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2 PHILIPPE G. LEFLOCH AND YUE MA

PREFACE.

The theory presented in this Monograph establishes the first mathematically rigorous
result on the global nonlinear stability of self-gravitating matter under small perturbations.
Indeed, it allows us to exclude the existence of dynamically unstable, self-gravitating mas-
sive fields and, therefore, solves a long-standing open problem in General Relativity.

We establish that Minkowski spacetime is nonlinearly stable in presence of a massive
scalar field under suitable smallness conditions (for, otherwise, black holes might form). We
formulate the initial value problem for the Einstein-massive scalar field equations, when the
initial slice is a perturbation of an asymptotically flat, spacelike hypersurface in Minkowski
space, and we prove that this perturbation disperses in future timelike directions so that
the associated Cauchy development is future geodesically complete.

Our method of proof which we refer to as the Hyperboloidal Foliation Method, extends
the standard ‘vector field method’ developed for massless fields and, importantly, does not
use the scaling vector field of Minkowski space. We construct a foliation (of the interior
of a light cone) by spacelike and asymptotically hyperboloidal hypersurfaces and we rely
on a decomposition of the Einstein equations expressed in wave gauge and in a semi-
hyperboloidal frame, in a sense defined in this Monograph. We focus here on the problem
of the evolution of a spatially compact matter field, and we consider initial data coinciding,
in a neighborhood of spacelike infinity, with a spacelike slice of Schwarzschild spacetime.
We express the Einstein equations as a system of coupled nonlinear wave-Klein-Gordon
equations (with differential constraints) posed on a curved space (whose metric is one of
the unknowns).

The main challenge is to establish a global-in-time existence theory for coupled wave-
Klein-Gordon systems in Sobolev-type spaces defined from the translations and the boosts

of Minkowski spacetime, only. To this end, we rely on the following novel and robust
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techniques: new commutator estimates for hyperboloidal frames, sharp decay estimates for
wave and Klein-Gordon equations, Sobolev and Hardy inequalities along the hyperboloidal
foliation, quasi-null hyperboloidal structure of the Einstein equations, as well as integration
arguments along characteristics and radial rays. Our proof also relies on an iterative
procedure involving the components of the metric and the Klein-Gordon field, and on a
hierarchy of low- and high-order energy estimates, which distinguishes between the metric
components and between several levels of time dependency and regularity for the metric

coefficients and the massive field.

Philippe G. LeFloch (Paris) and Yue Ma (Xi'an)
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1. INTRODUCTION

1.1. The nonlinear stability problem for the Einstein-Klein-Gordon system. We
consider Einstein’s field equations of General Relativity for self-gravitating massive scalar
fields and formulate the initial value problem when the initial data set is a perturbation of
an asymptotically flat, spacelike hypersurface in Minkowski spacetime. We then establish
the existence of an Einstein development associated with this initial data set, which is
proven to be an asymptotically flat and future geodesically complete spacetime. Recall
that, in the case of vacuum spacetimes or massless scalar fields, such a nonlinear stability
theory for Minkowski spacetime was first established by Christodoulou and Klainerman
in their breakthrough work [12], which was later revisited by Lindblad and Rodnianski
[46] via an alternative approach. Partial results on the global existence problem for the
Einstein equations was also obtained earlier by Friedrich [22, 23].

Let us emphasize that the vacuum Einstein equations are currently under particularly
active development: this is illustrated by the recent contributions by Christodoulou [11] and
Klainerman and Rodnianski [36] (on the formation of trapped surfaces) and by Klainerman,
Rodnianski and Szeftel [37] (on the L? curvature theorem). The Einstein equations coupled
with massless fields such as the Maxwell field were also extensively studied; see for instance
Bieri and Zipser [6] and Speck [54]; existence under slow decay conditions was established
by Bieri [6].

The present Monograph offers a new method for the global analysis of the Einstein
equations, which we refer to as the Hyperboloidal Foliation Method and allows us to
investigate the global dynamics of massive fields and, especially, the coupling between
wave and Klein-Gordon equations. This method was first outlined in [39, 41], together
with references to earlier works, especially by Friedrich [22, 23], Klainerman [33], and
Hoérmander [27]. We hope that the present contribution will open a further direction of
research concerning matter spacetimes, which need not be not Ricci-flat and may contain
massive fields. In this direction, we refer to LeFloch et al. [5, 8, 25, 38, 43] for existence

results on weakly regular matter spacetimes.
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The nonlinear stability problem for self-gravitating massive fields, solved in the present
Monograph!, was a long-standing open problem for the past twenty five years since the
publication of Christodoulou-Klainerman’s book [12]. In the physics literature, blow-up
mechanisms were proposed which suggest possible instabilities for self-gravitating mas-
sive fields. While the most recent numerical investigations [49] gave some confidence that
Minkowski spacetime should be nonlinearly stable, the present work provides the first
mathematically rigorous proof that dynamically unstable solutions to the Finstein equa-
tions do not exist in presence of massive fields (under suitable smallness conditions specified
below). On the other hand, nonlinear stability would not hold when the mass is sufficiently
large, since trapped surfaces and presumably black holes form from (large) perturbations
of Minkowski spacetime [11].

Mathematically, the problem under consideration can be formulated (in the so-called
wave gauge, see below) as a quasilinear system of coupled nonlinear wave-Klein-Gordon
equations, supplemented with differential constraints and posed on a curved spacetime.
The spacetime (Lorentzian) metric together with the scalar field defined on this spacetime
are the unknowns of the Einstein-matter system. The Hyperboloidal Foliation Method
introduced in this Monograph leads us to a global-in-time theory for this wave-Klein-
Gordon system when initial data are provided on a spacelike hypersurface. Our proof is
based on a substantial modification of the so-called vector field method, which have been
applied to massless problems, only. Importantly, we do not use the scaling vector field of
Minkowski spacetime, which is required to be able to handle Klein-Gordon equations.

In order to simplify the presentation of the method, in this Monograph we are inter-
ested in spatially compact matter fields and, therefore, we assume that the initial data
coincide, in a neighborhood of spacelike infinity, with an asymptotically flat spacelike slice
of Schwarzschild spacetime in wave coordinates. Our proof relies on several novel con-

tributions: sharp time-decay estimates for wave equations and Klein-Gordon equations

IWe present here our method for a restricted class of initial data, while more general data as well as

the theory of f(R)-modified gravity are treated in [42].
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on a curved spacetime, Sobolev and Hardy’s inequalities on hyperboloids, quasi-null hy-
perboloidal structure of the Einstein equations and estimates based on integration along
characteristics and radial rays. We also distinguish between low- and high-order energies
for the metric coefficients and the massive field.

We refer to [39, 40, 41] for earlier work by the authors and to the companion work [42] for
an extension to more general data and to the theory of modified gravity. We focus on (3+1)-
dimensional problems since this is the dimension of main interest. As already mentioned,
in the context of the Einstein equations, hyperboloidal foliations were introduced first by
Friedrich [22, 23]. Of course, hyperboloidal foliations can be introduced in any number of
dimensions, and should also lead to interesting results (see [47] in (2 + 1) dimensions), but
we do not pursue this here since the Einstein equations have rather different properties in
these other dimensions.

For a different approach to the nonlinear stability of massive fields, we refer the reader to
an ongoing research project by Q. Wang (outlined in ArXiv:1607.01466) which is aimed at
generalizing Christodoulou-Klainerman’s geometric method. An important recent devel-
opment is provided by Fajman, Joudioux, and Smulevici [18, 19], who recently introduced
a new vector field method based on a hyperboloidal foliation and aimed at dealing with
global existence problems for massive kinetic equations; for this technique, we also refer to
Smulevici [53]. Hyperboloidal foliations are also useful to analyze the blow-up of solutions
for, for instance, focusing wave equations, as investigated by Burtscher and Donninger [7].

Furthermore, we also recall that nonlinear wave equations of Klein-Gordon-type posed
on possibly curved spacetimes have been the subject of extensive research in the past
two decades, and we will not try to review this vast literature and we refer the interested
reader to, for instance, Bachelot [3, 4], Delort et al. [16, 17], Katayama [30, 31], and Shatah
[51, 52], as well as Germain [24] and Tonescu and Pasauder [29]; see also [27, 28, 55] and the
references cited therein. Importantly, the use of hyperboloidal foliations leads to robust
and efficient numerical methods, as demonstrated by a variety of approaches by Ansorg
and Macedo [1], Frauendiener [20, 21], Hilditch et al. [26, 56], Moncrief and Rinne [48],
Rinne [50], and Zenginoglu [57, 58].
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1.2. Statement of the main result. We thus consider the FEinstein equations for an

unknown spacetime (M, g), that is,
R
(1.1) Gag = Raﬁ — Ega/g = 87TTa5,

where R,s denotes the Ricci curvature of (M,g), R = g’ R,z its scalar curvature, and
Gap is referred to as the Einstein tensor. Our main unknown in (1.1) is a Lorentzian
metric g, defined on a topological 4-manifold M. By convention, Greek indices «, 3, ...
take values 0, 1,2, 3, while Latin indices i, j, . . . takes values 1, 2, 3 (as, for instance, in (1.5)
below). In this work, we are interested in non-vacuum spacetimes when the matter content
is described by a massive scalar field denoted by ¢ : M — R with potential V' = V(o).

The stress-energy tensor of such a field reads
1
(1.2) Tag i= VadVs0 = (V2676 + V(6) ) gus.

Recall that from the contracted Bianchi identities VG5 = 0, we can derive an evolution
equation for the scalar field and, in turn, formulate the Einstein—massive field system as

the system of quasilinear partial differential equations (in any choice of coordinates at this

stage)
(1.3a) Rag = 87(VadVso + V(9) gas),
(1.3b) 6= V'(6) = 0.

Without loss of generality, throughout we assume that the potential is quadratic in ¢, i.e.

(1.4) V(p) = 5¢°,

where ¢? > 0 is referred to as the mass density of the scalar field. The equation (1.3b) is
nothing but a Klein-Gordon equation posed on an (unknown) curved spacetime.

The Cauchy problem for the Einstein equations can be formulated as follows; cf., for
instance, Choquet-Bruhat’s textbook [9]. First of all, let us recall that an initial data set
for the Einstein equations consists of a Riemannian 3-manifold (M,g), a symmetric 2-

tensor field K defined on M, and two scalar fields ¢y and ¢, also defined on M. A Cauchy
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development of the initial data set (M, g, K, ¢o, 1), by definition, is a (3 + 1)-dimensional

Lorentzian manifold (M, g) satisfying the following two properties:

e There exists an embedding i : M — M such that the (pull-back) induced metric
i*(g) = g coincides with the prescribed metric g, while the second fundamental form

of i(M) < M coincides with the prescribed 2-tensor K. In addition, by denoting
by n the (future-oriented) unit normal to i(M), the restriction (to the hypersurface
i(M)) of the field ¢ and its Lie derivative £,¢ coincides with the data ¢y and ¢
respectively.

e The manifold (M, g) satisfies the Einstein equations (1.3a) and, consequently, the

scalar field ¢ satisfies the Klein-Gordon equation (1.3b).

As is well-known, in order to fulfill the equations (1.3a), the initial data set cannot be

arbitrary but must satisfy Einstein’s constraint equations:
(15) FL - Kij Kij + (Kf)2 = 87TT00, VILK” - v]Kll = 87TTOj,

where R and V are the scalar curvature and Levi-Civita connection of the manifold (M, g),
respectively, while the mass-energy density Ty and the momentum vector Tj,; are deter-
mined from the data ¢, ¢; (in view of the expression (1.2) of the stress-energy tensor).

Our main result established in the present Monograph can be stated as follows.

Theorem 1.1 (Nonlinear stability of Minkowski spacetime for self-gravitating massive
fields. Geometric version). Consider the Einstein-massive field system (1.3) when the ini-
tial data set (M,q, K, ¢o, ¢1) satisfies Einstein’s constraint equations (1.5) and is close
to an asymptotically flat slice of the (vacuum) Minkowski spacetime and, more precisely,
coincides in a neighborhood of spacelike infinity with a spacelike slice of a Schwarzschild
spacetime with sufficiently small ADM mass. The corresponding initial value problem ad-
mits a globally hyperbolic Cauchy development, which represents an asymptotically flat and

future geodesically complete spacetime.

