where F “ ´lu´HαβBαBβu is the right-hand side of the wave equation,

Msru,Hs :“ r
ÿ

aăb

`

r´1Ωab

˘2
u`H00W1rus ` rRru,Hs,

in which one can guarantee that the associated integral curve satisfies pτ, ϕpτ ; t, xqq P

KzKint
r2,ss for 2 ď a0 ă τ ă t, but pa0, ϕpa0; t, xqq P BBK

int
r2,s0s

Y BK at the initial time

a0.
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Proof. Under the condition (3.17), the decomposition (3.16) can be rewritten in the form

(3.19)

ˆ

Bt `
1` t2pt` rq´2H00

1´ t2pt` rq´2H00Br

˙

`

pBt ´ Brqpruq
˘

“: L
`

pBt ´ Brqpruq
˘

“
´rrlgu` r

ř

aăb

`

r´1Ωab

˘2
u`H00W1rus ` rRru,Hs

1´ t2pt` rq´2H00 “: F.

In other words, (3.19) reads L
`

pBr ´ Brqpruq
˘

“ F and by writing

vt0,x0ptq :“
`

pBr ´ Brqpruq
˘

pt, ϕpt; t0, x0qq,

we have

d

dt
vt0,x0ptq “ L

`

pBt ´ Brqpruq
˘

pt, ϕpt; t0, x0qq “ Fpt, ϕpt; t0, x0qq.

By integration, we have vt0,x0pt0q “ vt0,x0paq `
şt0
a
Fpt, ϕpt; t0, x0qq dt.

Fix s2
0 “ t20 ´ r2

0 with s0 ą 0 and take pt0, x0q P Kr2,sszK
int, that is tpt0, x0q|p3{5qt0 ď

r0 ă t0 ´ 1u. We will prove that there exists some a ě 2 such that for all t P ra, t0s,

pt, ϕpt; t0, x0qq P Kr2,sszK
int and pa, ϕpa; t0, x0qq P BBK

int
r2,s0s

Y BK, that is, for t ă t0,

pt, ϕpt; t0, x0qq will not intersect Hs0 again before leaving the region Kr2,s0szK
int. This is

due to the following observation: denote by |ϕpt; t0, x0q| the Euclidian norm of ϕpt; t0, x0q,

and by the definition of L, we have

d|ϕpt; t0, x0q|

dt
“

1` t2pt` rq´2H00

1´ t2pt` rq´2H00 .

Also, we observe that for a point pt, xq on the hyperboloid Hs0 , we have rptq “ |xptq| “
a

t2 ´ s2
0, and this leads us to dr

dt
“ t

r
. Then we have

d
`

|ϕpt; t0, x0q| ´ r
˘

dt
“

1` t2pt` rq´2H00

1´ t2pt` rq´2H00 ´
t

r
“

2t2pt` rq´2H00

1´ t2pt` rq´2H00 ´
t´ r

r
.

So, there exists a constant εs such that if |H00
| ď

εspt´rq
t

, then
d
`

|ϕpt;t0,x0q|´r
˘

dt
ă 0. Recall

that at t “ t0, |ϕpt0; t0, x0q| “ |x0| “ rpt0q. We conclude that for all t ă t0, |ϕpt; t0, x0q| ą

rptq which shows that pt, ϕpt; t0, x0qq will never intersect Hs0 again. Furthermore we see

that there exists a time a0 sufficiently small (but still a0 ě 3) such that pt, ϕpt; t0, x0qq
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leaves Kr2,sszK
int by intersecting the boundary BBK

int
r2,s0s

Y BK at t “ a0. So we see that

vt0,x0pt0q “ vt0,x0pa0q `
şt0
a0
Fpt, ϕpt; t0, x0qq dt, which leads us to

|vt0,x0pt0q| ď sup
pt,xqPBBKint

r2,s0s
YBK

t|pBt ´ Brqpruq|pt,xq|u

`

ż t0

2

ˇ

ˇ´ rrlgu` r
ÿ

aăb

`

rΩab

˘2
u`H00W1rus ` rRru,Hs

ˇ

ˇ

pt,ϕpt;t0,x0qq
dt.

�

3.3. Sup-norm estimate for wave equations with source. Our sup-norm estimate for

the wave equation, established earlier in [41] and based on an explicit formula for solutions

(cf. also the Appendix at the end of this monograph), is now revisited and adapted to

the problem of compact Schwarzschild perturbations. By applying BILJ to the Einstein

equations (1.6a), we obtain

(3.20)

lBILJhαβ “ ´B
ILJ

`

Hµν
BµBνhαβ

˘

` B
ILJFαβ ´ 16πBILJ

`

BαφBβφ
˘

´ 8πc2
B
ILJ

`

φ2gαβ
˘

“: SI,Jαβ “ SW,I,Jαβ ` SKG,I,Jαβ ,

with

SW,I,Jαβ :“ ´BILJ
`

Hµν
BµBνhαβ

˘

` B
ILJFαβ,

SKG,I,Jαβ :“ ´16πBILJ
`

BαφBβφ
˘

´ 8πc2
B
ILJ

`

φ2gαβ
˘

.

We denote by 1K : R4 Ñ t0, 1u the characteristic function of the set K, and introduce the

corresponding decomposition into interior/exterior contributions of the wave source of the

Einstein equations:

SW,I,JInt,αβ :“ 1KS
W,I,J
αβ , SW,I,JExt,αβ :“ p1´ 1KqS

W,I,J
αβ ,

while SKG,I,Jαβ is compactly supported in K and need not be decomposed. We thus have

(3.21) SI,Jαβ “ SW,I,JExt,αβ ` S
KG,I,J
αβ ` SW,I,JInt,αβ.

Outside the region K, the metric gαβ coincides with the Schwarzschild metric so that an

easy calculation leads us to the following estimate.
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Lemma 3.9. One has |SW,I,JExt,αβ| ď Cm2
Sp1´ 1Kqr

´4.

We next decompose the initial data for the equations (3.20). Recall that on the initial

hypersurface tt “ 2u and outside the unit ball, the metric coincides with the Schwarzschild

metric. We write

B
ILJhαβp2, ¨q :“ I0,I,J

Int,α ` I
0,I,J
Ext,αβ,

I0,I,J
Int,α :“ rχprqBILJhαβp2, ¨q, I0,I,J

Ext,αβ :“ p1´ rχprqqBILJhαβp2, ¨q,

in which rχp¨q : R` Ñ R` is a smooth cut-off function with

rχprq “

$

&

%

1, r ď 1,

0, r ě 2.

On the other hand, the initial data BtB
ILJhαβp2, ¨q “: I1rBILJ s is supported in tr ď 1u

since the metric is initially static outside the unit ball. We are in a position to state our

main sup-norm estimate.

Proposition 3.10 (Sup-norm estimate for the Einstein equations). Let pgαβ, φq be a so-

lution of the Einstein-massive field system associated with a compact Schwarzschild initial

data. Assume that the source terms in (3.20) satisfy

(3.22) |SW,I,JInt,αβ| ` |S
KG,I,J
αβ | ď C˚t

´2´ν
pt´ rq´1`µ.

Then, when 0 ă µ ď 1{2 and 0 ă ν ď 1{2, one has

(3.23) |B
ILJhαβpt, xq| ď

CC˚pα, βq

µ|ν|
t´1
pt´ rqµ´ν ` CmSt

´1,

while, when 0 ă µ ď 1{2 and ´1{2 ď ν ă 0,

(3.24) |B
ILJhαβpt, xq| ď

CC˚pα, βq

µ|ν|
t´1´ν

pt´ rqµ ` CmSt
´1.

For the proof of this result, we will rely on the decomposition BILJhαβ “
ř5
k“1 h

IJ,k
αβ with

(3.25a) lhIJ,1αβ “ SW,I,JInt,αβ, hIJ,1αβ p2, ¨q “ 0, Bth
IJ,1
αβ p2, ¨q “ 0,

(3.25b) lhIJ,2αβ “ SKG,I,Jαβ , hIJ,2αβ p2, ¨q “ 0, Bth
IJ,2
αβ p2, ¨q “ 0,
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(3.25c) lhIJ,3αβ “ SW,I,JExt,αβ, hIJ,3αβ p2, ¨q “ 0, Bth
IJ,3
αβ p2, ¨q “ 0,

(3.25d) lhIJ,4αβ “ 0, hIJ,4αβ p2, ¨q “ I0,I,J
Int,αβ, Bth

IJ,4
αβ p2, ¨q “ I1,I,J

αβ ,

(3.25e) lhIJ,5αβ “ 0, hIJ,5αβ p2, ¨q “ I0,I,J
Ext,αβ, Bth

IJ,5
αβ p2, ¨q “ 0.

The proof of Proposition 3.10 is immediate once we control each term.

First of all, the estimates for hIJ,1αβ and hIJ,2αβ are immediate from Proposition 3.1 in [41],

since they concern compactly supported sources. The control of hIJ,4αβ is standard for the

homogeneous wave equation with compact initial data.

Lemma 3.11. The metric coefficients satisfy the inequality

(3.26)

|hIJ,4αβ pt, xq| ď Ct´1
´

}B
ILJhαβp2, ¨q}W 1,8ptrď1uq`}BtB

ILJhαβp2, ¨q}L8ptrď1uq

¯

1t|t`2´r|ď1upt, xq.

We thus need to study the behavior of hIJ,3αβ and hIJ,5αβ . We treat first the function hIJ,5αβ

and observe that

(3.27)

hIJ,5αβ pt, xq

“
1

4πpt´ 2q2

ż

|y´x|“t´2

´

I0,I,J
Ext,αβpyq ´ x∇I

0,I,J
Ext,αβpyq, x´ yy

¯

dσpyq

“
1

4πpt´ 2q2

ż

|y´x|“t´2

I0,I,J
Ext,αβpyqdσpyq ´

1

4πpt´ 2q2

ż

|y´x|“t´2

x∇I0,I,J
Ext,αβpyq, x´ yydσpyq.

We now estimate the two integral terms successively.

Lemma 3.12. One has
ˇ

ˇ

ˇ

ş

|y´x|“t
I0,I,J
Ext,αβpyqdσpyq

ˇ

ˇ

ˇ
ď CmSt.

Proof. Since gαβ coincides with the Schwarzschild metric outside tr ě 1u, we have imme-

diately |I0,I,J
Ext,αβ| ď CmSp1` rq

´1 and thus

(3.28)

ˇ

ˇ

ˇ

ˇ

ż

|y´x|“t

I0,I,J
Ext,αβpyqdσpyq

ˇ

ˇ

ˇ

ˇ

ď CmS

ż

|y´x|“t

dσpyq

1` |y|
“: CmS Θpt, xq.

Assume that r ą 0 and, without loss of generality, x “ pr, 0, 0q. Introduce the parametriza-

tion of the sphere t|y ´ x| “ tu such that:
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‚ θ P r0, πs is the angle from p´1, 0, 0q to y ´ x.

‚ ϕ P r0, 2πq is the angle from the plane determined by p1, 0, 0q and p0, 1, 0q to the

plane determined by y ´ x and p1, 0, 0q.

With this parametrization, dσpyq “ t2 sin θdθdϕ and the above integral reads

Θpt, xq “

ż

|y´x|“t

dσpyq

1` |y|
“ t2

ż 2π

0

ż π

0

sin θdθdϕ

1` t
`

1` pr{tq2 ´ p2r{tq cos θ
˘1{2

,

where the law of cosines was applied to |y|. Then, we have

Θpt, xq “ 2πt2
ż π

0

sin θdθ

1` t
`

1` pr{tq2 ´ p2r{tq cos θ
˘1{2

“ 2πt2
ż 1

´1

dσ

1` t|1` pr{tq2 ´ p2r{tqσ|1{2
,

with the change of variable σ :“ cos θ, so that λ :“ t|1` pr{tq2 ´ p2r{tqσ|1{2 and

Θpt, xq “ 2πtr´1

ż t`r

t´r

λdλ

1` λ
“ 4πt´ 2πtr´1 ln

ˆ

t` r ` 1

t´ r ` 1

˙

.

The second term is bounded by the following observation. When r ě t{2, this term is

bounded by lnpt` 1q. When r ď t{2, according to the mean value theorem, there exists ξ

such that

r´1 ln

ˆ

t` r ` 1

t´ r ` 1

˙

“ 2
plnp1` t` rq ´ lnp1` t´ rqq

2r
“

2

1` t` ξ
.

By recalling r ď t{2, we deduce that
ˇ

ˇr´1 ln
`

t`r`1
t´r`1

˘
ˇ

ˇ ď C
1`t

and we conclude that the first

term in the right-hand side of (3.28) is bounded by

CmS

ż

|y´x|“t

dσpyq

1` |y|
ď CmSt.

We also observe that, when r “ 0, we have
ş

|y|“t
dσpyq
1`|y|

“ 4πt2

1`t
and thus CmS

ş

|y´x|“t
dσpyq
1`|y|

ď

CmSt. �

The proof of the following lemma is similar to the one abve and we omit the proof.

Lemma 3.13. One has
ˇ

ˇ

ˇ

ˇ

ż

|y´x|“t

x∇I0,I,J
Ext,αβpyq, x´ yydσpyq

ˇ

ˇ

ˇ

ˇ

ď CmSt.
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From the above two lemmas, we conclude that
ˇ

ˇhIJ,5αβ pt, xq
ˇ

ˇ ď CmSt
´1 as expected, and

we can finally turn our attention to the last term hIJ,3αβ .

Lemma 3.14. One has |hIJ,3αβ pt, xq| ď Cm2
St
´1.

Proof. This estimate is based on Lemma 3.9 and on the explicit formula

hIJ,3αβ pt, xq “
1

4π

ż t

2

1

t´ s

ż

|y|“t´s

SW,I,JExt,αβdσpyqds,

which yields us

|hIJ,3αβ pt, xq| ď Cm2
S

ż t

2

1

t´ s

ż

|y|“t´s

1t|x´y|ěs´1udσ

|x´ y|4
ds

“ Cm2
St
´2

ż 1

2{t

1

1´ λ

ż

|y|“1´λ

1t|y´x{t|ěλ´1{tudσ

|y ´ x{t|4
dλ

thanks to the change of variable λ :“ s{t. Without loss of generality, we set x “ pr, 0, 0q

and introduce the following parametrization of the sphere t|y| “ 1´ λu:

‚ θ denotes the angle from p1, 0, 0q to y.

‚ ϕ denotes the angle from the plane determined by p1, 0, 0q and p0, 1, 0q to the plane

determined by p1, 0, 0q and y.

We have dσpyq “ p1´ λq2 sin θdθdϕ and we must evaluate the integral

|hIJ,3αβ pt, xq| ď Cm2
St
´2

ż 1

2{t

dλ

1´ λ

ż 2π

0

ż π

0

1t|y´x{t|ěλ´1{tup1´ λq
2 sin θdθdϕ

|pr{tq2 ` p1´ λq2 ´ 2pr{tqp1´ λq cos θ|2

ď Cm2
St
´2

ż 1

2{t

dλ

1´ λ

ż π

0

1t|y´x{t|ěλ´1{tup1´ λq
2 sin θdθ

|pr{tq2 ` p1´ λq2 ´ 2pr{tqp1´ λq cos θ|2
.

Consider the integral expression

Ipλq :“

ż π

0

1t|y´x{t|ěλ´1{tup1´ λq
2 sin θdθ

|pr{tq2 ` p1´ λq2 ´ 2pr{tqp1´ λq cos θ|2

“p1´ λqtr´1

ż 1´λ`r{t

|1´λ´r{t|

1tτěλ´1{tudτ

τ 3
,

where we used the change of variable τ :“ |pr{tq2 ` p1 ´ λq2 ´ 2pr{tqp1 ´ λq cos θ|1{2.

We see that when 1 ´ λ ` r{t ď λ ´ 1{t, Ipλq “ 0. We only need to discuss the case
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1 ´ λ ` r{t ě λ ´ 1{t which is equivalent to λ ď t`r`1
2t

. We distinguish between the

following cases:

‚ Case 1 ď t ´ r ď 3. In this case, when λ P r2{t, pt ` r ` 1q{2ts, we observe that

|1 ´ λ ´ r{t| ď λ ´ 1{t. Then, we find Ipλq “ p1 ´ λqtr´1
ş1´λ`r{t

λ´1{t

1tτěλ´1{tudτ

τ3
, which leads

us to

Ipλq “ p1´ λqtr´1

ż 1´λ`r{t

λ´1{t

dτ

τ 3
“
tp1´ λq

2r

`

pλ´ 1{tq´2
´ p1´ λ` r{tq´2

˘

.

Then we conclude that

|hIJ,3αβ pt, xq| ď Cm2
St
´2

ż pt`r`1q{2t

2{t

p1´ λq´1Ipλqdλ

“ Cm2
Sr
´1t´1

ż pt`r`1q{2t

2{t

`

pλ´ 1{tq´2
´ p1´ λ` r{tq´2

˘

dλ

“ Cm2
Sr
´1

ˆ

1´
1

t` r ´ 2

˙

ď Cm2
St
´1.

‚ Case t ´ r ą 3 and t´r
t
ď t`r`1

2t
ô r ě t´1

3
. In this case the interval

“

2{t, t`r`1
2t

‰

is

divided into two parts:
“

2{t, t´r
t

‰

Y r t´r
t
, t`r`1

2t
s. In the first subinterval, |1 ´ λ ´ r{t| “

1´ λ´ r{t while in the second |1´ λ´ r{t| “ r{t´ 1` λ

Again in the subinterval
“

2{t, t´r
t

‰

, we see that when 2{t ď λ ď t´r`1
2t

, λ´1{t ď 1´λ´r{t,

when t´r`1
2t

ď λ ď t´r
t

, λ ´ 1{t ě 1 ´ λ ´ r{t. In the subinterval r t´r
t
, t`r`1

2t
s, we see that

λ´ 1{t ě r{t´ 1` λ.

Case 1. When λ P
“

2{t, t´r`1
2t

‰

, we have

Ipλq “ p1´ λqtr´1

ż 1´λ`r{t

1´λ´r{t

dτ

τ 3
“

2p1´ λq2

pp1´ λq2 ´ pr{tq2q2
.

Case 2. When λ P
“

t´r`1
2t

, t´r
t

‰

, we have

Ipλq “ p1´ λqtr´1

ż 1´λ`r{t

λ´1{t

dτ

τ 3
“
tp1´ λq

2r

`

pλ´ 1{tq´2
´ p1´ λ` r{tq´2

˘

.



40 PHILIPPE G. LEFLOCH AND YUE MA

Case 3. When λ P r t´r
t
, t`r`1

2t
s, we have

Ipλq “ p1´ λqtr´1

ż 1´λ`r{t

λ´1{t

dτ

τ 3
“
tp1´ λq

2r

`

pλ´ 1{tq´2
´ p1´ λ` r{tq´2

˘

.

We obtain

|hIJ,3αβ pt, xq| ď Cm2
St
´2

ż pt`r`1q{2t

2{t

p1´ λq´1Ipλqdλ

“ Cm2
St
´2

ż t´r`1
2t

2{t

`

ż t`r`1
2t

t´r`1
2t

p1´ λq´1Ipλqdλ “ Cm2
St
´2

ż t´r`1
2t

2{t

2p1´ λq

pp1´ λq2 ´ pr{tq2q2
dλ

` Cm2
Sr
´1t´1

ż t`r`1
2t

t´r`1
2t

`

pλ´ 1{tq´2
´ p1´ λ` r{tq´2

˘

dλ

and we observe that

ż t´r`1
2t

2{t

p1´ λqdλ

pp1´ λq2 ´ pr{tq2q2
“

2t2

pt´ r ´ 1qpt` 3r ´ 1q
´

t2

2pt´ r ´ 2qpt` r ´ 2q
» Ct

and

ż t`r`1
2t

t´r`1
2t

`

pλ´ 1{tq´2
´ p1´ λ` r{tq´2

˘

dλ “
4rt

pt´ r ´ 1qpt` r ´ 1q
´

4tr

pt` r ´ 1qpt` 3r ´ 1q

» Cr.

We conclude that |hIJ,3αβ pt, xq| ď Cm2
St
´1.

‚ Case 1 ´ r{t ě t`r`1
2t

ô r ď t´1
3

. In this case, for λ P
“

2{t, t`r`1
2t

‰

, |1 ´ λ ´ r{t| “

1´ λ´ r{t. We also observe that when 2{t ď λ ď t´r`1
2t

, |1´ λ´ r{t| ě λ´ 1{t and when

t´r`1
2t

ď λ ď t`r`1
2t

, |1´ λ´ r{t| ď λ´ 1{t. So, similarly to the above case, we find

|hIJ,3αβ pt, xq| ď Cm2
St
´2

ż pt`r`1q{2t

2{t

p1´ λq´1Ipλqdλ “ Cm2
St
´2

ż t´r`1
2t

2{t

`

ż t`r`1
2t

t´r`1
2t

p1´ λq´1Ipλqdλ

“ Cm2
St
´2

ż t´r`1
2t

2{t

p1´ λq

pp1´ λq2 ´ pr{tq2q2
dλ

` Cm2
Sr
´1t´1

ż t`r`1
2t

t´r`1
2t

`

pλ´ 1{tq´2
´ p1´ λ` r{tq´2

˘

dλ,
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ż t´r`1
2t

2{t

p1´ λqdλ

pp1´ λq2 ´ pr{tq2q2
“

2t2

pt´ r ´ 1qpt` 3r ´ 1q
´

t2

2pt´ r ´ 2qpt` r ´ 2q
» C,

and
ż t`r`1

2t

t´r`1
2t

`

pλ´ 1{tq´2
´ p1´ λ` r{tq´2

˘

dλ

“
4rt

pt´ r ´ 1qpt` r ´ 1q
´

4tr

pt` r ´ 1qpt` 3r ´ 1q
» C.

So, we obtain |hIJ,3αβ pt, xq| ď Cm2
St
´1, which completes the proof. �

3.4. Sup-norm estimate for Klein-Gordon equations. Our next statement, first pre-

sented in [41], was motivated by a pioneering work by Klainerman [33] for Klein-Gordon

equations. In more recent years, Katayama [30, 31] also made some important contribution

on the global existence problem for Klein-Gordon eqations. Furthermore, a related esti-

mate in two spatial dimensions in Minkowski spacetime was established earlier by Delort

et al. [17]. (Our approach below could also be applied [47] in 2` 1 dimensions.)

For compact Schwarzschild perturbations, the scalar field φ is supported in K, and

the sup-norm estimate in [41] remains valid for our purpose and we only need to state

the corresponding result. Namely, let us consider the Klein-Gordon problem on a curved

spacetime

(3.29) ´ rlgv ` c
2v “ f, v|H2 “ v0, Btv|H2 “ v1,

with initial data v0, v1 which are prescribed on the hyperboloid H2 and are assumed to be

compactly supported in H2 XK, while the curved metric has the form gαβ “ mαβ ` hαβ

with sup |h
00
| ď 1{3.

We consider the coefficient h
00

along lines from the origin and, more precisely, we set

ht,xpλq :“ h
00
´

λ
t

s
, λ
x

s

¯

, s “
?
t2 ´ r2,

while h1t,xpλq stands for the derivative with respect to the variable λ. We also set

s0 :“

$

’

’

&

’

’

%

2, 0 ď r{t ď 3{5,
c

t` r

t´ r
, 3{5 ď r{t ď 1,



42 PHILIPPE G. LEFLOCH AND YUE MA

Fixing some constant C ą 0, we introduce the following function V by distinguishing

between the regions “near” and “far” from the light cone:

V :“

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

´

}v0}L8pH2q ` }v1}L8pH2q

¯´

1`

ż s

2

|h1t,xpsq|e
C
şs
s |h

1
t,xpλq|dλ ds

¯

` F psq `

ż s

2

F psq|h1t,xpsq|e
C
şs
s |h

1
t,xpλq|dλ ds, 0 ď r{t ď 3{5,

F psq `

ż s

s0

F psq|h1t,xpsq|e
C
şs
s |h

1
t,xpλq|dλ ds, 3{5 ă r{t ă 1,

where the function F takes the right-hand side of the Klein-Gordon equation into account,

as well as the curved part of the metric (except the h
00

contribution), that is,

F psq :“

ż s

s0

´

|R1rvs| ` |R2rvs| ` |R3rvs| ` λ
3{2
|f |

¯

pλt{s, λx{sq dλ

with

R1rvs “ s3{2
ÿ

a

BaBav `
xaxb

s1{2
BaBbv `

3

4s1{2
v `

ÿ

a

3xa

s1{2
Bav,

R2rvs “ h
00
ˆ

3v

4s1{2
` 3s1{2

B0v

˙

` s3{2
`

2h
0b
B0Bbv ` h

ab
BaBbv ` h

αβ
BαΨ

β1

β Bβ1v
˘

,

R3rvs “ h
00
ˆ

2xas1{2
B0Bav `

2xa

s1{2
Bav `

xaxb

s1{2
BaBbv

˙

.

Proposition 3.15 (A sup-norm estimate for Klein-Gordon equations on a curved space-

time). Spatially compact solutions v to the Klein-Gordon problem (3.29) defined the region

Kr2,`8q satisfy the decay estimate (for all relevant pt, xq)

(3.30) s3{2
|vpt, xq| ` ps{tq´1s3{2

|BK vpt, xq| ď C V pt, xq.

We postpone the proof to the Appendix.

3.5. Weighted Hardy inequality along the hyperboloidal foliation. We now derive

a modified version of the Hardy inequality, formulated on hyperboloids, which is nothing

but a weighted version of Proposition 5.3.1 in [39]. This inequality will play an essential

role in our derivation of a key L2 estimate for the metric component h00. (Cf. Section 7.2,

below.)
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Proposition 3.16 (Weighted Hardy inequality on hyperboloids). For every smooth func-

tion u supported in the cone K, one has (for any given 0 ď σ ď 1):

(3.31)

}ps{tq´σs´1u}L2
f pHsq

ď C}ps0{tq
´σs´1

0 u}L2pHs0 q
` C

ÿ

a

}Bau}L2
f pHsq

` C
ÿ

a

ż s

s0

τ´1
´

}ps{tq1´σBau}L2pHτ q ` }Bau}L2pHτ q

¯

dτ.

The proof is similar to that of Proposition 5.3.1 in [39] (but we must now cope with

the parameter σ) and uses the following inequality, established in [39, Chapter 5, Lemma

5.3.1].

Lemma 3.17. For all (sufficiently regular) functions u supported in the cone K, one has

(3.32) }r´1u}L2
f pHsq

ď C
ÿ

a

}Bau}L2
f pHsq

.

Proof of Proposition 3.16. Consider the vector field W :“
`

0,´ps{tq´2σ x
atu2χpr{tq2

p1`r2qs2

˘

defined

on R4 and, similarly to what we did in the proof of Proposition 5.3.1 in [39], let us calculate

its divergence:

div W “ ´2s´1
ps{tq´σ

ÿ

a

Baups{tq
´σ rχpr{tqu

p1` r2q1{2s

xatχpr{tq

rp1` r2q1{2

´ 2s´1
ps{tq´σr´1ups{tq´σ

rχpr{tqu

p1` r2q1{2s

χ1pr{tqr

p1` r2q1{2

´ ps{tq´2σ
`

uχpr{tq
˘2

ˆ

r2t` 3t

p1` r2q2s2
`

2r2t

p1` r2qs4

˙

´ 2σps{tq´1´2σ
`

uχpr{tq
˘2 r2

p1` r2qs3
.
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We integrate this identity within Krs0,s1s and, after recalling the relation dxdt “ ps{tq dxds,

we obtain
ż

Krs0,s1s

div Wdxdt “ ´2

ż

Krs0,s1s

s´1
ps{tq1´σ

ÿ

a

Baups{tq
´σ rχpr{tqu

p1` r2q1{2s

xatχpr{tq

rp1` r2q1{2
dxds

´ 2

ż

Krs0,s1s

s´1
ps{tq1´σr´1ups{tq´σ

rχpr{tqu

p1` r2q1{2s

χ1pr{tqr

p1` r2q1{2
dxds

´

ż

Krs0,s1s

ps{tq1´2σ
`

uχpr{tq
˘2

ˆ

r2t` 3t

p1` r2q2s2
`

2r2t

p1` r2qs4

˙

dxds

´ 2σ

ż

Krs0,s1s

ps{tq´2σ
`

uχpr{tq
˘2 r2

p1` r2qs3
dxds.

We thus find
ż

Krs0,s1s

div Wdxdt “ ´2

ż s1

s0

ds

ż

Hs

s´1
ps{tq1´σ

ÿ

a

Baups{tq
´σ rχpr{tqu

p1` r2q1{2s

xatχpr{tq

rp1` r2q1{2
dx

´ 2

ż s1

s0

ds

ż

Hs

s´1
ps{tq1´σr´1ups{tq´σ

rχpr{tqu

p1` r2q1{2s

χ1pr{tqr

p1` r2q1{2
dx

´

ż s1

s0

ds

ż

Hs

ps{tq1´2σ
`

uχpr{tq
˘2

ˆ

r2t` 3t

p1` r2q2s2
`

2r2t

p1` r2qs4

˙

dx

´ 2σ

ż s1

s0

ds

ż

Hs

ps{tq´2σ
`

uχpr{tq
˘2 r2

p1` r2qs3
dx

“:

ż s1

s0

`

T1 ` T2 ` T3 ` T4

˘

ds.

On the other hand, we apply Stokes’ formula to the left-hand side of this identity. Recall

that the flux vector vanishes in a neighborhood of the boundary of Krs0,s1s, which is tr “

t ´ 1, s0 ď
?
t2 ´ r2 ď s1u and, by a calculation similar to the one in the proof of Lemma

3.2,

›

›

›

›

ps{tq´σ
rχpr{tqu

p1` r2q1{2s

›

›

›

›

2

L2pHs1 q

´

›

›

›

›

ps{tq´σ
rχpr{tqu

p1` r2q1{2s

›

›

›

›

2

L2pHs0 q

“

ż s1

s0

`

T1 ` T2 ` T3 ` T4

˘

ds.

After differentiation with respect to s, we obtain

(3.33) 2

›

›

›

›

ps{tq´σ
rχpr{tqu

p1` r2q1{2s

›

›

›

›

L2pHs1 q

d

ds

›

›

›

›

ps{tq´σ
rχpr{tqu

p1` r2q1{2s

›

›

›

›

L2pHs1 q

“ T1 ` T2 ` T3 ` T4.
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We observe that

|T1| ď 2
ÿ

a

ż

Hs

s´1
ps{tq1´σ|Bau|ps{tq

´σ rχpr{tq|u|

p1` r2q1{2s

|xa|tχpr{tq

rp1` r2q1{2
dx

ď 2
ÿ

a

s´1
}ps{tq1´σBau}L2

f pHsq

›

›

›

›

ps{tq´σ
rχpr{tqu

p1` r2q1{2s

›

›

›

›

L2
f pHsq

›

›

›

›

xatχpr{tq

rp1` r2q1{2

›

›

›

›

L8pHsq

ď Cs´1
ÿ

a

}ps{tq1´σBau}L2
f pHsq

›

›

›

›

ps{tq´σ
rχpr{tqu

p1` r2q1{2s

›

›

›

›

L2
f pHsq

,

where we have observed that

›

›

›

›

xatχpr{tq

rp1`r2q1{2

›

›

›

›

L8pHsq

ď C, since the support of χp¨q is contained

in tr ě t{3u. Similarly, we find

|T2| ď Cs´1
}ps{tq1´σr´1u}L2

f pHsq

›

›

›

›

ps{tq´σ
rχpr{tqu

p1` r2q1{2s

›

›

›

›

L2
f pHsq

ď Cs´1
}r´1u}L2

f pHsq

›

›

›

›

ps{tq´σ
rχpr{tqu

p1` r2q1{2s

›

›

›

›

L2
f pHsq

ď Cs´1
ÿ

a

}Bau}L2
f pHsq

›

›

›

›

ps{tq´σ
rχpr{tqu

p1` r2q1{2s

›

›

›

›

L2
f pHsq

,

where we have applied (3.32). We also observe that T3 ď 0 and T4 ď 0. Then, (3.33) leads

us to

(3.34)
d

ds

›

›

›

›

ps{tq´σ
rχpr{tqu

p1` r2q1{2s

›

›

›

›

L2pHs1 q

ď Cs´1
ÿ

a

`

}ps{tq1´σBau}L2
f pHsq

` }Bau}L2
f pHsq

˘

.

Then by integrating on the interval rs0, ss, we have

(3.35)
›

›

›

›

ps{tq´σ
rχpr{tqu

p1` r2q1{2s

›

›

›

›

L2
f pHsq

ď

›

›

›

›

ps{tq´σ
rχpr{tqu

p1` r2q1{2s

›

›

›

›

L2pHs0 q

` C
ÿ

a

ż s

s0

τ´1
`

}ps{tq1´σBau}L2pHτ q ` }Bau}L2pHτ q

˘

dτ,

which is the desired estimate in the outer part of Hs.

For the inner part, r ď t{3 leads us to 2
?

2
3
ď s{t ď 1. Then by Lemma 3.17, we find

(3.36)

›

›

›

›

ps{tq´σ
r
`

1´ χpr{tq
˘

u

p1` r2q1{2s

›

›

›

›

L2
f pHsq

ď }r´1u}L2
f pHsq

ď C
ÿ

a

}Bau}L2
f pHsq
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and it remains to combine (3.35) and (3.36). �

3.6. Sobolev inequality on hyperboloids. In order to turn an L2 energy estimate into

an L8 estimate, we will rely on the following version of the Sobolev inequality (Klainerman

[33], Hörmander [27, Lemma 7.6.1]; see also LeFloch and Ma [39, Section 5]).

Proposition 3.18 (Sobolev-type estimate on hyperboloids). For any sufficiently smooth

function u “ upt, xq which is defined in the future of H2 and is spatially compactly sup-

ported, one has

(3.37) sup
pt,xqPHs

t3{2 |upt, xq| À
ÿ

|I|ď2

}LIupt, ¨q}L2
f pHsq

, s ě 2,

where the implied constant is uniform in s ě 2, and one recalls that t “
a

s2 ` |x|2 on Hs.

Proof. Consider the function wspxq :“ up
a

s2 ` |x|2, xq. Fix s0 and a point pt0, x0q in Hs0

(with t0 “
a

s2
0 ` |x0|

2), and observe that

(3.38) Baws0pxq “ Bau
`

b

s2
0 ` |x|

2, x
˘

“ Baupt, xq,

with t “
a

s2
0 ` |x|

2 and tBaws0pxq “ tBau
`
a

s2
0 ` |x|

2, t
˘

“ Laupt, xq. Then, introduce

gs0,t0pyq :“ ws0px0 ` t0 yq and write

gs0,t0p0q “ ws0px0q “ u
`

b

s2
0 ` |x0|

2, x0

˘

“ upt0, x0q.

From the standard Sobolev inequality applied to the function gs0,t0 , we get

ˇ

ˇgs0,t0p0q
ˇ

ˇ

2
ď C

ÿ

|I|ď2

ż

Bp0,1{3q

|B
Igs0,t0pyq|

2 dy,

Bp0, 1{3q Ă R3 being the ball centered at the origin with radius 1{3.

In view of (with x “ x0 ` t0y)

Bags0,t0pyq “ t0Baws0px0 ` t0yq

“ t0Baws0pxq “ t0Bau
`

t, xq
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in view of (3.38), we have (for all I) BIgs0,t0pyq “ pt0Bq
Iupt, xq and, therefore,

ˇ

ˇgs0,t0p0q
ˇ

ˇ

2
ďC

ÿ

|I|ď2

ż

Bp0,1{3q

ˇ

ˇpt0Bq
Iu
`

t, xq
˘
ˇ

ˇ

2
dy

“Ct´3
0

ÿ

|I|ď2

ż

Bppt0,x0q,t0{3qXHs0

ˇ

ˇpt0Bq
Iu
`

t, xq
˘
ˇ

ˇ

2
dx.

Note that

pt0Bapt0Bbws0qq “ t20BaBbws0

“ pt0{tq
2
ptBaqptBbqws0 ´ pt0{tq

2
pxa{tqLbws0

and xa{t “ xa0{t` yt0{t “ px
a
0{t0 ` yqpt0{tq. In the region y P Bp0, 1{3q, the factor |xa{t| is

bounded by Cpt0{tq and thus (for |I| ď 2)

|pt0Bq
Iu| ď

ÿ

|J |ď|I|

|LJu|pt0{tq
2.

In the region |x0| ď t0{2, we have t0 ď
2?
3
s0 so

t0 ď Cs0 ď C
b

|x|2 ` s2
0 “ Ct

for some C ą 0. When |x0| ě t0{2, in the region Bppt0, x0q, t0{3q XHs0 we get t0 ď C|x| ď

C
a

|x|2 ` s2
0 “ Ct and thus

|pt0Bq
Iu| ď C

ÿ

|J |ď|I|

|LJu|

and

ˇ

ˇgs0,t0py0q
ˇ

ˇ

2
ďCt´3

0

ÿ

|I|ď2

ż

Bpx0,t0{3qXHs0

ˇ

ˇptBqIu
`

t, xq
˘ˇ

ˇ

2
dx

ďCt´3
0

ÿ

|I|ď2

ż

Hs0

ˇ

ˇLIupt, xq
ˇ

ˇ

2
dx.

�
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3.7. Hardy inequality for hyperboloids. We now bound the norm }r´1BILJhαβ}L2pH˚s q
.

If BILJhαβ were compactly supported in Hs X K, we could directly apply the standard

Hardy inequality to the function uspxq :“
`

BILJhαβ
˘

p
?
s2 ` r2, xq and we would obtain

}r´1
B
ILJhαβ}L2pH˚s q

ď C}BBILJhαβ}L2pH˚s q
.

However, since BILJhαβ is not compactly supported in K, we must take a boundary term

into account.

Lemma 3.19 (Adapted Hardy inequality). Let phαβ, φq be a solution to the Einstein-

massive field system associated with a compact Schwarzschild perturbation. Then, one has

(3.39) }r´1
B
ILJhαβ}L2pH˚s q

ď C
ÿ

a

}BaB
ILJhαβ}L2pH˚s q

` CmSs
´1.

Proof. With the notation uspxq :“
`

BILJhαβ
˘

p
?
s2 ` r2, xq, we obtain

Bauspxq “ BaB
ILJhαβ

´?
s2 ` r2, x

¯

.

Consider the identity r´2u´2
s “ ´Br pr

´1u2
sq ` 2usr

´1Brus and integrate it in the region

Crε,ps2´1q{2s :“
!

ε ď r ď s2´1
2

)

with spherical coordinates. We have

(3.40)
ż

C
rε,ps2´1q{2s

|r´1us|
2dx “

ż

r“ps2´1q{2

r´1u2
sdσ ´

ż

r“ε

r´1u2
sdσ ` 2

ż

C
rε,ps2´1q{2s

usr
´1
Brusdx.

Letting now εÑ 0`, we have
ş

r“ε
r´1u2

sdσ Ñ 0. Observe that on the sphere r “ ps2´1q{2,

?
s2 ` r2 ´ r “

s2 ` 1

2
´
s2 ´ 1

2
“ 1,

that is the point
`?

s2 ` r2, x
˘

is on the cone tr “ t´ 1u. We know that, on this cone, hαβ

coincides with the Schwarzschild metric, so that
ż

r“ps2´1q{2

r´1u2
sdσ ď Cm2

Ss
´2.

Then, (3.40) yields us

}r´1us}
2
L2pC

r0,ps2´1q{2sq
ď 2}r´1us}L2pC

r0,ps2´1q{2sq
}Brus}L2pC

r0,ps2´1q{2sq
` Cm2

Ss
´2.
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And this inequality leads us to

}r´1us}L2pC
r0,ps2´1q{2sq

ď C}Brus}L2pC
r0,ps2´1q{2sq

` CmSs
´1.

By recalling that

}r´1us}
2
L2pC

r0,ps2´1q{2sq
“

ż

rďps2´1q{2

ˇ

ˇr´1
B
ILJhαβ

´?
s2 ` r2, x

¯

ˇ

ˇ

2
dx

“

ż

KXHs

ˇ

ˇr´1
B
ILJhαβpt, xq

ˇ

ˇ

2
dx “ }r´1

B
ILJhαβ}

2
L2pH˚s q

and Brus “
xa

r
Baus “

xa

r
BaB

ILJhαβp
?
s2 ` r2, xq, the proof is completed. �

3.8. Commutator estimates for admissible vector fields. We recall the following

identities first established in [41]; see also Appendix D at the end of this monograph.

Lemma 3.20 (Algebraic decomposition of commutators). One has

(3.41) rBt, Bas “ ´
xa

t2
Bt, rBa, Bbs “ 0.

There exist constants λIaJ such that

(3.42) rB
I , Las “

ÿ

|J |ď|I|

λIaJB
J .

There exist constants θIγαJ such that

(3.43) rLI , Bαs “
ÿ

|J |ă|I|,γ

θIγαJBγL
J .

In the future light-cone K, the following identity holds:

(3.44) rB
ILJ , Bβs “

ÿ

|J1|ď|J|

|I1|ď|I|

θIJγβI 1J 1BγB
I 1LJ

1

,

where the coefficients θIJγβI 1J 1 are smooth functions and satisfy (in K)

(3.45)

ˇ

ˇB
I1LJ1θIJγβI 1J 1

ˇ

ˇ ď C
`

|I|, |J |, |I1|, |J1|
˘

t´|I1|, |J 1| ă |J |,

ˇ

ˇB
I1LJ1θIJγβI 1J 1

ˇ

ˇ ď C
`

|I|, |J |, |I1|, |J1|
˘

t´|I1|´1, |I 1| ă |I|.
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Within the future light-cone K, the following identity holds:

(3.46) rLI , Bcs “
ÿ

|J |ă|I|

σIacJBaL
J ,

where the coefficients σIacJ are smooth functions and satisfy (in K)

(3.47)
ˇ

ˇB
I1LJ1σIacJ

ˇ

ˇ ď Cp|I|, |J |, |I1|, |J1|qt
´|I1|.

Within the future light-cone K, the following identity holds:

(3.48) rB
I , Bcs “ t´1

ÿ

|J |ď|I|

ρIcJB
J ,

where the coefficients ρIcJ are smooth functions and satisfy (in K)

(3.49)
ˇ

ˇB
I1LJ1ρIcJ

ˇ

ˇ ď Cp|I|, |J |, |I1|, |J1|qt
´|I1|.

Lemma 3.21. For all indices I, the function

(3.50) ΞI :“ pt{sqBILJps{tq

defined in the closed cone K “ t|x| ď t ´ 1u, is smooth and all of its derivatives (of any

order) are bounded in K. Furthermore, it is homogeneous of degree η with η ď 0 (in the

sense recalled in Definition 4.2 below).

Lemma 3.22 (Commutator estimates). For all sufficiently smooth functions u defined in

the cone K, the following identities hold:

(3.51)
ˇ

ˇrB
ILJ , Bαsu

ˇ

ˇ ď Cp|I|, |J |q
ÿ

|J 1|ă|J |,β

|BβB
ILJ

1

u|,

(3.52)
ˇ

ˇrB
ILJ , Bcsu

ˇ

ˇ ď Cp|I|, |J |q
ÿ

|J1|ă|J|,a

|I1|ď|I|

|BaB
I 1LJ

1

u| ` Cp|I|, |J |qt´1
ÿ

|I|ď|I1|

|J|ď|J1|

|B
I 1LJ

1

u|.

(3.53)
ˇ

ˇrB
ILJ , Bαsu

ˇ

ˇ ď Cp|I|, |J |qt´1
ÿ

β,|I1|ă|I|

|J1|ď|J|

ˇ

ˇBβB
I 1LJ

1

u
ˇ

ˇ` Cp|I|, |J |q
ÿ

β,|I1|ď|I|

|J1|ă|J|

ˇ

ˇ

ˇ
BβB

I 1LJ
1

u
ˇ

ˇ

ˇ
,

(3.54)
ˇ

ˇrB
ILJ , BαBβsu

ˇ

ˇ ď Cp|I|, |J |q
ÿ

γ,γ1

|I|ď|I1|,|J1|ă|I|

ˇ

ˇBγBγ1B
I 1LJ

1

u
ˇ

ˇ,
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(3.55)
ˇ

ˇrB
ILJ , BaBβsu

ˇ

ˇ`
ˇ

ˇrB
ILJ , BαBbsu

ˇ

ˇ

ď Cp|I|, |J |q

˜

ÿ

c,γ,|I1|ď|I|

|J1|ă|J|

ˇ

ˇBcBγB
I 1LJ

1

u
ˇ

ˇ`
ÿ

c,γ,|I1|ă|I|

|J1|ď|J|

t´1
ˇ

ˇBcBγB
I 1LJ

1

u
ˇ

ˇ`
ÿ

γ,|I1|ď|I|

|J1|ď|J|

t´1
ˇ

ˇBγB
I 1LJ

1

u
ˇ

ˇ

¸

.

4. Quasi-Null Structure of the Einstein-Massive Field System on

Hyperboloids

4.1. Einstein equations in wave coordinates. Our next task is to derive an explicit

expression for the curvature. We set Γγ :“ gαβΓγαβ “ 0 and Γα :“ gαβΓβ.

Lemma 4.1 (Ricci curvature of a 4-manifold). In arbitrary local coordinates, one has the

decomposition:

Rαβ “ ´
1

2
gλδBλBδgαβ `

1

2

`

BαΓβ ` BβΓα
˘

`
1

2
Fαβ,

where Fαβ :“ Pαβ `Qαβ `Wαβ is a sum of null terms, that is,

Qαβ : “ gλλ
1

gδδ
1

Bδgαλ1Bδ1gβλ ´ g
λλ1gδδ

1`

Bδgαλ1Bλgβδ1 ´ Bδgβδ1Bλgαλ1
˘

` gλλ
1

gδδ
1`

Bαgλ1δ1Bδgλβ ´ BαgλβBδgλ1δ1
˘

`
1

2
gλλ

1

gδδ
1`

BαgλβBλ1gδδ1 ´ Bαgδδ1Bλ1gλβ
˘

` gλλ
1

gδδ
1`

Bβgλ1δ1Bδgλα ´ BβgλαBδgλ1δ1
˘

`
1

2
gλλ

1

gδδ
1`

BβgλαBλ1gδδ1 ´ Bβgδδ1Bλ1gλα
˘

,

quasi-null term (as they are called by the authors)

Pαβ :“ ´
1

2
gλλ

1

gδδ
1

Bαgδλ1Bβgλδ1 `
1

4
gδδ

1

gλλ
1

Bβgδδ1Bαgλλ1

and a remainder Wαβ :“ gδδ
1

BδgαβΓδ1 ´ ΓαΓβ.

Let us make some observations based on this lemma. Note that the Einstein equation

Rαβ “ 0 now reads

(4.1) rlghαβ “ Pαβ `Qαβ `Wαβ `
`

BαΓβ ` BβΓα
˘

.

Furthermore, if the coordinates are assumed to satisfy the wave condition Γγ “ 0, so that

Γβ “ 0 and, by specifying the dependence of the right-hand sides in pg; Bhq,

(4.2) rlggαβ “ Pαβpg; Bhq `Qαβpg; Bhq,
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which is a standard result.

For the Einstein-massive field system

(4.3)
Gαβ “ 8πTαβ,

Tαβ “ BαφBβφ´
1

2
gαβ

`

gµνBµφBνφ` c
2φ2

˘

,

we obtain

Rαβ “ 8π

ˆ

∇αφ∇βφ`
1

2
c2φ2gαβ

˙

and, by the above lemma, the Einstein-massive field system in a wave coordinate system

reads

(4.4)
rlggαβ “ Pαβpg; Bhq `Qαβpg; Bhq ´ 16πBαφBβφ´ 8πc2φ2gαβ,

rlgφ´ c
2φ “ 0.

Proof of Lemma 4.1. We need to perform straightforward but very tedious calculations,

starting from the definitions

Rαβ “ BλΓ
λ
αβ ´ BαΓλβλ ` ΓλαβΓδλδ ´ ΓλαδΓ

δ
βλ,

Γλαβ “
1

2
gλλ

1`

Bαgβλ1 ` Bβgαλ1 ´ Bλ1gαβ
˘

.

Only the first two terms in the expression Rαβ involves second-order derivatives of the

metric, and we focus on those terms first. In view of

BλΓ
λ
αβ “ ´

1

2
gλδBλBδgαβ `

1

2
gλδBλBαgβδ `

1

2
gλδBλBβgαδ `

1

2
Bλg

λδ
`

Bαgβδ ` Bβgαδ ´ Bδgαβ
˘

,

BαΓλβλ “
1

2
BαBβgλδ `

1

2
Bαg

λδ
Bβgλδ,

we can write

(4.5)
BλΓ

λ
αβ ´ BαΓλβλ “ ´

1

2
gλδBλBδgαβ `

1

2
gλδBαBλgδβ `

1

2
gλδBβBλgδα ´

1

2
gλδBαBβgλδ

´
1

2
Bλg

λδ
Bδgαβ `

1

2
Bλg

λδ
Bαgβδ `

1

2
Bλg

λδ
Bβgαδ ´

1

2
Bαg

λδ
Bβgλδ,

in which the first line contains second-order terms and the second line contains quadratic

products of first-order terms.
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Let us next compute the term BαΓβ ` BβΓα (which appears in our decomposition). We

have

Γγ “ gαβΓγαβ “
1

2
gαβgγδ

`

Bαgβδ ` Bβgαδ ´ Bδgαβ
˘

“ gγδgαβBαgβδ ´
1

2
gαβgγδBδgαβ

and, therefore, Γλ “ gλγΓ
γ “ gαβBαgβλ ´

1
2
gαβBλgαβ, so that, after differentiating,

BαΓβ “ Bα
`

gδλBδgλβ
˘

´
1

2
Bα
`

gλδBβgλδ
˘

“ gδλBαBδgλβ ´
1

2
gλδBαBβgλδ ´

1

2
Bαg

λδ
Bβgλδ ` Bαg

δλ
Bδgλβ.

The term of interest is thus found to be

(4.6)
BαΓβ ` BβΓα “ gλδBαBλgδβ ` g

λδ
BβBλgδα ´ g

λδ
BαBβgλδ

` Bαg
λδ
Bδgλβ ` Bβg

λδ
Bδgλα ´

1

2
Bβg

λδ
Bαgλδ ´

1

2
Bαg

λδ
Bβgλδ.

We observe that the last term in (4.6) coincides with the last term in (4.5). By noting

also that the second-order terms in BαΓβ`BβΓα are exactly three of the (four) second-order

terms arising in the expression of BλΓ
λ
αβ ´ BαΓλβλ, we see that

BλΓ
λ
αβ ´ BαΓλβλ “ ´

1

2
gλδBλBδgαβ `

1

2

`

BαΓβ ` BβΓα
˘

´
1

2
Bλg

λδ
Bδgαβ `

1

2
Bλg

λδ
Bαgβδ `

1

2
Bλg

λδ
Bβgαδ

´
1

2
Bαg

λδ
Bδgλβ ´

1

2
Bβg

λδ
Bδgλα ´

1

4
Bαg

λδ
Bβgλδ `

1

4
Bβg

λδ
Bαgλδ

“ ´
1

2
Bλg

λδ
Bδgαβ `

1

2

`

BαΓβ ` BβΓα
˘

`
1

2
gλλ

1

gδδ
1

Bλgλ1δ1Bδgαβ ´
1

2
gλλ

1

gδδ
1

Bλgλ1δ1Bαgβδ

´
1

2
gλλ

1

gδδ
1

Bλgλ1δ1Bβgαδ `
1

4
gλλ

1

gδδ
1

Bαgλ1δ1Bβgλδ

`
1

2
gλλ

1

gδδ
1

Bαgλ1δ1Bδgλβ `
1

2
gλλ

1

gδδ
1

Bβgλ1δ1Bδgλα ´
1

4
gλλ

1

gδδ
1

Bβgλ1δ1Bαgλδ,
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where we have used the identity Bαg
λδ “ ´gλλ

1

gδδ
1

Bαgλ1δ1 . Note that the two underlined

terms above cancel each other. So, the quadratic terms in BλΓ
λ
αβ ´ BαΓλβλ are

1

2
gλλ

1

gδδ
1

Bλgλ1δ1Bδgαβ, ´
1

2
gλλ

1

gδδ
1

Bλgλ1δ1Bαgβδ, ´
1

2
gλλ

1

gδδ
1

Bλgλ1δ1Bβgαδ,

1

2
gλλ

1

gδδ
1

Bαgλ1δ1Bδgλβ,
1

2
gλλ

1

gδδ
1

Bβgλ1δ1Bδgλα.

Next, let us return to the expression of the Ricci curvature and consider

ΓλαβΓδλδ “
1

4
gλλ

1

gδδ
1`

Bλgδδ1Bαgβλ1 ` Bβgαλ1Bλgδδ1 ´ Bλ1gαβBλgδδ1
˘

,

ΓλαδΓ
δ
βλ “

1

4
gλλ

1

gδδ
1`

Bαgδλ1Bβgλδ1 ` Bαgδλ1Bλgβδ1 ´ Bαgδλ1Bδ1gβλ

` Bδgαλ1Bβgλδ1 ` Bδgαλ1Bλgβδ1 ´ Bδgαλ1Bδ1gβλ

´ Bλ1gαδBβgλδ1 ´ Bλ1gαδBλgβδ1 ` Bλ1gαδBδ1gβλ
˘

and deduce that

(4.7)

ΓλαβΓδλδ ´ ΓλαδΓ
δ
βλ

“ ´
1

4
gλλ

1

gδδ
1

Bλ1gαβBλgδδ1 `
1

4
gλλ

1

gδδ
1

Bδgαλ1Bδ1gβλ `
1

4
gλλ

1

Bλ1gαδBλgβδ1

´
1

4
gλλ

1

gδδ
1

Bαgδλ1Bβgλδ1

`
1

4
gλλ

1

gδδ
1

Bλgδδ1Bαgβλ1 `
1

4
gλλ

1

gδδ
1

Bλgδδ1Bβgαλ1 ´
1

2
gλλ

1

gδδ
1

Bδgαλ1Bλgβδ1 .

Observe that the first three terms are null terms, while the fourth term is a quasi-null

term. The two underlined terms are going to cancel out with the two underlined terms in

(4.10), derived below. Hence, there remains only the last term to be treated.

In other words, we need to consider the following six terms:

(4.8)

1

2
gλλ

1

gδδ
1

Bλgλ1δ1Bδgαβ, ´
1

2
gλλ

1

gδδ
1

Bλgλ1δ1Bαgβδ, ´
1

2
gλλ

1

gδδ
1

Bλgλ1δ1Bβgαδ,

1

2
gλλ

1

gδδ
1

Bαgλ1δ1Bδgλβ,
1

2
gλλ

1

gδδ
1

Bβgλ1δ1Bδgλα, ´
1

2
gλλ

1

gδδ
1

Bδgαλ1Bλgβδ1 .

In view of the identities

(4.9) gαβBαgβδ ´
1

2
gαβBδgαβ “ Γδ, gβδBαg

αβ
´

1

2
gαβBδg

αβ
“ Γδ,
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the first three terms in (4.8) can be decomposed as follows:

(4.10)

1

2
gλλ

1

gδδ
1

Bλgλ1δ1Bδgαβ “
1

2
gδδ

1

BδgαβΓδ1 `
1

4
gλλ

1

gδδ
1

BδgαβBδ1gλλ1

´
1

2
gλλ

1

gδδ
1

Bλgλ1δ1Bαgβδ “ ´
1

2
gδδ

1

BαgβδΓδ1 ´
1

4
gλλ

1

gδδ
1

Bδ1gλλ1Bαgβδ

´
1

2
gλλ

1

gδδ
1

Bλgλ1δ1Bβgαδ “ ´
1

2
gδδ

1

BβgαδΓδ1 ´
1

4
gλλ

1

gδδ
1

Bδ1gλλ1Bβgαδ.

The last term in the first line is one of the quasi-null term stated in the proposition. As

mentioned earlier, the two underlined terms cancel out with the two underlined terms in

(4.7). The fourth term in (4.8) is treated as follows:

1

2
gλλ

1

gδδ
1

Bαgλ1δ1Bδgλβ

“
1

2
gλλ

1

gδδ
1`

Bαgλ1δ1Bδgλβ ´ BαgλβBδgλ1δ1
˘

`
1

2
gλλ

1

gδδ
1

BαgλβBδgλ1δ1

“
1

2
gλλ

1

gδδ
1`

Bαgλ1δ1Bδgλβ ´ BαgλβBδgλ1δ1
˘

`
1

2
gλλ

1

BαgλβΓλ1 `
1

4
gλλ

1

gδδ
1

BαgλβBλ1gδδ1

“
1

2
gλλ

1

gδδ
1`

Bαgλ1δ1Bδgλβ ´ BαgλβBδgλ1δ1
˘

`
1

4
gλλ

1

gδδ
1`

BαgλβBλ1gδδ1 ´ Bαgδδ1Bλ1gλβ
˘

`
1

2
gλλ

1

BαgλβΓλ1 `
1

4
gλλ

1

gδδ
1

Bαgδδ1Bλ1gλβ

“
1

2
gλλ

1

gδδ
1`

Bαgλ1δ1Bδgλβ ´ BαgλβBδgλ1δ1
˘

`
1

4
gλλ

1

gδδ
1`

BαgλβBλ1gδδ1 ´ Bαgδδ1Bλ1gλβ
˘

`
1

2
gλλ

1

BαgλβΓλ1 `
1

4
gδδ

1

Bαgδδ1Γβ `
1

8
gδδ

1

gλλ
1

Bαgδδ1Bβgλλ1 ,

while, for the fifth term, we have

1

2
gλλ

1

gδδ
1

Bβgλ1δ1Bδgλα

“
1

2
gλλ

1

gδδ
1`

Bβgλ1δ1Bδgλα ´ BβgλαBδgλ1δ1
˘

`
1

4
gλλ

1

gδδ
1`

BβgλαBλ1gδδ1 ´ Bβgδδ1Bλ1gλα
˘

`
1

2
gλλ

1

BβgλαΓλ1 `
1

4
gδδ

1

Bβgδδ1Γα `
1

8
gδδ

1

gλλ
1

Bβgδδ1Bαgλλ1 .
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For the last term in (4.8), we perform the following calculation:

´
1

2
gλλ

1

gδδ
1

Bδgαλ1Bλgβδ1

“ ´
1

2
gλλ

1

gδδ
1`

Bδgαλ1Bλgβδ1 ´ Bδgβδ1Bλgαλ1
˘

´
1

2
gλλ

1

gδδ
1

Bδgβδ1Bλgαλ1

“ ´
1

2
gλλ

1

gδδ
1`

Bδgαλ1Bλgβδ1 ´ Bδgβδ1Bλgαλ1
˘

´
1

2
gλλ

1

Bλgαλ1Γβ ´
1

4
gλλ

1

gδδ
1

Bβgδδ1Bλgαλ1

“ ´
1

2
gλλ

1

gδδ
1`

Bδgαλ1Bλgβδ1 ´ Bδgβδ1Bλgαλ1
˘

´
1

2
gλλ

1

Bλgαλ1Γβ ´
1

4
gδδ

1

Bβgδδ1Γα

´
1

8
gλλ

1

gδδ
1

Bαgλλ1Bβgδδ1

“ ´
1

2
gλλ

1

gδδ
1`

Bδgαλ1Bλgβδ1 ´ Bδgβδ1Bλgαλ1
˘

´
1

2
ΓαΓβ ´

1

4
gδδ

1

Bαgδδ1Γβ ´
1

4
gδδ

1

Bβgδδ1Γα

´
1

8
gλλ

1

gδδ
1

Bαgλλ1Bβgδδ1 .

In conclusion, the quadratic terms in Rαβ read

1

2
gλλ

1

gδδ
1

Bδgαλ1Bδ1gβλ

´
1

2
gλλ

1

gδδ
1`

Bδgαλ1Bλgβδ1 ´ Bδgβδ1Bλgαλ1
˘

`
1

2
gλλ

1

gδδ
1`

Bαgλ1δ1Bδgλβ ´ BαgλβBδgλ1δ1
˘

`
1

4
gλλ

1

gδδ
1`

BαgλβBλ1gδδ1 ´ Bαgδδ1Bλ1gλβ
˘

`
1

2
gλλ

1

gδδ
1`

Bβgλ1δ1Bδgλα ´ BβgλαBδgλ1δ1
˘

`
1

4
gλλ

1

gδδ
1`

BβgλαBλ1gδδ1 ´ Bβgδδ1Bλ1gλα
˘

´
1

4
gλλ

1

gδδ
1

Bαgδλ1Bβgλδ1 `
1

8
gδδ

1

gλλ
1

Bβgδδ1Bαgλλ1

`
1

2
gδδ

1

BδgαβΓδ1 ´
1

2
ΓαΓβ.

Finally, collecting all the terms above and observing that several cancellations take place,

we arrive at the desired identity. �

4.2. Analysis of the support. We provide here a proof of Proposition 2.3.

Step I. We recall the structure of Fαβ presented in Lemma 4.1. We observe that both Pαβ

and Qαβ are linear combinations of the multi-linear terms which are product of a quadratic

term in gαβ and a quadratic term in Bgαβ. For convenience, we write Fαβ “ Fαβpg, g; Bg, Bgq
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and

pαβpt, xq :“
`

gSαβ ´mαβ

˘

pt, xqξpt´ rq `mαβ,

where ξ is a smooth function defined on R, with ξprq “ 1 for r ď 1, while ξprq “ 0 for

r ě 3{2. Hence, for r ě t´1, pαβ coincides with the Schwarzschild metric while r ď t´3{2,

pαβ coincides with the Minkowski metric. We also set

(4.11) qαβ :“ gαβ ´ pαβ.

So the desired result is equivalent to the following statement: If pgαβ, φq is a solution of

(4.4) associated with a compact Schwarzschild perturbation, then the tensor qαβ above is

supported in K.

To establish this result, we write down the equation satisfied by qαβ and introduce

ppαβq :“ppαβq
´1,

qαβ :“gαβ ´ pαβ “ ppα1β1 ´ gα1β1qp
α1βgαβ1 “ qα1β1p

α1βgαβ
1

.

We observe that for r ě t´ 1, when qαβpt, xq “ 0, then qαβpt, xq “ 0. In view of

rlggαβ “ Fαβpg, g, Bg, Bgq ´ 16πBαφBβφ´ 8πc2φ2gαβ,

we have

rlp`qppαβ ` qαβq “ Fαβ
`

p` q, p` q, Bpp` qq, Bpp` qq
˘

´ 16πBαφBβφ´ 8πc2φ2gαβ.

By multi-linearity, the above equation leads us to

(4.12)

rlpqαβ “ ´rlppαβ ` Fαβ
`

p, p, Bp, Bp
˘

` Fαβ
`

p, p, Bp, Bq
˘

` Fαβ
`

p, p, Bq, Bpp` qq
˘

` Fαβ
`

p, q, Bpp` qq, Bpp` qq
˘

` Fαβ
`

q, p` q, Bpp` qq, Bpp` qq
˘

´ qµνBµBν
`

pαβ ` qαβ
˘

´ 16πBαφBβφ´ 8πc2φ2gαβ.

Observe that for r ě t´1, pαβ “
`

gSαβ´mαβ

˘

ξpt´rq`mαβ coincides with the Schwarzschild

metric, which is a solution to the Einstein equation (in the wave gauge), so for r ě t´ 1we

have rlppαβ “ Fαβpp, p, Bp, Bpq. Setting Eαβ “ ´rlppαβ`Fαβ
`

p, p, Bp, Bp
˘

, we have obtained

Eαβ “ 0 for r ě t´ 1.
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Then we also observe that the third to the sixth terms are multi-linear terms, each of

them contain q or Bq as a factor. Furthermore, we observe that the seventh term is written

as

´qµνBµBν
`

pαβ ` qαβ
˘

“ ´qµ1ν1p
µ1νgµν

1

BµBν
`

pαβ ` qαβ
˘

So, the third to the seventh terms can be written in the form

Bq ¨G1pp, Bp, q, Bqq ` q ¨G2pp, Bp, BBp, q, Bqq,

where Gi are (sufficiently regular) multi-linear forms.

For the equation of φ, we have the decomposition

rlgφ “ lpφ` rlqφ “ rlpφ` qµ1ν1p
µ1νgµν

1

BµBνφ.

We conclude that the metric qαβ satisfies

(4.13)

rlpqαβ “ Eαβ ` Bq ¨G1pp, Bp, q, Bqq ` q ¨G2pp, Bp, BBp, q, Bqq ´ 16πBαφBβφ´ 8πc2φ2gαβ,

rlpφ´ c
2φ “ ´qµ1ν1p

µ1νgµν
1

BµBνφ.

Furthermore, observe that since pg, φq describes a compact Schwarzschild perturbation, the

restriction of both qαβ and φ on the hyperplane tt “ 2u are compactly supported in the

unit ball tr ď 1u. Thus, pqαβ, φq is a regular solution to the linear wave system (4.13) with

initial data

qαβp2, xq, φp2, xq supported in the ball tr ď 1u.

We want to prove that pqαβq and φ vanish outside K. This leads us to the analysis on

the domain of determinacy associated with the metric pαβ, which is determined by the

characteristics the operator rlp.

Step II. Characteristics of rlp. We now analyze the domain of determinacy of a space-

time point pt, xq R K. We will prove that all characteristics passing this point do not

intersect the domain K X tt ě 2u. Once this is proved, we apply the standard argument

on domain of determinacy (also observe that Eαβpt, xq vanishes outside K), we conclude

that qαβ and φ vanish outside K.
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To do so, we will prove that the boundary of K is strictly spacelike with respect to the

metric pαβ. We observe that any vector v tangent to tr “ t ´ 1u at point pt, xq satisfies

v0 “ 1
r

ř

a x
ava “ ωav

a. So, in view of (2.6), we have for all |v| ą 0

pv, vqppt, xq “ pv, vqgS “ v0v0g00 ` v
avbgab

“ ´
r ´mS

r `mS

ωav
aωbv

b
` ωav

aωbv
b

ˆ

r `mS

r ´mS

´
pr `mSq

2

r2

˙

`
ÿ

a

|va|2

“ ´

ˆ

r ´mS

r `mS

´
r `mS

r ´mS

`
pr `mSq

2

r2

˙

ωav
aωbv

b
`
ÿ

a

|va|2

ě

ˆ

1´

ˆ

r `mS

r ´mS

´
r ´mS

r `mS

`
r2

pr `mSq
2

˙

ωav
aωbv

b

˙

ÿ

a

|va|2

“
3r2mS ` 4rm2

S `m
3
S

pr `mSq
2pr ´mSq

ÿ

a

|va|2 ą 0,

where we have used |ωav
a| ď |v| “

`
ř

a |v
a|2

˘1{2
.

A characteristic curve is a null curve, so a characteristic passing through pt, xq with

r ě t ´ 1 cannot intersect the boundary tr “ t ´ 1u in the past direction (since pt, xq

is already in the past of tr “ t ´ 1u). Hence, a characteristic passing through pt, xq

never intersects the region K in the past direction, which leads to the conclusion that the

domain of determinacy of pt, xq does not intersect K and, therefore, does not intersect

tt “ 2, r ď t´ 1u. We conclude that qαβpt, xq “ φpt, xq “ 0.

4.3. A classification of nonlinearities in the Einstein-massive field system. First,

we introduce a class of functions of particular interest.

Definition 4.2. A smooth and homogeneous function (defined in tr ă tu) of degree α is,

by definition, a smooth function Φ defined in tr ă tu at least and satisfying

‚ Φpλt, λxq “ λαΦpt, xq, for a fixed α P R and for all λ ą 0,

‚ sup|x|ď1 |B
IΦp1, xq| ă `8 (for large enough |I|).

For instance, constant functions are smooth and homogeneous functions of degree 0. We

also observe that the elements of the transition matrix Φβ
α are smooth and homogeneous

of degree 0.
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Lemma 4.3. If Φ is a smooth and homogeneous function defined in tr ď tu of degree α,

then there exists a constant C determined by Φ and N such that

|B
ILJΦpt, xq| ď Ctα´|I|.

Furthermore, if Φ and Ψ are smooth and homogenous functions of degree α and β, respec-

tively, then the product Φ Ψ is smooth and homogeneous of degree pα ` βq.

Proof. Observe that if Φ is homogeneous of degree α, then Φpλt, λxq “ λαΦpt, xq. We

differentiate the above equation with respect to xa: λBaΦpλt, λxq “ λαBaΦpt, xq, which leads

to BaΦpλt, λxq “ λα´1BaΦpt, xq. In the same way, we obtain BtΦpλt, λxq “ λα´1BtΦpt, xq.

For La, we have

LaΦpλt, λxq “ pλx
a
qBtΦpλt, λxq ` pλtqBaΦpλt, λxq

“ pλxaqλα´1
BtΦpt, xq ` pλtqλ

α´1
BaΦpt, xqλ

αLaΦpt, xq.

We conclude that, after differentiation by Bα, the degree of a homogeneous function will

be reduced by one while when derived by La the degree does not change. By induction, we

get the desired estimate. Finally, we observe that the relation between homogeneity and

multiplication is trivial. �

In the following, the nonlinear terms such as Fαβ and rBILJ , hµνBµBνshαβ are expressed

as linear combinations of some basic nonlinear terms (presented below) with smooth and

homogeneous coefficients of non-positive degrees. We provide first a general classification

of such nonlinear terms:

‚ QShpp, kq refers to at most p-order quadratic semi-linear terms in hαβ. They are lin-

ear combinations of the following terms with smooth and homogeneous coefficients

of degree ď 0:

B
ILJ

`

BµhαβBνhα1β1
˘

with |I| ` |J | ď p, |J | ď k.
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‚ QSφpp, kq refers to p-order quadratic semi-linear terms in φ. They are linear combi-

nations of the following terms with smooth and homogeneous coefficients of degree

ď 0:

B
ILJ

`

BµφBνφ
˘

, B
ILJpφ2gµνq

with |I| ` |J | ď p, |J | ď k.

‚ QQhhpp, kq refers to p-order quadratic quasi-linear terms in h, which arise from the

expression rBILJ , hµνBµBνshαβ. They are linear combinations of the following terms

with smooth and homogeneous coefficients of degree ď 0:

B
I1LJ1hα1β1B

I2LJ2BµBνhαβ, hα1β1BµBνB
ILJ

1

hαβ

with |I1| ` |I2| ď p´ k, |J1| ` |J2| ď k and |I2| ` |J2| ď p´ 1 and |J 1| ă |J |.

‚ QQhφpp, kq refers to p-order quadratic quasi-linear terms in h and φ. These terms

come from the commutator rBILJ , hµνBµBνsφ. They are linear combination of the

following terms with smooth and homogeneous coefficients of degree ď 0:

B
I1LJ1hα1β1B

I2LJ2BµBνφ, hα1β1BµBνB
ILJ

1

φ

with |I1| ` |I2| ď p´ k, |J1| ` |J2| ď k and |I2| ` |J2| ď p´ 1, |J 1| ă |J |.

Next, we provide a list of “good” nonlinear terms:

‚ Cubpp, kq refers to higher-order terms of at least cubic order, except the cubic term

hαβhγδhµν which does not appear in our system. This class covers all cubic terms

of interest, in view of the structure of the system under consideration. Moreover,

these terms are “negligible” as far as the analysis of global existence is concerned.

‚ GQShpp, kq refers to “good” quadratic semi-linear terms in Bh, that are linear

combinations of the following terms with smooth and homogeneous coefficients of

degree ď 0:

B
ILJ

`

BahαβBγhα1β1
˘

, ps{tq2BILJ
`

BthαβBthα1β1
˘

with |I| ` |J | ď p and |J | ď k.
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‚ GQQhhpp, kq refers to “good” quadratic quasi-linear terms, that are linear combi-

nations of the following terms with smooth and homogeneous coefficients of degree

ď 0:

B
I1LJ1hα1β1B

I2LJ2BaBµhαβ, B
I1LJ1hα1β1B

I2LJ2BµBbhαβ,

hα1β1B
ILJ

1

BaBµhαβ, hα1β1B
ILJ

1

BµBbhαβ

with |I1| ` |I2| ď p´ k, |J1| ` |J2| ď k and |I2| ` |J2| ď p´ 1, |J 1| ă |J |.

‚ GQQhφpp, kq refers to “good” quadratic quasi-linear terms, that are linear combi-

nations of the following terms with smooth and homogeneous coefficients of degree

ď 0:

B
I1LJ1hα1β1B

I2LJ2BaBµφ, B
I1LJ1hα1β1B

I2LJ2BµBbφ,

hα1β1B
ILJ

1

BaBµφ, hα1β1B
ILJ

1

BµBbφ

with |I1| ` |I2| ď |I| “ p´ k, |J1| ` |J2| ď k and |I2| ` |J2| ď p´ 1, |J 1| ă |J |.

‚ Compp, kq. These terms arise when we express a second-order derivative written in

the canonical frame into the semi-hyperboloidal frame. Since the coefficients of the

transition matrix Φβ
α and Ψβ

α are homogeneous of degree zero, and the commutators

contain at least one derivative of these coefficients as a factor, these terms are linear

combinations of the following terms with homogeneous coefficients of degree ď 0:

t´1QShpp, kq, t´1QSφpp, kq, t´1
B
I1LJ1BµhαβB

I2LJ2Bνφ,

t´1
B
I1LJ1hµνB

I2LJ2Bγhµ1ν1 , t´2
B
I1LJ1hµνB

I2LJ2φ, t´2
B
I1LJ1hµνB

I2LJ2hµ1ν1 ,

where |I| ď p´ k, |J | ď k and |I1| ` |J1| ď p´ 1, |I1| ` |I2| ď p´ k, |J1| ` |J2| ď k.

With the above notation, we can decompose the commutator rBILJ , hµνBµBνsu, as follows.

Lemma 4.4 (Decomposition of quasi-linear terms). Let |I| “ p´ k and |J | “ k. Suppose

hµνBµBν is a second-order operator with sufficiently regular coefficients. Then rBILJ , hµνBµBνshαβ

is a linear combination of the following terms with smooth and homogeneous coefficients of

degree 0:

(4.14)
GQQhhpp, kq, t´1

B
I3LJ3hµνB

I4LJ4Bγhµ1ν1 ,

B
I1LJ1h00

B
I2LJ2BtBthαβ, LJ

1
1h00

B
ILJ

1
2BtBthαβ, h00

BγBγ1B
ILJ

1

hαβ,
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where I1 ` I2 “ I, J1 ` J2 “ J with |I1| ě 1, J 11 ` J 12 “ J with |J 11| ě 1 and |J 1| ă |J |,

|I3| ` |I4| ď |I|, |J3| ` |J4| ď |J |.

Proof. We have

(4.15)

rB
ILJ , hµνBµBνshαβ “ rB

ILJ , hµνBµBνshαβ ` rB
ILJ , hµνBµΨν1

ν Bν1shαβ

“ rB
ILJ , h00

BtBtshαβ

` rB
ILJ , ha0

BaBtshαβ ` rB
ILJ , h0a

BtBashαβ ` rB
ILJ , habBaBbshαβ

` rB
ILJ , hµνBµΨν1

ν Bν1shαβ.

The second, third, and fourth terms are in classGQQhhpp, kq (hαβ being linear combinations

of hαβ with smooth and homogeneous coefficients of degree zero) and, for the last term,

we see that

rB
ILJ , hµνBµΦν1

ν Bν1shαβ “
ÿ

I1`I2`I3“I
J1`J2`J3“J

|I3|`|J3|ă|I|`|J|

B
I1LJ1hµνBI2LJ2BµΨν1

ν B
I3LJ3Bν1hαβ

` hµνBµΨν1

ν rB
ILJ , Bν1shαβ.

Then by the homogeneity of Ψν1

ν , the above term can be expressed as t´1BI3LJ3hµνB
I4LJ4Bγhµ1ν1 .

Next, we treat the first term in the right-hand side of (4.15) :

rB
ILJ , h00

BtBtshαβ “
ÿ

I1`I2“I
J1`J2“J,|I1|ě1

B
I1LJ1h00

B
I2LJ2BtBthαβ `

ÿ

J1`J2“J
|J1|ě1

LJ1h00
B
ILJ2BtBthαβ

` h00
rB
ILJ , BtBtshαβ.

We observe that rBILJ , BtBtshαβ is a linear combination of the terms Bα1Bβ1B
ILJ

1

hαβ with

|J 1| ă |J |. We apply the commutator identity (3.43):

rB
ILJ , BtBtshαβ “ B

I
rLJ , BtBtshαβ “ B

I
`

rLJ , BtsBthαβ
˘

` B
I
Bt
`

rLJ , Btshαβ
˘

“ θJγ0J 1BγBtL
J 1hαβ ` θ

Jγ
0J 1θ

J 1γ1

0J2 Bγ1L
J2hαβ ` θ

Jγ
0J 1BtBtL

J 1hαβ,

where |J2| ă |J 1| ă |J |. This completes the proof. �
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A similar decomposition is available for the commutator rBILJ , hµνBµBνsφ: It is a linear

combination of the following terms with smooth and homogeneous coefficients of degree

ď 0:

(4.16)
GQQhφpp, kq, t´1

B
I1LJ1hµνB

I2LJ2Bγφ,

B
I1LJ1h00

B
I2LJ2BtBtφ, LJ

1
1h00

B
ILJ

1
2BtBtφ, h00

BαBβB
ILJ

1

φ,

where I1 ` I2 “ I, J1 ` J2 “ J with |I1| ě 1, J 11 ` J 12 “ J with |J 11| ě 1 and |J 1| ă |J |

and |I3| ` |I4| ď |I|, |J3| ` |J4| ď |J |. In our analysis of the commutator estimates, we will

make use of the decompositions (4.14) and (4.16).

4.4. Estimates based on commutators and homogeneity. Let u be a smooth func-

tion defined in K and vanishing near the boundary tr “ t´ 1u. In view of Ba “ t´1La, we

have

B
ILJBau “ B

ILJ
`

t´1Lau
˘

“
ÿ

I1`I2“I
J1`J2“J

B
I1LJ1

`

t´1
˘

B
I2LJ2Lau.

Since t´1 is a smooth and homogeneous coefficient of degree ´1, we have

(4.17)
ˇ

ˇB
ILJBau

ˇ

ˇ ď Ct´1
ÿ

|I1|ď|I|

|J1|ď|J|

ˇ

ˇB
I 1LJ

1

Lau
ˇ

ˇ.

As a direct application, for instance we have

ˇ

ˇB
ILJBaBνu

ˇ

ˇ ď Ct´1
ÿ

|I1|ď|I|

|J1|ď|J|

ˇ

ˇB
I 1LJ

1

LaBνu
ˇ

ˇ “ Ct´1
ÿ

|I1|ď|I|

|J1|ď|J|

ˇ

ˇB
I 1LJ

1

La
`

Φν1

ν Bν1u
˘
ˇ

ˇ.

The function Φν1

ν is smooth and homogeneous of degree 0, so that

(4.18)
ˇ

ˇB
ILJBaBνu

ˇ

ˇ ď CpI, Jqt´1
ÿ

γ,|I1|ď|I|

|J1|ď|J|

|B
I 1LJ

1

LaBγu|.

A similar argument holds for

(4.19)
ˇ

ˇB
ILJBνBau

ˇ

ˇ ď CpI, Jqt´1
ÿ

γ,a,|I1|ď|I|

|J1|ď|J|

|B
I 1LJ

1

LaBγu|.
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Furthermore, when there are two “good” derivatives, we consider

B
ILJ

`

BaBbu
˘

“ B
ILJ

`

t´1Lapt
´1Lbqu

˘

“ B
ILJ

`

t´2LaLbu
˘

` B
ILJ

`

t´1Lapt
´1
qu
˘

“
ÿ

I1`I2“I
J1`J2“J

B
I1LJ1

`

t´2
˘

B
I2LJ2LaLbu`

ÿ

I1`I2“I
J1`J2“J

B
I1LJ1

`

t´1Lapt
´1
q
˘

B
I2LJ2Lau,

and we find

(4.20)

ˇ

ˇB
ILJ

`

BaBbu
˘
ˇ

ˇ “
ˇ

ˇB
ILJ

`

t´1Lapt
´1Lbqu

˘
ˇ

ˇ

ď Ct´2
ÿ

|I1|ď|I|

|J1|ď|J|

ˇ

ˇB
I 1LJ

1

LaLbu
ˇ

ˇ` Ct´2
ÿ

|I1|ď|I|

|J1|ď|J|

ˇ

ˇB
I 1LJ

1

Lbu
ˇ

ˇ.