We observe that the existence of initial data sets satisfying the conditions above was

established by Corvino and Schoen [15]; see also Chrusciel and Delay [14] and the recent
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review [13]. Although the main focus therein is on vacuum spacetimes, it is straightforward
to include matter fields by observing® that classical existence theorems [9] provide the
existence of non-trivial initial data in the “interior region” and that Corvino-Schoen’s
glueing construction is purely local in space.

We are going to formulate the Einstein-massive field system as coupled partial differential
equations. This is achieved by introducing wave coordinates denoted by z¢, satisfying the
wave equation [J,z® =0 (a = 0,...,3). From (1.3), we will see that, in wave coordinates,
the Ricci curvature operator reduces to the wave operator on the metric coefficients and,

in fact, (cf. Lemma 4.1, below)

(1.6a) Clohas = Fap(h; 0h, 0h) — 1670,003¢ — 167V (6)gus,

(1.6b) o — V'(9) = 0,

where ﬁg = g 0a0p is referred to as the reduced wave operator, and hog := gag — Map
denotes the curved part of the unknown metric. The nonlinear terms F,z(h; dh, 0h) are
quadratic in first-order derivatives of the metric. Of course, that the system (1.6) must
be supplemented with Einstein’s constraints (1.5) as well as the wave gauge conditions
[Jyz® = 0, which both are first-order differential constraints on the metric.

In order to establish a global-in-time existence theory for the above system, several major

challenges are overcome in the present work:

e Most importantly, we cannot use the scaling vector field S := rd, + td;, since the
Klein-Gordon equation is not kept conformally invariant by this vector field.

e In addition to null terms which are standard in the theory of quasilinear wave
equations, in the nonlinearity Fi,z(h; dh, 0h) we must also handle quasi-null terms,
as we call them, which will be controlled by relying on the wave gauge condition.

e The structure of the nonlinearities in the Einstein equations must be carefully

studied in order to exclude instabilities that may be induced by the massive scalar

field.

IThe authors thank J. Corvino for pointing this out to them.
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In addition to the refined estimates on the commutators for hyperboloidal frames! and the
sharp L*-L* estimates for wave equations and Klein-Gordon equations already introduced
by the authors in the first part [41], we need the following new arguments of proof (further

discussed below):

e Formulation of the Einstein equations in wave gauge in the semi-hyperboloidal
frame.

e Energy estimates at arbitrary order on a background Schwarzschild space in wave
gauge.

e Refined estimates for nonlinear wave equations, that are established by integration
along characteristics or radial rays.

e Estimates of quasi-null terms in wave gauge, for which we rely on, both, the tensorial
structure of the Einstein equations and the wave gauge condition.

e New weighted Hardy inequality along the hyperboloidal foliation.

A precise outline of the content of this Monograph will be given at the end of the following

section, after introducing further notation.
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'A fundamental observation in [39] is that commutators of hyperboloidal frames and Lorentz boosts
enjoy good properties, which had not been observed in earlier works on the subject. In the notation

presented below, this is especially true of [L, (s/t)0;] and [Ly, 0].
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in General Relativity’ hold in January 2015 and organized by M. Anderson, S. Klainerman,
P.G. LeFloch, and J. Speck.

2. OVERVIEW OF THE HYPERBOLOIDAL FOLIATION METHOD

2.1. The semi-hyperboloidal frame and the hyperboloidal frame. Consider the (3+
1)-dimensional Minkowski spacetime with signature (—, 4+, +, +). In Cartesian coordinates,
we write (t,z) = (2° 2!, 22, 2%) with r? := |z|* = (2')? + (2?)? + (2%)?, and we use the

partial derivative fields dy and 0,, as well as the Lorentz boosts L, := 2%0; + td, and their

La

o = “”Ta@t + 0,. We primarily deal with functions defined in the

“normalized” version

interior of the future light cone from the point (1,0,0,0), denoted by
K:={(t,z)/r<t—1}.

To foliate this domain, we consider the hyperboloidal hypersurfaces with hyperbolic radius

s > 0, defined by
H = {(t,x) /? —1* =5 ¢>0}

with s > 1. In particular, we can introduce the following subset of K limited by two

hyperboloids (with sy < s1)
Kisosa] i= {(t,7) /2 <P =12 <%y r<t—1}

whose boundary contains a section of the light cone X.

With these notations, the semi-hyperboloidal frame is, by definition,
(2.1) dyi=10yy 0, = %at 0, a=1,2,3

Note that the three vectors ¢, generate the tangent space to the hyperboloids. For some
of our statements (for instance in Proposition 3.15), It will be convenient to also use the
vector field 0, := 0y + %&L, which is orthogonal to the hyperboloids (and is proportional
to the scaling vector field).

Furthermore, given a multi-index I = (av,, a1, ..., 1) with «; € {0, 1,2, 3}, we use the

notation 0! := 0,0, _, - --0a, for the product of n partial derivatives and, similarly, for
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J = (an,an_1,...,a1) with a; € {1,2,3} we write L7 = L, L,, , ... L, for the product of
n Lorentz boosts.

Associated with the semi-hyperboloidal frame, one has the dual frame 6° := dt — % dx®,
0% := dx®. The (dual) semi-hyperboloidal frame and the (dual) natural Cartesian frame
are related via

0, =PY0y, 0o=UY0 0% = U da®,  da® = d%0”,

a’

in which the transition matrix (@g) and its inverse (\Ilg) are

1 0 0 0 1 0 0 0
2t 1 0 0 —z'/t 10 0
(22) = , (v2) =
22t 0 1 0 —z*/t 0 1 0
2?0 0 1 —z*/t 0 0 1

With this notation, for any two-tensor T,z dz® ® dx” = T,50"® 0%, we can write T.,5=

Talﬁ@g/fbg/ and Thg = T, a,ﬂ,\lfgl\lfg/. We also have the similar decompositions T =
13l ﬁ el B

TP 0%, ®, and T = TP W, W5,

Lemma 2.1 (Decomposition of the wave operator). For every smooth function u defined

in the future light-cone X, the flat wave operator in the semi-hyperboloidal frame reads

3

52 x?
(2.2) T 7(6téau +0,00u) + Z 2,0,u.

Within the future cone X, we introduce the change of variables 7° = s := v/t2 — 72 and

T = x® and the associated frame which we refer to as the hyperboloidal frame :

_ =0 2 _ .2 _ —=a a
(23) Fy=o=t0="0= M B i B = Coa="0+a
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The transition matrices between the hyperboloidal frame and the Cartesian frame read

s/t 00 0 t/s 00 0
1 1
8 '/t 1.0 0 — 3 — B 1 —z'/s 1 0 0
((I)a) = 9 ) (\Ila) = ((I)a) = ) )
z*/t 0 1 0 —z?/s 0 1 0
»/t 0 0 1 —23/s 0 0 1

so that d, = 5585 and 0, = @555. Observe also that the dual hyperboloidal frame is
dz’ := ds = L dt — " da* and dz* := da”, while the Minkowski metric in the hyperboloidal

frame reads

—-1 —xl/s  —2?/s  —a3/s
- —al/s 1 0 0
ey = | ™
—x%/s 0 1 0
—3/s 0 0 1

A given tensor can be expressed in any of the above three frames: the standard frame
{0a}, the semi-hyperboloidal frame {d,}, and the hyperboloidal frame {d,}. We use Ro-
man letters, underlined Roman letters and overlined Roman letters for the correspond-
ing components of a tensor expressed in different frame. For example, T*?9, ® d5 also
reads 790, ® 0 = T 0, ®05 = Taﬁga ® 0g, where T — @z,ﬁg,Talﬁl and, moreover,
by setting M := max,g |T*?|, in the hyperboloidal frame we have the uniform bounds!

(s/t)2 T + (s/t) T | + [T"| < M.

2.2. Spacetime foliation and initial data set. We now discuss the construction of the
initial data by following the notation in [9, Sections V1.2 and VI.3]. We are interested in a
time-oriented spacetime (M, g) that is endowed with a Lorentzian metric g with signature
(—, +, +,+) and admits a global foliation by spacelike hypersurfaces M; ~ {t} x R3. The
foliation is determined by a time function ¢ : M — [0, +00). We introduce local coordinates
adapted to the above product structure, that is, (z®) = (2 = ¢,2%), and we choose the
basis of vectors (0;) as the ‘natural frame’ of each slice M;, and this also defines the ‘natural

'Here and in the rest of this paper, the notation A < B is used when A < CB and C is already known

to be bounded (at the stage of the analysis).
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frame’ (04, 0;) on the spacetime M. By definition, the ‘Cauchy adapted frame’ is e; = 0;
and ey = 0, — 3°0;, where 8 = B0; is a time-dependent field, tangent to M, and is called
the shift vector, and we impose the restriction that ey is orthogonal to each hypersurface
M;. The dual frame (6%) of the Cauchy adapted frame (e,), by definition, is #° := dt and

0" := da' + B'dt and the spacetime metric reads
(2.4) g=—N?0" + g,;0'0",

where the function N > 0 is referred to as the lapse function of the foliation.

We denote by g = g, the induced Riemannian metric associated with the slices M; and
by V the Levi-Civita connection of §g. We also introduce the second fundamental form
K = K, defined by

K(X,Y):=—g(Vxn,Y)

for all vectors X,Y tangent to the slices M;, where n denotes the future-oriented, unit
normal to the slices. In the Cauchy adapted frame, it reads
1
Kij = “oN <<€0> 9ijy — g1 0B — gizaj5l>~
Here, we use the notation (e, g;;) for the action of the vector field ey on the function g;;.
Next, we define the time-operator Dy acting on a two-tensor defined on the slice M, by
DoT;; = {eg, Tijy—T1;0;8' — T0; 8", which is again a two-tensor on M,. With this notation,
we have
1

K =———D,q.
ON 09

In order to express the field equations (1.3) as a system of partial differential equa-
tions (PDE) in wave coordinates, we need first to turn the geometric initial data set
(M,g, K, ¢o, ¢1) into a “PDE initial data set”. Since the equations are second-order, we
need to know the data gaslp—2y = 90,08, Ot9aslit=21 = G108, Pli—2y = G0, OePly—2y = 1,
that is, the metric and the scalar field and their time derivative evaluated on the initial
hypersurface {¢ = 2}. We claim that these data can be precisely determined from the
prescribed geometric data (g, K, ¢g, ¢1), as follows. The PDE initial data satisfy:

e 4 Gauss-Codazzi equations which form the system of Einstein’s constraints, and
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e 4 equations deduced from the (restriction of the) wave gauge condition.

For the PDE initial data we have to determine 22 components, and the geometric initial
data provide us with (§,, Kap, 0, ¢1), that is, 14 components in total. The remaining
degrees of freedom are exactly determined by the above 8 equations. The well-posedness
of the system composed by the above 8 equations is a trivial property. In this work, we are
concerned with the evolution part of the Einstein equations and our discussion is naturally
based directly on the PDE initial data set.

The initial data sets considered in the present article are taken to be “near” initial
data sets generating the Minkowski metric (i.e. without matter field). More precisely, we
consider initial data sets which coincide, outside a spatially compact set {|z| < 1}, with an
asymptotically flat, spacelike hypersurface in a Schwarzschild spacetime with sufficiently
small ADM mass. The following observation is in order. The main challenge overcome
by the hyperboloidal foliation method applied to (1.6) concerns the part of the solution
supported in the region K[ ;o or, more precisely, the global evolution of initial data posed
on an asymptotically hyperbolic hypersurface. (See [42] for further details.) To guarantee
this, the initial data posed on the hypersurface {¢t = 2} should have its support contained
in the unit ball {r < 1}. Of course, in view of the positive mass theorem (associated with
the constraint equation (1.5)), admissible non-trivial initial data must have a non-trivial

tail at spatial infinity, that is,

(25) mg = lim (@gw - @gﬂ)nzdﬁl,

7——+00 D)
T

where n is the outward unit norm to the sphere ¥, with radius r. Therefore, an initial
data (unless it identically vanishes) cannot be supported in a compact region.

To bypass this difficulty, we make the following observation: first, the Schwarzschild
spacetime provides us with an exact solution to (1.3), that is, the equations (1.6) (when
expressed with wave coordinates). So, we assume that our initial data gy and g; coincide

with the restriction of the Schwarzschild metric and its time derivative, respectively (again



STABILITY OF MINKOWSKI SPACE FOR SELF-GRAVITATING MASSIVE FIELDS 19

in wave coordinates) on the initial hypersurface {t = 2} outside the unit ball {r < 1}. Out-
side the region Ky ; ), we prove that the solution coincides with Schwarzschild spacetime
and the global existence problem can be posed in the region X ;).