4.5. Basic structure of the quasi-null terms. In this section we consider the quasi-null

terms Pαβ and emphasize some important properties:

1. The expression Pαβ is a 2-tensor and this tensorial structure plays a role in our analysis.

2. In explicit form, it reads

Pαβ “
1

4
gγγ

1

gδδ
1

BαhγδBβhγ1δ1 ´
1

2
gγγ

1

gδδ
1

Bαhγγ1Bβhδδ1 ,

and, in the semi-hyperboloidal frame,

Pαβ “
1

4
gγγ

1

gδδ
1

BαhγδBβhγ1δ1 ´
1

2
gγγ

1

gδδ
1

Bαhγγ1Bβhδδ1 ,

so the only term to be concerned about is the 00-component:

P 00 “
1

4
gγγ

1

gδδ
1

BthγδBthγ1δ1 ´
1

2
gγγ

1

gδδ
1

Bthγγ1Bthδδ1

“
1

4
gγγ

1

gδδ
1

BthγδBthγ1δ1 ´
1

2
gγγ

1

gδδ
1

Bthγγ1Bthδδ1 ` Comp0, 0q.
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Here Comp0, 0q represents the commutator terms:

Comp0, 0q “
1

4
gγγ

1

gδδ
1

hγ2δ2Bt
`

Ψγ2

γ Ψδ2

δ

˘

Bt
`

Ψγ3

γ1 Ψδ3

δ1

˘

hγ3δ3

`
1

4
gγγ

1

gδδ
1

Ψγ2

γ Ψδ2

δ Bthγ2δ2Bt
`

Ψγ3

γ1 Ψδ3

δ1

˘

hγ3δ3

`
1

4
gγγ

1

gδδ
1

Bt
`

Ψγ2

γ Ψδ2

δ

˘

hγ2δ2Ψ
γ2

γ1 Ψ
δ2

δ1 Bthγ3δ3

´
1

2
gγγ

1

gδδ
1

Bt
`

Ψγ2

γ Ψδ2

δ

˘

hγ2γ3Bt
`

Ψγ3

γ1 Ψδ3

δ1

˘

hδ2δ3

´
1

2
gγγ

1

gδδ
1

Ψγ2

γ Ψδ2

δ Bthγ2γ3Bt
`

Ψγ3

γ1 Ψδ3

δ1

˘

hδ2δ3

´
1

2
gγγ

1

gδδ
1

Bt
`

Ψγ2

γ Ψδ2

δ

˘

hγ2γ3Ψγ2

γ1 Ψ
δ2

δ1 Bthδ2δ3 .

We see that

P 00 “
1

4
gγγ

1

gδδ
1

BthγδBthγ1δ1 ´
1

2
gγγ

1

gδδ
1

Bthγγ1Bthδδ1 ` Comp0, 0q

“
1

4
mγγ1mδδ1

BthγδBthγ1δ1 ´
1

2
gγγ

1

gδδ
1

Bthγγ1Bthδδ1 ` Comp0, 0q ` Cubp0, 0q.

Here the terms Cubp0, 0q stands for the high-order terms:

Cubp0, 0q “
1

4
hγγ

1

mδδ1
BthγδBthγ1δ1 `

1

4
mγγ1hγδ1BthγδBthγ1δ1 `

1

4
hγγ

1

hδδ
1

Bthγδ1Bthγδ1 .

We summarize our conclusion.

Lemma 4.5 (Structure of the quasi-null terms). The quasi-null term P 00 are linear com-

binations of the following terms with smooth and homogeneous coefficients of degree ď 0:

(4.21)

GQShp0, 0q, Cubp0, 0q, Comp0, 0q, gγγ
1

gδδ
1

Bthγγ1Bthδδ1 , mγγ1mδδ1
BthγδBthγ1δ1 .

The quasi-null term P aβ are linear combinations of GQShp0, 0q and Cubp0, 0q terms.

So, the only problematic terms in Pαβ are gγγ
1

gδδ
1

Bthγγ1Bthδδ1 and mγγ1mδδ1BthγδBthγ1δ1 .

They will be controlled by using the wave gauge condition.
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4.6. Metric components in the semi-hyperboloidal frame. In this subsection, we de-

rive the equation satisfied by the metric components within the semi-hyperboloidal frame.

To do so, we need the identity

rlgpuvq “ urlgv ` vrlgu` 2gαβBαuBβv.

Then, we have

rlghαβ “ rlg

`

Φα1

α Φβ1

β hα1β1
˘

“ Φα1

α Φβ1

β
rlghα1β1 ` 2gµνBµ

`

Φα1

α Φβ1

β

˘

Bνhα1β1 ` hα1β1 rlg

`

Φα1

α Φβ1

β

˘

.

Then we calculate explicitly the correction terms concerning the derivatives of Φα1

α Φβ1

β :

‚ Case α “ β “ 0:

Φ0
0Φ0

0 “ 1, the other ones vanish,

l
`

Φα1

0 Φβ1

0

˘

“ 0, B
`

Φ0
0Φ0

0

˘

“ 0.

‚ Case α “ a ą 0, β “ 0:

Φ0
aΦ

0
0 “ xa{t, Φa

aΦ
0
0 “ 1,

l
`

Φ0
aΦ

0
0

˘

“ ´
2xa

t3
, Bt

`

Φ0
aΦ

0
0

˘

“ ´
xa

t2
, Ba

`

Φ0
aΦ

0
0

˘

“
1

t
.

‚ Case α “ a ą 0, β “ b ą 0:

Φ0
aΦ

0
b “ xaxb{t2, Φ0

aΦ
b
b “ xa{t, Φa

aΦ
b
b “ 1.

l
`

Φ0
aΦ

0
b

˘

“ ´
6xaxb

t4
`

2δab
t2

, Bt
`

Φ0
aΦ

0
b

˘

“ ´
2xaxb

t3
, Bc

`

Φ0
aΦ

0
b

˘

“
δcax

b ` δcbx
a

t2
,

l
`

Φ0
aΦ

b
b

˘

“ ´
2xa

t3
, Bt

`

Φ0
aΦ

b
b

˘

“ ´
xa

t2
, Ba

`

Φ0
aΦ

b
b

˘

“
1

t
,

while the other ones vanish.
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Then we calculate the remaining terms (up to second-order):

rlgh00 “ Φα1

0 Φβ1

0 Qα1β1 ` P 00 ´ 16πBtφBtφ´ 8πc2m00φ
2
` Cubp0, 0q,

rlgh0a “ Φα1

0 Φβ1

a Qα1β1 ` P 0a ´ 16πBaφBtφ´ 8πc2ma0φ
2
`

2

t
Bah00 ´

2xa

t3
h00 ` Cubp0, 0q,

rlghaa “ Φα1

a Φβ1

a Qα1β1 ` P aa ´ 16πBaφBaφ´ 8πc2maaφ
2,

`
4xa

t2
Bah00 `

4

t
Bah0a ´

4xa

t3
h0a `

ˆ

2

t2
´

6|xa|2

t4

˙

h00 ` Cubp0, 0q,

rlghab “ Φα1

a Φβ1

b Qα1β1 ` P ab ´ 16πBaφBbφ´ 8πc2mabφ
2,

`
2xb

t2
Bah00 `

2xa

t2
Bbh00 `

2

t
Bah0b `

2

t
Bbh0a ´

6xaxb

t4
h00

´
2xa

t3
h0b ´

2xb

t3
h0a ` Cubp0, 0q

pa ‰ bq.

The most important point is that for the components haβ, the quasi-null terms Pαβ become

null terms. This tensorial structure will lead us to the fact that these metric components

do have better decay rate compared to h00. In Section 9, these equations will be used

to derive sharp decay estimates for these components. For clarity, we state the following

conclusion:

(4.22)

rlgh0a “
2

t
Bah00 ´

2xa

t3
h00 `GQShp0, 0q `GQSφp0, 0q ` Cubp0, 0q,

rlghaa “
4xa

t2
Bah00 `

ˆ

2

t2
´

6|xa|2

t4

˙

h00 `
4

t
Bah0a ´

4xa

t3
h0a

`GQShp0, 0q `GQSφp0, 0q ` Cubp0, 0q,

rlghab “
2xb

t2
Bah00 `

2xa

t2
Bbh00 ´

6xaxb

t4
h00 `

2

t
Bah0b ´

2xa

t3
h0b `

2

t
Bah0a ´

2xb

t3
h0a

`GQShp0, 0q `GQSφp0, 0q ` Cubp0, 0q.

4.7. Wave gauge condition in the semi-hyperboloidal frame. Our objective in the

rest of this section is to establish some estimates based on the wave condition gαβΓγαβ “ 0,

which is equivalent to saying

(4.23) gβγBαg
αβ
“

1

2
gαβBγg

αβ.
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We have introduced

(4.24)
hαβ “ gαβ ´mαβ, hαβ “ gαβ ´mαβ,

hαβ “ gαβ ´mαβ, hαβ “ g
αβ
´mαβ,

in which hαβ “ hα
1β1Ψα

α1Ψ
β
β1 and hαβ “ hα1β1Φ

α1

α Φβ1

β .

Lemma 4.6. Let pgαβq be a metric satisfying the wave gauge condition (4.23). Then Bth
00

is a linear combination of the following terms with smooth and homogeneous coefficients of

degree ď 0:

(4.25) ps{tq2Bαh
βγ, Bah

βγ, t´1hαβ, hαβBγh
α1β1 , t´1hαβh

α1β1 .

Proof. The wave gauge condition (4.23) can be written in the semi-hyperboloidal frame as

(4.26) g
βγ
Bαh

αβ
` gβ1γ1Φ

γ1

γ h
αβ
Bα1

`

Φα1

α Φβ1

β

˘

“
1

2
g
αβ
Bγh

αβ
`

1

2
gαβh

α1β1
Bγ

`

Φα
α1Φ

β
β1

˘

.

This leads us to

(4.27) mβγBαh
αβ
“

1

2
g
αβ
Bγh

αβ
`

1

2
gαβh

α1β1
Bγ

`

Φα
α1Φ

β
β1

˘

´gβ1γ1Φ
γ1

γ h
αβ
Bα1

`

Φα1

α Φβ1

β

˘

´hβγBαh
αβ.

Taking γ “ c “ 1, 2, 3, we analyze the left-hand side and observe that

mβcBαh
αβ
“ m0cB0h

00
`mbcB0h

0b
`mβcBah

aβ,

which leads us to m0cB0h
00
“ mβcBαh

αβ
´mbcB0h

0b
´mβcBah

aβ, so that

m0cm0cB0h
00
“ m0cmβcBαh

αβ
´m0cmbcB0h

0b
´m0cmβcBah

aβ1 .

An explicit calculation shows that m0cm0c “
r2

t2
, m0cmbc “ ´ps{tq

2pxb{tq and thus

(4.28) pr{tq2B0h
00
“ m0cmβcBαh

αβ
` ps{tq2

ÿ

b

pxb{tqB0h
0b
´m0cmβcBah

aβ1 .

Combining (4.27) and (4.28), we find

(4.29)

pr{tq2B0h
00
“ ps{tq2

ÿ

b

pxb{tqB0h
0b
´m0cmβcBah

aβ1

`m0c

ˆ

1

2
g
αβ
Bch

αβ
`

1

2
gαβh

α1β1
Bc

`

Φα
α1Φ

β
β1

˘

´ gβ1γ1Φ
γ1

c h
αβ
Bα1

`

Φα1

α Φβ1

β

˘

´ hβcBαh
αβ

˙

,

which leads us to the terms in (4.25). �
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We now proceed by deriving some estimates based on the wave gauge condition. For

convenience, we introduce the notation

ˇ

ˇh
ˇ

ˇ :“ max
α,β

ˇ

ˇhαβ
ˇ

ˇ,
ˇ

ˇBh
ˇ

ˇ :“ max
α,β,γ

ˇ

ˇBγhαβ
ˇ

ˇ,
ˇ

ˇBh
ˇ

ˇ :“ max
c,α,β

ˇ

ˇBchαβ
ˇ

ˇ, c “ 1, 2, 3.

Observe that
ˇ

ˇBh
ˇ

ˇ contains only the “good” derivatives of hαβ. When
ˇ

ˇBh
ˇ

ˇ and
ˇ

ˇh
ˇ

ˇ are

supposed to be small enough, and, the rest of this section, we express the corresponding

bound in the form εw ď 1, the algebraic relation between hαβ and hαβ leads us to the

following basic estimates:

(4.30) max
α,β

ˇ

ˇhαβ
ˇ

ˇ ď C
ˇ

ˇh
ˇ

ˇ, max
α,β,γ

ˇ

ˇBγh
αβ
ˇ

ˇ ď C
ˇ

ˇBh
ˇ

ˇ, max
c,α,β

ˇ

ˇBch
αβ
ˇ

ˇ ď C
ˇ

ˇBh
ˇ

ˇ.

With the above preparation, the following estimate is immediate from Lemma 4.6.

Lemma 4.7 (Zero-order wave coordinate estimate). Let gαβ “ mαβ ` hαβ be a metric

satisfying the wave gauge condition (4.23). We suppose furthermore that
ˇ

ˇBh
ˇ

ˇ and
ˇ

ˇh
ˇ

ˇ are

small enough so (4.30) hold. Then the following estimate holds:

(4.31)
ˇ

ˇBth
00
ˇ

ˇ ď Cps{tq2
ˇ

ˇBh
ˇ

ˇ` C
ˇ

ˇBh
ˇ

ˇ` Ct´1
ˇ

ˇh
ˇ

ˇ` C
ˇ

ˇBh
ˇ

ˇ

ˇ

ˇh
ˇ

ˇ.

The interest of this estimate is as follows: the “bad” derivative of h00 is bounded by the

“good” derivatives arising in the right-hand side of (4.31). Of course, the “bad” term
ˇ

ˇBh
ˇ

ˇ

still arise, but it is multiplied by the factor ps{tq2 which provides us with extra decay and

turns this term into a “good” term.

Lemma 4.8 (k-order wave coordinate estimates). Let gαβ “ mαβ ` hαβ be a smooth

metric satisfying the wave gauge condition (4.23). We suppose furthermore that for a

product BILJ with |I| ` |J | ď N ,
ˇ

ˇBBILJh
ˇ

ˇ and
ˇ

ˇBILJh
ˇ

ˇ are small enough so that the

following bounds hold: maxα,β
ˇ

ˇBILJhαβ
ˇ

ˇ ď C
ˇ

ˇBILJh
ˇ

ˇ, maxα,β,γ
ˇ

ˇBγB
ILJhαβ

ˇ

ˇ ď C
ˇ

ˇBBILJh
ˇ

ˇ,



STABILITY OF MINKOWSKI SPACE FOR SELF-GRAVITATING MASSIVE FIELDS 71

and maxc,α,β
ˇ

ˇBcB
ILJhαβ

ˇ

ˇ ď C
ˇ

ˇBBILJh
ˇ

ˇ. Then the following estimate holds:

(4.32)
ˇ

ˇB
ILJBth

00
ˇ

ˇ`
ˇ

ˇBtB
ILJh00

ˇ

ˇ ďC
ÿ

|I1|`|J1|ď|I|`|J|

|J1|ď|J|

`

ps{tq2
ˇ

ˇBB
I 1LJ

1

h
ˇ

ˇ`
ˇ

ˇB
I 1LJ

1

Bh
ˇ

ˇ` t´1
ˇ

ˇB
I 1LJ

1

h
ˇ

ˇ

˘

` C
ÿ

|I1|`|I2|ď|I|
|J1|`|J2|ď|J|

ˇ

ˇB
I1LJ1h

ˇ

ˇ

ˇ

ˇBB
I2LJ2h

ˇ

ˇ.

Proof. This result is also a direct consequence of Lemma 4.6. We derive the expression of

Bth
00 which is a linear combination of the terms in (4.25) with smooth and homogeneous

coefficients of degree ď 0. So, BILJBth
00 is again a linear combination of the following

terms with smooth and homogeneous coefficients of degree ď |I| (since BILJ acts on a

0-homogeneous function gives a |I|-homogeneous function):

BI
1

LJ
1
`

ps{tq2Bαh
βγ
˘

, BI
1

LJ
1
`

Bah
βγ
˘

, t´1BI
1

LJ
1
`

hαβ
˘

, BI
1

LJ
1
`

hαβBγh
α1β1

˘

, t´1BI
1

LJ
1
`

hαβh
α1β1

˘

with |I 1| ď |I| and |J 1| ď |J |. We observe that

|B
I 1LJ

1`

ps{tq2Bαh
βγ
˘

| ď Cps{tq2
ÿ

|I2|ď|I1|

|J2|ď|J1|

|B
I2LJ

2`

Bαh
βγ
˘

|.

The second, fourth, and last terms are to be bounded by the commutator estimates in

Lemma 3.22. The estimate for BtB
ILJh00 is deduced from (4.32) and the commutator

estimates. �

4.8. Revisiting the structure of the quasi-null terms. In this section, we consider

the estimates on quasi-null terms Pαβ together with the wave gauge condition and we use

wave coordinate estimates. We treat first the term gαα
1

Btgββ1 and formulate the wave gauge

condition in the form:

(4.33) gαβBαhβγ “
1

2
gαβBγhαβ.

Lemma 4.9. There exists a positive constant εw ě 0 such that if |h| ` |Bh| ď εw, and the

wave gauge condition (4.33) holds, then the quasi-null term gαα
1

gββ
1

Btgαα1Btgββ1 is a linear

combination of terms

(4.34) GQShp0, 0q, Comp0, 0q, Cubp0, 0q, g0a
B0g0a

g0b
B0g0b
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with smooth and homogeneous coefficients of degree ď 0.

Proof. The relation (4.33) can be written in the semi-hyperboloidal frame in the form:

(4.35) gαβBαhβγ ` Φγ1

γ g
αβ
Bα

´

Ψβ1

β Ψγ2

γ1

¯

hβ1γ2 “
1

2
gαβBγhαβ `

1

2
gαβBγ

´

Ψα1

α Ψβ1

β

¯

hα1β1 .

We fix γ “ 0 and see that

gαβBthαβ “ 2gαβBαh0β ` 2Φγ1

0 g
αβ
Bα

´

Ψβ1

β Ψγ2

γ1

¯

hβ1γ2 ´ g
αβ
Bt

´

Ψα1

α Ψβ1

β

¯

hα1β1 .

This identity can be written as

(4.36)

gαβBthαβ “ 2mαβ
Bαhβ0 ` 2hαβBαhβ0 ` 2Φγ1

0 m
αβ
Bα

´

Ψβ1

β Ψγ2

γ1

¯

hβ1γ2 ´m
αβ
Bt

´

Ψα1

α Ψβ1

β

¯

hα1β1

` 2Φγ1

0 h
αβ
Bα

´

Ψβ1

β Ψγ2

γ1

¯

hβ1γ2 ´ h
αβ
Bt

´

Ψα1

α Ψβ1

β

¯

hα1β1 .

In the right-hand side, except for the first term, we have at least quadratic terms or terms

containing an extra decay factor such as Bα

´

Ψβ1

β Ψγ2

γ

¯

. So, we see that in gαα
1

gββ
1

Btgαα1Btgββ1

the only term to be concerned about is

4mαα1mββ1
Bαhα10Bβhβ10.

The remaining terms are quadratic in hαβ, hαβ or linear terms on hαβ with decreasing

coefficients such as Bα

´

Ψβ1

β Ψγ2

γ

¯

. Then we also see that when |h| sufficiently small, hαβ

can be expressed as a power series of hαβ (without zero order), which is itself a linear

combination of hαβ with smooth and homogeneous coefficients of degree ď 0. So, when

|h| sufficiently small, hαβ can be expressed as a power series of hαβ (without 0 order) with

smooth and homogeneous coefficients of degree ď 0. We conclude that in the product

gαα
1

gββ
1

Btgαα1Btgββ1 , the remaining terms apart from 4mαα1mββ1Bαhα10Bβhβ10 are contained

in Cubp0, 0q or Comp0, 0q.
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We focus on the term 4mαα1mββ1Bαhα10Bβhβ10. We have

4
`

mαα1
Bαhα10

˘`

mββ1
Bβhβ10

˘

“ 4
`

maα1
Bahα10 `m

00
B0h00 `m

0a1
B0h0a1

˘

ˆ
`

mbβ1
Bbhβ10 `m

00
B0h00 `m

0b
B0h0b

˘

“ 4
`

maα1
Bahα10 `m

00
B0h00

˘`

mbβ1
Bbhβ10 `m

00
B0h00 `m

0b
B0h0b

˘

` 4m0a1
B0h0a1

`

hbβ
1

Bbhβ10 `m
00
B0h00

˘

` 4m0a1
B0h0a1m

0b
B0h0b.

The last term is already presented in the (4.34). The remaining terms are null quadratic

terms (recall that m00 “ ps{tq2). �

Now we combine Lemma 4.5 with Lemmas 4.6 and 4.9.

Lemma 4.10. There exists a positive constant εw ą 0 such that if |h| ` |Bh| ď εw, then

the quasi-null term P 00 is a linear combination of the following terms with smooth and

homogeneous coefficients of order ď 0:

(4.37) GQShp0, 0q, Cubp0, 0q, Comp0, 0q, BthaαBthbβ.

The term P aβ is a linear combination of the following terms with smooth and homogeneous

coefficients of order ď 0:

(4.38) GQShp0, 0q, Cubp0, 0q, Comp0, 0q.

Proof. In view of Lemma 4.5, we need to focus on gγγ
1

gδδ
1

Bthγγ1Bthδδ1 andmγγ1mδδ1BthγδBthγ1δ1 .

The first term is covered by Lemma 4.9 and the second term is bounded as follows: we

recall that

ˇ

ˇB
ILJm00

ˇ

ˇ “ CpI, Jqps{tq2,
ˇ

ˇmαβ
ˇ

ˇ ď C.

Then, when pγ, γ1q “ p0, 0q or pδ, δ1q “ p0, 0q, we have mγγ1mδδ1BthγδBthγ1δ1 becomes a

null term. When pγ, γ1q ‰ p0, 0q and pδ, δ1q ‰ p0, 0q, we denote by pγ, γ1q “ pa, αq and

pδ, δ1q “ pb, βq, so we see that mγγ1mδδ1BthγδBthγ1δ1 is a linear combination of BthaαBthbβ

with homogeneous coefficients of degree zero. �
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Finally, we emphasize that, in order to control the quasi-null terms, we must control

the term BthaαBthbβ which is not a null term. This term will be bounded by refined decay

estimates on Bhaα, and we refer to our forthcoming analysis in Section 9.

5. Initialization of the Bootstrap Argument

5.1. The bootstrap assumption and the basic estimates.

The bootstrap assumption. From now on, we assume that in a hyperbolic time interval

r2, s˚s, the following energy bounds hold for |I| ` |J | ď N . Here N ě 14, pC1, εq is a pair

of positive constants and 1{50 ď δ ď 1{20, say.

(5.1a) E˚Mps, B
ILJhαβq

1{2
ď C1εs

δ,

(5.1b) EM,c2ps, B
ILJφq1{2 ď C1εs

1{2`δ.

For |I| ` |J | ď N ´ 4 we have (in which (5.2a) is repeated from (5.1a) for clarity in the

presentation)

(5.2a) E˚Mps, B
ILJhαβq

1{2
ď C1εs

δ,

(5.2b) EM,c2ps, B
ILJφq1{2 ď C1εs

δ.

In combination with Lemma 3.4, we see that the total energy of hαβ on the hyperboloid

Hs is bounded by

(5.3) EMps, B
ILJhαβq ď CC1εs

δ
` CmS ď 2C1εs

δ,

where we take mS ď ε. In the following discussion, except if specified otherwise, the letter

C always represents a constant depending only on N . This constant may change at each

occurrence.
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Basic L2 estimates of the first generation. These estimates come directly from the above

energy bounds.

For |I| ` |J | ď N , we have

(5.4a) }ps{tqBγB
ILJhαβ}L2

f pHsq
` }BaB

ILJhαβ}L2
f pHsq

ď CC1εs
δ,

(5.4b) }ps{tqBαB
ILJφ}L2

f pHsq
` }BaB

ILJφ}L2
f pHsq

ď CC1εs
1{2`δ,

(5.4c) }B
ILJφ}L2

f pHsq
ď CC1εs

1{2`δ.

For |I| ` |J | ď N ´ 1, we have

(5.5) }BαB
ILJφ}L2

f pHsq
ď CC1εs

1{2`δ.

For |I| ` |J | ď N ´ 4, we have

(5.6) }ps{tqBαB
ILJφ}L2

f pHsq
` }BaB

ILJφ}L2
f pHsq

ď CC1εs
δ

and, for |I| ` |J | ď N ´ 5,

(5.7) }BαB
ILJφ}L2

f pHsq
ď CC1εs

δ.

Basic L2 estimates of the second generation. These estimates come from the above L2

bounds of the first generation combined with the commutator estimates presented in

Lemma 3.22. For |I| ` |J | ď N , we obtain

(5.8a) }ps{tqBILJBγhαβ}L2
f pHsq

` }B
ILJBahαβ}L2

f pHsq
ď CC1εs

δ,

(5.8b) }ps{tqBILJBαφ}L2
f pHsq

` }B
ILJBaφ}L2

f pHsq
ď CC1εs

1{2`δ,

while for |I|` |J | ď N ´ 1 (the second term in the left-hand side being bounded by (4.17))

(5.9) }B
ILJBαφ}L2

f pHsq
` }tBILJBaφ}L2

f pHsq
ď CC1εs

1{2`δ.

For |I| ` |J | ď N ´ 4, we have

(5.10) }ps{tqBILJBαφ}L2
f pHsq

` }B
ILJBaφ}L2

f pHsq
ď CC1εs

δ,
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while, for |I| ` |J | ď N ´ 5, again from (4.17))

(5.11) }B
ILJBαφ}L2

f pHsq
` }tBILJBaφ}L2

f pHsq
ď CC1εs

δ.

Basic L8 estimates of the first generation. For |I| ` |J | ď N ´ 2, we obtain

(5.12a) sup
H˚s

`

t3{2ps{tqBγB
ILJhαβ

˘

` sup
H˚s

`

t3{2BaB
ILJhαβ

˘

ď CC1εs
δ,

(5.12b) sup
Hs

`

t3{2ps{tqBαB
ILJφ

˘

` sup
Hs

`

t3{2BaB
ILJφ

˘

ď CC1εs
1{2`δ,

(5.12c) sup
Hs

`

t3{2BILJφ
˘

ď CC1εs
1{2`δ.

For |I| ` |J | ď N ´ 3, we have

(5.13) sup
Hs

`

t3{2BαB
ILJφ

˘

` sup
Hs

`

t5{2BaB
ILJφ

˘

ď CC1εs
1{2`δ.

Here, the second term in the left-hand side is bounded by applying (4.17) once more. For

|I| ` |J | ď N ´ 6, we have

(5.14) sup
Hs

`

t3{2ps{tqBαB
ILJφ

˘

` sup
Hs

`

t3{2BaB
ILJφ

˘

ď CC1εs
δ,

while, for |I| ` |J | ď N ´ 7,

(5.15) sup
Hs

`

t3{2BαB
ILJφ

˘

` sup
Hs

`

t5{2BaB
ILJφ

˘

ď CC1εs
δ.

Basic L8 estimates of the second generation. For |I| ` |J | ď N ´ 2, we obtain

(5.16a) sup
H˚s

`

t1{2|BILJBγhαβ|
˘

ď CC1εs
´1`δ, sup

H˚s

`

t3{2|BILJBahαβ|
˘

ď CC1εs
δ,

(5.16b) sup
Hs

`

t1{2|BILJBαφ|
˘

ď CC1εs
´1{2`δ, sup

Hs

`

t3{2|BILJBaφ|
˘

ď CC1εs
1{2`δ,

(5.16c) sup
Hs

`

t3{2|BILJφ|
˘

ď CC1εs
1{2`δ.

For |I| ` |J | ď N ´ 3, we have

(5.17) sup
Hs

`

t3{2|BILJBαφ|
˘

` sup
Hs

`

t5{2|BILJBaφ|
˘

ď CC1εs
1{2`δ,



STABILITY OF MINKOWSKI SPACE FOR SELF-GRAVITATING MASSIVE FIELDS 77

while, for |I| ` |J | ď N ´ 6,

(5.18a) sup
Hs

`

t1{2|BILJBαφ|
˘

ď CC1εs
´1`δ, sup

Hs

`

t3{2|BILJBaφ|
˘

ď CC1εs
δ,

(5.18b) sup
Hs

`

t3{2|BILJφ|
˘

ď CC1εs
δ.

For |I| ` |J | ď N ´ 7, we find

(5.19) sup
Hs

`

t3{2|BILJBαφ|
˘

` sup
Hs

`

t5{2|BILJBaφ|
˘

ď CC1εs
δ.

By (4.18) and (4.19), the following bounds hold:

(5.20) }B
ILJBaBβ1hαβ}L2pH˚s q

` }B
ILJBβ1Bahαβ}L2pH˚s q

ď CC1εs
´1`δ,

(5.21) sup
H˚s

`

t3{2
ˇ

ˇB
ILJBaBβ1hαβ

ˇ

ˇ

˘

` sup
H˚s

`

t3{2
ˇ

ˇB
ILJBβ1Bahαβ

ˇ

ˇ

˘

ď CC1εs
´1`δ.

5.2. Estimates based on integration along radial rays. For |I| ` |J | ď N ´ 2,

(5.22) |B
ILJhαβpt, xq| ď CC1εps{tqt

´1{2sδ ` CmSt
´1
ď CC1εps{tqt

´1{2sδ.

This estimate is based on the following observation:

ˇ

ˇBrB
ILJhαβpt, xq

ˇ

ˇ ď C
ˇ

ˇBγB
ILJhαβpt, xq

ˇ

ˇ ď CC1εt
´1{2s´1`δ

» CC1εt
´1`δ{2

pt´ rq´1{2`δ{2.

Then we integrate BrB
ILJhαβ along the radial rays tpt, λxq|1 ď λ ď pt ´ 1q{|x|u. We

see when λ “ pt ´ 1q{|x|, BrB
ILJhαβpt, λxq » CmSt

´1 since hαβ coincides with the

Schwarzschild metric and, by integration, (5.22) holds.

6. Direct Control of Nonlinearities in the Einstein Equations

6.1. L8 estimates. With the above estimates, we are in a position to control the good

nonlinear terms: GQQhh, GQQhφ, GQSh, QSφ, Com, and Cub.

Lemma 6.1. When the basic sup-norm estimates hold, the following sup-norm estimates

are valid for k ď N ´ 2:

(6.1) |GQShpN ´ 2, kq| ď CpC1εq
2t´2s´1`2δ, |GQQhhpN ´ 2, kq| ď CpC1εq

2t´3s2δ,
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(6.2) |QSφpN ´ 2, kq| ď CpC1εq
2t´2s´1{2`2δ,

(6.3) |GQQhφpN ´ 2, kq| ď CpC1εq
2t´3s2δ,

(6.4) |CompN ´ 2, kq| ď CpC1εq
2t´5{2s´1`2δ,

(6.5) |CubpN ´ 2, kq| ď CpC1εq
2t´5{2s3δ.

Proof. We directly substitute the basic L8 estimates, and we begin

|GQShpN ´ 2, kq| ď |ps{tq2BthBth| `
ÿ

I1`I2“I
J1`J2“J

|B
I1LJ1BahαβB

I2LJ2Bνhα1β1 |.

By the basic decay estimate (5.16a), |GQShpN´2, kq| is bounded by CpC1εq
2t´2s´1`2δ. The

estimate for GQQhh is similar, where (5.21) is applied, and we omit the details. The esti-

mate for QSφ is more delicate and we have BILJ pBµφBνφq “
ř

I1`I2“I
J1`J2“J

BI1LJ1BµφB
I2LJ2Bνφ.

‚ I1 “ I, J1 “ J then |I2| “ |J2| “ 0 ď N ´ 7. Then we apply (5.16b) and (5.19) we

have
ˇ

ˇB
I1LJ1BµφB

I2LJ2Bνφ
ˇ

ˇ ď CpC1εq
2t´2s´1{2`2δ.

‚ N ´ 3 ě |I1| ` |J1| ě N ´ 5 then |I2| ` |J2| ď 3 ď N ´ 6, then we apply (5.17) and

(5.18a).

‚ |I1| ` |J1| “ N ´ 6, this leads us to |I2| ` |J2| ď 4 ď N ´ 3, then we apply (5.18a)

and (5.17).

‚ |I1| ` |J1| ď N ´ 7, this leads us to |I2| ` |J2| ď N ´ 2, then we apply (5.19) and

(5.16b).

The estimate of BILJ pφ2q is similar and we omit the details.

The estimate for Com is much simpler, due to the additional decay t´1. We apply

the above estimates to QSφ and the basic sup-norm estimate directly. For the cubic

term, we will not analyze each type but point out that the worst higher-order term is

hαβpBφq
2, since BILJBαφ has a decay » t´3{2s1{2`δ, but this term is found to be bounded

by t´5{2ps{tqs3δ. �
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6.2. L2 estimates.

Lemma 6.2. one has

(6.6) }GQQhhpN, kq}L2pH˚s q
ď CpC1εq

2s´3{2`2δ,

(6.7) }GQShpN, kq}L2pH˚s q
ď CpC1εq

2s´3{2`2δ,

(6.8) }QSφpN ´ 4, kq}L2pH˚s q
ď CpC1εq

2s´3{2`2δ,

(6.9) }GQQhφpN ´ 4, kq}L2pH˚s q
ď CpC1εq

2s´3{2`2δ,

(6.10) }Cub}L2
f pHsq

ď CpC1εq
2s´3{2`3δ.

Proof. For the term GQQhh, we will only write the estimate of BI1LJ1hα1β1B
I2LJ2BaBνhαβ

in detail and, to this end, we distinguish between two main cases:

Case 1. |I1| ě 1. Subcase 1.1 : When |I1| ` |J1| ď N ´ 2, we obtain

›

›B
I1LJ1hα1β1B

I2LJ2BaBνhαβ
›

›

L2pH˚s q
ď CC1ε

›

›t´1{2s´1`δ
B
I2LJ2BaBνhαβ

›

›

L2pH˚s q

ď CC1εs
´3{2`δE˚Mps, B

I2LJ2Bhq1{2

ď CpC1εq
2s´3{2`2δ.

Subcase 1.2 : When N ě |I1| ` |J2| ě N ´ 1, we have |I2| ` |J2| ď 1 ď N ´ 3, then in view

of (5.20)

›

›B
I1LJ1hα1β1B

I2LJ2BaBνhαβ
›

›

L2pH˚s q
ď CC1ε

›

›t´3{2s´1`δ
pt{sq

ˇ

ˇps{tqBI1LJ1hα1β1
›

›

L2pH˚s q

ď CC1εs
´3{2`δ

›

›ps{tqBI1LJ1hα1β1
›

›

L2pH˚s q
ď CpC1εq

2s´3{2`2δ.

Case 2. |I1| “ 0. Subcase 2.1 : When |J1| ď N ´ 2, then in view of (5.20) we obtain

›

›LJ1hα1β1B
ILJ2BaBνhαβ

›

›

L2pH˚s q
ď CC1ε

›

›

`

ps{tqt´1{2sδ ` t´1
˘

B
ILJ2BaBνhα1β1}L2pH˚s q

ď CC1ε
›

›

`

ps{tqt´1{2sδ ` t´1
˘

s´1
|sBILJ2BaBνhα1β1 |}L2pH˚s q

ď CC1εs
´3{2`δE˚Mps, B

ILJ2Bhq1{2 ď CpC1εq
2s´3{2`2δ.
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Subcase 2.2 : When N ě |J1| ě N ´ 1 ě 1, then we denote by LJ1 “ LaL
J 11 , we have

|I| ` |J2| ď 1 ď N ´ 3. Then in view of (5.21)

›

›LJ1hα1β1B
ILJ2BaBνhαβ

›

›

L2pH˚s q
ď CC1ε

›

›t´3{2s´1`δLaL
J 11hα1β1

›

›

L2pH˚s q

ď CC1ε
›

›t´1{2s´1`δ
BaL

J 11hα1β1
›

›

L2pH˚s q
ď CpC1εq

2s´3{2`2δ.

The estimate on the term GQSh is similar, and we omit the details. For the estimate

for QSφpN ´ 4, kq, we will only writhe the proof on BILJ pBαφBβφq. For N ě 9, we have
“

N´4
2

‰

ď N ´ 7. So, at least |I1| ` |J1| ď N ´ 7 or |I2| ` |J2| ď N ´ 7:

›

›B
I1LJ1Bαφ B

I2LJ2φ
›

›

L2pH˚s q
ď CC1ε

›

›t´3{2sδpt{sq ps{tqBI2LJ2φ
›

›

L2pH˚s q
ď CpC1εq

2s´3{2`2δ.

As far as GQQhφpN ´4, kq is concerned, we only treat BI1LJ1hα1β1B
I2LJ2BaBµφ. We observe

that |I1| ` |J1| ď N ´ 4 and by applying (5.22)

›

›B
I1LJ1hα1β1B

I2LJ2BaBµφ
›

›

L2pH˚s q
ď

›

›

›

`

ps{tqt´1{2sδ ` t´1
˘

s´1
`

sBI2LJ2BaBµφ
˘

›

›

›

L2pH˚s q

ď CC1εs
´3{2`δ

›

›sBI2LJ2BaBµφ
›

›

L2pH˚s q

ď CC1εs
´3{2`δEM,c2

`

s, BI2LJ2LaBµφ
˘1{2

ď CpC1εq
2s´3{2`2δ.

The higher-order terms Cub are bounded as we did for the sup-norm: just observe that

the worst term is again hpBφq2 and can be bounded as stated. �

Lemma 6.3. For N ě 7, one has

(6.11) }QSφpN, kq}L2pH˚s q
ď CpC1εq

2s´1`2δ.

Proof. We discuss the following cases:

‚ |I1| ` |J1| “ N , N ´ 7 ě 0. So, in view of (5.8b) and (5.19) :

›

›B
I1LJ1BγφB

I2LJ2Bγ1φ
›

›

L2pH˚s q
ď CC1ε

›

›t´3{2sδpt{sq ps{tqBI1LJ1Bγφ
›

›

L2pH˚s q

ď CC1εs
´3{2`δ CC1εs

1{2`δ
ď CpC1εq

2s´1`2δ.
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‚ |I1| ` |J1| “ N ´ 1, then |I2| ` |J2| “ 1 ď N ´ 6. So, in view of (5.9) and (5.18a),

we have

›

›B
I1LJ1BγφB

I2LJ2Bγ1φ
›

›

L2pH˚s q
ď CC1ε

›

›t´1{2s´1`δ
B
I1LJ1Bγφ

›

›

L2pH˚s q

ď CC1εs
´3{2`δ CC1εs

1{2`δ
ď CpC1εq

2s´1`2δ.

‚ |I1| ` |J1| “ N ´ 2, then |I2| ` |J2| “ 2 ď N ´ 5. So, in view of (5.16a) and (5.11),

we have

›

›B
I1LJ1BγφB

I2LJ2Bγ1φ
›

›

L2pH˚s q
ď CC1ε

›

›t´1{2s´1{2`δ
B
I2LJ2Bγφ

›

›

L2pH˚s q

ď CC1εs
´1`δ CC1εs

δ
ď CpC1εq

2s´1`2δ.

‚ |I1| ` |J1| “ N ´ 3, then |I2| ` |J2| “ 3 ď N ´ 4. So, in view of (5.17) and (5.10),

we have

›

›B
I1LJ1BγφB

I2LJ2Bγ1φ
›

›

L2pH˚s q
ď CC1ε

›

›t´3{2s1{2`δ
pt{sq ps{tqBI2LJ2Bγφ

›

›

L2pH˚s q

ď CC1εs
´1`δ CC1εs

δ
ď CpC1εq

2s´1`2δ.

‚ When |I1| ` |J1| ď N ´ 4 ď 3, we exchange the role of I1, I2 and J1, J2, and apply

the arguments above again.

�

7. Direct Consequences of the Wave Gauge Condition

7.1. L8 estimates. We now use the wave coordinate estimates (4.31) and (4.32). Com-

bined with Proposition 3.16, they provide us with rather precise L2 estimates and L8

estimate on the gradient of the metric coefficient h00. In view of these estimates, we can

say (as in [41]) that the quasi-linear terms QQhh and QQhφ are essentially null terms. In

K, the gradient of a function u can be written in the semi-hyperboloidal frame, that is

Bαu “ Ψα1

α Bα1u “ Ψ0
αBtu ` Ψa

αBau. The coefficients Ψβ
α are smooth and homogeneous of

degree 0. And we observe that the derivatives Ba are “good” derivatives. So our task is to

get refined estimates on Btu, which is the main purpose of the next subsections. We begin

with the L8 estimates, whose derivation is simpler than the derivation of the L2 estimates.
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Lemma 7.1. Assume that the bootstrap assumption (5.1) holds with C1ε sufficiently small

so that Lemma 4.8 holds, then the following estimates hold for |I| ` |J | ď N ´ 2:

(7.1) |B
ILJBαh

00
| ` |BαB

ILJh00
| ď CC1εt

´3{2sδ,

(7.2) |B
ILJh00

| ď CC1εt
´1{2

ps{tq2sδ ` Cmst
´1.

Proof. We derive (7.1) by substituting the basic sup-norm estimates into (4.32). Then we

integrate (7.1) along radial rays, as we did in Section 5.2 and we obtain (7.2). �

The following statements are direct consequences of the above sup-norm estimates and

play an essential role in our analysis. Roughly speaking, these lemmas guarantee that the

curved metric g is sufficiently close to the Minkowski metric, so that the energy estimates

in Propositions 3.1 and 3.5 hold, as well as a sup-norm estimate for the Klein-Gordon

equation (discussed in Appendix C).

Lemma 7.2 (Equivalence between the curved energy and flat energy functionals). Under

the bootstrap assumption with C1ε sufficiently small so that Lemma 4.7 holds, there exists

a constant κ ą 1 such that

(7.3)
κ´2E˚Mps, B

ILJhαβq ď E˚g ps, B
ILJhαβq ď κ2E˚Mps, B

ILJhαβq,

κ´2EM,c2ps, B
ILJφq ď Eg,c2ps, B

ILJφq ď κ2EM,c2ps, B
ILJφq.

Proof. We only show the first statement, since the proof of the second one is similar. From

the identity

E˚g ps, uq ´ E
˚
Mps, uq “

ż

H˚s

´

´ h00
|Btu|

2
` habBauBbu`

ÿ

a

2xa

t
haβBβuBtu

¯

dx

“

ż

H˚s

´

hαβBαuBβu` 2
ÿ

a

xa

t
haβBtuBβu´ 2h0β

BtuBβu
¯

dx

“

ż

H˚s

´

hαβBαuBβu`
ÿ

a

2xa

t
hα

1β1Φa
α1Φ

β
β1BtuBβu´ 2hα

1β1Φ0
α1Φ

β
β1BtuBβu

¯

dx
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and then

E˚g ps, uq ´ E
˚
Mps, uq

“

ż

H˚s

hαβBαuBβudx`

ż

H˚s

´2xa

t
ha0
|Btu|

2
`

2xa

t
habBtuBbu

¯

dx

`

ż

H˚s

´

´ 2h00
|Btu|

2
´ 2h0b

BtuBbu´
2xa

t
ha0
|Btu|

2
´

2xa

t
habBtuBbu

¯

dx

“

ż

H˚s

`

´ h00
|Btu|

2
` habBauBbu

˘

dx “

ż

H˚s

`

´ pt{sq2h00
|ps{tqBtu|

2
` habBauBbu

˘

dx,

we obtain

|E˚g ps, uq ´ E
˚
Mps, uq| ď C

´

}pt{sq2h00
}
L8pH

˚
s q
`
ÿ

a,b

}hab}L8pH˚s q

¯

E˚Mps, uq.

Then, recall that in view of (7.2), |h| ď CC1εps{tqt
´1{2sδ ` CmSt

´1. When C1ε is suffi-

ciently small, we have

(7.4) |hαβ| ď C max
α,β

|hαβ| ď CC1εps{tqt
´1{2sδ ` CmSt

´1.

On the other hand, from (7.2), we obtain |h00
| ď CC1εps{tq

2t´1{2sδ ` CmSt
´1, which

implies

(7.5) |pt{sq2h00
| ď CC1εt

´1{2sδ ` CmS.

Now, when C1ε is sufficiently small, (7.4) and (7.5) imply that |E˚g ps, uq ´ E˚Mps, uq| ď

p1{2qE˚Mps, uq, which leads us to the desired result. �

Lemma 7.3 (Derivation of the uniform bound on Mαβ). Under the energy assumption

(5.2), the following estimate holds:

(7.6) MαβrB
ILJhs ď CpC1εq

2s´3{2`2δ, |I| ` |J | ď N,

and

(7.7a) M rBILJφs ď CpC1εq
2s´3{2`2δ, |I| ` |J | ď N ´ 4,

(7.7b) M rBILJφs ď CpC1εq
2s´1`2δ, |I| ` |J | ď N.
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Proof. We only provide the proof of the third inequality, since the other two are easier.

Recall the definition of M rBILJφs

(7.8)

ż

Hs

ps{tq
ˇ

ˇBµg
µν
Bν
`

B
ILJφ

˘

Bt
`

B
ILJφ

˘

´
1

2
Btg

µν
Bµ
`

B
ILJφ

˘

Bν
`

B
ILJφ

˘
ˇ

ˇ dx

ďM rBILJφspsqEMps, B
ILJφq1{2.

We perform the following calculation:

(7.9)

ps{tqBµg
µν
Bν

`

B
ILJφ

˘

Bt
`

B
ILJφ

˘

“ ps{tqBµh
µν
Bν

`

B
ILJφ

˘

Bt
`

B
ILJφ

˘

“ ps{tqBµh
µν
Bν

`

B
ILJφ

˘

Bt
`

B
ILJφ

˘

´ ps{tqBµ1
´

Ψµ1

µ Ψν1

ν

¯

hµνBν1
`

B
ILJφ

˘

Bt
`

B
ILJφ

˘

“ ps{tqBth
00
Bt
`

B
ILJφ

˘

Bt
`

B
ILJφ

˘

` ps{tqBth
0a
Ba

`

B
ILJφ

˘

Bt
`

B
ILJφ

˘

` ps{tqBbh
b0
Bt
`

B
ILJφ

˘

Bt
`

B
ILJφ

˘

` ps{tqBah
ab
Bb

`

B
ILJφ

˘

Bt
`

B
ILJφ

˘

´ ps{tqBµ1
´

Ψµ1

µ Ψν1

ν

¯

hµνBν1
`

B
ILJφ

˘

Bt
`

B
ILJφ

˘

and then observe that

ż

Hs

ps{tq
ˇ

ˇBth
00
Bt
`

B
ILJφ

˘

Bt
`

B
ILJφ

˘
ˇ

ˇ dx “

ż

Hs

pt{sq
ˇ

ˇBth
00
ˇ

ˇ

ˇ

ˇps{tqBt
`

B
ILJφ

˘
ˇ

ˇ

2
dx

ď CC1ε

ż

Hs

pt{sqt´3{2sδ
ˇ

ˇps{tqBt
`

B
ILJφ

˘
ˇ

ˇ

2
dx

ď CC1εs
´3{2`δEMps, B

ILJφq

ď

$

&

%

CpC1εq
2s´3{2`2δEMps, B

ILJφq1{2, |I| ` |J | ď N ´ 4,

CpC1εq
2s´1`2δEMps, B

ILJφq1{2, N ´ 3 ď |I| ` |J | ď N,

where we have used (7.1), (5.1b) and (5.2b). The second, third, and fourth terms in the

right-hand side of (7.9) are null terms, we observe that the second term is bounded as
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follows:
ż

Hs

ˇ

ˇps{tqBth
0a
Ba

`

B
ILJφ

˘

Bt
`

B
ILJφ

˘ˇ

ˇ dx ď

ż

Hs

ˇ

ˇBth
0a
ˇ

ˇ

ˇ

ˇBa

`

B
ILJφ

˘

ps{tqBt
`

B
ILJφ

˘ˇ

ˇ dx

ď CC1εs
´3{2`δEMps, B

ILJφq

ď

$

&

%

CpC1εq
2s´3{2`2δEMps, B

ILJφq1{2, |I| ` |J | ď N ´ 4,

CpC1εq
2s´1`2δEMps, B

ILJφq1{2, N ´ 3 ď |I| ` |J | ď N.

The third and fourth terms are bounded similarly and we omit the details.

The last term is bounded by applying the additional decay provided by Bµ1
`

Ψµ1

µ Ψν1

ν

˘

.

This term is bounded by t´1. We have
ż

Hs

ˇ

ˇ

ˇ
ps{tqBµ1

´

Ψµ1

µ Ψν1

ν

¯

hµνBν1
`

B
ILJφ

˘

Bt
`

B
ILJφ

˘

ˇ

ˇ

ˇ
dx

ď CC1ε

ż

Hs

t´1
pt{sq|hµν |

ˇ

ˇps{tqBν1
`

B
ILJφ

˘

ps{tqBt
`

B
ILJφ

˘
ˇ

ˇ dx

ď CC1ε

ż

Hs

s´1
`

t´1
` t´1{2

ps{tqsδ
˘
ˇ

ˇps{tqBν1
`

B
ILJφ

˘

ps{tqBt
`

B
ILJφ

˘
ˇ

ˇ dx

ď CC1εs
´3{2`δEMps, B

ILJφq

ď

$

&

%

CpC1εq
2s´3{2`2δEMps, B

ILJφq1{2, |I| ` |J | ď N ´ 4,

CpC1εq
2s´1`2δEMps, B

ILJφq1{2, N ´ 3 ď |I| ` |J | ď N.

We conclude that
ż

Hs

ˇ

ˇps{tqBµg
µν
Bν

`

B
ILJφ

˘

Bt
`

B
ILJφ

˘ˇ

ˇ dx

ď

$

&

%

CpC1εq
2s´3{2`2δEMps, B

ILJφq1{2, |I| ` |J | ď N ´ 4,

CpC1εq
2s´1`2δEMps, B

ILJφq1{2, N ´ 3 ď |I| ` |J | ď N.

The term Btg
µνBµ

`

BILJφ
˘

Bν
`

BILJφ
˘

is bounded similarly and we omit the details. �

Lemma 7.4. Following the notation in Proposition 3.15. When the bootstrap assumption

(5.1) holds, the following estimate holds:

(7.10) |h1t,xpλq| ď CC1εps{tq
1{2λ´3{2`δ

` CC1εps{tq
´1λ´2.
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Proof. Following the notation in Proposition 3.15, we have ht,xpλq “ h
00
ˆ

λt
s
, λx
s

˙

Recalling

that h
00
“ pt{sq2h00 we find ht,xpλq “ pt{sq

2h00

ˆ

λt
s
, λx
s

˙

which leads us to

(7.11) h1t,xpλq “ pt{sq
3
BKh

00

ˆ

λt

s
,
λx

s

˙

.

Here we recall also that BKh
00
“ s2

t2
Bth

00
` xa

t
Bah

00
“ s2

t2
Bth

00
` x

t2
Lah

00. We see that, in

view of (7.1),
ˇ

ˇpt{sqBth
00
ˇ

ˇ ď CC1εps{tq
1{2s´3{2`δ and, in view of (7.2),

ˇ

ˇpt{sq2s´1Lah
00
ˇ

ˇ ď CC1εps{tq
1{2s´3{2`δ

` CmSts
´3.

By combining this result with (7.11), the desired conclusion is reached. �

7.2. L2 estimates. We first establish an L2 estimate on the gradient of BILJh00.

Lemma 7.5. Under the bootstrap assumptions (5.1) and (5.2), the following estimate

holds:

(7.12)
›

›B
ILJBαh

00
›

›

L2pH˚s q
`
›

›BαB
ILJh00

›

›

L2pH˚s q
ď CC1εs

2δ.

Proof. The estimate is immediate in view of (4.32). Namely, thanks to the basic L2 esti-

mates, we have

}ps{tq2BBI
1

LJ
1

h}L2pH˚s q
` }BB

I 1LJ
1

h}L2pH˚s q
ď CC1εs

δ.

By (3.39), we get

(7.13) }t´1
B
ILJh00

}L2pH˚s q
ď C

ÿ

a

}BaB
ILJh00

}L2pH˚s q
` CmSs

´1
ď CC1εs

δ.

Now, from (4.32), we need to control the term |BI1LJ1hBBI2LJ2h|. When |I1|`|J1| ď N´2,

we apply (5.22) and (5.4a) :

}B
I1LJ1hBBI2LJ2h}L2pH˚s q

ď CC1εs
δ
}ps{tqt´1{2

B
I2LJ2h}L2pH˚s q

ď CC1εs
δ.

When N ´ 1 ď |I1| ` |J1| ď N , we see that |I2| ` |J2| ď 1. We have

}B
I1LJ1hBBI2LJ2h}L2pH˚s q

ď CC1εs
δ
}t´1{2s´1

B
I1LJ1h}L2pH˚s q

ď CC1εs
δ
}t´1

B
I1LJ1h}L2pH˚s q

ď CC1εs
2δ,
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where we have used (7.13). �

We are going now to derive the L2 estimate on (the “essential part” of) BILJh00. This

is one of the most challenging terms and we first decompose h00 as follows:

h00 :“ χpr{tqh00
0 ` h

00
1 ,

where h00
0 “ h00

S is the corresponding component of the Schwarzschild metric and the

function χ is smooth with χpτq “ 0 for τ P r0, 1{3s while χpτq “ 1 for τ ě 2{3. We

introduce the notation h00
0 :“ χpr{tqh00

S and an explicit calculation shows that in Kr2,`8q

|h00
0 | ď CmSt

´1
ď CmSp1` rq

´1, |Bαh
00
0 | ď CmSt

´2
ď CmSp1` r

2
q
´1.

This leads us to the estimate

(7.14) }Bah
00
0 }L2

f pHsq
ď CmS, }Bah

00
0 }L2

f pHsq
ď CmS

and we are ready to establish the following result.

Proposition 7.6. Assume that the bootstrap assumptions (5.1) and (5.2) hold with C1ε

sufficiently small (so that Lemma 4.8 holds). Then, one has

(7.15) |B
ILJh00

| ď CmSt
´1
` |B

ILJh00
1 |

and

(7.16)

}ps{tq´1`δs´1
B
ILJh00

1 }L2pH˚s q
ď CC0 ε` C

ÿ

|I1|ď|I|,|J1|ď|J|
α,β

E˚Mps, B
ILJhαβq

1{2

` C
ÿ

|I1|ď|I|,|J1|ď|J|
α,β

ż s

2

τ´1E˚Mpτ, B
I 1LJ

1

hαβq
1{2dτ ď CC1εs

δ.

Proof. In the decomposition of h00, the term BαB
ILJh00

1 vanishes near the boundary of

Kr2,s˚s, since in a neighborhood of this boundary, h00
“ h00

S “ h00
0 . Furthermore, we have

(7.17) }ps{tqδBαB
ILJh00

1 }L2pH˚s q
ď }ps{tqδBαB

ILJh00
}L2pH˚s q

` }ps{tqδBαB
ILJh00

0 }L2pH˚s q
.
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We recall that Ba “ ´xa

t
Bt ` Ba, that is, Bα is a linear combination of Bt and Ba with

homogeneous coefficients of degree 0, so the following estimates are direct in view of (4.32)

:

(7.18)

}ps{tqδBαB
ILJh00

}L2pH˚s q

ď C
ÿ

|I1|`|J1|ď|I|`|J|

|J1|ď|J|

´

}ps{tq2BBI
1

LJ
1

h}L2pH˚s q
` }BB

I 1LJ
1

h}L2pH˚s q
` }t´1

B
I 1LJ

1

h}L2pH˚s q

¯

` C
ÿ

|I1|`|I2|ď|I|
|J1|`|J2|ď|J|

›

›ps{tqδBI1LJ1hBBI2LJ2h
›

›

L2
f pHsq

.

Here the first sum in the right-hand side is easily controlled by

ÿ

|I1|ď|I|,|J1|ď|J|
α,β

E˚Mps, B
I 1LJ

1

hαβq
1{2
` C}t´1

B
I 1LJ

1

h}L2pH˚s q
.

For the last term, we observe that when N ě 3, either |I1|`|J1| ď N´2 or else |I2|`|J2| ď

N ´ 2. When |I1| ` |J1| ď N ´ 2, in view of (5.22),

›

›ps{tqδBI1LJ1hBBI2LJ2h
›

›

L2
f pHsq

ď CC1ε
›

›

`

ps{tqt´1{2sδ ` t´1
˘

B
I2LJ2Bh

›

›

L2
f pHsq

ď CC1ε
›

›ps{tqBI2LJ2Bh
›

›

LpHsq
ď CC1ε

ÿ

|I1|ď|I|,|J1|ď|J|
α,β

E˚Mps, B
I 1LJ

1

hαβq
1{2.

When |I2| ` |J2| ď N ´ 2, we see that |I1| ` |J1| ě 1. Then we need to distinguish between

two different cases. If |I1| ě 1, then

›

›ps{tqδBI1LJ1hBBI2LJ2h
›

›

L2
f pHsq

ď CC1ε
›

›t´1{2s´1`δ
ps{tqδBI1LJ1h

›

›

L2
f pHsq

ď CC1ε}t
1{2s´2`δ

ps{tqδps{tqBI1LJ1h}L2pH˚s q
ď CC1εs

´1
ÿ

|I1|ď|I|,|J1|ď|J|
α,β

E˚Mps, B
I 1LJ

1

hαβq
1{2.

When |I1| “ 0, we see that |J1| ě 1. In this case we set LJ1 “ LaL
J 11 with |J 11| ě 1. Then

›

›ps{tqδBI1LJ1hBBI2LJ2h
›

›

L2
f pHsq

ď CC1ε
›

›ps{tqδt´1{2s´1`δLaL
J 11h

›

›

L2
f pHsq

“ CC1ε
›

›ps{tqδt´1{2s´1`δtBaL
J 11h

›

›

L2
f pHsq

“ CC1ε
›

›t1{2´δs´1`2δ
BaL

J 11h
›

›

L2
f pHsq

ď CC1ε
ÿ

|I1|ď|I|,|J1|ď|J|
α,β

E˚Mps, B
I 1LJ

1

hαβq
1{2.
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Then the above discussion leads us to

(7.19) }ps{tqδBαB
ILJh00

}L2pH˚s q
ď

ÿ

|I1|ď|I|,|J1|ď|J|
α,β

E˚Mps, B
I 1LJ

1

hαβq
1{2
` C}t´1

B
I 1LJ

1

h}L2pH˚s q

Now based on (7.19), we continue our discussion. Recalling the adapted Hardy inequality

(3.39), we obtain

}t´1
B
I 1LJ

1

h}L2pH˚s q
ď }r´1

B
I 1LJ

1

h}L2pH˚s q
ď C}BBILJh}L2pH˚s q

` CmSs
´1,

so that

}ps{tqδBαB
ILJh00

}L2pH˚s q
ď C

ÿ

|I1|ď|I|,|J1|ď|J|
α,β

E˚Mps, B
I 1LJ

1

hαβq
1{2
` CmSs

´1.

On the other hand, by explicit calculation we have }BαB
ILJh00

0 }L2pH˚s q
ď CmSs

´1. So in

view of (7.17)

}ps{tqδBαB
ILJh00

1 }L2pH˚s q
ď C

ÿ

|I1|ď|I|,|J1|ď|J|
α,β

E˚Mps, B
I 1LJ

1

hαβq
1{2
` CmSs

´1.

We also recall that by the basic L2 estimate, }BaB
ILJh00

1 }L2
f pHsq

ď CC1εs
δ. By Proposition

3.16 with σ “ 1´ δ, the desired result is established. �

7.3. Commutator estimates. Next, we use the basic estimates and the estimate for h00

in order to control the commutators rBILJ , hµνBµBνshαβ.

Lemma 7.7. Assume that the bootstrap assumptions (5.1) and (5.2) holds, then for |I| `

|J | ď N ´ 2, the following estimate holds in K:

(7.20)

ˇ

ˇrB
ILJ , hµνBµBνshαβ

ˇ

ˇ

ď CpC1εq
2t´2s´1`2δ

` CC1ε
`

t´1
` ps{tq2t´1{2sδ

˘

ÿ

|J 1|ă|J |

ˇ

ˇ

ˇ
BtBtB

ILJ
1

hαβ

ˇ

ˇ

ˇ
.

Proof. We recall Lemma 4.4, to estimate rBILJ , hµνBµBνshαβ, we need to control the terms

listed in (4.14). We see first that, in view of (6.1), |GQQhhpp, kq| ď CpC1εq
2t´3s2δ. For the
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term t´1BI3LJ3hµνB
I4LJ4Bγhµ1ν1 , we observe that |I3| ` |I4| ď N ´ 2 and |I4| ` |J4| ď N ´ 2,

so

ˇ

ˇt´1
B
I3LJ3hµνB

I4LJ4Bγhµ1ν1
ˇ

ˇ ď CpC1εq
2
`

t´1
` ps{tqt´1{2sδ

˘

t´1{2s´1`δ
ď CpC1εq

2t´3s2δ.

For the term BI1LJ1h00
BI2LJ2BtBthαβ, we see that |I1|`|J1| ď N´2 and |I1| ě 1, |I2|`|J2| ď

N ´ 3, so in view of (7.1)

(7.21)
ˇ

ˇB
I1LJ1h00

B
I2LJ2BtBthαβ

ˇ

ˇ ď CC1εs
δt´3{2

|B
I2LJ2BtBthαβ|.

For terms LJ
1
1h00

BILJ
1
2BtBthαβ and h00

BγBγ1B
ILJ

1

hαβ, we first observe that by the condition

|J 12| ă |J | and |J 1| ă |J |, |I| ` |J 12| ď N ´ 3, |I| ` |J 1| ď N ´ 3. Then they are bounded by

applying (7.2). We only write in detail LJ
1
1h00

BILJ
1
2BtBthαβ:

(7.22)

ˇ

ˇ

ˇ
LJ

1
1h00

B
ILJ

1
2BtBthαβ

ˇ

ˇ

ˇ
ď CC1ε

`

ps{tq2t´1{2sδ ` t´1
˘

ÿ

|J 1|ă|J |

ˇ

ˇ

ˇ
B
ILJ

1

BtBthαβ

ˇ

ˇ

ˇ
.

In view of the commutator estimate (3.54), we have
ˇ

ˇBILJ
1

BtBthαβ
ˇ

ˇ ď C
ř

γ,γ1

|J2|ď|J1|

ˇ

ˇBγBγ1B
ILJ

2

hαβ
ˇ

ˇ .

We observe that (and this is an argument frequently applied in the following discussion,

as it says that BtBt is the only “bad” component of the Hessian):

(7.23)

BtBau “ BaBtu “ BaBtu´
xa

t
BtBtu,

BaBbu “ BaBbu´
xa

t
BtBbu´

xb

t
BaBtu`

xaxb

t2
BtBtu´ Ba

`

xb{t
˘

Btu`
xa

t
Bt
`

xb{t
˘

Btu.

Here we observe that the term BγBγ1B
ILJ

2

hαβ is bounded by BtBtB
ILJ

2

hαβ plus other “good”

terms. We see that, in K,
ˇ

ˇBt
`

xb{t
˘
ˇ

ˇ ď Ct´1, Ba

`

xb{t
˘

ď Ct´1, so that

ˇ

ˇ

ˇ
Ba

`

xb{t
˘

BtB
ILJ

2

hαβ

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

ˇ

xa

t
Bt
`

xb{t
˘

BtB
ILJ

2

hαβ

ˇ

ˇ

ˇ

ˇ

ď CC1εt
´3{2s´1`δ.

The terms BaBtB
ILJ

2

hαβ, BtBaB
ILJ

2

hαβ and BaBbB
ILJ

2

hαβ are the second-order derivatives,

where at least one derivative is “good” (i.e. Ba). We apply (4.18), (4.19) and (4.20) and ba-

sic sup-norm estimate, then we conclude that these terms are bounded by CC1εt
´3{2s´1`δ.

We conclude that

(7.24)
ˇ

ˇ

ˇ
BγBγ1B

ILJ
2

hαβ

ˇ

ˇ

ˇ
ď CC1εt

´3{2s´1`δ
`

ˇ

ˇ

ˇ
BtBtB

ILJ
2

hαβ

ˇ

ˇ

ˇ
.
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Now we substitute this into (7.22) and obtain
ˇ

ˇ

ˇ
LJ

1
1h00

B
ILJ

1
2BtBthαβ

ˇ

ˇ

ˇ
ď CpC1εq

2t´3s2δ
` CC1ε

`

ps{tq2t´1{2sδ ` t´1
˘

ÿ

|J 1|ă|J |

ˇ

ˇ

ˇ
BtBtB

ILJ
1
ˇ

ˇ

ˇ
.

By combining the estimates above, the desired result is proven. �

Lemma 7.8. For |I| ` |J | ď N , one has

(7.25)

›

›srBILJ , hµνBµBνshαβ
›

›

L2pH˚s q
ď CpC1εq

2s2δ

` CC1εs
δ
ÿ

|J 1|ď1

›

›

›
s2
ps{tq1´δBILJ

1

BtBthαβ

›

›

›

L8pH˚s q

` CC1εs
1{2`δ

ÿ

|J 1|ă|J |

›

›

›
ps{tq5{2BtBtB

ILJ
1

hαβ

›

›

›

L2pH˚s q
.

Proof. The proof relies on Lemma 4.4 and we need to estimate the terms listed in (4.14).

The termGQQhh is already bounded in view of (6.6). For the term t´1BI1LJ1hµνB
I2LJ2Bγhµ1ν1 ,

we have the following estimates. When |I1| ` |J1| ď N ´ 2, we see that
›

›st´1
B
I1LJ1hµνB

I2LJ2Bγhµ1ν1
›

›

L2
f pHsq

ď
›

›

`

t´1
` t´1{2

ps{tqsδ
˘

ps{tqBI2LJ2Bγhµ1ν1
›

›

L2
f pHsq

ď CpC1εq
2s´1{2`2δ.

When |I1| ` |J1| ě N ´ 1 ě 1, we have |I2| ` |J2| ď 1 ď N ´ 2. We distinguish between

two subcases: when |I1| ě 1, we obtain
›

›st´1
B
I1LJ1hµνB

I2LJ2Bγhµ1ν1
›

›

L2
f pHsq

ď CC1ε
›

›st´1
B
I1LJ1hµνt

´1{2s´1`δ
›

›

L2
f pHsq

ď CpC1εq
2s´3{2`2δ.

When |I1| “ 0, then |J1| ě 1. We denote by LJ1 “ LaL
J 11 and

›

›st´1
B
I1LJ1hµνB

I2LJ2Bγhµ1ν1
›

›

L2
f pHsq

“
›

›sBaL
J 11hµνB

I2LJ2Bγhµ1ν1
›

›

L2
f pHsq

ď CC1ε
›

›sBaL
J 11hµνt

´1{2s´1`δ
›

›

L2
f pHsq

ď CpC1εq
2s´1{2`2δ.

For the term BI1LJ1h00
BI2LJ2BtBthαβ with |I1| ě 1, we observe that

‚ When 1 ď |I1| ` |J1| ď N ´ 1 we apply (7.1) :
›

›sBI1LJ1h00
B
I2LJ2BtBthαβ

›

›

L2pH˚s q
ď CC1ε

›

›st´3{2sδpt{sq ps{tqBI2LJ2BtBthαβ
›

›

L2pH˚s q

ď CpC1εq
2s´1{2`2δ.
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‚ When |I1| ` |J1| “ N , then |I2| ` |J2| “ 0 ď N ´ 3. So

›

›sBI1LJ1h00
B
I2LJ2BtBthαβ

›

›

L2pH˚s q
ď CC1ε

›

›st´1{2s´1`δ
B
I1LJ1h00

›

›

L2pH˚s q

ď CC1εs
´1{2`δ

›

›B
I1LJ1h00

›

›

L2pH˚s q
ď CpC1εq

2s´1{2`3δ,

where we have applied (7.12).

For the term LJ
1
1h00

BILJ
1
2BtBthαβ, we apply the energy estimate to LJh00 by Proposition

7.6 and the sup-norm estimate provided by Lemma 7.1.

‚ When |J 11| ď N ´ 2, we apply (7.2)

›

›

›
sLJ

1
1h00

B
ILJ

1
2BtBthαβ

›

›

›

L2pH˚s q
ď CC1ε

›

›

›
s
`

t´1
` ps{tq2t´1{2sδ

˘

B
ILJ

1
2BtBthαβ

›

›

›

L2pH˚s q

ď CC1ε
›

›

›
ps{tqBILJ

1
2BtBthαβ

›

›

›

L2pH˚s q
` CC1εs

1{2`δ
›

›

›
ps{tq5{2BILJ

1
2BtBthαβ

›

›

›

L2pH˚s q

ď CpC1εq
2sδ ` CC1εs

1{2`δ
ÿ

|J 1|ă|J |

›

›

›
ps{tq5{2BILJ

1

BtBthαβ

›

›

›

L2pH˚s q

‚ When |J 11| ě N ´ 1, we apply Proposition 7.6

›

›

›
sLJ

1
1h00

B
ILJ

1
2BtBthαβ

›

›

›

L2pH˚s q
ď CC1ε

›

›

›
st´1

B
ILJ

1
2BtBthαβ

›

›

›

L2pH˚s q
`

›

›

›
sLJ

1
1h00

1 B
ILJ

1
2BtBthαβ

›

›

›

L2pH˚s q

ď CpC1εq
2sδ `

›

›

›
sLJ

1
1h00

1 B
ILJ

1
2BtBthαβ

›

›

›

L2pH˚s q

ď CpC1εq
2sδ `

›

›

›
ps{tq´1`δs´1LJ

1
1h00

1

›

›

›

L2pH˚s q

›

›

›
s2
ps{tq1´δBILJ

1
2BtBthαβ

›

›

›

L8pH˚s q

ď CpC1εq
2sδ ` CC1εs

δ
ÿ

|J 1|ď1

›

›

›
s2
ps{tq1´δBILJ

1

BtBthαβ

›

›

›

L8pH˚s q
.

For the term h00
BγBγ1B

ILJ
1

hαβ, the estimate is similar. We apply (7.2) and

›

›

›
sh00

BγBγ1B
ILJ

1

hαβ

›

›

›

L2pH˚s q

ď CC1ε
›

›

›
ps{tqBγBγ1B

ILJ
1

hαβ

›

›

›

L2pH˚s q
`

›

›

›
ps{tq2t´1{2s1`δ

BγBγ1B
ILJ

1

hαβ

›

›

›

L2pH˚s q

ď CpC1εq
2sδ ` CC1εs

1{2`δ
ÿ

|J 1|ă|J |

›

›

›
ps{tq5{2BγBγ1B

ILJ
1

hαβ

›

›

›

L2pH˚s q
.
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Now we need to treat the last term and bound it by }ps{tq5{2BtBtB
ILJ

1

hαβ}L2pH˚s q
. We rely

on the discussion after (7.23) and conclude that

›

›

›
h00
BγBγ1B

ILJ
1

hαβ

›

›

›

L2pH˚s q

ď
ÿ

a,µ
|J2|ă|J1|

}h00
BaBµB

ILJ
2

hαβ}L2pH˚s q
` C

ÿ

|J2|ă|J 1|

}h00
BtBtB

ILJ
2

hαβ}L2pH˚s q

ď CpC1εq
2s´1`δ

` CC1εs
´1{2`δ

ÿ

|J2|ă|J 1|

›

›

›
ps{tq5{2BtBtB

ILJ
2

hαβ

›

›

›

L2pH˚s q
. �

8. Second-Order Derivatives of the Spacetime Metric

8.1. Preliminary. We now establish L2 and L8 bounds for the terms BtBtB
ILJhαβ and

BILJBtBthαβ, which contain at least two partial derivatives Bt and which we refer infor-

mally to as “second-order derivatives”. We can now apply the method in [39, Chapter 8].

However, we are here in a simpler situation, since the system is diagonalized with respect

to second-order derivative terms. We recall the decomposition of the flat wave operator in

the semi-hyperboloidal frame:

(8.1) ´lu “ ps{tq2BtBtu` 2
ÿ

a

pxa{tqBaBtu´
ÿ

a

BaBau`
r2

t3
Btu`

3

t
Btu.

We also have the decomposition hµνBµBνhαβ “ hµνBµBνhαβ ` hµνBµ
`

Ψν1

ν

˘

Bν1hαβ of the

curved part of the reduced wave operator. The main equation (1.6a) leads us to

(8.2)
`

ps{tq2 ´ h00
˘

BtBthαβ “ ´2
ÿ

a

pxa{tqBaBthαβ `
ÿ

a

BaBahαβ ´
r2

t3
Bthαβ ´

3

t
Bthαβ

` h0a
BtBahαβ ` h

a0
BaBthαβ ` h

ab
BaBbhαβ ` h

µν
Bµ

´

Ψν1

ν

¯

Bν1hαβ

´ Fαβ ` 16πBαφBβφ` 8πc2φ2gαβ.
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Let us differentiate the equation (1.6a) with respect to BILJ , then by a similar procedure

in the above discussion,

(8.3)
`

ps{tq2 ´ h00
˘

BtBtB
ILJhαβ

“ ´2
ÿ

a

pxa{tqBaBtB
ILJhαβ `

ÿ

a

BaBaB
ILJhαβ ´

r2

t3
BtB

ILJhαβ ´
3

t
BtB

ILJhαβ

` h0a
BtBaB

ILJhαβ ` h
a0
BaBtB

ILJhαβ ` h
ab
BaBbB

ILJhαβ ` h
µν
Bµ

´

Ψν1

ν

¯

Bν1B
ILJhαβ

´ B
ILJFαβ ` rB

ILJ , hµνBµBνshαβ ` 16πBILJ pBαφBβφq ` 8πc2
B
ILJ

`

φ2gαβ
˘

.

For convenience, we introduce the notation

Sc1rB
ILJus : “ ´2

ÿ

a

pxa{tqBaBtB
ILJu`

ÿ

a

BaBaB
ILJu´

r2

t3
BtB

ILJu´
3

t
BtB

ILJu,

Sc2rB
ILJus : “ h0a

BtBaB
ILJu` ha0

BaBtB
ILJu` habBaBbB

ILJu` hµνBµ

´

Ψν1

ν

¯

Bν1B
ILJu

and (8.2) becomes

(8.4)

`

ps{tq2 ´ h00
˘

BtBtB
ILJhαβ “ Sc1rB

ILJhαβs ` Sc2rB
ILJhαβs

´ B
ILJFαβ ` rB

ILJ , hµνBµBνshαβ ` 16πBILJ pBαφBβφq ` 8πc2
B
ILJ

`

φ2gαβ
˘

.

Now we apply the estimate (7.2) to h00 and see that when t ě 2 (which is the case if we

are in K) and C1ε sufficiently small, then

ps{tq2 ´ h00
ě ps{tq2 ´ CC1ε

`

ps{tq2t´1{2sδ ` t´1
˘

“ ps{tq2
`

1´ CC1εt
´1{2sδ ´ CC1εts

´2
˘

ě
1

2
ps{tq2.

This leads us to the following estimate. Later, this equation will be used to control the L2

and L8 norms of BtBtB
ILJhαβ.

Lemma 8.1. When C1ε is sufficiently small, the following estimate holds for all multi-

indices pI, Jq:

(8.5)
ˇ

ˇps{tq2BtBtB
ILJhαβ

ˇ

ˇ ď C
`
ˇ

ˇSc1rB
ILJhαβs

ˇ

ˇ`
ˇ

ˇSc2rB
ILJhαβs

ˇ

ˇ

˘

`
ˇ

ˇB
ILJFαβ

ˇ

ˇ`
ˇ

ˇQSφpp, kq
ˇ

ˇ

`
ˇ

ˇrB
ILJ , hµνBµBνshαβ

ˇ

ˇ` |Cubpp, kq|.
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8.2. L8 estimates. In this section, we apply (8.4) and the estimates of nonlinear terms

presented in Lemma 6.1. First we need to establish the following pointwise estimates

Lemma 8.2. For any pI, Jq, the following pointwise estimate holds in K:

(8.6)
ˇ

ˇSc1rB
ILJus

ˇ

ˇ`
ˇ

ˇSc2rB
ILJus

ˇ

ˇ ď Ct´1
ÿ

|I 1|ď|I|,α

ˇ

ˇ

ˇ
BαB

I 1LJu
ˇ

ˇ

ˇ
` Ct´1

ÿ

a,α

ˇ

ˇBαB
ILaL

Ju
ˇ

ˇ .

Proof. The estimate on the term Sc1 is immediate by applying (4.18) and (4.19). The

bound on Sc2 is due to the fact that hαβ are linear combinations of hαβ with smooth and

homogeneous functions of degree zero plus higher-order corrections, which are bounded in

K. �

Lemma 8.3. When the bootstrap assumption (5.1) and (5.2) hold, the following estimate

holds in Kr2,s˚s:

(8.7) |BtBtB
ILJhαβ| ď CC1εt

1{2s´3`2δ, for |I| ` |J | ď N ´ 4.

Proof. The proof is a direct application of (8.5), where we neglect the higher-order term

Cub. We just need to estimate each term in the right-hand side. We first observe that by

the basic sup-norm estimate (5.12a) combined with (8.6)

ˇ

ˇSc1rB
ILJus

ˇ

ˇ`
ˇ

ˇSc2rB
ILJus

ˇ

ˇ ď CC1εt
´3{2s´1`δ.

The estimate for BILJFαβ can be expressed as QShpp, kq, Cubpp, kq, which is bounded

by |BILJFαβ| ď CpC1εq
2t´1s´2`2δ. The estimate on the commutator rBILJ , hµνBµBνshαβ is

obtained by applying (7.20) :

|rB
ILJ , hµνBµBνshαβ| ď CpC1εq

2t´2s´1`2δ
`CC1ε

`

t´1
` ps{tq2t´1{2sδ

˘

ÿ

|J 1|ă|J |

ˇ

ˇ

ˇ
BtBtB

ILJ
1

hαβ

ˇ

ˇ

ˇ
.

The estimate for QSφ is derived as follows. We only estimate BILJ pBαφBβφq, since dealing

with the term BILJ pφ2q is easier:

ˇ

ˇB
ILJ pBαφBβφq

ˇ

ˇ ď
ÿ

|I1|`|I2|“I
|J1|`|J2|“J

ˇ

ˇB
I1LJ1Bαφ B

I2LJ2Bβφ
ˇ

ˇ .

Recalling that |I| ` |J | ď N ´ 4, we obtain:
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‚ When |I1| ` |J1| ď N ´ 7,

ˇ

ˇB
I1LJ1Bαφ B

I2LJ2Bβφ
ˇ

ˇ ď CC1ε
ˇ

ˇt´3{2sδ
ˇ

ˇCC1ε
ˇ

ˇt´1{2s´1{2`δ
ˇ

ˇ ď CpC1εq
2t´2s´1{2`2δ.

‚ When N ´ 6 ď |I1| ` |J1| ď N ´ 4, we see that |I2| ` |J2| ď 2 ď N ´ 7 and

ˇ

ˇB
I1LJ1Bαφ B

I2LJ2Bβφ
ˇ

ˇ ď CC1ε
ˇ

ˇt´1{2s´1{2`δ
ˇ

ˇCC1ε
ˇ

ˇt´3{2sδ
ˇ

ˇ ď CpC1εq
2t´2s´1{2`2δ.

So, we conclude that |QSφpN ´ 4, kq| ď CpC1εq
2ps{tq2s´5{2`2δ. We thus have

(8.8)

|ps{tq2BtBtB
ILJhαβ| ď CC1εt

´3{2s´1`δ
` CpC1εq

2
ps{tq2s´5{2`2δ

` CC1ε
`

t´1
` ps{tq2t´1{2sδ

˘

ÿ

|J 1|ă|J |

ˇ

ˇBtBtB
ILJ

1

hαβ
ˇ

ˇ.

Observe that when |J | “ 0, the last term in the above estimate disappears and we conclude

with (8.7). We proceed by induction on |J |. Assume that (8.7) holds for all |J | ď m´ 1 ă

N ´ 4. We will prove that it still holds for |J | “ m ď N ´ 4. We substitute (8.7) (case

|J 1| ă |J | “ m) into the last term of (8.8). �

8.3. L2 estimates. The following two estimates are direct in view of (4.18) and (4.19)

combined with the expression of the energy E˚M .

Lemma 8.4. For all multi-indices pI, Jq, one has

(8.9)

›

›BaBαB
ILJhαβ

›

›

L2pH˚s q
`
›

›BαBaB
ILJhαβ

›

›

L2pH˚s q

ď Cs´1E˚Mps, B
ILaL

Jhαβq
1{2
` Cs´1

ÿ

|I 1|ď|I|,γ

E˚Mps, B
I 1LJhαβq

1{2.

A direct consequence of these bounds is that, for any pI, Jq,

(8.10)
›

›Sc1rB
ILJhαβs

›

›

L2pH˚s q
ď Cs´1

ÿ

a

E˚Mps, B
ILaL

Jhαβq
1{2
` Cs´1

ÿ

|I 1|ď|I|

E˚Mps, B
I 1LJhαβq

1{2.

This estimate will play an essential role in our forthcoming analysis. Our next task is the

derivation of an L2 estimate for Sc2. The term hµνBµΨν1

ν Bν1hαβ is bounded by the additional
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decay of
ˇ

ˇBµΨν1

ν

ˇ

ˇ ď t´1, and we thus focus on the first three quadratic terms. We provide

the derive for the first term (but omit the second and third terms):

›

›pt{sq3{2h0a
BtBaB

ILJhαβ
›

›

L2pH˚s q

ď CC1ε
›

›pt{sq3{2
`

t´1
` ps{tqt´1{2sδ

˘

BtBaB
ILJhαβ

›

›

L2pH˚s q

ď CC1εs
´1{2

›

›BtBaB
ILJhαβ

›

›

L2pH˚s q
` CC1ε

›

›s´1{2`δ
BtBaB

ILJhαβ
›

›

L2pH˚s q

ď CC1εs
´1{2`δ

›

›BtBaB
ILJhαβ

›

›

L2pH˚s q
.

Then we apply (8.9) and obtain

(8.11)

›

›pt{sq3{2h0a
BtBaB

ILJhαβ
›

›

L2pH˚s q
ď CC1εs

´3{2`δ
ÿ

a

E˚Mps, B
ILaL

Jhαβq
1{2

` CC1εs
´3{2`δ

ÿ

|I 1|ď|I|,γ

E˚Mps, B
I 1LJhαβq

1{2.