We can also formulate the Cauchy problem directly with initial data posed on a hy-
perboloidal hypersurface. This appears to be, both, geometrically and physically natural.
As we demonstrated earlier in [39], the analysis of nonlinear wave equations is also more
natural in such a setup and may lead us to uniform bounds for the energy of the solutions.
Yet another approach would be to pose the Cauchy problem on a light cone, but while it
is physically appealing, such a formulation would introduce spurious technical difficulties
(i.e. the regularity at the tip of the cone) and does not appear to be very convenient from
the analysis viewpoint.

The Schwarzschild metric in standard wave coordinates (z°, 2!, 2% %) takes the form
(cf. [2]):

r—mg T+ mg (r + mg)*
) 9Sab = WaWp + 2
T+ mg r—mg r

(2-6) g9soo = — (5ab - Wawb)

with w, := z,/r. Furthermore, in order to distinguish between the behavior in the small
and in the large, we introduce a smooth cut-off function x : R* — R (fixed once for all)

satisfying x(7) = 0 for 7 € [0,1/3] while x(7) = 1 for 7 € [2/3, +0).

Definition 2.2. An initial data set for the Einstein-massive field system posed on the
initial hypersurface {t = 2} is said to be a spatially compact perturbation of Schwarzschild
spacetime or a compact Schwarzschild perturbation, in short, if outside a compact set it

coincides with the (vacuum) Schwarzschild space.

The proof of the following result is postponed to Section 4.2, after investigating the

nonlinear structure of the Einstein-massive field system.

Proposition 2.3. Let (gas, ¢) be a solution to the system (1.6) whose initial data is a
compact Schwarzschild perturbation, then (gas — gsa@) 15 supported in the region X and
vanishes in a neighborhood of the boundary opX := {r =t —1,t > 2}.
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2.3. Coordinate formulation of the nonlinear stability property. We introduce the

restriction
H:=H,nK

of the hyperboloid to the light cone and we consider the energy functionals

2 a
E,2(s,u): = J < — g%0u|?® + g**0,udpu + Z %g“ﬂ@gu&tu + 02u2) dx,

* a 22 a
Ej 2(s,u) = L{* ( — ¢™|0ul?* + g**0,udpu + Z —~ 9 P Ogudyu + 02u2> dz,
and, for the flat Minkowski background,

2 a
Eye2(s,u) = J <|6tu|2 + Z |Oul® + Z %é‘au@u + 02u2> dx,
J{s a a

2z°
Me(s,u) = L(? <|(7tu|2 + Za] |Oaul? + Za: Tﬁauatu + cqu) dz.
We have the alternative form

Eye(s,u) = f ((s/t)2|(3tu|2 + Z 10, ul?* + 02u2> dx
H a

s

- f <|é’tu + (2% /) 0,ul? + Z [t~ Qupul* + 02u2> dx,
H

s a<b

where Qg 1= 2%0, — 20, denotes the spatial rotations. When the parameter c is taken to
vanish, we also use the short-hand notation £ (s, u) := Ej,(s,u) and Eg(s,u) := E,o(s, u).
In addition, for all p € [1,400), the L? norms on the hyperboloids endowed with the (flat)

measure dx are denoted by
Hu||’z?(}(s) = f |ulPdz = J lu(vs? +12,2)[da
s R3
and the L norms on the interior of 3, by
||u||72p(}f;k) = J |ulPdr = f lu(Vs? + 12, z) ‘pdx.
HsnX r<(s2—1)/2

We are now in a position to state our main result for the Einstein system (1.6). The

principal part of our system is the reduced wave operator associated with the curved metric
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g and we can write the decomposition
(2.7) [y = 9*70,05 = [+ H* 0,04,

in which H*? := m®? — g°f are functions of h = (h,s). When h is sufficiently small, H*(h)
can be expressed as a power series in the components h,g and vanishes at first-order at
the origin. Our analysis will (only) use the translation and boost Killing fields associated

with the flat wave operator [] in the coordinates under consideration.

Theorem 2.4 (Nonlinear stability of Minkowski spacetime for self-gravitating massive
fields. Formulation in coordinates). Consider the Finstein-massive field equations (1.6)

together with an initial data set satisfying the constraints and prescribed on the hypersurface

{t = 2):
ga,@’{t=2} = 4o,a8, atgocﬂ|{t=2} = 91,08,

Pl=2y = o, Ot @lii—2y = o1,

(2.8)

which, on {t = 2} outside the unit ball {r < 1}, is assumed to coincide with the restriction

of Schwarzschild spacetime of mass mg (in the wave gauge (2.6)), i.e.

ga,@(27 ) = 9Sap> atgoz,B(27 ) = ¢<27 ) = at¢(27 ) =0 n {’r = |£L’| = 1}'

Then, for any sufficiently large integer N, there exist constants g, C1,0 > 0 and such that

provided

(2.9) D 109008, 910l ety + 160l v rery + 01l v rary +ms < e < o
a7ﬁ

holds at the initial time, then the solution associated with the initial data (2.8) ezists for

all times t = 2 and, furthermore,
Ep(s,0" L7 hap)V? < Ces’, 11| + |J] < N,
(2.10) Enpe(s, 0" L7 9)'? < Cres® 12, 1]+ |J] < N,

Epe2(s,0"L79)? < Ches’, 11|+ |J] < N — 4.
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2.4. Bootstrap argument and construction of the initial data. We will rely on a
bootstrap argument, which can be sketched as follows. We begin with our main system
(1.6) supplemented with initial data on the initial hyperboloid H, that is, gas|cs Ordas|stss
®lac,, and Oy|sc,. First of all, since the initial data is posed on {t = 2} and is sufficiently
small, we need first to construct its restriction on the initial hyperboloid H,. Since the
data are compactly supported, this is immediate by the standard local existence theorem
(see [39, Chap. 11] for the details). We also observe that when the initial data posed on
{t = 2} are sufficiently small, i.e. (2.9) holds, then the corresponding data on H, satisfies
the bounds

H&aélLJhaﬁHLz(g{;) + HataILJhaﬁnLQ(g{;) < Cy g, |]| + |J| < N,
[0"L7 @l L2ez) + 000" L7 @l 295y < Coe, | +]J| < N.
We outline here the bootstrap argument and refer to [39, Section 2.4] for further details.

Throughout we fix a sufficiently large integer N and we proceed by assuming that the

following energy bounds have been established within a hyperbolic time interval [2, s*]:

Ep(s,0' L7 hap)V? < Cies’, N -3<|I|+|J| <N,
(2.11a)
Enpe(s,0'L7 ¢)V? < Cyest?H9, N -3<|I|+|J| <N,
(2.11Db) Eni(s,0' L7 hog)V? + Eppea(s, 0" L7 9)? < Cies®,  |I| +|J| < N —4,

and, more precisely, we choose
s* 1= sup {sl | for all 2 < s < 1, the bounds (2.11) hold}.

Since standard arguments for local existence do apply (see [39, Chap. 11]) and, clearly, s*
is not trivial in the sense that, if we choose C; > Cj, then by continuity we have s* > 2.

By continuity, when s = s* at least one of the following equalities holds:
Eni(s,0" L7 hap)'/? = Cyes’, N =3 <|I|+|J] <N,
(2.12) Ene2(s,0'L7¢)V? = Crest?+0, N -3 <|I|+|J] <N,

Eni(8,0"L7 hog)V? + Eppe2(s,0"L7 ¢)'/? = Cyes®, [I| +]J| < N — 4.
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Our main task for the rest of this work is to derive from (2.11) the improved energy bounds

(2.13)
1
Ep(s,0' L7 hap)V? < 501885, N =3 <|I|+|J] <N,
1
Eze(s, 0 L7 9)? < 501551/2“5, N—-3<|I|+]J] <N,
1
En(s, 0" L7 hop)? + Eppe2(s, 0'L7 )2 < 501555, [I| +]J| < N — 4.

By comparing with (2.12), we will be able to conclude that the interval [2, s*] extends to
the maximal time of existence of the local solution. Then by a standard local existence

argument, this local solution extends to all time values s.

2.5. Outline of the Monograph. We must therefore derive the improved energy bounds
(2.13) and, to this end, the rest of this work is organized as follows. In Section 3, we begin by
presenting various analytical tools which are required for the analysis of (general functions
or) solutions defined on the hyperboloidal foliation. In particular, we establish first an
energy estimate for wave equations and Klein-Gordon equations on a curved spacetime,
then a sup-norm estimate based on characteristic integration, and next sharp L*—L%
estimates for wave equations and for Klein-Gordon equations, as well as Sobolev and
Hardy inequalities on hyperboloids.

In Section 4, we discuss the reduction of the Finstein-massive field system and we es-
tablish the quasi-null structure in wave gauge. We provide a classification of all relevant
nonlinearities arising in the problem and we carefully study the nonlinear structure of the
Einstein equations in the semi-hyperboloidal frame.

Next, in Section 5 we formulate our full list of bootstrap assumptions and we write
down basic estimates that directly follow from these assumptions. In Section 6, we are in
a position to provide a preliminary control of the nonlinearities of the Einstein equations
in the L? and L norms. In Section 7, we establish estimates which are tight to the wave

gauge condition.
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An estimate of the second-order derivatives of the metric coefficients is then derived
in Section 8, while in Section 9 we obtain a sup-norm estimate based on integration on
characteristics and we apply it to the control of quasi-null terms.

We are then able, in Section 10, to derive the low-order “refined” energy estimate for
the metric and next, in Section 11, to control the low-order sup-norm of the metric as well
as of the scalar field. In Section 12, we improve our bound on the high-order energy for
the metric components and the scalar field. In Section 13, based on this improved energy
bound at high-order, we establish high-order sup-norm estimates. Finally, in Section 14,
we improve the low-order energy bound on the scalar field and we conclude our bootstrap

argument.

3. FUNCTIONAL ANALYSIS ON HYPERBOLOIDS OF MINKOWSKI SPACETIME

3.1. Energy estimate on hyperboloids. In this section, we need to adapt the tech-
niques we introduced earlier in [39, 41] to the compact Schwarzschild perturbations under
consideration in the present Monograph, since these techniques were established for com-
pactly supported initial data. Here, the initial data is not supported in the unit ball but
coincides with Schwarzschild space outside the unit ball. As mentioned in the previous sec-
tion, the curved part of the metric (for a solution of the Einstein-massive field system with
a compact Schwarzschild perturbation) is not compactly supported in the light-cone X,
while the hyperboloidal energy estimate developed in [39] were assuming this. Therefore,

we need to revisit the energy estimate and take suitable boundary terms into account.

Proposition 3.1 (Energy estimate. I). Let (has, ¢) be a solution of the Einstein-massive
field system associated with an initial data set that is a compact Schwarzschild perturbation

with mass mg € (0,1). Assume that there exists a constant k > 1 such that

(3.1) KTLEE (s,u)Y? < E;(s,u)1/2 < kE (s, u)'?.
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Then, there exists a positive constant C' (depending upon N and k) such that the following
energy estimate holds (for all o, 3 < 3, and |I| + |J| < N):
(3.2)
En(s,0"L hog)'? < CEy(2,0"L” hog)'? + Cms + C f s 16" L Fog L2 gerydr
2

+C J: I[0"L7, H" 0,0, hag|| p2gexydT + C f Ms[0' L7 h)(7) dr
+C [ (10727 @uo2s0)ls + 102 (g0l )
in which Mys[0"L7h](s) is a positive function such that
- | (57010020 has)0( L has) = 50107 (0 L) 2, (01 L)
| < Mos[0" L7 0] (s)E3y(s, 0L hog) V2.

The proof of this estimate is done as follows: in the exterior part of the hyperboloid
(i.e. Hs N K°), the metric coincides with the Schwarzschild metric and we can calculate
the energy by an explicit expression. On the other hand, the interior part is bounded as

follows.