We conclude that

(8.12)

›

›pt{sq3{2Sc2rB
ILJhαβs

›

›

L2pH˚s q
ď CC1εs

´3{2`δ
ÿ

a

E˚Mps, B
ILaL

Jhαβq
1{2

` CC1εs
´3{2`δ

ÿ

|I 1|ď|I|,γ

E˚Mps, B
I 1LJhαβq

1{2.

With the above preparation, in the rest of this subsection we will prove the following.

Lemma 8.5. Under the bootstrap assumption (5.1) and (5.2)

(8.13) }s3t´2
BtBtB

ILJhαβ}L2pH˚s q
ď CC1εs

2δ, |I| ` |J | ď N ´ 1.

Proof. Step I. Estimates for the nonlinear terms. The estimate of (8.13) is also based on

Lemma 8.1.

1. This is done by direct application of (8.10) combined with the energy assumption:

›

›Sc1rB
ILJhαβs

›

›

L2pH˚s q
ď CC1εs

´1`δ.

2. For the term Sc2 is bounded in view of (8.12) combined with the energy assumption:

›

›Sc1rB
ILJhαβs

›

›

L2pH˚s q
ď CpC1εq

2s´3{2`2δ.
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3. Now we are about to estimate BILJFαβ. We observe that this term is a linear combina-

tion of QShpp, kq and Cubpp, kq. We see that the term QShpp, kq is bounded as follows:

}QShpp, kq}L2pH˚s q
ď

ÿ

α,β,α1β1

γ,γ1

ÿ

|I1|`|I2|ď|I|
|J1|`|J2|ď|J|

›

›B
I1LJ1Bγhαβ B

I2LL2Bγ1hα1β1
›

›

L2pH˚s q

When N ě 3, we must have either |I1| ` |J1| ď N ´ 2 or |I2| ` |J2| ď N ´ 2. So

a
›

›B
I1LJ1Bγhαβ B

I2LL2Bγ1hα1β1
›

›

L2pH˚s q
ď CC1ε

›

›t´1{2s´1`δ
B
I2LL2Bγ1hα1β1

›

›

L2pH˚s q

ď CC1εs
δ
›

›pt{sqt´1{2s´1`δ
ps{tqBI2LL2Bγ1hα1β1

›

›

L2pH˚s q

ď CC1εs
´1`δE˚Mps, B

I2LJ2hα1β1q
1{2
ď CpC1εq

2s´1`2δ.

We can conclude that
›

›BILJFαβ
›

›

L2pH˚s q
ď CpC1εq

2s´1`2δ.

4. QSφ is bounded directly in view of (6.10).

5. The estimate on the commutator is the most difficult. We combine the sup-norm

estimate (8.7) and the estimate (7.25) :

›

›srBILJ , hµνBµBνshαβ
›

›

L2pH˚s q
ď CpC1εq

2s2δ
` CC1εs

δ
ÿ

|J 1|ď1

›

›

›
s2
ps{tq1´δBILJ

1
2BtBthαβ

›

›

›

L8pH˚s q

` CC1εs
1{2`δ

ÿ

|J 1|ă|J |

›

›

›
ps{tq5{2BtBtB

ILJ
1

hαβ

›

›

›

L2pH˚s q

ď CpC1εq
2s2δ

` CpC1εq
2sδ}s2

ps{tq1´δt1{2s´3`2δ
}L8pH˚s q

` CC1εs
1{2`δ

ÿ

|J 1|ă|J |

›

›

›
ps{tq5{2BtBtB

ILJ
1

hαβ

›

›

›

L2pH˚s q

ď CpCC1εq
2s2δ

` CC1εs
1{2`δ

ÿ

|J 1|ă|J |

›

›

›
ps{tq5{2BtBtB

ILJ
1

hαβ

›

›

›

L2pH˚s q
.

We thus conclude Step 1 with the inequality

(8.14)
›

›s3t´2
B
ILJBtBthαβ

›

›

L2pH˚s q
ď CC1εs

2δ
` CC1εs

1{2`δ
ÿ

|J 1|ă|J |

›

›

›
ps{tq5{2BtBtB

ILJ
1

hαβ

›

›

›

L2pH˚s q

and we remark that when |J | “ 0 the last sum is empty.
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Step II. Induction argument For |I| ` |J | ď N ´ 1, we proceed by induction on |J |. When

|J | “ 0, the last term in (8.14) does not exist. Then in view of (8.5), we have

›

›s3t´2
BtBtB

ILJhαβ
›

›

L2pH˚s q
ď CpC1εqs

2δ.

Then we assume that (8.13) holds for |J | ď n ă N ´ 1, we want to prove that it still holds

for |J | “ n. In this case, by our induction assumption, we have

›

›s3t´2
B
ILJBtBthαβ

›

›

L2pH˚s q
ď CpCC1εq

2s2δ
` CC1εs

1{2`δ
ÿ

|J 1|ă|J |

›

›

›
ps{tq5{2BtBtB

ILJ
1

hαβ

›

›

›

L2pH˚s q

ď CpC1εq
2s2δ.

Then in view of (8.5), the desired result is established. �

8.4. Conclusion for general second-order derivatives. In the above subsection we

have only estimate the terms of the form BtBtB
ILJhαβ, but we observe that by the identities

(7.23) (and a similar argument below it in the proof of (7.8)) and the commutator estimates

(3.54)

(8.15) |BαBβB
ILJhαβ| ď CC1εt

1{2s´3`2δ, |I| ` |J | ď N ´ 4,

(8.16) }s3t´2
BαBβB

ILJhαβ}L2pH˚s q
ď CC1εs

2δ, |I| ` |J | ď N ´ 1,

(8.17) |B
ILJBαBβhαβ| ď CC1εt

1{2s´3`2δ, |I| ` |J | ď N ´ 4,

(8.18) }s3t´2
B
ILJBαBβhαβ}L2pH˚s q

ď CC1εs
2δ, |I| ` |J | ď N ´ 1.

8.5. Commutator estimates. In this section, we improve the sup-norm and L2 estimates

for the commutators: our strategy is to apply Lemma 4.4.

Lemma 8.6. Assume that the energy assumptions (5.1) and (5.2) hold, then for all |I| `

|J | ď N ´ 4

(8.19)
ˇ

ˇrB
ILJ , hµνBµBνshαβ

ˇ

ˇ ď CpC1εq
2t´2s´1`3δ

` CpC1εq
2t´1{2s´3`2δ,
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while for all |I| ` |J | ď N

(8.20)
›

›srBILJ , hµνBµBνshαβ
›

›

L2pH˚s q
ď CpC1εq

2s´1{2`3δ
` CC1ε

ÿ

|J 1|ă|J |

›

›

›
s3t´2

BtBtB
ILJ

1

hαβ

›

›

›

L2pH˚s q
.

Proof. The proof of (8.19) is immediate by combining (8.15) with (7.20). The proof of

(8.20) relies on a refinement of the proof of (7.25). We will improve upon our estimates on

LJ
1
1h00

BILJ
1
2BtBthαβ and h00

BILJ
1

hαβ. First we observe that for LJ
1
1h00

BILJ
1
2BtBthαβ

‚ When 1 ď |J 11| ď N ´ 2
›

›

›
sLJ

1
1h00

B
ILJ

1
2BtBthαβ

›

›

›

L2pH˚s q
ď CC1ε

›

›

›
s
`

t´1
` ps{tq2t´1{2sδ

˘

B
ILJ

1
2BtBthαβ

›

›

›

L2pH˚s q

ď CC1ε
›

›

›
ps{tqBILJ

1
2BtBthαβ

›

›

›

L2pH˚s q
` CC1εs

1{2`δ
›

›

›
ps{tq5{2BILJ

1
2BtBthαβ

›

›

›

L2pH˚s q

ď CC1ε
›

›

›
ps{tqBILJ

1
2BtBthαβ

›

›

›

L2pH˚s q
` CC1εs

1{2`δ
ÿ

|J 1|ă|J |

›

›

›
ps{tq5{2BILJ

1

BtBthαβ

›

›

›

L2pH˚s q

ď CpC1εq
2s´1{2`3δ

` CC1ε
›

›

›
ps{tqBILJ

1
2BtBthαβ

›

›

›

L2pH˚s q
.

‚ When |J 11| ě N ´ 1, then |J 12| ` |I| ď 1 ď N ´ 4, we apply (7.6) to BJ
1
1h00:

›

›

›
sLJ

1
1h00

B
ILJ

1
2BtBthαβ

›

›

›

L2pH˚s q

ď CC1ε
›

›

›
st´1

B
ILJ

1
2BtBthαβ

›

›

›

L2pH˚s q
`

›

›

›
sLJ

1
1h00

1 B
ILJ

1
2BtBthαβ

›

›

›

L2pH˚s q

ď CpC1εq
›

›

›
ps{tqBILJ

1
2BtBthαβ

›

›

›

L2pH˚s q
`

›

›

›
s´1
ps{tq´1`δLJ

1
1h00

1

›

›

›

L2pH˚s q

›

›

›
s2
ps{tq1´δBILJ

1
2BtBthαβ

›

›

›

L8pH˚s q

ď CpC1εq
2s´1{2`3δ

` CC1ε
›

›

›
ps{tqBILJ

1
2BtBthαβ

›

›

›

L2pH˚s q

For the term h00
BγBγ1B

ILJ
1

hαβ, the estimate is similar:
›

›

›
sh00

BγBγ1B
ILJ

1

hαβ

›

›

›

L2pH˚s q

ď CC1ε
›

›

›
ps{tqBγBγ1B

ILJ
1

hαβ

›

›

›

L2pH˚s q
`

›

›

›
ps{tq2t´1{2s1`δ

BγBγ1B
ILJ

1

hαβ

›

›

›

L2pH˚s q

ď CC1ε
›

›

›
ps{tqBγBγ1B

ILJ
1

hαβ

›

›

›

L2pH˚s q
` CC1εs

1{2`δ
ÿ

|J 1|ă|J |

›

›

›
ps{tq5{2BγBγ1B

ILJ
1

hαβ

›

›

›

L2pH˚s q

ď CpC1εq
2s´1{2`3δ

` CC1ε
›

›

›
ps{tqBγBγ1B

ILJ
1

hαβ

›

›

›

L2pH˚s q
.
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Now,
ˇ

ˇBILJBtBthαβ
ˇ

ˇ ď
ř

|J1|ď|J|

γ,γ1

ˇ

ˇBγBγ1B
ILJ

1

hαβ
ˇ

ˇ in view of the commutator estimates

(3.54), and, by the same argument after (7.23),

›

›ps{tqBγBγ1B
ILJhαβ

›

›

L2pH˚s q
ď

ÿ

|J 1|ď|J |

›

›

›
ps{tqBtBtB

ILJ
1

hαβ

›

›

›

L2pH˚s q
` CC1εs

´1`δ.

So, we conclude that
›

›ps{tqBILJBtBthαβ
›

›

L2pH˚s q
`
›

›ps{tqBγBγ1B
ILJhαβ

›

›

L2pH˚s q

ď C
ÿ

|J 1|ď|J |

›

›

›
s3t´2

BtBtB
ILJ

1

hαβ

›

›

›

L2pH˚s q
` CC1εs

´1`δ. �

9. Sup-Norm Estimate Based on Characteristics

9.1. Main statement in this section. Our goal in this section is to control null deriva-

tives, as now stated.

Proposition 9.1. Assume that (5.1) and (5.2) hold with C1ε sufficiently small, then for

|I| ` |J | ď N ´ 4,

(9.1) |pBt ´ BrqB
ILJBαhaβ| ď CC1εt

´1`Cε,

(9.2) |pBt ´ BrqB
Ihaβ| ď CC1εt

´1.

Proof. The proof relies on our earlier estimate along characteristics. We first write the

estimate on the components ha0 in details, and then we sketch the proof on hab.

Step I. Estimates for the correction terms. We observe that the equation satisfied by h0a:

rlgh0a “ Φα1

0 Φβ1

a Qα1β1 ` P 0a ´ 16πBaφBtφ´ 8πma0φ
2
`

2

t
Bah00 ´

2xa

t3
h00 ` Cubp0, 0q.

Differentiating this equation with respect to BILJ , we have

(9.3)

rlg

`

B
ILJh0a

˘

“ B
ILJ

`

Φα1

0 Φβ1

a Qα1β1
˘

` B
ILJ

`

P 0a

˘

´ 16πBILJ
`

BaφBtφ
˘

´ 8πBILJ
`

ma0φ
2
˘

´ rB
ILJ , hµνBµBνsha0 ` B

ILJ
ˆ

2

t
Bah00 ´

2xa

t3
h00

˙

` B
ILJCubp0, 0q.

Then we apply Lemma 3.8 to this equation. We need to estimate the L8 norm of the

terms in the right-hand side and the corrective MsrB
ILJha0, hs.
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First of all, in view of (6.1), the null terms Φα1

0 Φβ1

a Qα1β1 decay like CpC1εq
2t´2s´1`2δ

and in view of (6.2), the quadratic terms QSφ is bounded by CpC1εq
2t´2s´1{2`2δ. We also

observe that by the tensorial structure of the Einstein equation, the term BILJPaβ is also

a null term, so it is bounded by CpC1εq
2t´2s´1`2δ. We also point out that the high-order

terms BILJCubp0, 0q enjoy also the sufficient decay CpC1εq
2t´2s´1`2δ.

We focus on the linear correction terms BILJ
`

2
t
Bah00 ´

2xa

t3
h00

˘

. We observe that this

term is a linear combination of t´1BILJBah00 and t´2BILJh00 with |I| ` |J | ď N ´ 4 with

smooth and homogeneous coefficients of degree ď 0. Then, these terms can be bounded

by CC1εt
´5{2sδ.

Then, we analyze the commutator term rBILJ , hµνBµBνsha0. We recall that ha0 is a

linear combination of hαβ with smooth and homogeneous coefficients of degree zero, then

the estimate for this term relies on Lemma 4.4. In the list (4.14), we observe that we need

only to estimate the terms BI1LJ1h00
BI2LJ2BtBthαβ, LJ

1
1h00

BILJ
1
2BtBthαβ, h00

BγBγ1B
ILJ

1

hαβ,

since the remaining terms can be bounded by CpC1εq
2t´2s´1`2δ (see the proof of Lemma

7.7). For the above three terms, we apply (8.15), (8.17) and (7.2) :

ˇ

ˇ

ˇ
LJ

1
1h00

B
ILJ

1
2BtBthαβ

ˇ

ˇ

ˇ
ď CC1ε

ˇ

ˇ

ˇ

`

t´1
` ps{tq2t´1{2sδ

˘

B
ILJ

1
2BtBthαβ

ˇ

ˇ

ˇ

ď CC1εt
´1

ˇ

ˇ

ˇ
B
ILJ

1
2BtBthαβ

ˇ

ˇ

ˇ
` CpC1εq

2t´2s´1`3δ

ď CC1εt
´1

ÿ

|J11|ď|J
1|

γ,γ1

ˇ

ˇ

ˇ
BγBγ1B

ILJ
1
2hαβ

ˇ

ˇ

ˇ
` CpC1εq

2t´2s´1`3δ,

and
ˇ

ˇ

ˇ
h00
BγBγ1B

ILJ
1

hαβ

ˇ

ˇ

ˇ
ď CC1εt

´1
ˇ

ˇ

ˇ
BγBγ1B

ILJ
1

hαβ

ˇ

ˇ

ˇ
` CpC1εq

2t´2s´1`3δ, where in the last

inequality we applied (8.15). Then thanks to (7.23) and the discussion below these iden-

tities in the proof of Lemma 7.7,
ˇ

ˇBγBγ1B
ILJ

1

hαβ
ˇ

ˇ ď CC1εt
´3{2s´1`δ `

ˇ

ˇBtBtB
ILJ

1

hαβ
ˇ

ˇ , so

that
ˇ

ˇ

ˇ
h00
BγBγ1B

ILJ
1

hαβ

ˇ

ˇ

ˇ
ď CpC1εq

2t´2s´1`3δ
` CC1εt

´1
ˇ

ˇ

ˇ
BtBtB

ILJ
1

hαβ

ˇ

ˇ

ˇ
.

Then, by combining this with the commutator estimates, we obtain

(9.4)

ˇ

ˇrB
ILJ , hµνBµBνsha0

ˇ

ˇ ď CmSt
´1

ÿ

|J 1|ă|J |

|B
ILJ

1

BαBβha0| ` CpC1εq
2t´2s´1`3δ.
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Finally we analyze the correction term MsrB
ILJha0, hs. We recall that

MsrB
ILJha0, hs “ r

ÿ

aăb

prΩabq
2 u` h00W1rB

ILJha0s ` rRrB
ILJha0, hs.

We see that r´1Ωab “
xa

r
Bb ´

xb

r
Ba is a linear combination of the “good” terms. So by

a similar argument to (4.20), we have
ˇ

ˇ pr´1Ωabq
2
BILJha0

ˇ

ˇ ď CC1εt
´5{2sδ. The term W1

is a linear combination of first- and second-order derivatives with coefficients bounded in

KzKint. We apply (7.2) to h00, and we get
ˇ

ˇh00W1rB
ILJha0s

ˇ

ˇ ď CpC1εq
2t´2s2δ. The term

RrBILJha0, hs is bounded similarly, and is a linear combination of the quadratic terms of the

following form with homogeneous coefficients: hαβBaBβB
ILJha0, t´1hαβBβB

ILJha0. For the

first term, we apply (4.20) and (5.22) : the linear part of hαβ is a linear combination of hαβ

with smooth and homogeneous coefficients of degree zero. The second term is bounded by

the additional decreasing factor t´1 and therefore
ˇ

ˇRrBILJha0, hs
ˇ

ˇ ď CpC1εq
2t´3s2δ. Then

we conclude that

|MsrB
ILJha0, hspt, xq| ď CC1εt

´3{2s2δ, 3{5 ď r{t ď 1, |I| ` |J | ď N ´ 4.

Step II. Case of |J | “ 0. Now we substitute the above estimate into the inequality (3.18)

and observe that when |J | “ 0, the first term in the right-hand side of (9.4) disappears.

Then, we have

|pBt ´ BrqB
Iha0| ď Ct´1 sup

BBKint
r2,s˚s

YBK

t|pBt ´ BrqprB
Iha0q|u ` Ct

´1
|B
Iha0pt, xq|

` CpC1εq
2t´1

ż t

a0

τ´5{4`3δdτ ` CC1εt
´1

ż t

a0

τ´3{2`3δdτ

ď CC1εt
´1
` Ct´1 sup

BBKint
r2,s0s

YBK

t|pBt ´ BrqprB
Iha0q|u.

Observe that on the boundary BBK
int
r2,s0s

, r “ 3t{5. We have

|pBt ´ BrqprB
Iha0q| ďr|pBr ´ BtqB

Iha0| ` |B
Iha0|

ď CC1εrt
´1{2s´1`δ

` CmSεt
´1
` CC1εps{tqt

´1{2sδ

ď CC1εrt
´3{2`δ{2

` CC1εt
´1
` CC1εps{tqt

´1{2sδ ď CC1ε.
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We also observe that on BK, ha0 “ hsa0,

|pBt ´ BrqprB
Iha0q| ď r|pBr ´ Btqha0| ` |ha0| ď CmSεrt

´1
` CmSεt

´1
ď CC1ε.

This leads us to (9.2) for h0a.

Step III. Induction on |J |. The proof of (9.1) is done by induction on |J |. The initial

case |J | “ 0 is already guaranteed in view of (9.2). We assume that (9.1) holds for all

0 ď |J 1| ď n ă N ´4 and we will prove it with |J | “ n. First, based on (9.1), the following

result is immediate:

(9.5) |BαB
ILJha0| ` |B

ILIBαh0a| ď CC1εt
´1`Cε, |I| ` |J | ď N ´ 4,

(9.6) |BαB
Iha0| ď CC1εt

´1, |I| ď N ´ 4.

These are based on the identity Bt “
t´r
t
Bt`

xa

t`r
Ba`

r
t`r
pBt´Brq, where Bt can be expressed

by the “good” derivatives and Bt´Br. Furthermore, we have Ba “ Ba´
xa

t
Bt and, then, based

on the basic L8 estimate of the “good” derivatives and (9.1) and (9.2), the derivation of

(9.5) and (9.6) is immediate.

Then we substitute the above estimates on the source terms and corrective term into

(3.18). Observe that by the inductive assumption, (9.4) becomes

|rB
ILJ , h00

BtBtsha0| ď CpC1εq
2t´2s´1`3δ

` CpC1εq
2t´2`Cε,

where we have noticed that
ř

|J 1|ă|J |

ˇ

ˇBILJBαBβha0

ˇ

ˇ ď CC1εs
´1`Cε (by the commutator

estimates and (9.5)). This leads us to (in view of (3.18))

|pBt ´ BrqB
ILJha0| ď Ct´1 sup

BBKint
r2,s˚s

YBK

t|pBt ´ BrqprB
ILJha0q|u ` Ct

´1
|B
ILJha0pt, xq|

` CpC1εq
2t´1

ż t

a0

τ´1`Cεdτ ` CC1εt
´1

ż t

a0

τ´3{2`2δdτ

ď CC1εt
´1`Cε

` Ct´1 sup
BBKint

r2,s0s
YBK

t|pBt ´ Brqprha0q|u.

Then, similarly as in the argument above, (9.1) is proved for h0a.
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The estimate for hab is similar, where we also observe that the quasi-null terms P ab are

eventually null terms, and the correction terms behave the same decay as in the case of

ha0. �

9.2. Application to quasi-null terms. Our main application of the refined sup-norm

estimate concerns the terms Pαβ.

Lemma 9.2. Let pI, Jq be a multi-index and |I| ` |J | ď N . Then, one has

(9.7)
›

›B
ILJPαβ

›

›

L2pH˚s q
ď CC1εs

´1
ÿ

α1,β1

E˚Mps, B
ILJhα1β1q

1{2
` CC1εs

´1
ÿ

|I1|ă|I|

α1,β1

E˚Mps, B
I 1LJhα1β1q

1{2

` CC1εs
´1`CC1ε

ÿ

|I1|ď|I|,|J1|ă|J|

α1,β1

E˚Mps, B
I 1LJ

1

hα1β1q
1{2

` CpC1εq
2s´3{2`2δ.

Proof. We apply Lemma 4.10 combined with the estimates (9.5) and (9.6). We first observe

that due to its tensorial structure, the estimate for Pαβ can be relined on the estimates on

Pαβ. Furthermore, the components P aβ or Pαb are essentially null terms (see (4.38)), so

that
›

›BILJP aβ

›

›

L2pH˚s q
ď CpC1εq

2s´3{2`2δ. We focus on P 00. We see that in the list (4.37),

the non-trivial term are linear combinations of BthaαBthbβ with smooth and homogeneous

coefficients of degree zero. Then we only need to estimate
›

›BILJ
`

BthaαBthbβ
˘
›

›

L2pH˚s q
for

|I| ` |J | ď N . We have

›

›B
ILJ

`

BthaαBthbβ
˘
›

›

L2pH˚s q
ď

ÿ

I1`I2“I
J1`J2“J

›

›B
I1LJ1Bthaα B

I2LJ2Bthbβ
›

›

L2pH˚s q
.

Recall that N ě 7 then either |I1| ` |J1| ď N ´ 4 or |I2| ` |J2| ď N ´ 4. Without loss of

generality, we suppose that |I1| ` |J1| ď N ´ 4. Then

‚ When J1 “ 0, we apply (9.6):

›

›B
I1Bthaα B

I2LJBthbβ
›

›

L2pH˚s q
ď CC1ε

›

›t´1
B
I2LJBthbβ

›

›

L2pH˚s q

ď CC1εs
´1

›

›ps{tqBI2LJBthbβ
›

›

L2pH˚s q
ď CC1εs

´1
ÿ

|I1|ď|I|,|J1|ď|J|

γ,γ1

E˚Mps, B
I 1LJ

1

hγγ1q
1{2.
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‚ When |J1| ě 1, 1 ď |I1| ` |J1| ď N ´ 4, we apply (9.5):

›

›B
I1LJ1Bthaα B

I2LJ2Bthbβ
›

›

L2pH˚s q
ď CC1εs

´1`CC1ε
›

›ps{tqBI2LJ2Bthbβ
›

›

L2pH˚s q

ď CC1εs
´1`CC1ε

ÿ

|I1|ď|I2|,|J
1|ď|J2|

α,β

E˚Mps, B
I 1LJ

1

hγ,γ1q
1{2

ď CC1εs
´1`CC1ε

ÿ

|I1|ď|I2|,|J
1|ă|J|

α,β

E˚Mps, B
I 1LJ

1

hγ,γ1q
1{2. �

10. Low-Order Refined Energy Estimate for the Spacetime Metric

10.1. Preliminary. In this section, we improve the energy bounds on E˚Mps, B
ILJhαβq for

|I|`|J | ď N´4. We apply Proposition 3.1. In this case the L2 norm of BILJ pBαφBβφ` φ
2q

is integrable with respect to s. We need to focus on the estimate of Fαβ and the commu-

tators rBILJ , hµνBµBνshαβ.

Lemma 10.1. Under the bootstrap assumption (5.1) and (5.2) with C1ε sufficiently small,

one has for |I| ` |J | ď N :

(10.1)

›

›B
ILJFαβ

›

›

L2pH˚s q
ď CpC1εq

2s´3{2`2δ
` CC1εs

´1
ÿ

α1,β1

E˚Mps, B
ILJhα1β1q

1{2

` CC1εs
´1

ÿ

|I1|ă|I|

α1,β1

E˚Mps, B
I 1LJhα1β1q

1{2

` CC1εs
´1`CC1ε

ÿ

|I1|ď|I|,|J1|ă|J|

α1,β1

E˚Mps, B
I 1LJ

1

hα1β1q
1{2.

Proof. We use here (9.7). We observe that Fαβ “ Qαβ ` Pαβ, where Qαβ are null terms

combined with higher-order (cubic) terms. Then trivial substitution of the basic L2 and

sup-norm estimates (see the proof of (6.7)) shows that
›

›BILJQαβ

›

›

L2pH˚s q
ď CpC1εq

2s´3{2`2δ.

The estimate for Pαβ is provided by (9.7). �
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Lemma 10.2. Under the bootstrap assumption (5.1) and (5.2), the following estimates

hold for |I| ` |J | ď N ´ 4:

(10.2)
›

›rB
ILJ , hµνBµBνshαβ

›

›

L2pH˚s q
ď CpC1εq

2s´3{2`2δ
` CC1εs

´1
ÿ

a,|J 1|ă|J |

E˚Mps, B
ILaL

J 1hαβq
1{2

` CC1εs
´1`CC1ε

ÿ

|I1|ď|I|

|J1|ă|J|

ÿ

α1,β1

E˚Mps, B
I 1LJ

1

hα1β1q
1{2.

Proof. This is based on (8.20). We need to estimate the term
›

›ps{tq2BtBtB
ILJ

1

hαβ
›

›

L2pH˚s q

with |J 1| ă |J |. We are going to use (8.5). We see that in view of (8.10) :
›

›

›
Sc1rB

ILJ
1

hαβs
›

›

›

L2pH˚s q
ď Cs´1

ÿ

a

E˚Mps, B
ILaL

J 1hαβq
1{2
` Cs´1

ÿ

|I 1|ď|I|

E˚Mps, B
I 1LJ

1

hαβq
1{2.

The term Sc2 is bounded in view of (8.12) :
›

›Sc2rB
ILJ

1

hαβs
›

›

L2pH˚s q
ď CpC1εq

2s´3{2`2δ. The

term Fαβ is bounded by Lemma 10.1.

For the term QSφ, we will only analyze in detail the term BαφBβφ and omit the proof

on φ2. We see first that BILJ
1

pBαφBβφq “
ř

I1`I2“I

J1`J2“J
1
BI1LJ1Bαφ B

I2LJ2Bβφ. We then observe

that, for N ě 7 and |I|`|J 1| ď N´5, either |I1|`|J1| ď N´6 or |I2|`|J2| ď N´6. Suppose

without loss of generality that |I1| ` |J1| ď N ´ 6. Then we have
›

›BILJ
1

pBαφBβφq
›

›

L2pH˚s q
ď

›

›BI1LJ1Bαφ B
I2LJ2Bβφ

›

›

L2pH˚s q
.

‚ when I1 “ J1 “ 0, we see that 0 ď N ´ 7, then we have
›

›

›
B
ILJ

1

pBαφBβφq
›

›

›

L2pH˚s q
ď
›

›pt{sqBαφ ps{tqB
I2LJ2Bβφ

›

›

L2pH˚s q

ď CC1ε
›

›pt{sqt´3{2sδ ps{tqBI2LJ2Bβφ
›

›

L2pH˚s q

ď CC1εs
´3{2`δ

›

›ps{tqBI2LJ2Bβφ
›

›

L2pH˚s q
ď CpC1εq

2s´3{2`2δ.

‚ when 1 ď |I1| ` |I2| ď N ´ 6, we see that |I2| ` |J2| ď N ´ 5. So we have
›

›

›
B
ILJ

1

pBαφBβφq
›

›

›

L2pH˚s q
ď
›

›B
I1LJ1Bαφ

›

›

L8pH˚s q

›

›B
I2LJ2Bβφ

›

›

L2pH˚s q

ď CC1εs
´3{2CC1εs

δ
ď CpC1εq

2s´3{2`2δ.

We conclude that

(10.3)
›

›QSφpp, kq
›

›

L2pH˚s q
ď CpC1εq

2s´3{2`2δ, p ď N ´ 4.
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The term rBILJ
1

, hµνBµBνshαβ is conserved. Then we see the following estimate are estab-

lished:

(10.4)
›

›rB
ILJ , hµνshαβ

›

›

L2pH˚s q

ď CC1εs
´1

ÿ

α1,β1,a
|J1|ă|J|

E˚Mps, B
ILaL

J 1hα1β1q
1{2
` CC1εs

´1`CC1ε
ÿ

α1,β1

|I1|ď|I|

|J1|ă|J|

E˚Mps, B
I 1LJ

1

hα1β1q
1{2

`
ÿ

α1,β1

|J1|ă|J|

›

›rB
ILJ

1

, hµνBµBνshα1β1
›

›

L2
f pHsq

` CpC1εq
2s´3{2`2δ.

We proceed by induction on |J |. In (10.4), if we take |J | “ 0, then only the last term in the

right-hand side exists, this concludes (10.2). Assume that (10.2) holds for |J | ď n ´ 1 ď

N ´ 5, we will prove that it still holds for |J | “ n ď N ´ 4. We substitute (10.2) into the

last term in the right-hand side of (10.4). �

10.2. Main estimate established in this section.

Proposition 10.3 (Lower order refined energy estimate for hαβ). There exists a constant

ε1 ą 0 determined by C1 ą 2C0 such that assume that the bootstrap assumption (5.1) holds

with pC1, εq, 0 ď ε ď ε1, then the following refined estimate holds

(10.5) EMps, B
ILJhαβq

1{2
ď

1

2
C1εs

CC1ε, α, β ď 3, |I| ` |J | ď N ´ 4.

Proof. The proof relies on a direct application of Proposition 3.1. We need to bound the

terms presented in the right-hand side of (3.2). The term Fαβ is bounded by Lemma 10.1,

the term QSφ is bounded in view of (10.3). The estimate for rBILJ , hµνBµBνshαβ is obtained

in view of (10.2). By (7.6), the term MαβrB
ILJhs is bounded by CpC1εq

2s´3{2`2δ. Then in
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view of (3.2) :

(10.6)

ÿ

α,β

EMps, B
ILJhαβq

1{2
ď CC0 ε` CpC1εq

2
` CC1ε

ÿ

α,β

ż s

2

τ´1E˚Mpτ, B
ILJhαβq

1{2dτ

` CC1ε
ÿ

|I1|ă|I|
α,β

ż s

2

τ´1E˚Mpτ, B
I 1LJhαβq

1{2dτ

` CC1ε
ÿ

|I1|ď|I|,|J1|ă|J|
α,β

ż s

2

τ´1`CC1εE˚Mpτ, B
I 1LJ

1

hαβq
1{2dτ

` CC1ε
ÿ

α,β,a
|J1|ă|J|

ż s

2

τ´1E˚Mpτ, B
ILaL

J 1hαβq
1{2dτ.

The rest of the proof is based on (10.6). When |J | “ 0, the last two terms in the

right-hand side of (10.6) disappears. Then, we have

ÿ

α,β
|I|ďN´4

EMps, B
Ihαβq

1{2
ď C

`

C0 ε` pC1εq
2
˘

` CC1ε
ÿ

α,β
|I|ďN´4

ż s

2

τ´1EMpτ, B
Ihαβq

1{2dτ.

Then by Gronwall’s inequality, we have

(10.7)
ÿ

α,β
|I|ďN´4

EMps, B
Ihαβq

1{2
ď C

`

C0 ε` pC1εq
2
˘

sCC1ε.

Here we can already ensure that
ř

α,β EMps, B
Ihαβq

1{2 ď 1
2
C1εs

CC1ε by choosing ε10 “

C1´2CC0

2C2
1

with C1 sufficiently large.

We proceed by induction on |J | and suppose that

(10.8)
ÿ

α,β
|I|ďN´4

EMps, B
Ihαβq

1{2
ď C

`

C0 ε` pC1εq
2
˘

sCC1ε
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holds for |J | ă n ď N ´ 4, we will prove that it still holds for |J | “ n. Substitute (10.8)

into the last two terms of the right-hand side of (10.6), we see that

ÿ

α,β

EMps, B
ILJhαβq

1{2
ď CC0 ε` CpC1εq

2
` CC1ε

ÿ

α,β

ż s

2

τ´1EMpτ, B
ILJhαβq

1{2dτ

` CC1ε
ÿ

α,β
|I1|ă|I|

ż s

2

τ´1EMpτ, B
I 1LJhαβq

1{2dτ ` CC1ε
`

C0 ε` pC1εq
2
˘

ż s

2

τ´1`CC1εdτ

` CC1ε
ÿ

a,α,β
|J1|“|J|´1

ż s

2

τ´1E˚Mpτ, B
ILaL

J 1hαβq
1{2dτ,

thus

ÿ

α,β

EMps, B
ILJhαβq

1{2
ď C

`

C0 ` pC1εq
2
˘

sCC1ε ` CC1ε
ÿ

α,β

ż s

2

τ´1EMpτ, B
ILJhαβq

1{2dτ

` CC1ε
ÿ

α,β
|I1|ă|I|

ż s

2

τ´1EMpτ, B
I 1LJhαβq

1{2dτ ` CC1ε
ÿ

α,β
|J1|“|J|

ż s

2

τ´1E˚Mpτ, B
ILJ

1

hαβq
1{2dτ

This leads us to

ÿ

α,β,|J|“n
|I|ďN´4´n

EMps, B
ILJhαβq

1{2

ď C
`

C0 ε` pC1εq
2
˘

sCC1ε ` CC1ε
ÿ

α,β,|J|“n
|I|ďN´4´n

ż s

2

τ´1EMpτ, B
ILJhαβq

1{2dτ.

Then by Gronwall’s inequality, we have (by taking some constant C larger than the one

provided the above estimate)

ÿ

α,β
|I|ďN´4´|J|

EMps, B
ILJhαβq

1{2
ď C

`

C0 ε` pC1εq
2
˘

sCC1ε.

By choosing ε1n “
C1´2CC0

2C2
1

, we see that
ř

α,β
|I|ďN´4´|J|

EMps, B
ILJhαβq

1{2 ď 1
2
C1εs

CC1ε. Then,

we choose ε1 “ min0ďnďN´4tε1nu and conclude that for ε ď ε1, (10.5) is thus proven. �

10.3. Application of the refined energy estimate. The improved low-order energy

estimates on hαβ will lead us to a series of estimates. Based on (10.3), the sup-norm
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estimates are direct by the global Sobolev inequality (for |I| ` |J | ď N ´ 6):

(10.9) |B
ILJBγhαβ| ` |BγB

ILJhαβ| ď CC1εt
´1{2s´1`CC1ε,

(10.10) |B
ILJBahαβ| ` |BaB

ILJhαβ| ď CC1εt
´3{2sCC1ε.

Based on this improved sup-norm estimate, the following estimates are direct by integration

along the radial rays tpt, λxq|1 ď λ ď t{|x|u:

(10.11) |B
ILJhαβ| ď CC1ε

`

t´1
` ps{tqt1{2sCC1ε

˘

.

We take the above bounds and substitute them into the proof of Lemma 4.8, following

exactly the same procedure, we obtain for |I| ` |J | ď N ´ 6:

(10.12)
ˇ

ˇB
ILJBαh

00
ˇ

ˇ`
ˇ

ˇB
ILJBαh

00
ˇ

ˇ ď CC1εt
´3{2sCC1ε

and also by integration along the rays tpt, λxq|1 ď λ ď t{|x|u (and taking into account the

exterior Schwarzschild metric):

(10.13)
ˇ

ˇB
ILJh00

ˇ

ˇ ď CC1ε
`

t´1
` ps{tq2t1{2sCC1ε

˘

.

Two more delicate applications of this improved energy estimate for hαβ are now ob-

tained. We begin with Fαβ, in view of (10.9).

Lemma 10.4. For |I| ` |J | ď N ´ 6, one has

(10.14) |B
ILJFαβ| ď CpC1εq

2t´2`CC1εpt´ rq´1`CC1ε.

Proof. Observe that Fαβ is a linear combination of GQSh and Pαβ and in Pαβ the only

term to be concerned about (by Lemma 4.10) is m0am0bBth0aBth0b, the remaining terms

are GQSh, Cub or Com which have better decay. We observe that in view of (10.9),

ˇ

ˇB
ILJ

`

BthaαBthbβ
˘
ˇ

ˇ ď CpC1εq
2t´1s´2`CC1ε. �

Then, a second refined estimate can be established.
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Lemma 10.5. For |I| ` |J | ď N ´ 7, one has

(10.15)
ˇ

ˇBtBtB
ILJhαβ

ˇ

ˇ ď CC1εt
1{2s´3`CC1ε.

Proof. The proof is essentially a refinement of the proof of (8.7). We see that when the

energy is improved, in view of (10.9), |Sc1rB
ILJhαβs| is bounded by CC1εt

´3{2s´1`CC1ε (

in view of (8.6)). The term Fαβ is bounded by the above estimate (10.14). The terms Sc2,

QSφ and the commutator are bounded as in the proof of (8.7). Then we get the following

estimate parallel to (8.8) :

|ps{tq2BtBtB
ILJhαβ| ď CC1εt

´3{2s´1`CC1ε ` CpC1εq
2t´1s´2`CC1ε

` CC1ε
`

t´1
` ps{tq2t´1{2sδ

˘

ÿ

|J 1|ă|J |

ˇ

ˇ

ˇ
BtBtB

ILJ
1

hαβ

ˇ

ˇ

ˇ
.

By induction, the desired result is thus established. �

11. Low-Order Refined Sup-Norm Estimate for the Metric and Scalar

Field

11.1. Main estimates established in this section. Our aim in this section is to estab-

lish the estimates: |I| ` |J | ď N ´ 7:

(11.1) |LJhαβ| ď CC1εt
´1sCpC1εq1{2 ,

(11.2) ps{tq3δ´2
|B
ILJφ| ` ps{tq3δ´3

|B
ILJBKφ| ď CC1εs

´3{2`CpC1εq1{2 ,

(11.3) ps{tq3δ´2
|B
Iφ| ` ps{tq3δ´3

|BKB
Iφ| ď CC1εs

´3{2.

Let us first point out some direct consequences of these three estimates, by noting the

relations Bt “ ps{tq
´2

`

BK ´
xa

t
Ba

˘

and Ba “ Ba ´
xa

t
Bt and the sharp decay rate on Ba (for

|I| ` |J | ď N ´ 7)

|BaB
ILJφpt, xq| ď CC1εt

´5{2s1{2`δ.

So, (11.1), (11.2) and (11.3) lead to

(11.4)
ˇ

ˇBαB
ILJφpt, xq

ˇ

ˇ ď CC1εps{tq
1´3δs´3{2`CpC1εq1{2 , |I| ` |J | ď N ´ 7,
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(11.5)
ˇ

ˇBαB
ILJφpt, xq

ˇ

ˇ ď CC1εps{tq
2´3δs´3{2`CpC1εq1{2 , |I| ` |J | ď N ´ 8.

We also have

(11.6)
ˇ

ˇBαB
Iφpt, xq

ˇ

ˇ ď CC1εps{tq
1´3δs´3{2, |I| ď N ´ 7,

(11.7)
ˇ

ˇBαB
Iφpt, xq

ˇ

ˇ ď CC1εps{tq
2´3δs´3{2, |I| ď N ´ 8.

In particular, we see that

(11.8) |Bαφpt, xq| ď CC1εps{tq
2´3δs´3{2.

We observe that by the commutator estimates:

(11.9)

ˇ

ˇB
ILJBαφ

ˇ

ˇ ď CC1εps{tq
1´3δs´3{2`CpC1εq1{2 , |I| ` |J | ď N ´ 7,

ˇ

ˇB
ILJBαφ

ˇ

ˇ ď CC1εps{tq
2´3δs´3{2, |I| ` |J | ď N ´ 8,

ˇ

ˇB
ILJBαBβφ

ˇ

ˇ ď CC1εps{tq
1´3δs´3{2`CpC1εq1{2 |I| ` |J | ď N ´ 8.

11.2. First refinement on the metric components. We begin the proof of the refined

sup-norm estimate by the following bound on LJ phµνBµBνhαβq.

Lemma 11.1. For all |J | ď N ´ 7, the following estimate holds:

(11.10)
ˇ

ˇLJ phµνBµBνhαβq
ˇ

ˇ ď CpC1εq
2t´2`CC1εpt´ rq´1`CC1ε.

Proof. We have the following identity

hµνBµBνhαβ “ h00
BtBthαβ ` h

a0
BaBthαβ ` h

0b
BtBbhαβ ` h

ab
BaBbhαβ ` h

µν
Bµ

´

Ψν1

ν

¯

Bν1hαβ.

We obtain
ˇ

ˇLJ phµνBµBνhαβq
ˇ

ˇ ď
ˇ

ˇLJ
`

h00
BtBthαβ

˘
ˇ

ˇ`
ˇ

ˇLJ
`

ha0
BaBthαβ

˘
ˇ

ˇ

`
ˇ

ˇLJ
`

h0b
BtBbhαβ

˘ˇ

ˇ`
ˇ

ˇLJ
`

habBaBbhαβ
˘ˇ

ˇ`

ˇ

ˇ

ˇ
LJ

´

hµνBµ

´

Ψν1

ν

¯

Bν1hαβ

¯
ˇ

ˇ

ˇ

The second, third, and fourth terms are null terms, they contain at least one “good”

derivative and can be bounded directly by applying the basic sup-norm estimates. We
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only treat ha0
BaBthαβ, since the third and fourth terms are bounded similarly:

ˇ

ˇLJ
`

ha0
BaBthαβ

˘
ˇ

ˇ ď
ÿ

J1`J2“J

ˇ

ˇLJ1ha0LJ2BaBthαβ
ˇ

ˇ .

We observe that

ˇ

ˇLJ2BaBthαβ
ˇ

ˇ “
ˇ

ˇLJ2
`

t´1LaBthαβ
˘
ˇ

ˇ ď
ÿ

J3`J4“J2

ˇ

ˇLJ3
`

t´1
˘

LJ4LaBthαβ
ˇ

ˇ .

Observe that LJ3 pt´1q is again smooth, homogenous of degree ´1, which can be bounded

by Ct´1 in K. So the above sum is bounded by

ÿ

|J 1|ď|J |`1

Ct´1
ˇ

ˇ

ˇ
LJ

1

Bthαβ

ˇ

ˇ

ˇ
ď CC1εt

´3{2s´1`CC1ε,

where we have applied (10.9). On the other hand, in view of (10.11), we have

ˇ

ˇLJ1ha0
ˇ

ˇ ď CC1ε
`

t´1
` ps{tqt´1{2sCC1ε

˘

,

since ha0 is a linear combination of hαβ with smooth and homogeneous coefficients of degree

zero plus high order correction terms. We conclude that

ˇ

ˇLJ
`

ha0
BaBthαβ

˘ˇ

ˇ ď CpC1εq
2t´3sCC1ε.

Furthermore, the term
ˇ

ˇLJ
`

hµνBµ
`

Ψν1

ν

˘

Bν1hαβ
˘
ˇ

ˇ is bounded by making use of the additional

decay provided by
ˇ

ˇLJ
1

Bµ
`

Ψν1

ν

˘ˇ

ˇ ď CpJ 1qt´1, and we omit the details and just state that

ˇ

ˇ

ˇ
LJ

´

hµνBµ

´

Ψν1

ν

¯

Bν1hαβ

¯
ˇ

ˇ

ˇ
ď CpC1εq

2t´3sCC1ε.

Now we focus on the most problematic term LJ
`

h00
BtBthαβ

˘

. We apply here the sharp

decay of h00 provided by (10.13) and the refined second-order estimate (10.15) :

ˇ

ˇLJ
`

h00
BtBthαβ

˘
ˇ

ˇ ď
ÿ

J1`J2“J

ˇ

ˇLJ1h00LJ2BtBthαβ
ˇ

ˇ

ď CC1ε
`

t´1
` ps{tq2t´1{2sCC1ε

˘

CC1εt
1{2s´3`CC1ε

ď CpC1εq
2t´1{2s´3`CC1ε ` CpC1εq

2t´2s´1`CC1ε

ď CpC1εq
2t´2`CC1εpt´ rq´1`CC1ε.

�
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Lemma 11.2 (First refinement on hαβ). Assuming that the bootstrap assumption (5.1)

holds with C1ε sufficiently small, one has

(11.11) |hαβ| ď CC1εt
´1s2δ.

Proof. We apply Proposition 3.10 and follow the notation therein. The wave equation

satisfied by hαβ

rlghαβ “ Fαβ ´ 16πφBαφBβφ´ 8πc2φ2
αβ

leads us to

lhαβ “ ´h
µν
BµBνhαβ ` Fαβ ´ 16πφBαφBβφ´ 8πc2φ2gαβ.

We can apply (11.10) and (10.14), and we have

(11.12) |SWI,αβ| ď CpC1εq
2t´2`CC1εpt´ rq´1`CC1ε.

Second, by the basic sup-norm estimates, we have

|SKG,I,Jαβ | ď CpC1εq
2t´2´1{2`δ

pt´ rq´1{2`δ, |I| ` |J | ď N ´ 6.

We can choose ε2 ą 0 sufficiently small so that ε ď ε2 and CC1ε ď δ, hence

|SWI,αβrt, x, B
ILJ s| ď CpC1εq

2t´2`δ
pt´ rq´1`δ

and, by Proposition 3.10,

|hαβpt, xq| ď CpC1εq
2
pt´ rq2δt´1

` CC1εt
´1
ď CC1εpt´ rq

δt´1`δ. �

11.3. First refinement for the scalar field. In this section, we apply Proposition 3.15

and consider first the correction terms.

Lemma 11.3. Assume the bootstrap assumption (5.1), (5.2) and take the notation of

Section 3.4 and Proposition 3.15, then for |I| ` |J | ď N ´ 4

(11.13a) |R1rB
ILJφs| ď CC1εps{tq

3{2s´3{2`δ,

(11.13b) |R2rB
ILJφs| ď CpC1εq

2
ps{tq3{2s´3{2`3δ,

(11.13c) |R3rB
ILJφs| ď CpC1εq

2
ps{tq3{2s´3{2`3δ.
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Proof. We apply the basic sup-norm estimate to the corresponding expressions of Ri. For

R1rB
ILJφs, we apply (4.20). For the term R2rB

ILJφs, we observe that
ˇ

ˇ

ˇ
h

00
ˇ

ˇ

ˇ
“

ˇ

ˇpt{sq2h00
ˇ

ˇ

and we recall that the linear part of h00 is a linear combination of hαβ with smooth and

homogeneous coefficients of degree zero. We see that, in view of (11.11) (after neglecting

the higher-order terms which vanish as |hαβ|
2 at zero),

ˇ

ˇh
00ˇ
ˇ ď CC1εps{tq

´1s´1`2δ.

Similarly, we have
ˇ

ˇh
0bˇ
ˇ ď

ˇ

ˇpt{sqh0b
ˇ

ˇ,

so that
ˇ

ˇh
0bˇ
ˇ ď CC1εs

´1`2δ

and, for h
ab
“ hab, we have

ˇ

ˇh
abˇ
ˇ ď CC1εps{tq

2s´1`2δ. We also note that B0φ “ ps{tqBtφ.

Then, substituting the above bounds leads us to

ˇ

ˇR2rB
ILJφs

ˇ

ˇ ď CC1εps{tq
3{2s´3{2`3δ.

A similar derivation allows us to control
ˇ

ˇR3rB
ILJφs

ˇ

ˇ ď CC1εps{tq
3{2s´3{2`3δ. �

Proposition 11.4 (Estimate on φ and Bφ). Assume the bootstrap assumption (5.1) and

(5.2) hold with C1 ą C0 and C1ε sufficiently small, then

(11.14) ps{tq3δ´2
|φpt, xq| ` ps{tq3δ´3

|BKφpt, xq| ď CC1εs
´3{2.

Proof. We apply Proposition 3.15 and follow the notation there. Recall that Lemma 11.3

and Lemma 7.4, we have

|F pτq| ď

ż τ

s0

ˇ

ˇ

ÿ

i

Rirφspλt{s, λx{sq
ˇ

ˇdλ ď CC1εps{tq
3{2

ż τ

s0

λ´3{2`3δdλ ď CC1εps{tq
3{2s

´1{2`3δ
0 ,

|h1t,xpλq| ď CC1εps{tq
1{2λ´3{2`δ

` CC1εpt{sqλ
´2.

We observe that, in the inequality (3.30) we need
ż s

τ

|h1t,xpλqdλ| ď CC1εps{tq
1{2

ż s

s0

λ´3{2`δdλ` CC1εps{tq
´1

ż s

s0

λ´2dλ

ď CC1εps{tq
1{2s

´1{2`δ
0 ` CC1εps{tq

´1s´1
0 .
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By (3.30), we have

|s3{2φpt, xq| `
ˇ

ˇps{tq´1s3{2
BKφpt, xq

ˇ

ˇ ď V pt, xq

with

V pt, xq ď

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

p}v0}L8 ` }v1}L8q

ˆ

1`

ż s

2

|h1t,xpsq|e
C
şs
s |h

1
t,xpλq|dλ

˙

` F psq `

ż s

2

F psq|h1t,xpsq|e
C
şs
s |h

1
t,xpλq|dλds, 0 ď r{t ď 3{5,

F psq `

ż s

s0

F psq|h1t,xpsq|e
C
şs
s |h

1
t,xpλqdλ|ds, 3{5 ă r{t ă 1.

When 0 ď r{t ď 3{5, we get 4{5 ď s{t ď 1 and s0 “ 2. This leads us to

V pt, xq ď CC1ε` CC1ε ď CC1ε,

where we recall that C0 ď C1. When 3{5 ď r{t ă 1, the estimate is more delicate. In this

case, we have s0 “

b

t`r
t´r

» ps{tq´1. This leads us to the following bounds:

|F pτq| ď CC1εps{tq
2´3δ,

ż s

τ

|h1t,xpλqdλ| ď CC1ε.

Substituting these bounds into (3.30), we obtain

|s3{2φpt, xq| ` |ps{tq´1s3{2
BKφpt, xq| ď CC1εps{tq

2´3δ.

�

11.4. Second refinement for the scalar field and the metric. In this section, we

establish the following result.

Lemma 11.5 (Second sup-norm refinement). Assume that the bootstrap assumption (5.1)

and (5.2) hold with C1 ą C0 and C1ε sufficiently small, then for all 0 ď |I| ď N ´ 7,

(11.15) ps{tq3δ´2
|B
Iφ| ` ps{tq3δ´3

|BKB
Iφ| ď CC1εs

´3{2,

(11.16) |hαβ| ď CC1εt
´1sCpC1εq1{2 .

We need to control the commutators first.
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Lemma 11.6. For |I| ` |J | ď N ´ 7,

(11.17)

ˇ

ˇrB
ILJ , hµνBµBνsφ

ˇ

ˇ ď CpC1εq
2
ps{tq2s´3`3δ

`
ÿ

|J11|`|J
1
2|ďJ

|J12|ă|J|

ˇ

ˇ

ˇ
LJ

1
1h00

BtBtB
ILJ

1
2φ
ˇ

ˇ

ˇ
`

ÿ

|J 1|ă|J |

ˇ

ˇ

ˇ
h00
BtBtB

ILJ
1

φ
ˇ

ˇ

ˇ
.

Proof. We need to estimate all the terms listed in (4.16). As far as the terms GQQhφ are

concerned, we will only treat in detail the term BI1LJ1hα1β1B
I2LJ2BaBµφ. For |I|`|J | ď N´7,

we have
ˇ

ˇB
I1LJ1hα1β1B

I2LJ2BaBµφ
ˇ

ˇ ď
ˇ

ˇB
I1LJ1hα1β1

ˇ

ˇ

ˇ

ˇB
I2LJ2BaBµφ

ˇ

ˇ

ď CC1ε
`

ps{tqt´1{2sδ ` t´1
˘
ˇ

ˇB
I2LJ2

`

t´1LaBµφ
˘
ˇ

ˇ

ď CC1εt
´1

`

ps{tqt´1{2sδ ` t´1
˘

ÿ

|I12|ď|I2|

|J12|ď|J2|

ˇ

ˇ

ˇ
B
I 12LJ

1
2LaBµφ

ˇ

ˇ

ˇ

ď CpC1εq
2t´3s2δ

“ CpC1εq
2
ps{tq3s´3`2δ.

Other terms of GQQhφ are bounded similarly, and we omit the details.

For the term t´1BI3LJ3hα1β1B
I4LJ4Bγφ, due to its additional t´1 decay, the basic sup-norm

estimates are sufficient to get the following bound:

ˇ

ˇt´1
B
I3LJ3hα1β1B

I4LJ4Bγφ
ˇ

ˇ ď CpC1εq
2t´2s´2`δ

“ CpC1εq
2
ps{tq2s´4`2δ

ď CpC1εq
2
ps{tq3s´3`2δ.

For the term BI1LJ1h00
BI2LJ2BtBtφ, we observe that |I1| ě 1, so it can be bounded in view

of (7.1) :

ˇ

ˇB
I1LJ1h00

B
I2LJ2BtBtφ

ˇ

ˇ ď CpC1εq
2t´3{2sδ t´1{2s´1`δ

ď CpC1εq
2
ps{tq2s´3`2δ.

For the remaining terms in (4.16) we observe that the term BILJ
1
2BtBtφ and BγBγ1B

ILJ
1

φ

are bounded by BtBtB
I 1LJ

1

φ plus some corrections:
ˇ

ˇBILJ
1
2BtBtφ

ˇ

ˇ ď C
ř

γ,γ1

|J22 |ď|J
1
2|

ˇ

ˇBγBγ1B
ILJ

2
2φ
ˇ

ˇ .

Then in view of (7.23) and the argument presented below it (but now φ plays the role of

hαβ in (7.23)), we have

ˇ

ˇ

ˇ
B
ILJ

1
2BtBtφ

ˇ

ˇ

ˇ
ď CC1εt

´5{2sδ ` C
ÿ

|J22 |ď|J
1
2|

ˇ

ˇ

ˇ
BtBtB

ILJ
2
2φ
ˇ

ˇ

ˇ
.
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So the last two terms in (4.16) is bounded by

CpC1εq
2t´3s2δ

` C
ÿ

|J11|`|J
1
2|ď|I|

|J1|ă|J|

|LJ
1
1h00

BtBtB
ILJ

1
2φ| ` C

ÿ

|J 1|ă|J |

|h00
BtBtB

ILJ
1

φ|.

This yields us the conclusion. On the other hand, when |J | “ 0, the last two terms do not

exist. �

Proof of Lemma 11.5. The proof of (11.15) is similar to that of Proposition 11.4. The

only difference is that we need to bound the commutator rBI , hµνBµBνsφ (which, with the

notation in Proposition 3.15, plays the role of f in the definition of F ). We apply (11.17)

with |J | “ 0 and, in this case,
ˇ

ˇrBI , hµνBµBνsφ
ˇ

ˇ ď CpC1εq
2ps{tq2s´3`3δ.

Then (following the notation in Proposition 3.15) in view of (11.2) and by an argument

similar to the one in the proof of Proposition 11.4, we have

|F pτq| ď CC1εps{tq
3{2s

´1{2`3δ
0 ` CpC1εq

2
ps{tq2s

´1{2`3δ
0 ,

|h1t,xpλq| ď CC1εps{tq
1{2λ´3{2`δ

` CC1εpt{sqλ
´2,

ż s

τ

|h1t,xpλqdλ| ď CC1εps{tq
1{2s

´1{2`δ
0 ` CC1εps{tq

´1s´1
0 .

In view of (3.30), the desired results are thus proven.

The proof of (11.16) is an application of (11.15). We rely on the proof of Lemma 11.2

and we have that (11.12) still holds. We furthermore observe that in view of (11.15),

|SKG,I,Jαβ | ď CpC1εq
2t´3, |I| ` |J | ď N ´ 7.

Furthermore, since C1ε ď 1, we take, in view of (11.12)

|SWI,αβ| ď CpC1εq
2t´2`CC1εpt´ rq´1`CC1ε ď CpC1εq

2t´2`CpC1εq1{2pt´ rq´1`CpC1εq1{2 .

In view of Proposition 3.10, we arrive at

|hαβ| ď CC1εt
´1
`
CpC1εq

2

CC1ε
t´1`CpC1εq1{2pt´ rqCpC1εq1{2 ď CpC1εqt

´1sCpC1εq1{2 . �



120 PHILIPPE G. LEFLOCH AND YUE MA

11.5. A secondary bootstrap argument. In this section, we improve the L8 bounds

of BILJφ and BKB
ILJφ for |I| ` |J | ď N ´ 7.

Proposition 11.7. There exists a pair of positive constants pC1, ε2q with C1 ą C0 such

that if (5.1) and (5.2) hold with C1 and 0 ď ε ď ε2, then for all |I| ` |J | ď N ´ 7,

(11.18) ps{tq3δ´2
|B
ILJφ| ` ps{tq3δ´3

|BKB
ILJφ| ď CC1εs

´3{2`CpC1εq1{2 ,

(11.19) |LJhαβ| ď CC1εt
´1sCpC1εq1{2 .

Proof. We proceed by induction, by relying on a secondary bootstrap argument. Recall

that the bootstrap assumptions (5.1) and (5.2) hold on r2, s˚s, and we suppose that there

exist constants Km´1, Cm´1 ą 0 and ε1m´1 ą 0 depending only on the structure of the main

system such that

(11.20) ps{tq3δ´2
|B
ILJφ| ` ps{tq3δ´3

|BKB
ILJφ| ď Km´1C1εs

´3{2`Cm´1pC1εq1{2 ,

(11.21) |LJhαβpt, xq| ď Km´1C1εt
´1sCm´1pC1εq1{2

holds on r2, s˚s for all 0 ď ε ď ε1m´1 and |J | ď m´ 1 ď N ´ 7 and |I| ` |J | ď N ´ 7. This

is true when |J | “ 0, guaranteed in view of (11.15) and (11.16) (since there the constant

C depends only on N and the structure of the main system). We want prove that there

exist constants Km, Cm, ε
1
m depending only on the structure of the main system such that

(11.22) ps{tq3δ´2
|B
ILJφ| ` ps{tq3δ´3

|BKB
ILJφ| ď KmC1εs

´3{2`CmpC1εq1{2 ,

(11.23) |LJhαβpt, xq| ď KmC1εt
´1sCmpC1εq1{2

hold for 0 ď ε ď ε1m and all |J | ď N ´ 7.

We observe that on the initial slice H2 X K, there exits a positive constant K0,m such

that

ps{tq3δ´2
|B
ILJφ| ` ps{tq3δ´3

|BKB
ILJφ| ď K0,mC0 ε ď K0,mC1ε,
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We also denote byK0,m a positive constant such that supt“2,|x|ď1tts
´CmpC1εq1{2 |LJhαβpt, xq|u ď

K0,mC0 ε ď K0,mC1ε, since we have chosen C1 ě C0. Here we observe that on tt “ 2uXK,
?

3 ď s ď 2, so when Cm ą 0, the constant K0,m can be chosen independently of Cm.

So, first, we chooseKm ą K0,m and set s˚˚ :“ supsPr2,s˚s
 

(11.22) and (11.23) holds in Kr2,s˚˚s

(

.

By continuity (Km ą K0,m) we obtain s˚˚ ą 2. We prove that if we choose ε1m sufficiently

small, then for all ε ď ε1m, s˚˚ “ s˚. This is done as follows.

We take Km ě Km´1, Cm “ 2Cm´1 and see first that under the induction assumptions

(11.20), (11.21) and the bootstrap assumptions (11.22) and (11.23), (11.17) becomes (in

Kr2,s˚˚s)

ˇ

ˇrB
ILJ , hµνBµBνsφ

ˇ

ˇ ď CpC1εq
2
ps{tq2s´3`3δ

` CK2
mpC1εq

2
ps{tq2´3δs´5{2`CmpC1εq1{2 .

We observe that, in the right-hand side of (11.17), the last term is bounded directly by

applying (11.16) and (11.23). The second term is more delicate. We distinguish between

two different cases. When |J 12| “ 0, we apply the bootstrap assumptions (11.23) and

(11.15). When 0 ă |J 12| ă |J |, we have |J 11| ď m ´ 1, so we apply (11.20) and (11.21) and

observe that we have chosen Cm “ 2Cm´1.

We then recall Lemma 11.3 and, by Proposition 3.15 (following the notation therein),

we have in both cases 0 ď r{t ď 3{5 and 3{5 ă r{t ă 1,

|F psq| ď CC1εps{tq
3{2

ż s

s0

τ´3{2`3δdτ ` CK2
mpC1εq

2

ż s

s0

τ´1`CmpC1εq1{2dτ

ď CC1εps{tq
3{2s

´1{2`3δ
0 ` CC´1

m K2
mpC1εq

3{2
ps{tq2´3δsCmpC1εq1{2

ď CC1εps{tq
2´3δ

` CC´1
m K2

mpC1εq
3{2
ps{tq2´3δsCmpC1εq1{2 .

We also have, in view of (7.10), |ht,xpλq| ď CC1εps{tq
1{2λ´3{2`δ`CC1εps{tq

´1λ´2 and then,

in both cases 0 ď r{t ď 3{5 and 3{5 ă r{t ă 1,

ż s

s0

|ht,xpλq| ď CC1εps{tq
1{2

ż s

s0

λ´3{2`δdλ` CC1εps{tq
´1

ż s

s0

λ´2dλ

ď CC1ε
`

ps{tq1{2s´1`δ
0 ` ps{tq´1s´1

0

˘

ď CC1ε.
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By Proposition 3.15, we have

ps{tq3δ´2s´3{2
ˇ

ˇB
ILJφ

ˇ

ˇ` ps{tq3δ´3s´3{2
ˇ

ˇBKB
ILJφ

ˇ

ˇ

ď CK0,mC1ε` CC1ε` CC
´1
m K2

mpC1εq
3{2sCmpC1εq1{2 .

We can choose Km sufficiently large and fix ε1m “
C2
m

C1

´

Km´2CK0,m´2C

2CK2
m

¯2

ą 0, and then we

see that on r2, s˚˚s:

(11.24) ps{tq3δ´2s´3{2
ˇ

ˇB
ILJφ

ˇ

ˇ` ps{tq3δ´3s´3{2
ˇ

ˇBKB
ILJφ

ˇ

ˇ ď
1

2
KmC1εs

CmpC1εq1{2 .

Here we need to emphaze that Cm is determined only by N and the structure of the system:

we have C0, determined in view of (11.16) where the constant C is determined by N and

the main system. Then, Cm “ 2Cm´1 thus Cm are determined only by N and the structure

of the system.

In the same way, we follow the notation in Proposition 3.10 combined with following

estimates deduced from (11.22) : as |I| ` |J | ď N ´ 7

|SKG,I,Jαβ | ď CmpC1εq
2
ps{tq4´6δs´3`CmpC1εq1{2

ď CpKmC1εq
2t´3`3δ` 1

2
CmpC1εq1{2pt´ rq´3δ` 1

2
CmpC1εq1{2 ,

where we rely on a similar argument for the estimate of
ˇ

ˇrBILJ , hµνBµBνsφ
ˇ

ˇ.

We also recall (11.12) for |I| ` |J | ď N ´ 7

|SWI,αβ| ď CpC1εq
2t´2`CC1εpt´ rq´1`CC1ε ď CpC1εq

2t´2`CpC1εq1{2pt´ rq´1`CpC1εq1{2 .

This leads us to (by Proposition 3.10)
ˇ

ˇB
ILJhαβ

ˇ

ˇ

ď CmSεt
´1
`
CpC1εq

2

CC1ε
t´1`CpC1εq1{2pt´ rqCpC1εq1{2 ` CpKmC1εq

2t´1sCmpC1εq1{2

ď CC1K0,mεt
´1
` CC1εt

´1`CpC1εq1{2pt´ rqCpC1εq1{2 ` CpKmC1εq
2t´1

pt´ rqCmpC1εq1{2

ď CC1ε
`

K0,m ` 1`K2
mC1ε

˘

t´1` CmpC1εq
1{2
pt´ rqCmpC1εq1{2 .

We check that when ε ď ε1m, on r2, s˚˚s:

(11.25)
ˇ

ˇB
ILJhαβ

ˇ

ˇ ď
1

2
KmC1ε.
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Now, in view of (11.24) and (11.25), we make the following observation: when s˚˚ ă s˚,

by continuity we must have

(11.26) ps{tq3δ´2
|B
ILJφ| ` ps{tq3δ´3

|BKB
ILJφ| “ KmC1εs

´3{2`CpC1εq1{2

or

(11.27) |LJhαβpt, xq| “ KmC1εt
´1sCpC1εq1{2 .

This is a contradiction with (11.24) together with (11.25). We conclude that s˚˚ “ s˚.

That is, (11.18) and (11.19) are proved for |J | “ m. By induction, (11.18) and (11.19) are

proved for |J | ď N ´ 7. This concludes the argument, by taking ε2 “ ε1N´7. �

12. High-Order Refined L2 Estimates

12.1. Objective of this section and preliminary. In this section we improve the energy

bounds of both hαβ and φ for N ´ 4 ď |I| ` |J | ď N . We rely on the energy estimates

Proposition 3.1 and Proposition 3.5. In order to apply these two propositions, we need a

control of the source terms:

‚ For BILJhαβ, we have the terms BILJFαβ, QSφ, rBILJ , hµνBµBνshαβ.

‚ For BILJφ, we have the terms rBILJ , hµνBµBνsφ.

In this section, we derive the L2 bounds and apply them (in the next subsection) in the

proof of the main estimate. Note that the estimate for Fαβ is already covered by Lemma

10.1. We begin with QSφ.

Lemma 12.1. Assume the bootstrap assumptions (5.1) and (5.2) hold. Then the following

estimates hold for |I| ` |J | ď N :

(12.1)
›

›B
ILJ pBαφBβφq

›

›

L2pH˚s q
`
›

›B
ILJ

`

φ2
˘
›

›

L2pH˚s q

ď CC1εs
´3{2

ÿ

|I 1|ď|I|

EM,c2ps, B
I 1LJφq1{2 ` CC1εs

´3{2`CpC1εq1{2
ÿ

|I1|ď|I|

|J1|ă|J|

EM,c2ps, B
I 1LJ

1

φq1{2.
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Proof. We only treat BILJ pBαφBβφq and omit the argument for BILJ pφ2q which is simpler.

We have BILJ pBαφBβφq “
ř

I1`I2“I
J1`J2“J

BI1LJ1Bαφ B
I2LJ2Bβφ. Assuming that N ě 13, we have

either |I1| ` |J1| ď N ´ 7 or |I2| ` |J2| ď N ´ 7. Without loss of generality, we suppose

that |I1| ` |J1| ď N ´ 7:

‚ When |I1| “ |J1| “ 0. We apply (11.8) :

›

›B
I1LJ1Bαφ B

I2LJ2Bβφ
›

›

L2pH˚s q
“
›

›Bαφ B
ILJBβφ

›

›

L2pH˚s q

ď CC1ε
›

›ps{tq2´3δs´3{2
pt{sq ps{tqBILJBβφ

›

›

L2pH˚s q
ď CC1εs

´3{2EM,c2ps, B
ILJφq1{2.

‚ When |J1| “ 0, 1 ď |I1| ď N ´ 7, then |I2| ` |J2| ď N ´ 1. We apply (11.6) :

›

›B
I1LJ1Bαφ B

I2LJ2Bβφ
›

›

L2pH˚s q
“
›

›B
I1Bαφ B

I2LJBβφ
›

›

L2pH˚s q

ď CC1ε
›

›ps{tq1´3δs´3{2
B
I2LJBβφ

›

›

L2pH˚s q
ď CC1εs

´3{2
ÿ

|I 1|ď|I|

EM,c2pB
I 1LJφq1{2.

‚ When 1 ď |J1| and |I1| ` |J1| ď N ´ 7, then |I2| ` |J2| ď N ´ 1 and |J2| ă |J |. We

apply (11.4)

›

›B
I1LJ1Bαφ B

I2LJ2Bβφ
›

›

L2pH˚s q
ď CC1ε

›

›

›
ps{tq1´3δs´3{2`CpC1εq1{2 B

I2LJ2Bβφ
›

›

›

L2pH˚s q

ď CC1εs
´1`CpC1εq1{2 s´1{2

ÿ

I1ď|I|

|J1|ă|J|

EM,c2ps, B
I 1LJ

1

φq1{2. �

Lemma 12.2. Under the bootstrap assumption, for |I| ` |J | ď N one has

(12.2)
›

›rB
ILJ , hµνBµBνshαβ

›

›

L2pH˚s q

ď CC1εs
´1

ÿ

α1,β1,a,|I1|ď|I|

|J1|ă|J|

E˚Mps, B
I 1LaL

J 1hα1β1q
1{2
` CC1εs

´1`CpC1εq
ÿ

α1β1,|I1|ď|I|

|J1|ă|J|

E˚Mps, B
I 1LJ

1

hα1β1q
1{2

` CC1εs
´3{2

ÿ

|I 1|ď|I|

E˚M,c2ps, B
I 1LJφq1{2 ` CC1εs

´3{2`CpC1εq1{2
ÿ

|I1|ď|I|

|J1|ă|J|

E˚M,c2ps, B
I 1LJ

1

φq1{2

` CpC1εq
2s´3{2`3δ

and, in particular, for |J | “ 0,

›

›rB
I , hµνBµBνshαβ

›

›

L2pH˚s q
ď CC1εs

´3{2
ÿ

|I 1|ď|I|

E˚M,c2ps, B
I 1φq1{2 ` CpC1εq

2s´3{2`3δ.
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Proof. We rely on the estimate (8.20) and (8.5) combined with (12.1). In view of (8.20),

we need to estimate
›

›ps{tq2BtBtB
ILJ

1

hαβ
›

›

L2pH˚s q
for |J 1| ă |J |. Then, in view of in view of

(8.5), the above quantity is to be bounded by the L2 norm of Sc1rB
ILJ

1

hαβs, Sc2rB
ILJ

1

hαβs,

BILJ
1

Fαβ, and BILJ
1

QSφ. These terms are bounded respectively in view of (8.10), (8.12),

Lemma 10.1 and (12.1). With all these estimate substitute into (8.5), we have for |J 1| ă |J |,

(12.3)
›

›

›
ps{tq2BtBtB

ILJ
1

hαβ

›

›

›

L2pH˚s q

ď Cs´1
ÿ

α1,β1,a,|I1|ď|I|

|J1|ă|J|

E˚Mps, B
I 1LaL

J 1hα1β1q
1{2
` CC1εs

´1`CpC1εq
ÿ

α1β1,|I1|ď|I|

|J1|ă|J|

E˚Mps, B
I 1LJ

1

hα1β1q
1{2

` CC1εs
´3{2

ÿ

|I 1|ď|I|

E˚M,c2ps, B
I 1LJφq1{2 ` CC1εs

´3{2`CpC1εq1{2
ÿ

|I1|ď|I|

|J1|ă|J|

E˚M,c2ps, B
I 1LJ

1

φq1{2

`
ÿ

|J 1|ă|J |

}rB
ILJ

1

, hµνBµBνshαβ}L2
f pHsq

` CpC1εq
2s´3{2`2δ.

That is, we have

›

›rB
ILJ , hµνBµBνshαβ

›

›

L2pH˚s q

ď CC1εs
´1

ÿ

α1,β1,a,|I1|ď|I|

|J1|ă|J|

E˚Mps, B
I 1LaL

J 1hα1β1q
1{2
` CC1εs

´1`CpC1εq
ÿ

α1β1,|I1|ď|I|

|J1|ă|J|

E˚Mps, B
I 1LJ

1

hα1β1q
1{2

` CC1εs
´3{2

ÿ

|I 1|ď|I|

E˚M,c2ps, B
I 1LJφq1{2 ` CC1εs

´3{2`CpC1εq1{2
ÿ

|I1|ď|I|

|J1|ă|J|

E˚M,c2ps, B
I 1LJ

1

φq1{2

`
ÿ

|J 1|ă|J |

}rB
ILJ

1

, hµνBµBνshαβ}L2
f pHsq

` CpC1εq
2s´3{2`2δ.

Then, we proceed by induction on J and the desired result is reached. When |J | “ 0,

in the right-hand side of the above estimate there exist only the third and the last term,

this proves the desired result in this case. Then, by induction on |J |, the desired result is

established for |I| ` |J | ď N . �
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Lemma 12.3. Under the bootstrap assumption, for all |I| ` |J | ď N one has

(12.4)
›

›rB
ILJ , hµνBµBνsφ

›

›

L2
f pHsq

ď CC1εs
´1{2

ÿ

|J1|“|J|
α,β

E˚Mps, L
J 1hαβq

1{2
` CC1εs

´1{2
ÿ

|J1|“|J|
αβ

ż s

2

τ´1E˚Mpτ, L
J 1hαβq

1{2dτ

` CC1εs
´1`CpC1εq1{2

ÿ

|I1|ď|I|`1

|J1|ă|J|

E˚Mps, B
I 1LJ

1

φq1{2 ` CC1εs
´1{2`CpC1εq1{2

ÿ

|J11|ă|J|

α1,β1

E˚Mps, L
J 11hα1β1q

1{2

` CC1εs
´1{2`CpC1εq1{2

ÿ

|J11|ă|J|

α1,β1

ż s

2

τ´1E˚Mpτ, L
J 11hα1β1q

1{2dτ ` CpC1εq
2s´1{2`CpC1εq1{2 .

When |J | “ 0, one has

(12.5)
›

›rB
I , hµνBµBνsφ

›

›

L2
f pHsq

ď CpC1εq
2s´1`3δ.

Proof. We need to estimate the terms listed in (4.16). The estimates on first two terms

are trivial: one is a null term and the other has a additional decay t´1. We just point out

that for the first term we need to apply (4.18), (4.19) combined with (5.22) or (3.39) and

write down their L2 bounds

(12.6) }B
ILJGQQhφ}L2pH˚s q

` }t´1
B
I1LJ1hµνB

I2LJ2Bγφ}L2pH˚s q
ď CpC1εq

2s´1`2δ.

We focus on the last three terms.

Term 1. BI1LJ1h00
BI2LJ2BtBtφ. Recall that |I1| ě 1. The L2 norm of this term is bounded

by a discussion on the following cases:

‚ Case 1 ď |I1|` |J1| ď N ´2. We apply (7.1) combined with the basic energy estimate:

›

›B
I1LJ1h00

B
I2LJ2BtBtφ

›

›

L2pH˚s q
ď CC1ε

›

›t´3{2sδpt{sq ps{tqBI2LJ2BtBtφ
›

›

L2pH˚s q
ď CpC1εq

2s´1`3δ.

‚ Case N ´ 1 ď |I1| ` |J1| ď N , then |I2| ` |J2| ď 1 ď N ´ 8. Then we apply (7.12)

combined with the basic sup-norm estimate for BI2LJ2BtBtφ:
›

›B
I1LJ1h00

B
I2LJ2BtBtφ

›

›

L2pH˚s q
ď CC1ε

›

›ps{tqBI1LJ1h00
pt{sqt´3{2sδ

›

›

L2pH˚s q

ď CC1εs
´3{2`δ

›

›ps{tqBI1LJ1h00
›

›

L2pH˚s q
ď CpC1εq

2s´3{2`3δ.
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Term 2. LJ1h00
BILJ2BtBtφ. Recall that |J1| ě 1 so that |J2| ď |J | ´ 1 ď N ´ 1.

‚ Case 1 ď |J1| ď N ´ 7. In this case, we apply (11.19) to LJ1h00 (seen as a linear

combination of LJ
1
1hαβ with |J 11| plus higher-order corrections):

›

›LJ1h00
B
ILJ2BtBtφ

›

›

L2pH˚s q
ď CC1ε

›

›

›
t´1sCpC1εq1{2B

ILJ2BtBt

›

›

›

L2pH˚s q

ď CC1εs
´1`CpC1εq1{2

›

›ps{tqBILJ2BtBt
›

›

L2pH˚s q

ď CC1εs
´1`CpC1εq1{2

ÿ

|J 1|ă|J |

EM,c2ps, B
ILJ

1

φq1{2.

‚ Case N ´ 6 ď |J1| ď |J |´ 1 ď N ´ 1 then |I|` |J2| ď 6 ď N ´ 8. In this case we apply

Proposition 7.6 to LJ1h00 and (11.4). First of all, by the estimates (3.54) of commutators

and (11.4), we deduce that
ˇ

ˇBILJ2BtBtφ
ˇ

ˇ ď CC1εps{tq
1´3δs´3{2`CpC1εq1{2 . Then, we have

›

›LJ1h00
B
ILJ2BtBtφ

›

›

L2pH˚s q

ď
›

›LJ1h00
0 B

ILJ2BtBtφ
›

›

L2pH˚s q
`
›

›LJ1h00
1 B

ILJ2BtBtφ
›

›

L2pH˚s q

ď CC1ε
›

›t´1
B
ILJ2BtBtφ

›

›

L2pH˚s q
` CC1ε

›

›

›
LJ1h00

1 ps{tq
1´3δs´3{2`CpC1εq1{2

›

›

›

L2pH˚s q

ď CC1s
´1

ÿ

|I1|ď|I|`1

|J1|ă|J|

EM,c2ps, B
I 1LJ

1

φq1{2 ` CC1εs
´1{2`CpC1εq1{2

›

›s´1
ps{tq´1`δLJ1h00

1

›

›

L2pH˚s q

ď CC1s
´1

ÿ

|I1|ď|I|`1

|J1|ă|J|

EM,c2ps, B
I 1LJ

1

φq1{2 ` CC1εs
´1{2`CpC1εq1{2

›

›s´1
ps{tq´1`δLJ1h00

1

›

›

L2pH˚s q

` CC1εs
´1{2`CpC1εq1{2

ÿ

|J1|ď|J|
α,β

ż s

2

τ´1E˚Mpτ, L
J 1hαβq

1{2dτ ` CpC1εq
2s´1{2`CpC1εq1{2 ,

where in the last inequality we applied Proposition 7.6.

‚ Case 1 ď J1 “ J then |J2| “ 0.

When |J | ě N ´ 6, we see that |I| ď 6 ď N ´ 7 provided by N ě 13. In this case we

apply (11.6) to BILJ2BtBtφ and Proposition 7.6 on LJ1h00:

›

›LJ1h00
B
ILJ2BtBtφ

›

›

L2pH˚s q
“
›

›LJh00
B
I
BtBtφ

›

›

L2pH˚s q

ď CC1ε
›

›t´1
B
I
BtBtφ

›

›

L2pH˚s q
` CC1ε

›

›ps{tq1´3δs´3{2LJh00
1

›

›

L2pH˚s q
.



128 PHILIPPE G. LEFLOCH AND YUE MA

The first term is bounded by CC1εs
´1

ř

|I 1|ď|I|`1EM,c2pB
I 1φq1{2. For the second term, by

applying Proposition 7.6, we have

›

›ps{tq1´3δs´3{2LJh00
1

›

›

L2pH˚s q

ď
›

›ps{tq1´3δs´3{2sps{tq1´δ s´1
ps{tq´1`δLJh00

1

›

›

L2pH˚s q

ď CC1εs
´1{2

ÿ

|J11|ď|J|

α,β

E˚Mps, L
J 11hαβq

1{2

` CC1εs
´1{2

ÿ

|J11|ď|J|

α,β

ż s

2

τ´1E˚Mpτ, L
J 11hαβq

1{2dτ ` CpC1εq
2s´1{2.

When |J | ď N ´ 7, we apply (11.19) to LJh00:

›

›LJ1h00
B
ILJ2BtBtφ

›

›

L2pH˚s q
ď CC1εs

´1`CpC1εq1{2}ps{tqBIBtBtφ}L2pH˚s q

ď CC1εs
´1`CpC1εq1{2EM,c2pB

I
Btφq

1{2.

We emphasize that such a term does not exist when |J | “ 0 since the condition 1 ď |J1| ď

|J | is then never satisfied.