Lemma 3.2. Under the assumptions in Proposition 3.1, one has
(3.4)
E3/(5,0"L7hap)'? < CEX(2,0"L hag)'* + Cmg + (JJ Mes(7, 01 L7 hog) dr
2

+C [ 10'L Fuglipenydr + C [ 1101 10,0, haal e dr
2 2

+C [ (10'L(2u000) e + 101 (600a) e
2

Proof. We consider the wave equation g"*0,0,has = Fup— 16700030 —8mc* ¢ gop satisfied
by the curved part of the metric and differentiate it (with ¢’L/ with |I] + |J| < N):

9" 0,0,0" L7 hog = — [0"L7, H"0,0,]has + 0L Fop

— 16w L7 (0a¢ds¢) — 870" L7 (6% gags).
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Using the multiplier —,0’ L' h,3, we obtain the general identity

(3.5)
0r(— (1/2)g%|0:0" L hag|* + (1/2)g*° 000" L” hag0s0 L' hag) — 00 (9% 00" L7 hopdr0' L hap)

1
= iatgﬂ”aﬂafLJhaﬁ — 0,9" 0;0" L hap0,0" L hog
+ [0"L7, H" 0,0, hap0:i0" L hag — 0" L7 Fopoid’ L hag
+16m0" L7 (0a9030) 010" L7 hog + 87c?0" L7 (¢ gap) 010" L B
For simplicity, we write u = ¢’ L7 hog and W := (—(1/2)¢g%|0,ul*+(1/2)g*0,udyu, —g™ 0, ud,u)
for the energy flux, while
1
F :zéatgwauafﬂhaﬁ — 09" 0;0" L hop0,0" L hog
+ [0"L7, H" 0,0, hap0i0" L hag — 0" L F50:0" L hog
+16m0" L7 (009050) 0,0" L hag + 870" L7 (% gap) 010" L hogp.
Then, by defining Div with respect to the Euclidian metric on R*™, (3.5) reads DiviV = F

and we can next integrate this equation in the region X, and write SX[Q ; DiviVdzdt =

S%[Q J Fdxdt. In the left-hand side, we apply Stokes’ formula:

f DiviVdxdt = W - ndo + W - ndo + J W - ndo,
Ki2,] Ut ik B2,
where By 4 is the boundary of K[z 4, which is {(¢,z)|t =r+1,3/2<r < (s*—1)/2}. An

easy calculation shows that

JK DivV drdt = <Eg (5,0" L hop) — EX (2, afLJhaﬁ))
(3.6) 2]
+ J W - (=v/2/2,7/22%/2r)V/2r2drdwds,
3/2<r<(s2-1)/2 JS2?
where dw is the standard Lebesgue measure on S?. Recall that g,z = 9sqp 10 & neighbor-

hood of By 5. An explicit calculation shows that W = ((1/2)gS“bﬁaﬁlLJhgaﬁﬁbﬁlLJhgag, 0)
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on B . We have

J W - (=/2/2,V/2x%/2r) v/ 2r2drdw
3/2<r<(s2-1)/2 JS

(s2—1)/2
= —27rf 95" 040" L hg030p0" L hsopr?drds
3/2

with hgag 1= gs,.5 — Map. This leads us to

d
— W -ndo = —Es(s2 — 1)2ggab8aé’IL‘]h5aﬁé’b3[L‘]h5a5
dS B[2,s] 2 _52—1

Assuming that mg is sufficiently small, we see that
\gsabéaafL‘]hSaﬁab&IL‘]hSaﬁ} < C’m%r C’m2 _8, 3/2 <r

We have

4

7 C’m2 573,
§JBpa 4

(3.7) W -ndo| <

Now, we combine DiviV = F and (3.6) and differentiate in s:

1d d d
——FE*(s,0'L7h, —J W - nd ——f F dxdt
2ds e ﬂ)+ds B = s Ko v

which leads us to

E;‘(s,alL‘]ha )1/2; (EX (s, 0'L” hag)'?) = f W ndo + —J J (s/t)F dxds.
CH:*

Then, in view of (3.7) we have

£ o) d
(3.8) EX(s,0 L7 hop)'/? —

s (EX(s,0"L7hq 5)"?) <J (s/t)|F| dz + CmEs™
¥

27



28 PHILIPPE G. LEFLOCH AND YUE MA

In view of the notation and assumptions in Proposition 3.1, we have

L{* |(s/1)F| dz < Lc* |(s/)0:0" L hopd" LY Fyp|da

*k

+ f |(s/t)0:0" L hog[0" LY, H* 0,0, hag|dr + 167 J |(s/t)0;0" L” hogd' L7 (0npd50)| dx
HF H

s

+ 871c? J (/)0:0" L hagd" L7 (¢%gas) | dx + M[0"L7h](s) Ef (s, 0" L hog)'?
9%
< |(5/£)0:0" L” hag | 2 a0y (107 L7 Fag| 2oy + |07 L7 [H™ 0,0, hap 250t

+ C(s/£)00" L7 hap | 2 (90) (10" L7 (006 050) | 1290 + 10" L7 (6% 9ap) | 200t

+ M[0"L7h](s) Exy (5,0 L7 hap)"?,
so that

[ /051 d < €t 5.0 Lo (1078 Fasl iz + 10", 10,0, sl

+[0'L7 (0a0050) | L2oer) + 0" L7 (6 gas) |20ty + M[alLJh](S))
For simplicity, we write
L(s) : = |0'"L? Fagll 2ocry + |0" L7, [H" 0,0, ) haas] 2oty
10" L7 a0 |2ty + 10" L (6008) |iziocr) + M LR)(s)

and y(s) := E}(s,0' L7 hap)'?. In view of (3.1), we have
E3/(5,0" L7 hap)'? < CKE}(s,0" L7 hag)'/?

and (3.8) leads us to y(s)y'(s) = Cry(s)L(s) + Cm%s™3. By Lemma 3.3 stated shortly

below, we conclude that (with mg = ¢ and o = 2 therein)

y(s) <y(0) + Cmg + C%J L(s)ds.

2

By recalling (3.1), the above inequality leads us to (3.4). O
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Lemma 3.3. The nonlinear inequality y(7)y' (1) < g(7)y(7) + C*e*r~179, in which the
function y : [2,s] — RT is sufficiently regular, the function g is positive and locally inte-

grable, and C,e,0 are positive constants, implies the linear inequality

T

y(r) <y@)+Ce(l+07h) + f g(n)dn.

2
Proof. We denote by I = {7 € [2,s]|ly(s) > Ce}. In view of the continuity of y, I =
U,en(Zn N [2, s]) where I,, are open intervals disjoint from each other. For 7 ¢ I, y(7) < Ce.
For 7 € I, there exists some integer i such that 7 € I; n [2, s]. Let inf([; n [2,s]) = so = 2,
then on I,, N [2, 5],

(2:27—1-0

< g(1) 4+ Cer™ 170,
i <90

(1) <g(r)+

This leads us to

50 S0 50 2 2 2

and y(7) — y(so) < §; g(n)dn + Ceo™'. By continuity, either sq € (2,s) which leads us to
y(sg) = Ce, or else sg = 2 which leads us to y(sg) = y(2). Then, we obtain

T

y(7) < max{y(2),Ce} + Ceoc™" + J g(n)dn.

2

U

To complete the proof of Proposition 3.1, we need the following additional observation,

which is checked by an explicit calculation (omitted here).

Lemma 3.4. The following uniform estimate holds (for all a,«, 3, all relevant I,J, and
for some C = C(1,J))
(3.9) J 10,0" L hg op)*dx + J (5/1)|0:0" L hg 5’ dr < Cm.

HsnKe HsnKe

Proof of Proposition 3.1. We observe that

E,(s,0" L7 hap)

< EX(s,0' L’ hog) + C f

- 10,0" L hgop|*dx + f (/1)|0:0" L hgop|*da.

HsnXKe

f Yy (n)dn < f g(n)dn + CeJ s17%ds < J g(n)dn + C’ej sT17%ds < f g(n)dn + Ceo™

1
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Combining (3.4) with Lemma 3.4 allows us to complete the proof of (3.2). O

For all solutions to the Einstein-massive field system associated with compact Schwarzschild
perturbations, the scalar field ¢ is also supported in K. So the energy estimate for ¢ re-

mains identical to the one in [41].

Proposition 3.5 (Energy estimate. II). Under the assumptions in Proposition 3.1, the

scalar field ¢ satisfies

By (s, 0 L7 $)? < CF, 2(2,0"L7 ¢)"/?

(3.10) s s
+J [0"L7, H"0,0,)¢|dT + J M[o'L ¢](7) dr,
2 2

in which M[0'L’$](s) denotes a positive function such that

| @l @' re)a@’s) - J0g" 0,0 'L79)e, (0L o) da
(3.11) s

< M[0'LY §)(s) Enge2(s, 0" L7 ¢) V2.
3.2. Sup-norm estimate based on curved characteristic integration. We now re-
visit an important technical tool introduced first in Lindblad and Rodnianski [45]. This is
an L% estimate on the gradient of solutions to a wave equation posed in a curved back-

ground. For our problem, we must adapt this tool to the hyperboloidal foliation and we

begin by stating without proof the following identity.

Lemma 3.6 (Decomposition of the flat wave operator in the null frame). For every smooth
function u, the following identity holds:

(3.12) —Ou = r~"(0 + 0,) (0 — &) (ru) — Z (r' Q) “u

a<b

with Qg = 1°0y — 2°0, = 1%, — 2°0,, (defined earlier).

We then write ¢; = t%r(ﬁt —0p) + %Qa and thus

t2

9 t xtd, % t
(t+1)? (G = )" + t—l——?’(at —0r) (r(t + r)> * r(t + T)Qa (t + r(at B &))

( ot )2 0, — 0y
+ | ——=0, ] + :
r(t+r) t+r

0t8t =
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Consequently, we have found the decomposition

(3.13)
t2 9 2t2 -t :Eat
T&tﬁtu = m(at - 5r) (TU) + (t T 7“)2 (at - (3r>u + P T(at - 8T) (méau)
“ a 2 -
+ xot Qa t (at — (%)U +7r m—téa u + M
(t+r)*\t+r r(t + 1) P
t2

=: e (0 — 0,)*(ru) + Wilu).

On the other hand, the curved part of the reduced wave operator H*?0,05 can be

decomposed in the semi-hyperboloidal frame as follows:
HP0,05u = H*0,05u + H*?0, (0} )d4u
= H"0,00u + H*0,00u + H"0:0,u + H"0,0,u + H*? 0, (V5) 2 u.

The “good” part of the curved wave operator (i.e. terms containing one derivative tangen-

tial to the hyperboloids) is defined to be
(3.14) Rlu, H] := H*8,0,u + H™0,0,u + H™0,0,u + H*?8, (V3 ) 5u,

and, with this notation together with (3.13),

t2 HOO

(t+1)?

Then, by combining (3.12) for the flat wave operator and (3.15) for the curved part, we

(3.15) rH"0,05u = (0r — &) (0 — :) (rw)) + HWi[u] + rR[u, H].

reach the following conclusion.

Lemma 3.7 (Decomposition of the reduced wave operator [),). Let u be a smooth function

defined in R3*' and H*® be functions in R3TL. Then the following identity holds:

((at 0 — 2t + ) 2HY (@, — ar)) ((at - @)(ru))

= —r(Ju+r Z (r_lQab)zu + H°Wi[u] + rR[u, H|

a<b

(3.16)

with the notation above.
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Now we are ready to establish the desired estimate of this section. For convenience, we
set

50,51]

. 3 . .
KM= {(t,2)|r < St} NK, K o= {(tx) e K™ /5§ <t? —r? < 7}

and we denote by 8390[‘;3781] the following “boundary” of Kint

[s0,51]
ﬁBJCi[I;g’Sl] = {(t,x) /r = (3/5)t, (5/4)s0 < t < (5/4)s1}.

We will now prove the following sharp decay property for solutions to the wave equation

on a curved spacetime.

Proposition 3.8 (Sup-norm estimate based on characteristic integration). Let u be a
solution to the wave equation on curved spacetime —[Ju — H*90,05u = F, where H*® are
given functions. Given any point (to, xo), denote by (t, o(t;to, xo)) the integral curve of the

vector field
(t+7)*+ tQQOOa
(t+r)2—¢2H" "

passing through (ty, zo), that is, p(to;to, o) = xo. Then, there exist two positive constants

O +

g5 and ag = 2 such that fort = ag
(3.17) [H™| < e (t —r)/t,
then for all s = ag and (t,x) € fK\fKEgts] one has

(@ = outa) <t sup (16 = 2)ru)l) + Ct fult, @)

635(?21;] uoX

(3.18) , .
+ ¢! J TIF(T, (T3 t,))|dT + ! J \Ms[u, H|(rp(rit,20)dT,
ao

ao

where F = —u — H*?0,0su is the right-hand side of the wave equation,

Mlu, H] :=r Z (r’lQab)2u + HWi[u] + rR[u, H],

a<b
in which one can guarantee that the associated integral curve satisfies (1,¢(T;t,x)) €

:K\:ngfs] for 2 < ap < 7 < t, but (ag,p(ap;t,z)) € OBiKEm | Y 0K at the initial time

2,80

ag.
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Proof. Under the condition (3.17), the decomposition (3.16) can be rewritten in the form

2 r)—2 ;00
<6’t + 1 t ;Ei i 7’3_2&00 ar) ((at — @«)(Tu)) = L((at _ arxru))

_ 1Dt ¥ (171 0w) o WALl + rRw H]
a 1—12(t +r)-2H™ T

(3.19)

In other words, (3.19) reads £((¢, — 0,)(ru)) = F and by writing

Voo (£) 1= (& = 1) (rw)) (¢, @ (t: to, 7))

we have

d

7 Vto .o (t) = £((0r = 00)(rw) ) (£, (t; to, o)) = F(t, (t; to, 20))-

By integration, we have vy, 4, (to) = iy (a) + SZO F(t, p(t; to, o)) dt.

Fix s§ = t§ — r§ with so > 0 and take (to,z0) € Kp,\K™, that is {(to,z0)|(3/5)ty <
ro < to — 1}. We will prove that there exists some a > 2 such that for all ¢t € |[a, o],
(t, o(t;to, 20)) € Ky \K™ and (a,¢(a;to, z9)) € 839{1[‘21?80] U 0K, that is, for t < tg,
(t, o(t; to, 29)) will not intersect H,, again before leaving the region Kpzs\K™. This is
due to the following observation: denote by |¢(t; to, 2o)| the Euclidian norm of o(t; tg, x0),
and by the definition of £, we have

dlp(t;to, mo)] 1+ 2t +r)2H”
dt T 1= 2(t+r)2HY

Also, we observe that for a point (¢,2) on the hyperboloid H,,, we have r(t) = |z(t)| =
\/1? — 83, and this leads us to 2 = . Then we have

dt

d(l(t;to,x0)| —7) 1+t +r)2H® ¢ 202(t +7)2H™ t—7r

dt 1= +r)2HY o 1—2(t+r)2H® 7

— d 500, -
So, there exists a constant e, such that if |[H%| < =) then M

; o < 0. Recall
that at t = g, |p(to; to, xo)| = |xo| = 7(to). We conclude that for all ¢ < to, |@(t;tg, z0)| >
r(t) which shows that (¢, p(t;to, o)) will never intersect Hs, again. Furthermore we see

that there exists a time ag sufficiently small (but still ay > 3) such that (¢, p(t;to, zo))
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leaves JC[ZS]\UCM by intersecting the boundary 833Ci[gt80] v 0K at t = ag. So we see that
Uty 2o (t0) = Vtg.z0(@0) + SZ(; F(t, o(t; to, x9)) dt, which leads us to

|Vtg, 0 (o) | < sup {10 = ) (ru)l @}
(t, a:)EOBfK‘[g s ]uﬁfK
to
+ J ‘ —ryu+7 Z (TQab)2U + HW,[u] + rR|[u, H]‘(t oltit0.70)) dt.
2 a<b T

g

3.3. Sup-norm estimate for wave equations with source. Our sup-norm estimate for
the wave equation, established earlier in [41] and based on an explicit formula for solutions
(cf. also the Appendix at the end of this monograph), is now revisited and adapted to
the problem of compact Schwarzschild perturbations. By applying ¢/ L’ to the Einstein
equations (1.6a), we obtain
(3.20)

(00" L7 hap = —0' LY (H" 0,0, hag) + 0' L Fog — 16w0" L7 (00903¢) — 81?0 L7 (¢% gap)

::S SWIJ+SKG]J

with
Sugh? = —0"L7 (H"0,0,hap) + 0'L7 Fop,

SES = —16m0" L7 (0a000) — 87c*0" L7 (¢%gap).
We denote by 1 : R* — {0,1} the characteristic function of the set X, and introduce the

corresponding decomposition into interior/exterior contributions of the wave source of the

Einstein equations:
W,I,J WL W,I,J . WL
SInt,aﬁ = ]IKS SExt af - (1 - ]lfK)S
while S O{(BG’I’J is compactly supported in K and need not be decomposed. We thus have

1,J W,1,J KG,I,J W,1,J
(3.21) Saﬁ Skt s T S, + SInt,a,B‘

Outside the region X, the metric g,3 coincides with the Schwarzschild metric so that an

easy calculation leads us to the following estimate.
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Lemma 3.9. One has |SE;£(’XJ/B| < Cm%(1 — 1g)r™.

We next decompose the initial data for the equations (3.20). Recall that on the initial
hypersurface {t = 2} and outside the unit ball, the metric coincides with the Schwarzschild
metric. We write

IrJ . 70,1,J 0,1,J
'L ha5(27 ) T IInt,a + [Ext,aﬁ7
Int,«

1007 — 310 L hog(2, ), fg;{tv;;ﬂ = (1 =X(r)0" L7 hap(2, ),

in which X(-) : R™ — R" is a smooth cut-off function with

On the other hand, the initial data 0,0 L' h,p(2,-) =: I'[0'L”] is supported in {r < 1}
since the metric is initially static outside the unit ball. We are in a position to state our

main sup-norm estimate.

Proposition 3.10 (Sup-norm estimate for the Einstein equations). Let (gags, ¢) be a so-
lution of the Einstein-massive field system associated with a compact Schwarzschild initial

data. Assume that the source terms in (3.20) satisfy
W,I,J KG.,I,J —2-v -
(3.22) |Simiasl + Sas | < Cut 7270 (E —r) =10

Then, when 0 < u < 1/2 and 0 < v < 1/2, one has

(3.23) |07 L hos(t, 7)| < %t‘l(t — ) + Cmgt™,
while, when 0 < 11 < 1/2 and —1/2 <v <0,

CC.
(3.24) |07 L hos(t, 7)| < #t—l—”(t — )+ Cmgt ™.

For the proof of this result, we will rely on the decomposition ¢/ L7h,5 = 22:1 hi‘ék with

(3.25a) OhiE = sill nlih e, ) =0, anlie) =0,
(3.25b) ORLS? = SEAM 0 hll 2, =0, anli2) =0,
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(3.25¢) Ohes = Sl has(2,) =0, 0hlE(2,) =0,

1JA4 1J4 1,J 1J4 )
(3.25d) Ches =0, s (2,-) = Invls Ohoit(2,7) = 1,
(3.25¢) Ohes” =0, g’ (2,) = Iniass Oihos’(2,7) = 0.

The proof of Proposition 3.10 is immediate once we control each term.
First of all, the estimates for hijﬁ’l and hiJﬁ’z are immediate from Proposition 3.1 in [41],
since they concern compactly supported sources. The control of hi‘é‘l is standard for the

homogeneous wave equation with compact initial data.

Lemma 3.11. The metric coefficients satisfy the inequality
(3.26)
[hos' (8, 2)] < Ot <H51Ljhaﬂ(27 Wwres ey +10:0" L7 hag (2, ')HLw({rsm) Lyjero-r<1y(t, ).

We thus need to study the behavior of hi‘é’?’ and hi‘é’g’. We treat first the function hi‘é‘r’
and observe that

(3.27)
hs” (¢, )

1 0,1,J 0,1,J
It —2)2 Tgy — (VI _
4'/T<t — 2)2 jy—m—t—2 < Ext,a8 (y) <V Ext,a (y)a x y>> dU(y)

: f i 1— J i
= Ig s(y)do(y) — —— ViIgsW),x—ydo(y).
Ar(t—2)% Jyapmin 00 sy)do(y) Are(t —2)? ‘y_w|:t_2< Extias(Y) ydo(y)

We now estimate the two integral terms successively.

0,1,J
[77

Lemma 3.12. One has S‘y_ﬂ:t Ezt’aﬁ(y)da(y)’ < Cmgt.

Proof. Since g, coincides with the Schwarzschild metric outside {r > 1}, we have imme-

diately |[g;{t’,‘£ﬁ| < Cmg(1 +7)"! and thus

[ miiw|<ons[ LU cneo),
ly—a|=t

(3.28) -
ly—z|=t 1+ ‘y’

Assume that r > 0 and, without loss of generality, x = (r,0,0). Introduce the parametriza-

tion of the sphere {|y — x| = t} such that:
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e 0 € [0, ] is the angle from (—1,0,0) to y — .
e v € [0,2m) is the angle from the plane determined by (1,0,0) and (0,1,0) to the
plane determined by y — x and (1,0, 0).

With this parametrization, da( 2sin 0dfdyp and the above integral reads
sin 0dfdp
- e[ ]
ly—z|=t 0 1+t(1+ (r/t)?— (2r/t)cosb)

where the law of cosines was applied to |y|. Then, we have

T in 6do

o(t,z) = 2rt? f — —
o1+ t(l + (r/t)? — (2r/t) cos 0)
1
= 277152[ do )

L+t + (r/t)2 = (2r/t)o|V/?

with the change of variable ¢ := cos#, so that \ := t|1 + (r/t)? — (2r/t)o|"/? and

TN t 1
O(t,z) = 27Ttr1J 2 gt — ot ()

The second term is bounded by the following observation. When r > /2, this term is
bounded by In(t + 1). When r < ¢/2, according to the mean value theorem, there exists £

such that
14 t+r+1 2(ln(1+t+r)—ln(1+t—7~)) 2
rn| — | = = :
t—r+1 2r 1+t+¢
By recalling r < t/2, we deduce that ‘7‘ 'In (?:ﬂ) < 1—+t and we conclude that the first

term in the right-hand side of (3.28) is bounded by

Cmgf da(y) < Cmst.
ly—z|=t¢ 1+ |y‘

We also observe that, when r = 0, we have S|y|=t ﬁﬁﬁ = 417% and thus Cmg S| ]t 1+y)|

<
Omst. O

The proof of the following lemma is similar to the one abve and we omit the proof.

Lemma 3.13. One has

f (IR0~ poty)| < Ot
y—x|=t
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From the above two lemmas, we conclude that !hUE’ t x)| < Cmgt™! as expected, and
we can finally turn our attention to the last term hi‘gS

Lemma 3.14. One has |hi‘23(t,x)] < Cmitt.

Proof. This estimate is based on Lemma 3.9 and on the explicit formula

b 47TJ

t
\h”g(t, z)| < Cm%f
2

IJ3
h,,

W,1,J
JI - SExt,aBda(y)dS7
yl=t—s

which yields us

1y yios 1yd
J {le—y|> z} T s
ly|=t—s |SL’ - y’

Tyjy—o d
_ Cmgﬂf lly—=/t127-1/) N
o L= Aymion |y — 2/t

thanks to the change of variable A := s/t. Without loss of generality, we set x = (r,0,0)

and introduce the following parametrization of the sphere {|y| = 1 — A}:

e 0 denotes the angle from (1,0,0) to y.
e ¢ denotes the angle from the plane determined by (1,0,0) and (0, 1, 0) to the plane
determined by (1,0,0) and y.
We have do(y) = (1 — X\)?sin #dfdp and we must evaluate the integral

Lodx 1 (1 — X\)?sinfdod
173 9 {ly—a/t|=A—1/t} '
ha" (8 2)] < Cmst L/t f fow/t (N2 20/0(1 — N cos O]

< Cmit? f & J ” Lyjy—agza—1/5 (1 — A)? sin 6d6
SIS L TN o 1007 + (L= A2 = 2(r/8) (1 — A) cos O

Consider the integral expression

_ [ Ly —ajiiza_1/sy (1 — A)?sin 0d6
I _fo |(r/t)%2 + (1 = X)2—=2(r/t)(1 — \) cos 0]?