Term 3. h00
BγBγ1B

ILJ
1

with |J 1| ă |J |. This term is easier. We apply (11.16) to h00:

›

›

›
h00
BγBγ1B

ILJ
1

φ
›

›

›

L2pH˚s q
ď CC1εs

´1`CpC1εq1{2
›

›

›
ps{tqBγBγ1B

ILJ
1

φ
›

›

›

L2pH˚s q

ď CC1εs
´1`CpC1εq1{2

ÿ

|I1|ď|I|`1

|J1|ă|J|

E˚Mps, B
I 1LJ

1

φq1{2.

We now collect all the above estimates together and the desired result (12.4) is proved.

Furthermore, when |J | “ 0, the condition |J 1| ă |J | in the sum of the third, the fourth

and fifth term in the right-hand side of (12.4) indicate that these three terms disappear.

Furthermore, when |J | “ 0, the term LJ1h00
BILJ2BtBtφ and h00

BγBγ1B
ILJ

1

do not exist

(since they demand |J1| ě 1 and |J 1| ă |J |). So, the only existent terms are BI1h00
BI2BtBtφ,

the null terms and the commutative terms with additional t´1 decay. They can be bounded

by CpC1εq
2s´1`2δ and this concludes the derivation of (12.5). �
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12.2. Main estimates in this section.

Proposition 12.4. Let the bootstrap assumptions (5.1) and (5.2) hold with C1{C0 suffi-

ciently large, then there exists a positive constant ε3 sufficiently small so that for all ε ď ε3

and for N ´ 3 ď |I| ` |J | ď N

(12.7) E˚Mps, B
ILJhαβq

1{2
ď

1

2
C1εs

CpC1εq1{2 ,

(12.8) EM,c2ps, B
ILJφq1{2 ď

1

2
C1εs

1{2`CpC1εq1{2 .

The proof will be split into two parts. First, we will derive (12.7) and (12.8) in the case

|J | “ 0. In a second part, we will propose an induction argument for the case |J | ‰ 0.

Proof of Proposition 12.4 in the case |J | “ 0. In this case, the following estimates are di-

rect by Lemma 10.1, (12.1), (12.2) and (12.4) :

}B
IFαβ}L2pH˚s q

ď CC1εs
´1

ÿ

|I1|ď|I|

α1,β1

E˚M
`

s, BI
1

hα1β1
˘1{2

` CpC1εq
2s´3{2`2δ

and

›

›B
I
`

BαφBβφ
˘
›

›

L2pH˚s q
`
›

›B
I
`

φ2
˘
›

›

L2pH˚s q
ď CpC1εqs

´3{2
ÿ

|I 1|ď|I|

EM,c2ps, B
I 1φq1{2

ď CpC1εq
2s´3{2`δ

` CpC1εqs
´3{2

ÿ

N´3ď|I 1|ď|I|

EM,c2ps, B
I 1φq1{2,

while

}rB
I , hµνBµBνshαβ}L2pH˚s q

ď CpC1εq
2s´3{2`3δ

` CC1εs
´3{2

ÿ

N´3ď|I 1|ď|I|

EM,c2ps, B
I 1LJφq1{2,

›

›rB
I , hµνBµBνsφ

›

›

L2
f pHsq

ď CpC1εq
2s´1`3δ.

And by Lemma 7.3, we obtain MαβrB
ILJhspsq ď CpC1εq

2s´3{2`2δ and

M rBILJφspsq ď CpC1εq
2s´1`2δ.
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We conclude that in view of (3.10) and (3.2) (by observe that (3.1) is guaranteed by Lemma

7.2):

(12.9) EM,c2ps, B
Iφq1{2 ď CC0 ε` CpC1εq

2s2δ.

(12.10)

E˚Mps, B
Ihαβq

1{2
ď CC0 ε` CpC1εq

2
` CC1ε

ÿ

|I1|ď|I|

α1,β1

ż s

2

τ´1E˚M
`

τ, BI
1

hα1β1
˘1{2

dτ

` CC1ε
ÿ

N´3ď|I 1|ď|I|

ż s

2

τ´3{2EM,c2pτ, B
I 1φq1{2dτ

Substituting (12.9) into (12.10), we obtain

(12.11)
E˚Mps, B

Ihαβq
1{2
ď CC0 ε` CpC1εq

2
` CC1ε

ÿ

|I1|ď|I|

α1,β1

ż s

2

τ´1E˚M
`

τ, BI
1

hα1β1
˘1{2

dτ.

Now, in view of (12.11), we introduce the notation Y psq :“
ř

|I|ďN
α,β

E˚Mps, B
Ihαβq

1{2. With

this notation, the estimate (12.11) transforms into

(12.12) Y psq ď CC0 ε` CpC1εq
2
` CC1ε

ż s

2

τ´1Y pτqdτ.

Then Gronwall’s inequality leads us to

(12.13)
ÿ

|I|ďN
α,β

EMps, B
I 1hαβq

1{2
“ Y psq ď CpC0 ε` pC1εq

2
qsCC1ε.

In (12.9) and (12.13), we take ε20 “
C1´2CC0

2C2
1

and for all 0 ď ε ď ε20, we obtain

EMps, B
Ihαβq

1{2
ď

1

2
C1εs

CC1ε

and

EM,c2ps, B
Ihαβq

1{2
ď

1

2
C1εs

CC1ε.

This yields the desired result for |J | “ 0. �
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Proof of Proposition 12.4, Case 1 ď |J | ď N . . We proceed by induction on |J | and as-

sume that for |I| ` |J 1| ď N ´ 1 and |J 1| ď m´ 1 ă N

(12.14)
EMps, B

ILJ
1

hαβq
1{2
ď CpC0 ε` pC1εq

2
qsCpC1εq1{2 ,

EM,c2ps, B
ILJ

1

φq1{2 ď CpC0 ε` pC1εqq
2s1{2`CpC1εq1{2 .

We will prove that it is again valid for |J | “ m ď N by using Propositions 3.1 and 3.5.

From the induction assumption,

}B
ILJFαβ}L2pH˚s q

ď CC1εs
´1

ÿ

|I1|ď|I|
α,β

E˚Mps, B
I 1LJhαβq

1{2
` CC1ε

`

C0 ε` pC1εq
2
˘

s´1`CpC1εq1{2

thanks to (10.1),
›

›B
ILJ pBαφBβφq

›

›

L2pH˚s q
`
›

›B
ILJ

`

φ2
˘
›

›

L2pH˚s q

ď CC1εs
´3{2

ÿ

|I 1|ď|I|

EM,c2ps, B
I 1LJφq1{2 ` CC1ε

`

C0 ε` pC1εq
2
˘

s´1`CpC1εq1{2

thanks to (12.1), and finally in view of (12.2).
›

›rB
ILJ , hµνBµBνshαβ

›

›

L2pH˚s q

ď CC1εs
´1

ÿ

|J1|“|J|

|I1|ď|I|

E˚Mps, B
ILJ

1

hαβq
1{2
` CC1ε

`

C0 ε` pC1εq
2
˘

s´1`CpC1εq1{2 .

On the other hand, in view of (12.4), we have
›

›rB
ILJ , hµνBµBνsφ

›

›

L2pH˚s q

ď CC1εs
´1{2

ÿ

|J1|“|J|
α,β

E˚Mps, L
J 1hαβq

1{2
` CC1εs

´1{2
ÿ

|J1|“|J|
α,β

ż s

2

τ´1E˚Mpτ, J
J 1hαβq

1{2

` CC1ε
`

C0 ` pC1εq
2
˘

s´1{2`CpC1εq1{2

` CC1ε
`

C0 ε` pC1εq
2
˘

s´1{2`CpC1εq1{2
ż s

2

τ´1`CpC1εq1{2dτ ` CpC1εq
2s´1{2`CpC1εq1{2

ď CC1εs
´1{2

ÿ

|J1|“|J|
α,β

E˚Mps, L
J 1hαβq

1{2
` CC1εs

´1{2
ÿ

|J1|“|J|
α,β

ż s

2

τ´1E˚Mpτ, J
J 1hαβq

1{2

` CpC1εq
2s´1{2`CpC1εq1{2 .

Also, in view of (7.6) we have MαβrB
ILJhs ď CpC1εq

2s´3{2`2δ for |I| ` |J | ď N .
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With

Wmpsq :“
ÿ

|J|“m,α,β
|I|`|J|ďN

EMps, B
ILJhαβq

1{2

and

Kmpsq :“ s´1{2
ÿ

|J|“m
|I|`|J|ďN

EM,c2ps, B
ILJφq1{2,

the energy estimates (3.2) and (3.10) lead us to a system of integral inequalities:

(12.15)

Wmpsq ď C
`

C0 ε` pC1εq
2
˘

sCpC1εq1{2 ` CC1ε

ż s

2

τ´1
pWmpτq `Kmpτqq dτ

Kmpsq ď C
`

C0 ε` pC1εq
2
˘

sCpC1εq1{2 ` CC1εs
´1{2

ż s

2

τ´1{2Wmpτq dτ

` CC1εs
´1{2

ż s

2

τ´1{2

ż τ

2

η´1Wmpηqdηdτ.

Lemma 12.5 stated and proven below will guarantee that (12.15) leads us

Wmpsq `Kmpsq ď C
`

C0 ε` pC1εq
2
˘

sCpC1εq1{2 .

This leads us to the desired |J | “ m case. Then, by induction, (12.7) is valid for all

|J | “ m ď N . We see that we can choose ε3 :“ C1´2CC0

2CC2
1

with C1 ą 2CC0, then

Wmpsq `Kmpsq ď
1

2
C1εs

CpC1εq1{2

for 0 ď ε ď ε3. This concludes the proof of Proposition 12.4. �

Lemma 12.5. Let W and K be positive, locally integrable functions defined in r0, T s, and

suppose that

(12.16)

W psq ď C
`

C0 ε` pC1εq
2
˘

sCpC1εq1{2 ` CC1ε

ż s

2

τ´1
pW pτq `Kpτqq dτ,

Kpsq ď C
`

C0 ε` pC1εq
2
˘

sCpC1εq1{2 ` CC1εs
´1{2

ż s

2

τ´1{2W pτq dτ

` CC1εs
´1{2

ż s

2

τ´1{2

ż τ

2

η´1W pηqdηdτ

hold for some constant C ą 0 and a sufficiently small constant C1ε ą 0. Then, one has

W psq `Kpsq ď C
`

C1ε` pC1εq
2
˘

sCpC1εq1{2 , s P r0, T s.
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Proof. We define

W ˚
psq :“ sup

τPr0,ss

!

τ´CpC1εq1{2W pτq
)

as well as

K˚
psq :“ sup

sPr0,ss

!

τ´CpC1εq1{2Kpτq
)

.

With this notation, (12.16) yields us to (after taking the supremum over s)

W ˚
psq ď C

`

C0 ε` pC1εq
2
˘

` CC1εs
´CpC1εq1{2

`

W ˚
psq `K˚

psq
˘

ż s

2

τ´1`CpC1εq1{2dτ,

which leads us to

W ˚
psq ď C

`

C0 ε` pC1εq
2
˘

` CpC1εq
1{2
pW ˚

psq `K˚
psqq .

A similar argument can be applied to estimate K and we also find

(12.17) K˚
psq ď C

`

C0 ε` pC1εq
2
˘

` CC1εW
˚
psq ` CpC1εq

1{2W ˚
psq.

By taking the sum of the above two estimates and when pC1εq is sufficiently small, there

exists a constant ε4 ą 0, such that if ε ď C´1
1 ε4,

(12.18) W ˚
psq `K˚

psq ď C
`

C0 ε` pC1εq
2
˘

` CpC1εq
1{2
pW ˚

psq `K˚
psqq .

Since CpC1εq
1{2 ď 1{2 (for C1ε sufficiently small) we have

W ˚
psq `K˚

psq ď C
`

C0 ε` pC1εq
2
˘

,

which leads us to the desired result. �

12.3. Applications to the derivation of refined decay estimates. With the refined

energy at higher-order, we can establish some additional refined decay estimates. This

subsection is totally parallel to Section 10.3. First, by the global Sobolev inequality, for

|I| ` |J | ď N ´ 2:

(12.19) |B
ILJBγhαβ| ` |BγB

ILJhαβ| ď CC1εt
´1{2s´1`CpC1εq1{2 ,

(12.20) |B
ILJBahαβ| ` |BaB

ILJhαβ| ď CC1εt
´3{2sCpC1εq1{2 .
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Based on this improved sup-norm estimate, the following estimates are direct by integration

along the rays tpt, λxq|1 ď λ ď t{|x|u:

(12.21) |B
ILJhαβ| ď CC1ε

´

t´1
` ps{tqt´1{2sCpC1εq1{2

¯

.

From the above estimates and Lemma 4.8, we have

(12.22)
ˇ

ˇB
ILJBαh

00
ˇ

ˇ`
ˇ

ˇB
ILJBαh

00
ˇ

ˇ ď CC1εt
´3{2sCpC1εq1{2

and also by integration along the rays tpt, λxq|1 ď λ ď t{|x|u:

(12.23)
ˇ

ˇB
ILJh00

ˇ

ˇ ď CC1ε
´

t´1
` ps{tq2t´1{2sCpC1εq1{2

¯

.

Two more delicate applications of this higher-order, improved energy estimate are dis-

cussed in the following. They are also parallel to Lemmas 10.4 and 10.5.

Lemma 12.6. For |I| ` |J | ď N ´ 2, one has

(12.24)
ˇ

ˇB
ILJFαβ

ˇ

ˇ ď CpC1εq
2t´1s´2`CpC1εq1{2 .

Proof. We focus on Fαβ. Recall that Fαβ “ Qαβ`Pαβ. We see that (omit cubic and higher-

order terms, which have good decay), the quadratic part of Fαβ are linear combinations

of BγhαβBγ1hα1β1 . Then, we apply (12.19) and see that, for |I| ` |J | ď N ´ 2, we find

BILJ pBγhαβBγ1hα1β1q ď CpC1εq
2t´1s´2`CpC1εq1{2 . �

A second refined estimate parallel to Lemma 10.5 can now be derived. The proof is

essentially the same as that of Lemma 10.5. The only difference is that we apply the

sup-norm estimates presented in Lemma 12.6 for |I| ` |J | ď N ´ 2.

Lemma 12.7. For |I| ` |J | ď N ´ 3, one has

(12.25)
ˇ

ˇBtBtB
ILJhαβ

ˇ

ˇ ď CC1εt
1{2s´3`pCC1εq1{2 .

By a similar argument as done below (7.23), we have

(12.26) |BαBβB
ILJhαβ| ` |B

ILJBαBβhαβ| ď CC1εt
1{2s´3`pCC1εq1{2 .
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Apart from the above refined decay on hαβ, we also have the following refined decay for φ,

deduced from (12.8). For |I| ` |J | ď N ´ 2, we have

(12.27)

ˇ

ˇB
ILJBαφ

ˇ

ˇ`
ˇ

ˇBαB
ILJφ

ˇ

ˇ ď CC1εt
´1{2s´1{2`CpC1εq1{2 ,

ˇ

ˇB
ILJBaφ

ˇ

ˇ`
ˇ

ˇBaB
ILJφ

ˇ

ˇ`
ˇ

ˇB
ILJφ

ˇ

ˇ ď CC1εt
´3{2s1{2`CpC1εq1{2 ,

while, for |I| ` |J | ď N ´ 3, we apply (4.17) and get

(12.28)
ˇ

ˇB
ILJBaφ

ˇ

ˇ`
ˇ

ˇBaB
ILJφ

ˇ

ˇ ď CC1εt
´5{2s1{2`CpC1εq1{2 .

Finally, for |I| ` |J | ď N ´ 4, we have

(12.29)
ˇ

ˇB
ILJBβBaφ

ˇ

ˇ`
ˇ

ˇBaBβB
ILJφ

ˇ

ˇ ď CC1εt
´5{2s1{2`CpC1εq1{2 ,

(12.30)
ˇ

ˇBαBβB
ILJφ

ˇ

ˇ`
ˇ

ˇB
ILJBαBβφ

ˇ

ˇ ď CC1εt
´3{2s1{2`CpC1εq1{2 .

13. High-Order Refined Sup-Norm Estimates

13.1. Preliminary. We begin with our refined estimates for BILJ phµνBµBνhαβq, QSφ and

rBILJ , hµνBµBνsφ for |I| ` |J | ď N ´ 4.

Lemma 13.1. For all |I| ` |J | ď N ´ 4, the following estimate holds:

(13.1)
ˇ

ˇLJ phµνBµBνhαβq
ˇ

ˇ ď CpC1εq
2t´2`CpC1εq1{2pt´ rq´1`CpC1εq1{2 .

Proof. The proof is is parallel to that of Lemma 11.1. The only difference is that there we

only have refined decay estimates on BILJBtBthαβ and LJh00 for |I| ` |J | ď 7 but here we

have, in view of (12.25) and (12.26), the parallel estimate for |I| ` |J | ď N ´ 3. �

Lemma 13.2. For |I| ` |J | ď N ´ 4, the following estimate holds:

(13.2)
ˇ

ˇrB
ILJ , hµνBνBνsφ

ˇ

ˇ ď CpC1εq
2
ps{tq3s´3`2δ

` CC1εps{tq
3{2s´3{2`δ

ÿ

|I2|ď|I|´1
|J2|ď|J|

ˇ

ˇBtBtB
I2LJ2φ

ˇ

ˇ

` CC1εt
´1sCpC1εq1{2

ÿ

|J 1|ă|J |

ˇ

ˇ

ˇ
BtBtB

ILJ
1

φ
ˇ

ˇ

ˇ

` CC1εps{tq
1´3δs´3{2`CpC1εq1{2

ÿ

|J1|ă|J|,
α,β

ˇ

ˇ

ˇ
LJ

1

hαβ

ˇ

ˇ

ˇ
` CC1εps{tq

1´3δs´3{2
ÿ

α,β

ˇ

ˇLJhαβ
ˇ

ˇ
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and, when |J | “ 0,

(13.3)
ˇ

ˇrB
I , hµνBνBνsφ

ˇ

ˇ ď CpC1εq
2
ps{tq3s´3`2δ

` CC1εps{tq
3{2s´3{2`δ

ÿ

|I2|ď|I|´1

ˇ

ˇBtBtB
I2φ

ˇ

ˇ .

Proof. The proof relies on the decomposition presented in (4.16) combined with the refined

decay estimates on Bh, φ and Bφ presented in Section 12.3. We see that the null terms

and the terms of commutators listed in (4.16) are bounded by trivial application of the

refined decay estimates presented in Section 12.3. We only write the estimate on the null

term BI1LJ1ha0
BI2LJ2BaBtφ (and omit the treatement of the other terms). We see that ha0

is a linear combination of hαβ with smooth and homogeneous coefficients plus higher-order

correction terms:

Case 1. When |I1| ě 1, we apply the basic sup-norm estimates (5.12a) and (4.18) :

ˇ

ˇB
I1LJ1ha0

B
I2LJ2BaBtφ

ˇ

ˇ ď CC1εt
´1{2s´1`δ CC1εt

´3{2s1{2`δ
ď CpC1εq

2
ps{tq2s´5{2`2δ.

Case 2. When |I1| “ 0, we apply (5.22) and (4.18) :

ˇ

ˇB
I1LJ1ha0

B
I2LJ2BaBtφ

ˇ

ˇ “
ˇ

ˇLJ1ha0
B
ILJ2BaBtφ

ˇ

ˇ

ď CC1ε
`

ps{tqt´1{2sδ ` t´1
˘

CC1εt
´5{2s1{2`δ

ď CpC1εq
2
ps{tq4s´5{2`2δ.

We then focus on the estimates of the last three terms.

‚We treat first the term BI1LJ1h00
BI2LJ2BtBtφ with |I1| ě 1. We apply the sharp estimate

to BI1LJ1h00 provided by (7.1) :

ˇ

ˇB
I1LJ1h00

B
I2LJ2BtBtφ

ˇ

ˇ ď CC1εps{tq
3{2s´3{2`δ

ÿ

|I2|ď|I|
|J2|ď|J|

ˇ

ˇB
I2LJ2BtBtφ

ˇ

ˇ .

By the commutator estimate (3.54), we have

ˇ

ˇB
I2LJ2BtBtφ

ˇ

ˇ ď C
ÿ

|J 12|ď|J2|

ˇ

ˇ

ˇ
BγBγ1B

ILJ
1
2φ
ˇ

ˇ

ˇ
.

Then we rely on the decomposition (7.23) and a similar argument and obtain

ˇ

ˇ

ˇ
BγBγ1B

ILJ
1
2φ
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
BtBtB

ILJ
1
2φ
ˇ

ˇ

ˇ
` CC1εt

´5{2s1{2`δ,
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so that
ˇ

ˇB
I1LJ1h00

B
I2LJ2BtBtφ

ˇ

ˇ

ď CC1εps{tq
3{2s´3{2`δ

ÿ

|I2|ď|I|´1
|J2|ď|J|

ˇ

ˇBtBtB
I2LJ2φ

ˇ

ˇ` CpC1εq
2
ps{tq4s´7{2`2δ.

‚ The term LJ
1
1h00

BILJ
1
2φ is bounded as follows. We see that |J 12| ă |J | and we will

discuss the following cases:

Case 1. When 1 ď |J 11| ď N ´ 7, we apply (11.19) :

ˇ

ˇ

ˇ
LJ

1
1h00

B
ILJ

1
2BtBtφ

ˇ

ˇ

ˇ
ď CC1εt

´1sCpC1εq1{2 CC1ε
ÿ

|J 1|ă|J |

ˇ

ˇ

ˇ
B
ILJ

1

BtBtφ
ˇ

ˇ

ˇ
.

Apply the same estimate for
ˇ

ˇBILJ
1

BtBtφ
ˇ

ˇ as above, we conclude that

ˇ

ˇ

ˇ
LJ

1
1h00

B
ILJ

1
2BtBtφ

ˇ

ˇ

ˇ
ď CC1εt

´1sCpC1εq1{2
ÿ

|J 1|ă|J |

ˇ

ˇ

ˇ
BtBtB

ILJ
1

φ
ˇ

ˇ

ˇ
` CpC1εq

2
ps{tq7{2s´3`CpC1εq1{2 .

Case 2. When N ´ 6 ď |J 11| ď |J | ´ 1, we have |I| ` |J 12| ď 2 ď N ´ 8, then we apply the

last inequality of (11.9) to BILJ
1
2BtBtφ:

ˇ

ˇ

ˇ
LJ

1
1h00

B
ILJ

1
2BtBtφ

ˇ

ˇ

ˇ
ď CC1εps{tq

1´3δs´3{2`CpC1εq1{2
ÿ

|J1|ă|J|,
α,β

ˇ

ˇ

ˇ
LJ

1

hαβ

ˇ

ˇ

ˇ
.

Case 3. When N ´ 6 ď |J 11| and J 11 “ J , we have |I| ď 2 ď N ´ 8 and |J 12| “ 0. We apply

(11.6) :
ˇ

ˇ

ˇ
LJ

1
1h00

B
ILJ

1
2BtBtφ

ˇ

ˇ

ˇ
“
ˇ

ˇLJh00
B
I
BtBtφ

ˇ

ˇ ď CC1εps{tq
1´3δs´3{2

ÿ

α,β

ˇ

ˇLJhαβ
ˇ

ˇ .

The term h00
BγBγ1B

ILJ
1

φ is bounded by

CC1εt
´1sCpC1εq1{2

ÿ

|J 1|ă|J |

ˇ

ˇ

ˇ
BtBtB

ILJ
1

φ
ˇ

ˇ

ˇ
` CpC1εq

2
ps{tq7{2s´3`CpC1εq1{2 .

We omit the details of the proof which are essentially the same as in Case 1 for BI1LJ1h00
BI2LJ2φ.

Therefore, we have established (13.2).

For (13.3), when |J | “ 0, the third and fourth terms in the right-hand side of (13.2)

disappear. The last term also disappear since, if we follow the proof of (13.2), we see that

when |J | “ 0, and the case 3 of LJ
1
1h00

BILJ
1
2φ does not exist (N ´ 6 ď J 11 and J1 “ J is
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contradictory). This is the only place that the last term in the right-hand side of (13.2)

appears. Therefore, we have established (13.3). �

13.2. Main estimate in this section.

Proposition 13.3. There exist constants C1, ε4 ą 0 such that if the bootstrap condition

(5.1)-(5.2) holds with C1 ą C0 sufficiently large, then there exists a constant ε4 ą 0 such

that for any ε P p0, ε4q and N ´ 6 ď |I| ` |J | ď N ´ 4:

(13.4)
ˇ

ˇLJhαβ
ˇ

ˇ ď CC1εt
´1sCpC1εq1{2 ,

(13.5) ps{tq3δ´2
|B
ILJφ| ` ps{tq3δ´3

|B
ILJBKφ| ď CC1εt

´3{2sCpC1εq1{2 .

The proof is divided into two parts and we analyze first the case |J | “ 0.

Proof of Proposition 13.3 in the case |J | “ 0. We see that (13.4) is already guaranteed by

(11.16). To establish (13.5), we rely on Proposition 3.15 and follow the notation therein.

The termsRi are already bounded by Lemma 11.3, while the commutator term rBI , hµνBµBνsφ

is bounded in view of (13.3). Hence, we have (always with s “
?
t2 ´ r2)

F pt, xq ď CC1εps{tq
3{2

ż s

s0

τ´3{2`3δdτ ` CpC1εq
2
ps{tq3

ż s

s0

τ´3`2δ τ 3{2dτ

` CC1εps{tq
3{2

ÿ

|I 1|ď|I|´1

ż s

s0

λδ
ˇ

ˇ

ˇ
B
I 1
BtBtφ

ˇ

ˇ

ˇ
pλt{s, λx{sqdλ

so

F pt, xq ď CC1εps{tq
3{2s

´1{2`3δ
0 ` CpC1εq

2
ps{tq3

` CC1εps{tq
3{2

ÿ

|I 1|ď|I|´1

ż s

s0

λδ
ˇ

ˇ

ˇ
B
I 1
BtBtφ

ˇ

ˇ

ˇ
pλt{s, λx{sqdλ

ď CC1εps{tq
2´3δ

` CC1εps{tq
3{2

ÿ

|I 1|ď|I|´1

ż s

s0

λδ
ˇ

ˇ

ˇ
B
I 1
BtBtφ

ˇ

ˇ

ˇ
pλt{s, λx{sqdλ,

where we recall that s0 »
t
s
.

Setting

Xnpτq :“
ÿ

|I|ďn

sup
Kr2,τs

´

ps{tq3δ´2s3{2
ˇ

ˇB
Iφ
ˇ

ˇ` ps{tq3δ´3s3{2
ˇ

ˇBKB
Iφ
ˇ

ˇ

¯

pt, xq,
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we claim that

(13.6)
ˇ

ˇ

ˇ
ps{tq3δ´1

B
I 1
BtBtφ

ˇ

ˇ

ˇ
pt, xq ď Cs´3{2Xnpsq ` Ct

´1εps{tq3δ´1{2s´1{2`δ,

which will be explained at the end of this proof. Replacing t by λt{s and integrating in λ,

we then obtain

(13.7)

F pt, xq

ď CpC1εqps{tq
2´3δ

` CC1εps{tq
5{2´3δ

ż s

s0

´

λ´3{2`δXnpλq ` εps{tq
3δ`1{2λ´3{2`2δ

¯

dλ

ď CpC1εqps{tq
2´3δ

` CC1εps{tq
5{2´3δ

´

Xnpsq

ż s

s0

λ´3{2`δdλ` εps{tq3δ`1{2

ż s

s0

λ´3{2`2δ dλ
¯

ď CpC1εqps{tq
2´3δ

` CC1εps{tq
3´4δXnpsq ` CC1ε

2
ps{tq7{2´2δ,

where we used that Xnp¨q is non-decreasing and s0 »
t
s
. Also, recall that (7.10) gives the

desired bound for h1t,x and, therefore, by Proposition 3.15 we deduce that

ps{tq3δ´2s3{2
ˇ

ˇB
Iφ
ˇ

ˇ` ps{tq3´3δs3{2
ˇ

ˇBKB
Iφ
ˇ

ˇ ď CC0 ε` CC1ε` CC1εXnpsq.

Taking the sup-norm of the above inequality in Kr2,ss, we obtain Xnpsq ď CC0 ε`CC1ε`

CC1εXnpsq. Then, if we take in the bootstrap assumption that ε10 sufficiently small so that

CC1ε ď 1{2 for 0 ď ε ď ε10, we have Xnpsq ď CC0 ε` CC1ε ď CC1ε, which is the desired

result (since C1 ě C0).

It remains to derive (13.6) and, with the notation above, we write at any pt, xq

ˇ

ˇB
I 1
BtBtφ

ˇ

ˇ “

ˇ

ˇ

ˇ
pt{sq2

`

BK ´ px
a
{tqBa

˘

B
I 1
Btφ

ˇ

ˇ ď pt{sq2
ˇ

ˇBKB
I 1
Btφ

ˇ

ˇ` pt{sq2
ˇ

ˇpxa{tqBaB
I 1
Btφ

ˇ

ˇ

ď ps{tq1´3δs´3{2Xnpsq ` pt{sq
2t´1

ÿ

a

ˇ

ˇLaB
I 1
Btφ

ˇ

ˇ,

in which we used the definition of Xn and, on the other hand, the fact that BI
1

is of order

|I| ´ 1 at most. Recalling (5.16b) (together with the commutator estimates), we obtain

ÿ

a

ˇ

ˇLaB
I 1
Btφ

ˇ

ˇ ď CC1εt
´5{2s1{2`δ

“ CC1εps{tq
5{2s´2`δ,

which leads us to
ˇ

ˇB
I 1
BtBtφ

ˇ

ˇ ď ps{tq1´3δs´3{2Xnpsq ` t
´1CC1εps{tq

1{2s´2`δ. �
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Before we can proceed with the proof of Proposition 13.3 in the case |J | ě 1, we need

to establish the following result.

Lemma 13.4. For |I| ` |J | ď N ´ 4, one has

(13.8)

ˇ

ˇB
ILJ pBαφBβφq

ˇ

ˇ`
ˇ

ˇB
ILJ

`

φ2
˘
ˇ

ˇ ď CC1εps{tq
2´3δs´3{2

ÿ

|I1|ď|I|
γ

ˇ

ˇB
I 1LJBγφ

ˇ

ˇ` |B
I 1LJφ|

` CC1εps{tqs
2´3δs´3{2`CpC1εq1{2

ÿ

|I1|ď|I|,|J1|ă|J|
γ

ˇ

ˇ

ˇ
B
I 1LJ

1

Bγφ
ˇ

ˇ

ˇ
` |B

I 1LJ
1

φ|.

Proof. We only consider BαφBβφ, by relying on (13.5) in the case |J | “ 0. Observe that

ˇ

ˇB
ILJ pBαφBβφq

ˇ

ˇ ď
ÿ

I1`I2“I
J1`J2“J

ˇ

ˇB
I1LJ1Bαφ

ˇ

ˇ

ˇ

ˇB
I2LJ2Bβφ

ˇ

ˇ .

When J1 “ 0 or J2 “ 0, thanks to (11.15),
ˇ

ˇB
I1LJ1Bαφ

ˇ

ˇ

ˇ

ˇB
I2LJ2Bβφ

ˇ

ˇ ď CC1εps{tq
2´3δs´3{2

ÿ

γ

ˇ

ˇB
ILJBγφ

ˇ

ˇ .

When 1 ď |J1| or 1 ď |J2| we see that |J2| ă |J | and |J1| ă |J | and it remains to apply

(11.18). �

Proof of Proposition 13.3 in the case |J | ě 1. We proceed by induction and with the help

of a secondary bootstrap argument (as in the proof of Proposition 11.7). We will not

rewrite the argument in full details, but only provide the key steps. Suppose that on

the interval r2, s˚s there exist positive constants Km´1, Cm´1, ε
1
m´1 (depending only on the

structure of the main system and N) such that

(13.9) ps{tq3δ´2s3{2
ˇ

ˇB
ILJφ

ˇ

ˇ` ps{tq3δ´3s3{2
ˇ

ˇBKB
ILJφ

ˇ

ˇ ď Km´1C1εs
Cm´1pC1εq1{2 ,

(13.10) t
ˇ

ˇLJhαβ
ˇ

ˇ ď Km´1C1εs
Cm´1pC1εq1{2

for 0 ď ε ď ε1m´1 and |I| ` |J | ď N ´ 4 and |J | ď m´ 1 ă N ´ 4. We will prove that there

exist positive constants Km, Cm, ε
1
m (determined by the structure of the main system and

the integer N) such that the following inequaities hold for 0 ď ε ď ε1m:

(13.11) ps{tq3δ´2s3{2
ˇ

ˇB
ILJφ

ˇ

ˇ` ps{tq3δ´3s3{2
ˇ

ˇBKB
ILJφ

ˇ

ˇ ď KmC1εs
CmpC1εq1{2 ,
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(13.12) t
ˇ

ˇLJhαβ
ˇ

ˇ ď KmC1εs
CmpC1εq1{2 .

We begin the formulation of the secondary bootstrap argument and set

s˚˚ :“ sup
sPr2,s˚s

ts|(13.11) and (13.12) hold in Kr2,s˚su.

Suppose the Km that we have taken is sufficiently large such that s˚˚ ą 2 and Cm “ 2Cm´1

(see the argument in the proof of Proposition 11.7.)

We substitute the assumptions (13.9), (13.10), (13.11) and (13.12) into (13.2). This

gives

(13.13)
ˇ

ˇrB
ILJ , hµνBµBνsφ

ˇ

ˇ ď CpC1εq
2
ps{tq3s´3`3δ

` CK2
mpC1εq

2
ps{tq2´3δs´5{2`CmpC1εq1{2 .

With the notation in Proposition 3.15 (recalling that h1t,x is bounded in view of (7.10)

and Ri are bounded by Lemma 11.3), we obtain

|F psq| ď CC1εps{tq
3{2s

´1{2`3δ
0 ` CC´1

m K2
mpC1εq

3{2
ps{tq2´3δsCmpC1εq1{2 .

Then in view of (3.15), we have

ps{tq3δ´2s3{2
ˇ

ˇB
ILJφ

ˇ

ˇ` ps{tq3δ´3s3{2
ˇ

ˇBKB
ILJφ

ˇ

ˇ

ď CK0,mC1ε` CC1ε` CC
´1
m K2

mpC1εq
3{2sCmpC1εq1{2 .

Then, as in the proof of Proposition 11.7, we choose ε1m “
C2
m

C1

´

Km´2CK0,m´2C

2CK2
m

¯2

. Then,

for 0 ď ε ď ε1m, we have

ps{tq3δ´2s3{2
ˇ

ˇB
ILJφ

ˇ

ˇ` ps{tq3δ´3s3{2
ˇ

ˇBKB
ILJφ

ˇ

ˇ ď
1

2
KmC1εs

CpC1εq1{2 .

The estimate for LJhαβ is checked as the argument in the proof of Proposition 11.7. We

omit the details and point out the estimates on QSφ is covered by Lemma 13.4 and the

induction-bootstrap assumption (13.9), (13.10), (13.11) and (13.12). Other nonlinear terms

such as Fαβ and hµνBµBνhαβ are bounded in view of (12.21) and (13.1). The same argument

as in the proof of Proposition 11.7 leads us to the desired result with ε4 “ minpε1m, ε
1
0q,

where ε10 was determined at the end of the proof for |J | “ 0. �
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14. Low-Order Refined Energy Estimate for the Scalar Field

It remains to establish the refined energy estimate in order to complete the proof of our

main result.

Proposition 14.1. Let |I| ` |J | ď N ´ 4 and suppose that the bootstrap assumptions

(5.1) (5.2) hold for C1 sufficiently large, then there exists some ε5 ą 0 such that for all

0 ď ε ď ε5;

(14.1) EM,c2ps, B
ILJφq1{2 ď

1

2
C1εs

CpC1εq1{2 .

Proof. Our argument now relies on the energy estimate in Proposition 3.5, in which the

coercivity condition (3.1) is guaranteed by Lemma 7.2. The estimate for M rBILJφs is

provided by (7.7b). So the only issue still to be discussed is the estimate of the commutator
›

›rBILJ , hµνBµBνsφ
›

›

L2pH˚s q
. Here, we use (4.16) and, in view of (6.8), obtain

}GQQhφpN ´ 4, kq}L2
f pHsq

ď CpC1εq
2s´3{2`2δ.

For t´1BI3LJ3hα1β1B
I4LJ4Bγφ, we have

}t´1
B
I3LJ3hα1β1B

I4LJ4Bγφ}L2
f pHsq

ď
›

›t´1
pt´1

` ps{tqt´1{2sδqBI4LJ4Bγφ
›

›

L2
f pHsq

ď CpC1εq
2s´3{2`2δ,

while the term BI1LJ1h00
BI2LJ2BtBtφ is bounded by applying (7.1) :

}B
I1LJ1h00

B
I2LJ2BtBtφ}L2pH˚s q

ď CC1εs
´3{2`δ

}ps{tq3{2BI2LJ2BtBtφ}L2pH˚s q
ď CC1εs

´3{2`2δ.

The term LJ
1
1h00

BILJ
1
2BtBtφ is bounded by applying (13.4) and observing that |J 11| ą 0:

›

›LJ
1
1h00

B
ILJ

1
2BtBtφ

›

›

L2
f pHsq

ď CC1ε
›

›t´1sCpC1εq1{2B
ILJ

1
2BtBtφ

›

›

L2
f pHsq

ď CC1εs
´1`CpC1εq1{2

›

›ps{tqBILJ
1
2BtBtφ

›

›

L2
f pHsq

ď CC1εs
´1`CpC1εq1{2

ÿ

|J 1|ă|J |

EM,c2ps, B
ILJ

1

φq1{2.
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And for the term h00
BαBβ, we apply (11.16) :

›

›h00
BαBβB

ILJ
1›

›

L2
f pHsq

ď CC1εs
´1

ÿ

|J 1|ă|J |

EM,c2pB
ILJ

1

φq1{2,

so that
›

›rBILJ , hµνBµBνsφ
›

›

L2pH˚s q
ď CC1εs

´1`CpC1εq1{2
ř

|J 1|ă|J |EM,c2ps, B
ILJ

1

φq1{2. So by

Proposition 3.5, we have

(14.2)

EM,c2ps, B
ILJφq1{2 ď C0 ε` CpC1εq

2

ż s

2

τ´3{2`2δdτ

` CC1ε
ÿ

|J 1|ă|J |

ż s

2

τ´1`CpC1εq1{2EM,c2pτ, B
ILJ

1

φq1{2dτ.

When |J | “ 0, the last term disappears. We have

(14.3) EM,c2ps, B
Iφq1{2 ď CC0 ε` CpC1εq

2.

We are going to prove that for all |I| ` |J | ď N ´ 4,

(14.4) EM,c2ps, B
ILJφq1{2 ď CC0 ε` CpC1εq

3{2sCpC1εq1{2 .

When |J | ě 1, we proceed by induction on |J | and see that (14.4) is guaranteed by (14.3)

(C1ε smaller that 1). Assume that (14.4) holds for |J | ď m ´ 1 ă n ´ 4, we will prove it

for |J | “ m ď N ´ 4. We directly apply the induction assumption in (14.2) and conclude

that EM,c2ps, B
ILJφq1{2 ď CC0 ε` CpC1εq

3{2sCpC1εq1{2 for |I| ` |J | ď N ´ 4 and, by taking

ε5 “

´

C1´2CC0

2CC
3{2
1

¯2

, the desired result is proven. �

In conclusion, in view of (10.5), (12.7), (12.8) and (14.1), if the bootstrap assumption

holds for C1 ą C0 sufficiently large, then there exists some ε0 :“ mintε1 ε2, ε3, ε4, ε5u such

that

EMps, B
ILJhαβq

1{2
ď

1

2
C1εs

CpC1εq1{2 , |I| ` |J | ď N,

EMps, B
ILJφq1{2 ď

1

2
C1εs

1{2`CpC1εq1{2 , N ´ 3 ď |I| ` |J | ď N,

EMps, B
ILJφq1{2 ď

1

2
C1εs

CpC1εq1{2 , |I| ` |J | ď N ´ 4.

This improves the bootstrap assumption (5.1)–(5.2). We see that (5.1)–(5.2) hold on

the time interval where the solution exists. In view of the local existence theory for the
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hyperboloidal foliation (see the last chapter of [39]) the global existence result is thus

established.

Appendix A. Revisiting the wave-Klein-Gordon model

A wave-Klein-Gordon model was “extracted” from the Einstein equations by the au-

thors in [40, 41] when they were beginning to analyze the Einstein equations via the

Hyperboloidal Foliation Method introduced in [39]. This model1 provided to the authors

a simple, yet highly not trivial, example of coupling between a wave equation and a Klein-

Gordon equation, before developing the method for the full Einstein system, as we do in

the present monograph. We revisit here the proof of existence in [41] since our presentation

missed one bootstrap condition in the list (5.1) which however turns out to be necessary

for dealing with the (comparatively easier) wave component when k “ 0 in (5.1).