—(1— At J A Lo ygdr
|

3
1—-A—r/t| T

Y

where we used the change of variable 7 := |(r/t)? + (1 — \)? — 2(r/t)(1 — A) cos 0|12,
We see that when 1 — X\ + 7/t < A —1/t, I(\) = 0. We only need to discuss the case



STABILITY OF MINKOWSKI SPACE FOR SELF-GRAVITATING MASSIVE FIELDS 39
1 =X+ r/t = X\ — 1/t which is equivalent to A < “Zt. We distinguish between the

following cases:
e Case 1 < t—r < 3. In this case, when \ € [2/t,(t + r + 1)/2t], we observe that

I1—X—r/t| < A—1/t. Then, we find I(\) = A=t § T R which leads
us to
1-X+r/t d H1 — )
I =(1- )\)trlf dr _ 1= (A=1/)2 = (1= A+7/t)7?).
A—1/t T3 2r
Then we conclude that
(t+r+1)/2t
hes (¢, )| < Cmit™ J/ (1—X)"T(\)dA
2/t
(t+r+1)/2t
_ CmZr it f (0= 1/ — (1= A+ r/t)2) dA
2/t

_ 1 _

e Case t —r > 3 and =- < #H < r > 21 In this case the interval [2/75 brtl] g

divided into two parts: [2/t, 55| U [5£, 255 In the first subinterval, |1 — X — r/t| =

t
1 — X\ —r/t while in the second [l = A —7r/t| =7/t — 1+ A
Again in the subinterval [2/t, =" ], we see that when 2/t < B A1/t < 1-A—r/t,

when =22 <A< 55 A -1/t > 1 — X —r/t. In the subinterval [t L B we see that

A=1/t=r/t—1+ A

Case 1. When )\ € [

—+1], we have

B . 1-X+r/t d_T B 2<1 . )\>2
I\ = (1= \tr L—)\—r/t (L= N2 — (/1))

Case 2. When \ € [=2H =0 e have

I = (1= M\tr? JI_MW dr_ t1=X) (A=1/)2 =X =X+7r/t)7?).

3
A*l/t T 27”
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Case 3. When A € [55, B2 we have

1-X+r/t d H1 — \
I\ = (1- A)trlf e =N (— 12— (1= 2+ /02,
At T 2r
We obtain
(t+r+1)/2t
i3 (¢ @) < Cmigt™> J/ (1= XN)"H(A)dA
2/t
t—r+1 t+r+1 t—r+1
T2t e t 2(1 =X
_ Cmgﬂf Tl T AN = Cmgﬂf i L=N
2/t et o (=X = (r/t)?)
t+£t+1
+ Cmzr ™t J (()\ — 1) = (1 - X+ r/t)_Q) d\
t—r+1
2t
and we observe that
fzi“ (1= A)dA 22 2
s = — ~ ('t
o ((1=X)2—=(r/t)?) t—r—1@t+3r—1) 2(t—r—=2)(t+r—2)
and
T 4rt 4tr
A=1/)2— (1= X+7r/t) 3 d\ = —
t=rs1 (( /1 ( +r/t7) t—r—Dt+r—1) (t+r—1t+3r—1)

~ Cr.

We conclude that |hi‘é’3(t, z)| < Cmit—'.
<

e Case 1 —r/t > Bt o

o 1 In this case, for X € [2/t, FLE] 1 — X\ — r/t| =

3

1—X—r/t. We also observe that when 2/t < A < =2 |1 — A —r/t| = A — 1/t and when

% <A< %, |1 — A\ —r/t| < X—1/t. So, similarly to the above case, we find

(t+r+1)/2t t=r+l trtl

(1—N)"UO)dA = Omgt—2j : +f T =NV
Jt

t—r+1
2 2t

W54, )| < Ot j
2t
S5 (11—

= Omit > 5d\
t L/t (-2 (/)

t+r+1

+ Cm%rltlf B (A=1/)72 = (1= X+7/t)7%)dA,
tort1
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S (1—X)dA _ 02 ) 2 »
o (L=MN2—=(r/t)2)? (t—r—D(t+3r—1) 20t—r—=2)t+r—2)

and

t+r+1

f“ (= 1/ — (1= A+ r/t)2) dA

t—r+1

2t

B 4rt B Atr - C
S (t—r=1D)t+r—1) (t+r—1)t+3r—-1)

So, we obtain ]hiﬁg(t, z)| < Cm%t~!, which completes the proof. O

3.4. Sup-norm estimate for Klein-Gordon equations. Our next statement, first pre-
sented in [41], was motivated by a pioneering work by Klainerman [33] for Klein-Gordon
equations. In more recent years, Katayama [30, 31] also made some important contribution
on the global existence problem for Klein-Gordon eqations. Furthermore, a related esti-
mate in two spatial dimensions in Minkowski spacetime was established earlier by Delort
et al. [17]. (Our approach below could also be applied [47] in 2 + 1 dimensions.)

For compact Schwarzschild perturbations, the scalar field ¢ is supported in K, and
the sup-norm estimate in [41] remains valid for our purpose and we only need to state
the corresponding result. Namely, let us consider the Klein-Gordon problem on a curved

spacetime
(3.29) —Oyv + o = f, Uls, = Vo,  Opvla, = 1,

with initial data vg, v; which are prescribed on the hyperboloid H, and are assumed to be
compactly supported in H, N K, while the curved metric has the form ¢*? = m®?# 4 po?
with sup moo, < 1/3.

We consider the coefficient 7o along lines from the origin and, more precisely, we set
— t . x
heo(N) = hOO(A—, A—), s =V —12,
s s
while 7} ,(A) stands for the derivative with respect to the variable A\. We also set

2, 0<r/t<3/5,

50 -= t+r

t—r

. 3/5<r/t<1,
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Fixing some constant C' > 0, we introduce the following function V' by distinguishing

between the regions “near” and “far” from the light cone:

( $ Sy,
(1ol + lonlegy ) (1+ | 1, (211000 g5)
Vo= + F(s) + f F(3)|h} ,(5)]eC S MaMr g5 0 < r/t < 3/5,
2
F(s) + J F(E)\h;w(E)\eog‘h:@@“)‘dA ds, 3/5 <r/t<l1,
\ S0

where the function F' takes the right-hand side of the Klein-Gordon equation into account,

as well as the curved part of the metric (except the 7" contribution), that is,

F@w=f(mmm+mmM+mmm+vﬂﬂwmwAWﬁw

with

3/2 g - 3 31 =
Rl[ =S Za&U—F /8ﬁbv+mv+2 gV

81/2 ats

o0/ 3v _ b= = —ab= = .
Ry[v] = h00<451/2 + 331/2(3’0”0) + §3/2 (2h0bﬁoé‘bv +h bé’aﬁbv + ho‘ﬁc?a\lfg (’7’5/0),

a

xgv xx&&;,v)

51/2

— 2
Rs[v] = R (23:“31/28 0q¥ +

Proposition 3.15 (A sup-norm estimate for Klein-Gordon equations on a curved space-
time). Spatially compact solutions v to the Klein-Gordon problem (3.29) defined the region
Ko, 400y satisfy the decay estimate (for all relevant (t,x))

(3.30) s*2u(t, )| + (s/t)"1s%%0, v(t,z)| < CV(t, ).
We postpone the proof to the Appendix.

3.5. Weighted Hardy inequality along the hyperboloidal foliation. We now derive
a modified version of the Hardy inequality, formulated on hyperboloids, which is nothing
but a weighted version of Proposition 5.3.1 in [39]. This inequality will play an essential
role in our derivation of a key L? estimate for the metric component h°°. (Cf. Section 7.2,

below.)



STABILITY OF MINKOWSKI SPACE FOR SELF-GRAVITATING MASSIVE FIELDS 43

Proposition 3.16 (Weighted Hardy inequality on hyperboloids). For every smooth func-

tion u supported in the cone K, one has (for any given 0 < o < 1):

[(s/8)~7s " ul iz 0c,) < Cll(s0/8) s ulrzoe,y) + C Y 12atl 200,
(3.31) ‘
" CZJ (Is/0 "2l 20y + a0z )

The proof is similar to that of Proposition 5.3.1 in [39] (but we must now cope with
the parameter o) and uses the following inequality, established in [39, Chapter 5, Lemma

5.3.1].

Lemma 3.17. For all (sufficiently reqular) functions u supported in the cone X, one has

(3.32) HTﬁlUHLi(:}@) < CZ HQauHL?(S{

Proof of Proposition 3.16. Consider the vector field W := (0, —(s/t)_%%) defined

on R* and, similarly to what we did in the proof of Proposition 5.3.1 in [39], let us calculate

its divergence:

: x(r/t)u  xx(r/t
div IV = —257(s/t)" Z Outu(s/t)™" (1 +(7"£)2/23 r(1 j—((r?/)l)/z

rx(r/tyu X (r/t)r

25~ (s/t)"7r tu(s/t) 1+ 72)12s (1 1 12)12

i lote ) (i )

2

(1+72)s3

— 20(s/t) 172 (ux(r/1))”



44 PHILIPPE G. LEFLOCH AND YUE MA

We integrate this identity within X, 1 and, after recalling the relation dzdt = (s/t) dxds,

we obtain

I

rx(r/tyu  x*x(r/t)
(1+72)12sr(1 +r2)/2 divds
-1 l1-0,.—1 o rx(r/Hu X (r/t)r
_ 2L< sTH(s/t) T u(s/t) (% 151725 (1 + 12)17 dxds

[s0,s1]

div Wdzdt = —2 f s (s/t)' 77 ) Qau(s/t)”

50,511 Kisgos1

r’t + 3t 2r2t

o0 o) (s ()

- 20[ [ (/1) (ux(r/t)) s dxds.

505511

We thus find

I

div Wdxdt = — ds s/ oLuls/t rx(r/t)u  x%tx(r/t) i
| [ s airr St P T

P (/) X/
f dsf S Y(s/t) u(s/t)” (1:(_ 72172 (i(+ r2)1/2 dx
— f dsf (S/t)l_QU (UX(T/t))2<<1 j:;;t52 + (1 irr§)84) d

2

_ af dsJS 5077 (ux(r/1))? mdm

=: f (Th + Ts + T3 + Ty) ds.
50

$0551

On the other hand, we apply Stokes’ formula to the left-hand side of this identity. Recall
that the flux vector vanishes in a neighborhood of the boundary of Xps, s,1, which is {r =

t— 1,50 < 4/t2 —r? < s1} and, by a calculation similar to the one in the proof of Lemma

3.2,

rx(r/tyu

rx(r/t)u -
B e

(S/t)i —<1 n ’]”2)1/25 = J (T1 + T2 + T3 + T4)d$.

S0

L2(9,) L2 (s)

After differentiation with respect to s, we obtain

_rx(r/tu

rx(r/t)u
(S/t> ( + 7,2>1/2

(8/ )7 —(1 n 7”‘2)1/25 = T1 + T2 + T3 + T4.

L2(Hs,)

(3.33)

L2(Hsy)
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We observe that

|T1 QZJ S/t 1 "|8 u|(s/t) TX(T/t)|U‘ "%a’tX(r/t) dr

(14 r2)V2s (1 + r2)1/2

rx(r/t)u
(1+r2)12s

xtx(r/t)

(s/t)7 (L4 12)12

<257 (s/t)'=70aull 12 sc,)

13(36,) L(3¢,)

Y

L3 (3€s)

< s R 16/l (570" T

(1+1r2)12s

x%tx(r/t)

where we have observed that ||- TrDie

< C, since the support of x(-) is contained

Lo (Hs)
in {r > ¢/3}. Similarly, we find

. rx(r/thu
N

. rx(r/thu
IO s

_rx(r/tu

(14 r2)12s

| To] < O™ (s/t)"r a2 0,

L2(3.)

< CS_I|’7"_1UHL§(J{S)

_IZ |2 UHLQ(J{

where we have applied (3.32). We also observe that T3 < 0 and Ty < 0. Then, (3.33) leads

13(56,)

(s/t)~°

9

12 (36.)

us to

(3.34) d%H@/t)a rx(r/t)u

(14 r2)1/2s

< Cs7 Y (I(s/0) a2 a0,y + 1 80ul 2 o6,)) -

L2(Hs,)
Then by integrating on the interval [sg, s], we have

(3.35)

(st)-o XU

(1 (14 r2)12s

rx(r/t)u

(1+r2)2s

(s/t)"°

\

L3 (5s)

L2(Hs)
+czj Y15/ Pl z2oey + 1atulieon) dr,

which is the desired estimate in the outer part of H,.

For the inner part, 7 < t/3 leads us to 2¥2 < s/t < 1. Then by Lemma 3.17, we find

(3.36) I( 1) r(1 = x(r/t))u

(14 r2)12s

< Il 0y < C Y 10,ul 3o
12(%.) a
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and it remains to combine (3.35) and (3.36). O

3.6. Sobolev inequality on hyperboloids. In order to turn an L? energy estimate into
an L* estimate, we will rely on the following version of the Sobolev inequality (Klainerman

[33], Hormander [27, Lemma 7.6.1]; see also LeFloch and Ma [39, Section 5]).

Proposition 3.18 (Sobolev-type estimate on hyperboloids). For any sufficiently smooth
function u = u(t,z) which is defined in the future of Hy and is spatially compactly sup-

ported, one has

(3.37) sup %2 |u(t, ) Z | L u(t HLz (96, s =2,
(t,x)eHs 17|<2

where the implied constant is uniform in s = 2, and one recalls that t = 1/s% + |x|? on Hs.

Proof. Consider the function ws(x) := u(+/s? + |x|?, x). Fix so and a point (to, o) in Hs,

(with tg = 4/s3 + |20|?), and observe that
(3.38) OaWsy (2) = dyu(r/s3 + |z]2,2) = du(t, x),

with ¢ = /5§ + [2]? and t0uw,(x) = to,u(\/s3 + |z]?,t) = Leu(t,z). Then, introduce
Gsorto(Y) 1= W, (w0 + toy) and write

Geo10(0) = way(0) = u(x/53 + [z0f?, 20) = ulto, x0).

From the standard Sobolev inequality applied to the function g, ,, we get

2
\9507t0<0)| < C 2 f |§Igso,to(y)|2 dy,
11]<2 Y B(0,1/3)

B(0,1/3) = R? being the ball centered at the origin with radius 1/3.
In view of (with x = xg + toy)

aagso,to (y) = tﬂaawso (-TO + to?J)

= t00,Ws, (T) = tod,u (t, )
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in view of (3.38), we have (for all I) 07gs, 4 (y) = (to@) u(t, z) and, therefore,

‘950 t (0 *<C Z f t()& (t,x))fdy
B0, 1/3

|[71<2

=Ct;? |(t0Q)Iu(t,x))‘2da:.

|I]<2 JB((tO@O),lfo/3)mf}-CSO
Note that

(to2, (toQyws,)) = t52,00ws,

= (to/t)*(t2,)(t0,)ws, — (to/t)* (/1) Liws,

47

and z%/t = xl/t + yto/t = (x&/to + y)(to/t). In the region y € B(0,1/3), the factor |z/t| is

bounded by C(ty/t) and thus (for || < 2)
[(tod) ul < |L7ul(to/t)?.
[JI<H]

2
7350 80

to < Cso < Cyf|z]? + 3 =Ct

for some C' > 0. When |xy| = to/2, in the region B((to, zo),t0/3) N Hs, we get to

C+/|x|? + s2 = Ct and thus

In the region |zo| < to/2, we have ty <

(tod)'ul <C )} |L7u|

|JI< |

and

‘gso to 3/0 <Ct03 Z J t@)lu(t, ;E))|2 dx

|I|<2 $0 t0/3 mf}fgo

<Ct;? Z f | L u(t, a:){2 dx.

|7]<2

< Clz| <
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3.7. Hardy inequality for hyperboloids. We now bound the norm |[r='0"L” hog|| 12 (3¢%)-
If 0'L7h,ps were compactly supported in H, n K, we could directly apply the standard
Hardy inequality to the function us(x) := (61 L’ haﬁ) (vs? + 12, x) and we would obtain

[P 0" L hag| r2sexy < Cl20" L7 Pl p2(scr)-

However, since ¢/ L7 h,s is not compactly supported in X, we must take a boundary term

into account.

Lemma 3.19 (Adapted Hardy inequality). Let (hag, ¢) be a solution to the Einstein-

massive field system associated with a compact Schwarzschild perturbation. Then, one has

(339) HT_lalLJhagHL2(g{§) < CZ HQaélLJhaﬂuLQ(g{f) + C’mgs_l.

Proof. With the notation us(x) := (9'L”has) (V's? + 12, ), we obtain
Cats () = 040" L ha (W x) .

Consider the identity r—2u;? = —0, (r~'u?) + 2u,r~'0,u, and integrate it in the region

Cle,(s2=1)/2] = {5 <r < 822_1} with spherical coordinates. We have
(3.40)

J

Letting now ¢ — 0%, we have { __r~'u2do — 0. Observe that on the sphere r = (s*—1)/2,

r | Pdr = J rtuldo — f rluldo + QJ usr ™ Opudi.
r=(s2-1)/2 r=¢

[5,(s2—1)/2] Cle,(s2-1)/2]

241 21
\/32+7’2—r28; —82 =1,

that is the point (\/ s2+r2, x) is on the cone {r =t —1}. We know that, on this cone, h,s

coincides with the Schwarzschild metric, so that
f ruldo < Cmigs™.
r=(s2-1)/2

Then, (3.40) yields us

) < 2H7‘_1usHL2(C[O’ )”a,«usHL2(C[OV<S271>/2]) + C’még—?.

—1 2
|7 USHLZ(C[ (s2-1)/2]

0,(s2-1)/2]
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And this inequality leads us to

”Tﬁlus”LQ(C[OY<5271)/2]) < CH(37‘/U/S”L2(C[OY<52 1 /2] + C'mss 1.

By recalling that
Il ) = | o I R (V)
E Lm 110" L hag(t, ) da = 170" L hag| 2 ses)
and d,u, = gﬁa = ITQ 0 LJhaﬁ(\/52~|——r2, x), the proof is completed. O

3.8. Commutator estimates for admissible vector fields. We recall the following

identities first established in [41]; see also Appendix D at the end of this monograph.

Lemma 3.20 (Algebraic decomposition of commutators). One has

:L,(l

(3'41) [ahéa] = _t_gab [Qméb] =0.
There exist constants N ; such that
(3.42) [0', Ll = > AL07.
171<1|
There exist constants 92, such that
(3.43) (L' 0 = >, 620,17
[JI<Ily

In the future light-cone X, the following identity holds:

(3.44) [0'L7. 050 = ). 0517,0,0" L,

[J71<|J]
[11<|1|

where the coefficients Qéﬁ], are smooth functions and satisfy (in K)

515 |aflLJleg=}7J, < O(|1], 17,0, ) 4)) e < 1),
0" L7057 < C (L || L, [ e 0 1) < ).
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Within the future light-cone X, the following identity holds:

(3.46) (L2 = ) ol50,L7,

1<

where the coefficients ol are smooth functions and satisfy (in X)
(3.47) 0" Lol < O 1T [ Il [0,
Within the future light-cone X, the following identity holds:

(3.48) (0%, 0] =t phyd’,

RIS

where the coefficients pl; are smooth functions and satisfy (in X)
(3.49) 0" L7 pl, | < C(I|, |J), | L), | Ju )t
Lemma 3.21. For all indices I, the function

(3.50) == (t/s)0' L7 (s/t)

defined in the closed cone X = {|z| < t — 1}, is smooth and all of its derivatives (of any
order) are bounded in K. Furthermore, it is homogeneous of degree n with n < 0 (in the

sense recalled in Definition 4.2 below).

Lemma 3.22 (Commutator estimates). For all sufficiently smooth functions u defined in

the cone XK, the following identities hold:

(3.51) [0'L7, dalul < CIL 1) ), 1050 L7 ul,
[J'1<|J].8
(3.52) [0"L7, o Jul < C(I|, 1)) >, 12,0" L u| + C(I|,[J)t" > |0" L ul.
|J'1<|J|,a [11<|1’|
['I<|1| [JI1<|J’|

(3.53) |[0"L7, 2. Jul < C(I. 1Tt Y] Jase" L] + C(1l, 1) \aﬁaf’y/u(,

B, I"|<|1| B,IT'I<|1|
[7'1<]J] [7/]<1J]

(3.54) [0'L7, 0adplul < C(IL 1)) >, [6500"L7w

)
v
[I1<| '), 0! <1
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(3.55)
[6"L7, 0,05]u| + |[0"L7, 0,0, ]ul

< C’(|I|,\JD< Z ‘QCQﬁI/LJ/U + Z t_1|QCQ’yaI’LJ'u + Z t—1|87§I’LJ/u’>.
el I<I1] el 1<I1] 7 I1I<I1]
1771<1] |77]<17] |771<17]

4. QUASI-NULL STRUCTURE OF THE EINSTEIN-MASSIVE FIELD SYSTEM ON

HYPERBOLOIDS

4.1. Einstein equations in wave coordinates. Our next task is to derive an explicit

expression for the curvature. We set ['7 := gaﬂflﬁ =0and Ty, := gos"°.

Lemma 4.1 (Ricci curvature of a 4-manifold). In arbitrary local coordinates, one has the

decomposition:
1 1 1
Rop = _59)\6@559046 + 5(%3@ +dsla) + 3 Fas;
where Fo5 := Pog + Qap + Wag is a sum of null terms, that is,

Qas = 9 9% 059an 05955 — 9™ 9% (O59anOrgss — 05955 0rGar)

! ! ]_ ’ !

+ QM 96(S (aagw'aagm - 5a9w(%9w') + agM 956 ((%9,\59,\/955' - 5a955f5,\’9w)
’ ! ]_ / /

+ g™ g (0595 05900 — Opgralsgns ) + igM 9% (059500 G5 — P55 OnGra ),

quasi-null term (as they are called by the authors)

1 ’ ! 1 ! !
P, = —§9A/\ 955 ﬁagcwﬁﬁgw + Zg&s gM aﬁg&s'@agw

and a remainder W,z 1= géélﬁdgagféz — I .

Let us make some observations based on this lemma. Note that the Einstein equation

R.s = 0 now reads
(4.1) ﬁghag = Paﬁ + Qaﬁ + Walg + (6aFﬂ + @gFQ).

Furthermore, if the coordinates are assumed to satisfy the wave condition ['” = 0, so that

I's = 0 and, by specifying the dependence of the right-hand sides in (g; dh),

(4'2) ﬁggaﬂ = Paﬁ(g; ah) + Qaﬂ(g; @h),
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which is a standard result.

For the Einstein-massive field system

Gag = 87TTQ5,
(4.3) . -
Taﬁ = aa¢aﬁ¢ - §ga,8 (guyau(bau(b +c (b ) )

we obtain
1
R.p = 8w (Vacng(ﬁ + §c2¢2ga5)

and, by the above lemma, the Einstein-massive field system in a wave coordinate system

reads
(4 4) E]ggaﬁ = Paﬁ (g; 6h) + Qaﬁ(g; ah) - 167Taa¢aﬁ¢ - 8702¢29a57
If]ggb — c2gz5 = 0.

Proof of Lemma 4.1. We need to perform straightforward but very tedious calculations,

starting from the definitions
Rop = 5AF35 — 0alhy + Fgﬁr(j\é - FQJ%A,

1 3w
Féﬁ = ég»\ (aagg)\/ + 6/39(”, — 8)\’ga,8)-

Only the first two terms in the expression R,g involves second-order derivatives of the

metric, and we focus on those terms first. In view of

1 1 1 1

Lo = =597 00sgas + 59 0r0abss + 59™ 0r090s + 5000™ (Pabss + OpGos — o)
1 1

0ol = 50008955 + 009" Op9xs,

we can write

1 1 1 1
OALap = 0alBy = —50™°0r0sgap + 597 0alrgss + 597 050rGsa — 5™ Casgrs
(4.5)
1 1 1 1
—~ 5&9”5(59&5 + 5&9”%955 - 5(%9”559(15 — Eﬁagmaﬁgm,

in which the first line contains second-order terms and the second line contains quadratic

products of first-order terms.
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Let us next compute the term 0,I's + 0sl'y (which appears in our decomposition). We
have

(07 1 (07
I = g0y = 599" (Cagas + sgas — Ps8as)

« 1 (07
= g"°¢*% 00955 — 39 97005 up

and, therefore, 'y = g\, IV = ¢g*¥0,g5) — %gaﬁﬁ,\gaﬁ, so that, after differentiating,

1
0ul's = 0y (96’\559,\,3) - §5a (gA‘S&ﬁg,\g)

1 1
= ¢"0n05975 — 59”%%% — 5%9”%% + 009" 0s5925-
The term of interest is thus found to be

0uls + 05T 0 = 60407955 + 97°050\Gs0a — 9™ 0apGns
(46) Y Ad 1 Ad 1 Ad
+ 009" 0593 + 039" O59ra — 5%9 Oalrs — 5%9 089xs-

We observe that the last term in (4.6) coincides with the last term in (4.5). By noting
also that the second-order terms in d,I's+ 05, are exactly three of the (four) second-order

terms arising in the expression of A\I'y; — dal'3y, we see that

1 1
@Ffw - ﬁari\”\ = —§g>\6@)\559a5 + 5(5QF5 + é’gl‘a)

1 1 1
— ~06g™05Gup + 5@9”%%5 + =009 089as

2 2
1 1 1 1

— 00905008 — =59 05920 — —0ag™ Vs g5 + ~ 050 Ougns
2 2 4 4
1 1

= —ia)\gma(;gag + é(leﬁ + 85Fa)

1 / ! ]_ ! !