When k “ 0, the first bound in (5.1) in [41] should be weakened to

(A.1) Emps, B
Iuq1{2 ď C1εs

δ, |I| ď N,

while a similar remark applies to (5.2). Doing so has no effect on the derivation of the

sup-norm bounds (in Section 6.2, on which Section 7 is based), since in the application of

the Klainerman-Sobolev inequality one uses one boost at least, and the additional growth

allowed by (A.1) is negligible. Note in passing also that, in Section 6.5 of [41], the Hardy-

based estimate (6.20a) is valid for k “ |J | ě 1 only, while we already pointed out in [41]

the next inequality (6.20b) is never used.

In Lemma 8.1, the estimate (8.4) can be improved to

(A.2) Mpsq À C1εs
´3{2`kδ.

1A.D. Ionescu and B. Pausader recently further investigated our model via Fourier techniques; see

ArXiv:1703.02846.
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which is checked for |I| ` |J | ď N ´ 1 by writing

ż

Hs

ˇ

ˇBγh
αβ
BαB

ILJv
ˇ

ˇ

2
dx À C1ε

ż

Hs

t´1s´2
ˇ

ˇBαB
ILJv

ˇ

ˇ

2
dx À C1εs

´3

ż

Hs

ˇ

ˇBαB
ILJv

ˇ

ˇ

2
dx

À C1εs
´3

ÿ

α

Eg,cps, BαB
ILJvq.

In Lemma 8.2, when k “ 0 (8.6) can be improved to

(A.3) }rHαβuBαBβ, B
I
sv}L2

f pHsq
À pC1εq

2s´3{2`2δ, |I| ď N.

Namely, only the term BI1LJ1uBI2LJ2BαBβv with |I1| “ 1 and J1 “ 0 need to be considered:

(A.4)
}BγuB

I2LJBαBβv}L2
f pHsq

ď}ps{tqBγu}L2pHsq }pt{sqB
I2LJBαBβv}L8pHsq

ÀpC1εq
2
}ps{tq´δs´3{2

}L8pHsq À pC1εq
2s´3{2`δ.

In Lemma 8.3, when k “ 0 (8.7) can be improved to

(A.5)
›

›B
I
`

Pαβ
BαvBβv `Rv

2
˘
›

› À pC1εq
2s´1`δ, |I| ď N.

Namely, in BI pBαvBβvq “
ř

I1`I2“I
BI1Bαv B

I2Bβv we can assume that |I1| ď |I2|, hence

|I1| ď r|I|{2s ď N ´ 5, and then by (7.23b) (with BIBα of order ď N ´ 4) and (6.5) (third

and last inequalities):

(A.6)
›

›B
I
pBαvBβvq

›

›

L2
f pHsq

À pC1εq
2
}ps{tq1{2´4δt´3{2

pt{sq ps{tqBI2Bβv}L2
f pHsq

À pC1εq
2s´1`δ.

In the proof of Proposition 5.1, when |J | “ 0 thanks to (A.5)

(A.7) Emps, B
Iuq1{2 ďCC0ε` CpC1εq

2

ż s

2

s´1`δ ds ď CC0ε` CpC1εq
2sδ,

and for (8.14) with k “ 0, one has |I| ď N ´ 4 and we can apply (A.2)-(A.3):

(A.8) Em,cps, B
Ivq1{2 ďCC0ε` CpC1εq

2

ż s

2

s´3{2`kδ ds ď CC0ε` CpC1εq
2.
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Appendix B. Sup-norm estimate for the wave equations

Proposition B.1. Let u be a spatially compactly supported solution to the wave equation

(B.1)
´lu “ f,

u|t“2 “ 0, Btu|t“2 “ 0,

in which f is spatially compactly supported in K and satisfies

(B.2) |f | ď Cf t
´2´ν

pt´ rq´1`µ

for some Cf ą 0, 0 ă µ ď 1{2, and 0 ă |ν| ď 1{2. Then, one has

(B.3) |upt, xq| À

$

’

&

’

%

Cf
νµ
pt´ rqµ´νt´1, 0 ă ν ď 1{2,

Cf
|ν|µ
pt´ rqµt´1´ν , ´1{2 ď ν ă 0.

We denote by dσ the Lebesgue measure on the sphere t|y| “ 1 ´ λu and x P R3 with

r “ |x|, and consider the integral term

Ipλq “ Ipλ, t, x{tq :“

ż

|y|“1´λ,|x
t
´y|ďλ´t´1

dσpyq
`

λ´
ˇ

ˇ

x
t
´ y

ˇ

ˇ

˘1´µ .

Clearly, when 0 ă λ ď t´r`1
2t

, we have Ipλq “ 0.

Lemma B.2. When t´r`1
2t

ď λ ď 1, we obtain

Ipλq À

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

λtp1´ λq

µr

ˆ

t´ r

t

˙µ

,
t´ r ` 1

2t
ď λ ď

t` r ` 1

2t
,

p1´ λq

ˆ

t` r

t
´ λ

˙ˆ

2λ´
t` r

t

˙´1`µ

,
t` r ` 1

2t
ď λ ď

t´ r

t
,

provided
t` r ` 1

2t
ď
t´ r

t
,

p1´ λqt

µr

ˆ

t´ r

t

˙µ

, max

ˆ

t´ r

t
,
t` r ` 1

2t

˙

ď λ ď 1.

Proof of Proposition B.1. From the expression

(B.4) upt, xq “
1

4π

ż t

2

1

t´ s

ż

|y|“t´s

fps, x´ yq dσds,
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in which the integration is on the intersection of the cone
 

ps, yq { |y´x| “ t´s, 2 ď s ď t
(

and
 

pt, xq { r ă t´ 1, t2 ´ r2 ď s2, t ě 2
(

, we obtain

|upt, xq| ď
Cf
4π

ż t

2

ż

|y|“t´s,|x´y|ďs´1

s´2´νps´ |x´ y|q´1`µ

t´ s
dσds

“
Cf

4πt1`ν´µ

ż 1

2
t

ż

|y1|“1´λ,|x
t
´y1|ďλ´t´1

p1´ λq´1λ´2´νdσdλ
`

λ´
ˇ

ˇ

x
t
´ y1

ˇ

ˇ

˘1´µ pλ :“ s{t, y1 :“ y{tq

“
Cf

4πt1`ν´µ

ż 1

2
t

p1´ λq´1λ´2´ν

ż

|y1|“1´λ,|x
t
´y1|ďλ´t´1

dσ
`

λ´
ˇ

ˇ

x
t
´ y1

ˇ

ˇ

˘1´µ dλ.

When |x
t
´ y1| ď λ ´ t´1, we get t´r`1

2t
ď λ ď 1. In the following, we replace y1 by y. We

distinguish between two cases:

Case 1: t´r
t
ą t`r`1

2t
ô r ď t´1

3
. We write

|upt, xq| ď
Cf

4πt1`ν´µ

ż 1

t´r`1
2t

p1´ λq´1λ´2´ν

ż

|y|“1´λ,|x
t
´y|ďλ´t´1

dσ
`

λ´
ˇ

ˇ

x
t
´ y

ˇ

ˇ

˘1´µ dλ

À
Cf

µt1`ν´µ

ż t`r`1
2t

t´r`1
2t

p1´ λq´1λ´2´ν λtp1´ λq

r

ˆ

t´ r

t

˙µ

dλ

`
Cf

t1`ν´µ

ż t´r
t

t`r`1
2t

p1´ λq´1λ´2´ν
p1´ λq

ˆ

t` r

t
´ λ

˙ˆ

2λ´
t` r

t

˙´1`µ

dλ

`
Cf

µt1`ν´µ

ż 1

t´r
t

p1´ λq´1λ´2´ν p1´ λqt

r

ˆ

t´ r

t

˙µ

dλ,

and therefore

|upt, xq| À
Cf

µt1`ν´µ
t

r

ˆ

t´ r

t

˙µ ż t`r`1
2t

t´r`1
2t

λ´1´ν dλ

`
Cf

t1`ν´µ

ż t´r
t

t`r`1
2t

λ´2´ν

ˆ

t` r

t
´ λ

˙ˆ

2λ´
t` r

t

˙´1`µ

dλ

`
Cf

µt1`ν´µ
t

r

ˆ

t´ r

t

˙µ ż 1

t´r
t

λ´2´ν dλ.
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Recall that r ď t´1
3

and that 0 ă |ν| ď 1{2, we have

t

r

ż t`r`1
2t

t´r`1
2t

λ´1´ν dλ À

ˆ

t

t´ r

˙1`ν

À 1,

and
ˇ

ˇ

ˇ

ˇ

ˇ

Cf
µt1`ν´µ

t

r

ˆ

t´ r

t

˙µ ż t`r`1
2t

t´r`1
2t

λ´1´ν dλ

ˇ

ˇ

ˇ

ˇ

ˇ

À Cfµ
´1
pt´ rqµt´1´ν .

For the second integral term, we note that

ż t´r
t

t`r`1
2t

λ´2´ν

ˆ

t` r

t
´ λ

˙ˆ

2λ´
t` r

t

˙´1`µ

dλ

À

ż t´r
t

t`r`1
2t

ˆ

2λ´
t` r

t

˙´1`µ

dλ “
1

µ

ˆ

2λ´
t` r

t

˙µ ˇ
ˇ

ˇ

ˇ

t´r
t

t`r`1
2t

À
1

µ
,

thus

Cf
t1`ν´µ

ż t´r
t

t`r`1
2t

λ´2´ν

ˆ

t` r

t
´ λ

˙ˆ

2λ´
t` r

t

˙´1`µ

dλ À
Cf

µt1`ν´µ
.

For the third term, from t´r
t
ě t`r`t1

2t
ě 1

2
we get

Cf
µt1`ν´µ

t

r

ˆ

t´ r

t

˙µ ż 1

t´r
t

λ´2´ν dλ À
Cf

µt1`ν´µ
t

r

ˆ

t´ r

t

˙µ ż 1

t´r
t

22`µ dλ

ÀCfµ
´1
pt´ rqµt´1´ν .

Hence, in the case 0 ă r ď t´1
3

, |upt, xq| À Cfµ
´1pt´ rqµt´1´ν .

Case 2: t`r`1
2t

ě t´r
t
ô r ě t´1

3
. The second case in Lemma B.2 can not occur. We have

|upt, xq| À
Cf

µt1`ν´µ

ˆ

t´ r

t

˙µ
˜

ż t`r`1
2t

t´r`1
2t

λ´1´ν dλ`

ż 1

t`r`1
2t

λ´2´ν dλ

¸

.

Since t`r`1
2t

ě 1{2, the second integral term is bounded by some constant C. For the first

integral, when ν ą 0,
ż t`r`1

2t

t´r`1
2t

λ´1´ν dλ À
1

ν

ˆ

t´ r ` 1

t

˙´ν

,

thus |upt, xq| À Cf pµνq
´1pt´ rqµ´νt´1.
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When ν ă 0, we write

ż t`r`1
2t

t´r`1
2t

λ´1´ν dλ À
1

|ν|

ˆ

t` r ` 1

t

˙´ν

À
1

|ν|

and obtain |upt, xq| À Cf pµ|ν|q
´1pt´ rqµt´1´ν . �

Proof of Lemma B.2. When r “ 0, the estimate is trivial. When r ą 0, we can set x “

pr, 0, 0q. The surface Sλ :“ t|y| “ 1´ λu X t
ˇ

ˇ

x
t
´ y

ˇ

ˇ ď λ´ t´1u is parameterized by:

‚ θ: angle from p1, 0, 0q to y with 0 ď θ ď π,

‚ φ: angle from the plane determined by p1, 0, 0q and p0, 1, 0q and the plane deter-

mined by y and p1, 0, 0q with 0 ď φ ď 2π.

We have y “ p1´ λq
`

cos θ, sin θ cosφ, sin θ sinφ
˘

and distinguish between two cases:

Case 1. When t´r`1
2t

ď λ ď t`r`1
2t

, we only have a part of the sphere t|y| “ 1 ´ λu

contained in the ball t
ˇ

ˇ

x
t
´ y

ˇ

ˇ ď λ ´ t´1u where cospθq ě
pr{tq2`p1´λq2´pλ´t´1q

2

p2r{tqp1´λq
. So we set

θ0 :“ arccos

ˆ

pr{tq2`p1´λq2´pλ´t´1q
2

p2r{tqp1´λq

˙

and see that

λ´
ˇ

ˇ

x

t
´ y

ˇ

ˇ “ λ´

c

r2

t2
` p1´ λq2 ´ 2

r

t
p1´ λq cos θ

and dσ “ p1´ λq2 sinpθqdθdφ. The integral is estimated as follows:

ż

|y|“1´λ,|x
t
´y|ďλ´t´1

dσ
`

λ´
ˇ

ˇ

x
t
´ y

ˇ

ˇ

˘1´µ

“

ż 2π

0

dφ

ż θ0

0

p1´ λq2 sin θ

ˆ

λ´

c

r2

t2
` p1´ λq2 ´ 2

r

t
p1´ λq cos θ

˙´1`µ

dθ

“2π

ż θ0

0

p1´ λq2 sin θ

ˆ

λ´

c

r2

t2
` p1´ λq2 ´ 2

r

t
p1´ λq cos θ

˙´1`µ

dθ

“´ 2πp1´ λq2
ż θ0

0

ˆ

λ´

c

r2

t2
` p1´ λq2 ´ 2

r

t
p1´ λq cos θ

˙´1`µ

d cos θ
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thus, with ω “ cos θ,

ż

|y|“1´λ,|x
t
´y|ďλ´t´1

dσ
`

λ´
ˇ

ˇ

x
t
´ y

ˇ

ˇ

˘1´µ

“2πp1´ λq2
ż 1

cos θ0

ˆ

λ´

c

r2

t2
` p1´ λq2 ´ 2

r

t
p1´ λqω

˙´1`µ

dω

“
πtp1´ λq

r

ż pλ´t´1q2

| r
t
´p1´λq|2

`

λ´
?
γ
˘´1`µ

dγ “ 2
πtp1´ λq

r

ż λ´| r
t
´p1´λq|

t´1

ζ´1`µ
pλ´ ζq dζ,

where γ “ r2

t2
` p1 ´ λq2 ´ 2 r

t
p1 ´ λqω and ζ :“ λ ´

?
γ. We distinguish between two

sub-cases.

Case 1.1: r
t
ď 1´ λ or, equivalently, λ ď t´r

t
. We have

2
πtp1´ λq

r

ż λ´| r
t
´p1´λq|

t´1

ζ´1`µ
pλ´ ζq dζ

“ 2
πtp1´ λq

r

ż 2pλ´ t´r
2t
q

t´1

ζ´1`µ
pλ´ ζq dζ À

λtp1´ λq

µr

pt´ rqµ

tµ
.

Case 1.2: 1´ λ ă r
t

or, equivalently, λ ą t´r
t

. We have

2
πtp1´ λq

r

ż λ´| r
t
´p1´λq|

t´1

ζ´1`µ
pλ´ ζq dζ

“ 2
πtp1´ λq

r

ż t´r
t

t´1

ζ´1`µ
pλ´ ζq dζ À

λtp1´ λq

µr

pt´ rqµ

tµ
.

Case 2. When t`r`1
2t

ď λ ď 1, the sphere t|y| “ 1´λu is contained in t|px{tq ´ y| ď λ´t´1u

and
ż

|y|“1´λ,|x
t
´y|ďλ´t´1

dσ
`

λ´
ˇ

ˇ

x
t
´ y

ˇ

ˇ

˘1´µ “

ż

|y|“1´λ

dσ
`

λ´
ˇ

ˇ

x
t
´ y

ˇ

ˇ

˘1´µ

“ 2π

ż π

0

p1´ λq2 sin θ

ˆ

λ´

c

r2

t2
` p1´ λq2 ´ 2

r

t
p1´ λq cos θ

˙´1`µ

dθ

“ 2πp1´ λq2
ż 1

´1

ˆ

λ´

c

r2

t2
` p1´ λq2 ´ 2

r

t
p1´ λqω

˙´1`µ

dω.
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Therefore, we have

ż

|y|“1´λ,|x
t
´y|ďλ´t´1

dσ
`

λ´
ˇ

ˇ

x
t
´ y

ˇ

ˇ

˘1´µ “ 2
πtp1´ λq

r

ż λ´| r
t
´p1´λq|

λ´p r
t
`p1´λqq

ζ´1`µ
pλ´ ζq dζ

“ 2
πtp1´ λq

r

ż λ´| r
t
´p1´λq|

2λ´ t`r
t

ζ´1`µ
pλ´ ζq dζ.

We distinguish between two sub-cases.

Case 2.1: When r
t
ď 1´ λ or, equivalently, λ ď t´r

t
, we have

2
πtp1´ λq

r

ż λ´| r
t
´p1´λq|

2λ´ t`r
t

ζ´1`µ
pλ´ ζq dζ

“ 2
πtp1´ λq

r

ż 2λ´ t´r
t

2λ´ t`r
t

ζ´1`µ
pλ´ ζq dζ ď Cp1´ λq

ˆ

t` r

t
´ λ

˙ˆ

2λ´
t` r

t

˙´1`µ

,

where the function ζ´1`µpλ´ ζq is decreasing and we can bound this integral by the value

at the inferior boundary (which is 2λ´ t`r
t

) times the length of the interval 2r{t.

Case 2.2: When 1´ λ ă r
t

or, equivalently, λ ą t´r
t

, we have

2
πtp1´ λq

r

ż λ´| r
t
´p1´λq|

2λ´ t`r
t

ζ´1`µ
pλ´ ζq dζ

“ 2
πtp1´ λq

r

ż t´r
t

2λ´ t`r
t

ζ´1`µ
pλ´ ζq dζ ď Cp1´ λq

t

r

ż t´r
t

2λ´ t`r
t

ζ´1`µdζ

ď
Cp1´ λqt

µr
ζµ
ˇ

ˇ

ˇ

ˇ

t´r
r

0

“
Cp1´ λqt

µr

ˆ

t´ r

t

˙µ

.

When t`r`1
2t

ď t´r
t

, both case above may occur, while only Case 2.2 is possible if the

opposite inequality holds true. �

Appendix C. Sup-norm estimate for the Klein-Gordon equation

We provide here a proof of Proposition 3.15.
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Lemma C.1 (A decomposition of the Klein-Gordon operator). For sufficiently smooth

solutions v to (3.29), the function wt,xpλq :“ λ3{2vpλt{s, λx{sq is a solution to the second-

order ODE in λ

d2

dλ2
wt,xpλq `

c2

1` h
00
pλt{s, λx{sq

wt,xpλq

“
`

1` h
00
pλt{s, λx{sq

˘´1`
R1rvs `R2rvs `R3rvs ` s

3{2f
˘

pλt{s, λx{sq.

Lemma C.2 (Technical ODE estimate). Let the function G be defined on some interval

rs0, s1s and satisfying sup |G| ď 1{3 and let k be some integrable function defined on rs0, s1s.

The solution z to

(C.1)
z2pλq `

c2

1`Gpλq
zpλq “ kpλq,

zps0q “ z0, z1ps0q “ z1,

(for some initial data z0, z1) satisfies the uniform estimate for s P rs0, s1s

(C.2)

|zpsq| ` |z1psq| À
`

|z0| ` |z1| `Kpsq
˘

`

ż s

s0

´

|z0| ` |z1| `Kpsq
¯

|G1psq|eC
şs
s |G

1pλq|dλ ds

with Kpsq :“
şs

s0
|kpsq| ds and a constant C ą 0.

Proof of Lemma C.1. 1. Flat wave operator. Recall s “
?
t2 ´ r2 and r “ |x|. an

elementary The flat wave operator l in the hyperboloidal frame reads

(C.3) ´l “ B0B0 ´
ÿ

a

BaBa ` 2
ÿ

a

xa

s
B0Ba `

3

s
B0.

Given any function v, we write

wpt, xq “ s3{2vpt, xq “ pt2 ´ |x|2q3{4vpt, xq,

and

(C.4) ´s3{2lv “ B0B0w ´
ÿ

a

BaBaw ` 2
ÿ

a

xa

s
B0Baw ´

3w

4s2
´
ÿ

a

3xaBaw

s2
.

Consider the function of a single variable

wt,xpλq :“ wpλt{s, λx{sq “ λ3{2vpλt{s, λx{sq,
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so that
d

dλ
wt,xpλq “

`

B0 ` s
´1xaBa

˘

wpλt{s, λx{sq “
t

s
BKw pλt{s, λx{sq

and

(C.5)
d2

dλ2
wt,xpλq “

ˆ

B0B0 ` 2
xa

s
B0Ba `

xaxb

s2
BaBb

˙

wpλt{s, λx{sq.

Combining with (C.4) and recalling wpt, xq “ s3{2vpt, xq, we obtain

(C.6)

ˆ

B0B0 ` 2
xa

s
B0Ba `

xaxb

s2
BaBb

˙

w

“ ´s3{2lv `
ÿ

a

BaBaw `
xaxb

s2
BaBbw `

3

4s2
w `

ÿ

a

3xa

s2
Baw “ ´s

3{2lv `R1rvs.

2. Curved wave operator. We write

´lv “ hαβBαBβv ´ c
2v ` f

and perform a change of frame:

hαβBαBβv “h
αβ
BαBβv ` h

αβ
BαΨ

β1

β Bβ1v

“h
00
B0B0v ` 2h

0b
B0Bbv ` h

ab
BaBbv ` h

αβ
BαΨ

β1

β Bβ1v.

We get

´s3{2lv “´ s3{2h
00
B0B0v ´ s

3{2
`

2h
0b
B0Bbv ` h

ab
BaBbv ` h

αβ
BαΨ

β1

β Bβ1v
˘

´ c2s3{2v ` s3{2f

“´ h
00
B0B0

`

s3{2v
˘

´ c2s3{2v

` h
00
ˆ

3v

4s1{2
` 3s1{2

B0v

˙

´ s3{2
`

2h
0b
B0Bbv ` h

ab
BaBbv ` h

αβ
BαΨ

β1

β Bβ1v
˘

` s3{2f,

and conclude that

(C.7)

´s3{2lv “ ´h
00
B0B0w ´ c

2w ` h
00
ˆ

3v

4s1{2
` 3s1{2

B0v

˙

´ s3{2
`

2h
0b
B0Bbv ` h

ab
BaBbv ` h

αβ
BαΨ

β1

β Bβ1v
˘

` s3{2f

“ ´h
00
B0B0w ´ c

2w `R2rvs ` s
3{2f.

Combining (C.6) and (C.7), we get

(C.8) B0B0w ` 2
xa

s
B0Baw `

xaxb

s2
BaBbw ´ h

00
B0B0w ` c

2w “ R1rvs `R2rvs ` s
3{2f.
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3. Conclusion. We now write

`

1` h
00˘

ˆ

B0B0 ` 2
xa

s
B0Ba `

xaxb

s2
BaBb

˙

w ` c2w

“ h
00
ˆ

2
xa

s
B0Ba `

xaxb

s2
BaBb

˙

w `R1rvs `R2rvs ` s
3{2f

and so

(C.9)

ˆ

B0B0 ` 2
xa

s
B0Ba `

xaxb

s2
BaBb

˙

w `
c2w

1` h
00

“
`

1` h
00˘´1`

R1rvs `R2rvs `R3rvs ` s
3{2f

˘

.

This implies that

(C.10)

d2

dλ2
wt,xpλq `

c2wt,xpλq

1` h
00
pλt{s, λx{sq

“
`

1` h
00
pλt{s, λx{sq

˘´1`
R1rvs `R2rvs `R3rvs ` s

3{2f
˘

pλt{s, λx{sq.

�

Proof of Lemma C.2. We consider the vector field bpλq “
`

zpλq, z1pλq
˘T

and the matrix

Apλq :“

¨

˝

0 1

´c2p1`Gq´1 0

˛

‚and write b1 “ Ab `

¨

˝

0

k

˛

‚. Consider the diagonalization

A “ PQP´1 with

Q “

¨

˝

ic
`

1`G
˘´1{2

0

0 ´ic
`

1`G
˘´1{2

˛

‚

and

P “

¨

˝

1 1

ic
p1`Gq1{2

´ ic
p1`Gq1{2

˛

‚, P´1
“

¨

˝

1{2 p1`Gq1{2

2ic

1{2 ´
p1`Gq1{2

2ic

˛

‚.

We thus have b1 “ PQP´1b`

¨

˝

0

k

˛

‚, leading us to

`

P´1b
˘1
“ Q

`

P´1b
˘

`
`

P´1
˘1
b` P´1

¨

˝

0

k

˛

‚.
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We regard
`

P´1
˘1
b as a source and write

P´1bpsq “ e
şs
s0
Qpsqds

P´1bps0q `

ż s

s0

e
şs
λQpsqdsP´1

¨

˝

0

k

˛

‚dλ

`

ż s

s0

e
şs
λQpsqds

`

P´1
˘1
pλq bpλq dλ.

When supλPr1,ss |Gpλq| ď 1{3, the norm of P pλq and P´1pλq are bounded for λ P rs0, ss.

The norm of
`

P´1
˘1
pλq is bounded by C|G1pλq| for a constant C depending only on c. The

norm of Q is bounded by a constant C ą 0. Observe also that

ż s

λ

Qpsqds “

¨

˝

ic
şs

λ
p1`Gq´1{2psqds 0

0 ´ic
şs

λ
p1`Gq´1{2psqds

˛

‚,

therefore

e
şs
λQpsqds “

¨

˝

eic
şs
λp1`Gq

´1{2psqds 0

0 e´ic
şs
λp1`Gq

´1{2psqds

˛

‚.

The norm of e
şs
λQpsqds is uniformly bounded and we have proven:

|zpsq| ` |z1psq| ď Cp|zps0q| ` |z
1
ps0q|q ` C Kpsq ` C

ż s

s0

|G1pλq|
`

|zpλq| ` |z1pλq|
˘

dλ,

and it remains to apply Gronwall’s lemma. �

Proof of Proposition 3.15. We have

wt,xpλq “ λ3{2vpλt{s, λx{sq,

w1t,xpλq “
3

2
λ1{2vpλt{s, λx{sq `

t

s
λ3{2

BKvpλt{s, λx{sq.

The function wt,x is the restriction of wpt, xq “ s3{2vpt, xq to the segment
 

pλt{s, λx{sq, λ P

rs0, ss
(

. Apply (C.2) and (C.10) to this segment, with

s0 “

$

’

’

&

’

’

%

2, 0 ď r{t ď 3{5,
c

t` r

t´ r
, 3{5 ď r{t ď 1.

This is the line tpλt{s, λx{squ between pt, xq and the boundary of Krs0,`8q.
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The function v is supported in K and the restriction of v to the hyperboloid H2 is

supported in H2 X K. We recall that when 3{5 ď r{t ď 1, wt,xps0q “ 0 and when

0 ď r{t ď 3{5, wt,xps0q is determined by v0.

When 0 ď r{t ď 3{5, we apply (C.2) with s0 “ 2. When λ “ 2, we write wt,xp2q “

wp2t{s, 2x{sq “ 23{2vp2t{s, 2x{sq “ 23{2v0p2x{sq, and

w1s,xp2q “
d

dλ

`

λ3{2vpλt{s, λx{sq
˘
ˇ

ˇ

λ“2

“
3
?

2

2
vp2t{s, 2x{sq ` 23{2

ps{tq´1
BKvp2t{s, 2x{sq

“
3
?

2

2
vp2t{s, 2x{sq ` 23{2

ps{tq´1
Btvp2t{s, 2x{sq ` 23{2

pxa{sqBavp2t{s, 2x{sq

“
3
?

2

2
v0p2x{sq ` 23{2

pxa{sqBav0p2x{sq ` 23{2
ps{tq´1v1p2t{s, 2x{sq.

Recall that when 0 ď r{t ď 3{5, we have 4{5 ď s{t ď 1. So we see that |wt,xps0q| `

|w1t,xps0q| ď Cp}v0}L8pH2q ` }v1}L8pH2qq. Then by (C.2) and (C.10) we have

|wt,xpsq| ` |w
1
t,xpsq| ďCp}v0}L8pH2q ` }v1}L8pH2qq ` CF psq

` Cp}v0}L8pH2q ` }v1}L8pH2qq

ż s

2

|h1t,xpsq|e
C
şs
s |h

1
t,xpλq|dλ ds

` C

ż s

2

F psq|h1t,xpsq|e
C
şs
s |h

1
t,xpλq|dλ ds.

When 3{5 ď r{t ď 1, wt,xps0q “ w1t,xps0q “ 0 and so

|wt,xpsq| ` |w
1
t,xpsq| ďCF psq ` C

ż s

s0

F psq|h1t,xpsq|e
C
şs
s |h

1
t,xpλq|dλ ds,

which leads to |wt,xpsq| ` |w
1
t,xpsq| À V pt, xq. Recall finally vpt, xq “ s3{2wt,xpsq and

ps{tq´1s3{2
BKvpt, xq “ w1t,xpsq ´

3

2
s1{2vpt, xq “ w1t,xpsq ´

3

2
s´1wt,xpsq.

�

Appendix D. Commutator estimates for the hyperboloidal frame

In this appendix, we provide some further details on some important properties shared

by the commutators arising in our problem. The vector fields Bα, and La are Killing for
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the wave operator l, so that

(D.1) rBα, ls “ 0, rLa, ls “ 0.

By introducing

(D.2) rLa, Bβs “: Θγ
aβBγ, rBα, Bβs “: t´1ΓγαβBγ, rLa, Bβs “: Θγ

aβBγ,

we find

(D.3)

Θγ
a0 “ ´δ

γ
a , Θγ

ab “ ´δabδ
γ
0 ,

Γγ0b “ ´
xb

t
δγ0 “ Ψ0

bδ
γ
0 , Γγα0 “ 0, Γγab “ δabδ

γ
0 ,

Θγ
a0 “ ´δ

γ
a `

xa

t
δγ0 “ ´δ

γ
a ` Φa

0δ
γ
0 , Θγ

ab “ ´
xb

t
δγa “ Ψ0

bδ
γ
a .

All of these coefficients are smooth in the (open) cone K and homogeneous of degree 0.

Furthermore, we also get

(D.4) Θ0
ab “ 0, so that rLa, Bbs “ Θc

abBc,

which means that the commutator of a “good” derivative Bb with La is again a “good”

derivative.

Lemma D.1 (Algebraic decomposition of commutators. I). There exist constants λIaJ

such that

(D.5) rB
I , Las “

ÿ

|J |ď|I|

λIaJB
J .

Proof. We proceed by induction and, for |I| “ 1, this is (D.2). Assuming that (D.5)

holds for all |I1| ď m, we are going to prove that it is still valid for |I| ď m ` 1. Let

I “ pα, αm, αm´1, . . . , α1q and I1 “ pαm, αm´1, . . . , α1q, so that BI “ BαB
I1 . We find

rB
I , Las “ rBαB

I1 , Las “ Bα
`

rB
I1 , Las

˘

` rBα, LasB
I1 “ Bα

ˆ

ÿ

|J |ď|I1|

λI1aJB
J

˙

´Θγ
aαBγB

I1

“
ÿ

|J |ď|I1|

λI1aJBαB
J
´Θγ

aαBγB
I1 ,

which yields the statement for |I| “ m` 1. �
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Lemma D.2 (Algebraic decomposition of commutators. II). There exist constants θIγαJ so

that

(D.6) rLI , Bαs “
ÿ

|J |ď|I|´1,γ

θIγαJBγL
J .

Proof. The case |I| “ 1 is already covered by (D.2). Assuming that (D.6) is valid for

|I| ď m, we are going to prove that it is still valid when |I| “ m` 1. We write LI “ LaL
I1

with |I1| “ m, and find

rLI , Bαs “rLaL
I1 , Bαs “ La

`

rLI1 , Bαs
˘

` rLa, BαsL
I1

“La

ˆ

ÿ

|J |ď|I1|´1,γ

θI1γαJ BγL
J

˙

`
ÿ

γ

Θγ
aαBγL

I1

“
ÿ

|J |ď|I1|´1,γ

θI1γαJ LaBγL
J
`
ÿ

γ

Θγ
aαBγL

I1

so

rLI , Bαs “
ÿ

|J |ď|I1|´1,γ

θI1γαJ BγLaJ
J
`

ÿ

|J |ď|I1|´1,γ

θI1γαJ rLa, BγsJ
J
`
ÿ

γ

Θγ
aαBγL

I1

“
ÿ

|J |ď|I1|´1,γ

θI1γαJ BγLaJ
J
`

ÿ

|J |ď|I1|´1,γ

θI1γαJ Θγ1

aγBγ1L
J
`
ÿ

γ

Θγ
aαBγL

I1 .

�

As a consequence of (D.6), we have

(D.7) rB
ILJ , Bαsu “

ÿ

|J 1|ă|J |,γ

θJγαJ 1BγB
ILJ

1

u.

Lemma D.3 (Algebraic decomposition of commutators. III). One has

(D.8) rB
ILJ , Bβs “

ÿ

|J1|ď|J|,|I1|ď|I|

|I1|`|J1|ă|I|`|J|

θIJγβI 1J 1BγB
I 1LJ

1

,

where θIJγβI 1J 1 are smooth functions satisfying

(D.9)
ˇ

ˇB
I1LJ1θIJγβI 1J 1

ˇ

ˇ ď

$

’

&

’

%

C
`

|I|, |J |, |I1|, |J1|
˘

t´|I1| when |J 1| ă |J |,

C
`

|I|, |J |, |I1|, |J1|
˘

t´|I1|´1 when |I 1| ă |I|.
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Proof. Consider the identity

rB
ILJ , Bβs “ rB

ILJ ,Φγ
βBγs “Φγ

βrB
ILJ , Bγs `

ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ă|I|`|J|

B
I1LJ1Φγ

βB
I2LJ2Bγ.

Commuting BI2LJ2 and Bγ, we obtain

rB
ILJ , Bβs “Φγ

βrB
ILJ , Bγs

`
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ă|I|`|J|

B
I1LJ1Φγ

βBγB
I2LJ2 `

ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ă|I|`|J|

B
I1LJ1Φγ

βrB
I2LJ2 , Bγs

“
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ă|I|`|J|

B
I1LJ1Φγ

βBγB
I2LJ2 `

ÿ

I1`I2“I
J1`J2“J

B
I1LJ1Φγ

βrB
I2LJ2 , Bγs

“
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ă|I|`|J|

B
I1LJ1Φγ

βBγB
I2LJ2 `

ÿ

I1`I2“I
J1`J2“J

ÿ

|J 12|ă|J2|

`

B
I1LJ1Φγ

β

˘

θJ2δγJ 12
BδB

I2LJ
1
2 .

Hence, θIJαγI 1J 1 are linear combinations of BI1LJ1Φγ
β and

`

BI1LJ1Φγ
β

˘

θJ2δγJ 12
and J1 ` J2 “ J ,

which yields (D.8). Note that θJ2δγJ 12
are constants, so that

B
I3LJ3

`

B
I1LJ1Φγ

βθ
J2δ
γJ 12

˘

“ θJ2δγJ 12
B
I3LJ3BI1LJ1Φγ

β.

By definition, Φγ
β is a homogeneous function of degree zero, so that BI1LJ1Φγ

β is again

homogeneous but with degree ď 0. We thus arrive at (D.9). �

Lemma D.4 (Algebraic decomposition of commutators. IV). One has

(D.10) rLI , Bcs “
ÿ

|J |ă|I|

σIacJBaL
J ,

where the coefficients σIacJ are smooth functions and satisfy (in K)

(D.11)
ˇ

ˇB
I1LJ1σIacJ

ˇ

ˇ ď Cp|I|, |J |, |I1|, |J1|qt
´|I1|.

Proof. This is also by induction. Again, when |I| “ 1, (D.10) together with (D.11) are

guaranteed by (D.4). Assume that (D.10) and (D.11) hold for |I| ď m, we will prove that
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they are valid for |I| “ m` 1. We take LI “ LaL
J with |J | “ m, and obtain

rLI , Bcs “rLaL
J , Bcs “ La

`

rLJ , Bcs
˘

` rLa, BcsL
J

“La

ˆ

ÿ

|J 1|ă|J |

σJacJ 1BaL
J 1
˙

`Θb
acBbL

J

“
ÿ

|J 1|ă|J |

Laσ
Jb
cJ 1BbL

J 1
`

ÿ

|J 1|ă|J |

σJbcJ 1LaBbL
J 1
`Θb

acBbL
J ,

so that

rLI , Bcs “
ÿ

|J 1|ă|J |

Laσ
Jb
cJ 1BbL

J 1
`

ÿ

|J 1|ă|J |

σJbcJ 1BbLaL
J 1
`

ÿ

|J 1|ă|J |

σJbcJ 1rLa, BbsL
J 1
`Θb

acBbL
J

“
ÿ

|J 1|ă|J |

Laσ
Jb
cJ 1BbL

J 1
`

ÿ

|J 1|ă|J |

σJbcJ 1BbLaL
J 1
`

ÿ

|J 1|ă|J |

σJbcJ 1Θ
d
abBdL

J 1
`Θb

acBbL
J .

In each term the coefficients are homogeneous of degree 0 (by applying (D.11)), and the

desired result is proven. �

The following result is also checked by induction along the same lines as above, and so

its proof is omitted.

Lemma D.5 (Algebraic decomposition of commutators. V). One has

(D.12) rB
I , Bcs “ t´1

ÿ

|J |ď|I|

ρIcJB
J ,

where ρIcJ are smooth functions satisfying

(D.13)
ˇ

ˇB
I1LJ1ρIcJ

ˇ

ˇ ď Cp|I|, |J |, |I1|, |J1|qt
´|I1|.

The following statements are now immediate in view of (D.5), (D.6), and (D.10), and

(D.12).

Proposition D.6 (Estimates on commutators. I). For all sufficiently regular functions u

defined in the future cone K, one has

(D.14)
ˇ

ˇrB
ILJ , Bαsu

ˇ

ˇ ď Cp|I|, |J |q
ÿ

|J 1|ă|J |,β

|BβB
ILJ

1

u|,



STABILITY OF MINKOWSKI SPACE FOR SELF-GRAVITATING MASSIVE FIELDS 161

(D.15)
ˇ

ˇrB
ILJ , Bcsu

ˇ

ˇ ď Cp|I|, |J |q

˜

ÿ

|J1|ă|J|,a

|I1|ď|I|

|BaB
I 1LJ

1

u| ` t´1
ÿ

|I|ď|I1|

|J|ď|J1|

|B
I 1LJ

1

u|

¸

,

(D.16)
ˇ

ˇrB
ILJ , Bαus

ˇ

ˇ ď Cp|I|, |J |qt´1
ÿ

β,|I1|ă|I|

|J1|ď|J|

ˇ

ˇ

ˇ
BβB

I 1LJ
1

u
ˇ

ˇ

ˇ
` Cp|I|, |J |q

ÿ

β,|I1|ď|I|

|J1|ă|J|

ˇ

ˇ

ˇ
BβB

I 1LJ
1

u
ˇ

ˇ

ˇ
,

(D.17)
ˇ

ˇrB
ILJ , BαBβsu

ˇ

ˇ ď Cp|I|, |J |q
ÿ

γ,γ1

|I|ď|I1|,|J1|ă|I|

ˇ

ˇBγBγ1B
I 1LJ

1

u
ˇ

ˇ,

(D.18)
ˇ

ˇrB
ILJ , BaBβsu

ˇ

ˇ`
ˇ

ˇrB
ILJ , BαBbsu

ˇ

ˇ

ď Cp|I|, |J |q

˜

ÿ

c,γ,|I1|ď|I|

|J1|ă|J|

ˇ

ˇBcBγB
I 1LJ

1

u
ˇ

ˇ` t´1
ÿ

c,γ,|I1|ă|I|

|J1|ď|J|

ˇ

ˇBcBγB
I 1LJ

1

u
ˇ

ˇ` t´1
ÿ

γ,|I1|ď|I|

|J1|ď|J|

ˇ

ˇBγB
I 1LJ

1

u
ˇ

ˇ

¸

.

Further estimates will be also needed, as now stated.

Proposition D.7 ([Estimates on commutators. II). For all sufficiently regular functions

u defined in the future cone K, one has (for all I, J, α)

(D.19)
ˇ

ˇB
ILJ

`

ps{tqBαu
˘
ˇ

ˇ ď
ˇ

ˇps{tqBαB
ILJu

ˇ

ˇ` Cp|I|, |J |q
ÿ

β,|I1|ď|I|

|J1|ď|J|

ˇ

ˇps{tqBβB
I 1LJ

1

u
ˇ

ˇ.

Finally, recall from [39]) the following technical observation concerning products of first-

order linear operators with homogeneous coefficients of order 0 or 1.

Lemma D.8. For all multi-indices I, the function

ΞI,J :“ pt{sqBILJps{tq,

defined in the closed cone K “ t|x| ď t ´ 1u, is smooth and all of its derivatives (of any

order) are bounded in K. Furthermore, it is homogeneous of degree η with η ď 0.
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