+ 59/\/\ 9% OrgN6 O5Gap — §9M g% O\gN6'Ca9Bs
1 / ! ]_ ! !

- §QM 9% Orgs 089as + ZQM 9% Oa x5 03975
1 / ! 1 / ! ]. ! !

+ §9M 9% 0u g5 0sgap + §QM 9 0595505 Grer — ZQM 9% 05955 0alis,
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where we have used the identity d,g* = —¢™ ¢%"d,gvs. Note that the two underlined

terms above cancel each other. So, the quadratic terms in 6,\F25 — &J‘g/\ are

1 / ! 1 ’ !
— g™ 0" O\gn505Gass  — =9 9°° OrgnsOaGss,

L v s
- A a / ’a ads
B B g g Oxgxs&'0pGas

2

1 / ! 1 / !
§9M 9% 0u g5 05 gas, §9M 9% 0395 05 9ra-

Next, let us return to the expression of the Ricci curvature and consider

1
DT =1

49”955, (0955 0aban + OaGarOrgss — OxnGapOrgss ),

1 ;s
FQJ%A :ZQM 955 (5(19&/5/3%5' + 5a9<w5wﬁ5' - 5a95x55’9w

+ 059ax089x5" + O5Gax 0935 — O5Gax Os gax
— OxnGas089r8 — OnGasOrgss + OxGasOy ga)
and deduce that
Lasls = Taslon

1 !/ ! 1 / ! 1 !
= —ZQM 9% O GapOrgss + ZgM 9 O5GarOs gx + ZQM O Gas0r9pst
(4.7) 1 v o
- ZQM 955 aagdA’aﬁgM’

1 ! ! 1 !/ ! 1 1 /
+ ZQM 9% 07551 0alan + ZQM 9% 0795505 Gax — QQM 9% 05 Gon Orgps-

Observe that the first three terms are null terms, while the fourth term is a quasi-null
term. The two underlined terms are going to cancel out with the two underlined terms in
(4.10), derived below. Hence, there remains only the last term to be treated.

In other words, we need to consider the following six terms:

1 ’ / 1 1 ! 1 1 !

§9M 9% Orgx5'05Gap —§9M 9% Oxgns'0nps, —QQM 9% Oxgxs' O8G0,
(4.8)

1 1 / 1 1 / 1 1 !

§9M 9% Ougrs 0595, §9M 9 05955 05 Grars _§gm 9% OsGarOrgps -
In view of the identities

1 1

(4.9) 900985 — =97 0s9ap = Ts, 986009’ — =Gaplsg™” =T,

2 2
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the first three terms in (4.8) can be decomposed as follows:

1 1 L
g)\/\ 66’ a)\g)\/(slalsgoz/)’ — _g a&gab’ré’ 4 965 (95904,365/9)\X

2 2

19 géélaAgA/&a ggs = —1955/5 gasl'sr — lnggwaafgwa gps
(4.10) 2 adp g7 Tadb 4 odb

1 AN 65’6 P _ _1 5(5’6 Ty — 1 AN 66’8 0

29 g O\gN§'0BGas = 29 8Y9asl 5 49 g Osgxx0p9Gas-

The last term in the first line is one of the quasi-null term stated in the proposition. As
mentioned earlier, the two underlined terms cancel out with the two underlined terms in

(4.7). The fourth term in (4.8) is treated as follows:

1 ! !
29/\)\ 956 aag)\’&aég)\ﬁ

1 ! ! 1 I !
= — g™ 9" (Oagns0s9rs — Oagrslsgns) + §9M 9% 009250595

2
1 ! ! 1 ! 1 I !
= 29M g% (Cagns 0sgrg — Cagrslsgns) + §9M Oagrgl'x + ZQM 9 0 grsOn gss
1 / ! 1 /
29/\A 956 (6049)\’6/669)\,8 - 5a9A,3569A'5/) + 49M g (&zgw@x/g&s' - aoégaa/axg,\ﬁ)
1 v 1
+ §9M Oagrgl'y + 49M 9% 0u G55 On grs
1 ! ! 1 ’ !
QQM 966 (%9»5@5%5 - 5@49,\/356%'5/) + 49M 95(S (%%5@/955/ - 9a955'5A’g,\/3)
1 ! 1 ! 1 ! /
+ 59/\/\ Oagrsl'y + 1965 0agssrl'p + gg(w 9™ 0u G55 0o
while, for the fifth term, we have
1 AN 66’0 P
29 g 08gNs 05Gra
1,y 1
=597’ 7 (05935 059ra — F59ralsgns) + 49M 9% (059ra0n g5 — 05g55OnGra)

1 ! /
=4" g™ 05955 Cagrn-

1 .y 1 o
+ =g 0pgral'v + 1955 08955 Ta + 3

2
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For the last term in (4.8), we perform the following calculation:

1 .\
29M g a&ga)\’ a)\gﬁé’
1 i ! ]. !
= —§QM g% (O59ax Orgss — 059psOngax) — 59 N 9% 05 g5 OrGa
1 i ! ]. ! ]. ! !
= —§9M 9% (059ax Orgps — sG55 Orgar') — §9M Oxgaxl'p — ZQM 9°° 05955 OrGar
1 I ! ]. ! ]. !
= QQM 9% (059ax Orgps — 5955 Orgar') — §9M OxgaxT'p — 1956 08955
1 /
89A 955 aag)\)\’aﬁgéé/
_ Lo * (05Gan 05 a5 0 A, = L T — Lg% gsnT
= 29 ( 59aX0OXg3s — 05986 )\gaA’> oo 8 49 agss'l p 49 895" L o
1 /
89A 955 5a9M/55955/-
In conclusion, the quadratic terms in R, read
1 AN 66’8 P
29 g 05Gax 0 gsx
1 ! !
— §9M 9% (059axOrgss — 05955 OrGar)
1 ! ! 1
+ §9M 965 (%9»5/@5%5 - 5a9A5569A'5/) + 49M 956 (aoag)\,Ba)\’géd’ - é’ag(sy@xgw)
1 1
+ QQM 9 (0595505900 — Opgralsgns) + 49M 9 (0597a0x G55 — 0555 Or Gra)
1 / ! 1 ! !
- ZQM 966 Oalsy aﬁg,\& + gg&s 9/\/\ 55955/ Cagrn

1 66/ 1
+ = Osgasl'ss — =T I'5.
29 59apl s 5 B

Finally, collecting all the terms above and observing that several cancellations take place,

we arrive at the desired identity. Il

4.2. Analysis of the support. We provide here a proof of Proposition 2.3.

Step I. We recall the structure of Fi 3 presented in Lemma 4.1. We observe that both P,z
and (), s are linear combinations of the multi-linear terms which are product of a quadratic

term in g*” and a quadratic term in dg,s. For convenience, we write F,,5 = Fo5(g, g; g, 0g)
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and
Pap(t,2) i= (9505 — Mag) (t, 2)E(t —7) + Mag,
where ¢ is a smooth function defined on R, with £(r) = 1 for » < 1, while £(r) = 0 for

r = 3/2. Hence, for r = t—1, p,s coincides with the Schwarzschild metric while r < ¢—3/2,

Pap coincides with the Minkowski metric. We also set

(4.11) Qo = Gap — Pas-

So the desired result is equivalent to the following statement: If (gns,¢) is a solution of
(4.4) associated with a compact Schwarzschild perturbation, then the tensor q,z above is
supported in XK.

To establish this result, we write down the equation satisfied by g.s and introduce
(0°") =(pap) ™",
¢ :=g" = p*° = (P — 9o )0 gy = qupp™ 9"
We observe that for r >t — 1, when gus(t, ) = 0, then ¢*?(¢,z) = 0. In view of
Dy9as = Fap(9, 9. 09, 0g) — 16m0a¢p0s¢ — 8TC*H*gap,

we have

g (Pas + das) = Fap(p + @0+ ¢,0(p + 0), (p + q)) — 167005 — 87C*$? gag.
By multi-linearity, the above equation leads us to
ﬁan,B = _‘i‘ppocﬁ + Faﬁ (papa 8pa ap)

+ Fag(p.p. 0p, 0q) + Fap(p,p. 0g, 0(p + q))
(4.12)

+ Fos(p.4,0(p + 0),0(p + @) + Fag(g,p + . 0p + ), 0(p + )

- q"0,0, (pag + qag) — 1670, 00560 — 8T > gup-
Observe that for r > t—1, pag = (ggaﬂ—maﬁ)ﬁ(t—r)+ma5 coincides with the Schwarzschild
metric, which is a solution to the Einstein equation (in the wave gauge), so for r > t — lwe

have [1,pas = Fas(p, p, Op, 0p). Setting Eops = —[JpPas + Fup (p,p, op, (7p), we have obtained
E.3 =0forr>t—1.
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Then we also observe that the third to the sixth terms are multi-linear terms, each of
them contain ¢ or dq as a factor. Furthermore, we observe that the seventh term is written

as
_quyauau (pa,B + Qaﬁ) = _qwu’p“/yguy/a,uau (paﬁ + QQﬁ)

So, the third to the seventh terms can be written in the form

dq - G1(p, 0p,q,2q) + q - Ga(p, dp, 00p, q, 0q),

where G; are (sufficiently regular) multi-linear forms.

For the equation of ¢, we have the decomposition
0,6 = 0p¢ + 040 = Chd + g’ 9 0,0,

We conclude that the metric ¢,s satisfies

(4.13)
Cpdas = Eap + g - G1(p, 0. ¢, 0q) + q - G2(p, Op, 00p, q,0q) — 1670,$05¢ — 8T P Gugs,

ip¢ - C2¢ = _qu,y,pu’vgu#auay(b_
Furthermore, observe that since (g, ¢) describes a compact Schwarzschild perturbation, the
restriction of both g3 and ¢ on the hyperplane {t = 2} are compactly supported in the

unit ball {r < 1}. Thus, (¢.s, ¢) is a regular solution to the linear wave system (4.13) with

initial data

Top(2,2), ¢(2,2) supported in the ball {r < 1}.

We want to prove that (¢.s) and ¢ vanish outside K. This leads us to the analysis on
the domain of determinacy associated with the metric p®?, which is determined by the

characteristics the operator ﬁp.

Step II. Characteristics of ﬁp. We now analyze the domain of determinacy of a space-
time point (t,z) ¢ K. We will prove that all characteristics passing this point do not
intersect the domain X n {t > 2}. Once this is proved, we apply the standard argument
on domain of determinacy (also observe that E,s(t,z) vanishes outside X), we conclude

that g, and ¢ vanish outside X.
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To do so, we will prove that the boundary of X is strictly spacelike with respect to the
metric p*’. We observe that any vector v tangent to {r = t — 1} at point (¢, ) satisfies

0¥ = 1% 29" = w,v”. So, in view of (2.6), we have for all |[v] > 0
(0,0),(t,2) = (v,0)g5 = V"0 g0 + V"V gap

r—mg T+ mg r+ ms
- _ Wt wpt? + wavwpv? ( — ( Z lv®[?

r+mg r—mg
r—mg T+ mg <T+m3)2 a b al2
= — - + 5 Wa U wpv —I—Z|v|
r+mg r—mg r -

r+mg T —mg r? b )
> 11— — + WU wpt v°
( (?"—ms r 4+ mg (7"+m5)2) at b >Z| |

a

_ 3r m5—|—47"m5—|—m52| o2 s 0,
(r +ms)?(r —ms) <

where we have used |w,v| < |v| = (X, |v“]2)1/2.

A characteristic curve is a null curve, so a characteristic passing through (¢,z) with
r = t — 1 cannot intersect the boundary {r = ¢ — 1} in the past direction (since (¢,x)
is already in the past of {r = t — 1}). Hence, a characteristic passing through (¢, z)
never intersects the region X in the past direction, which leads to the conclusion that the
domain of determinacy of (t,z) does not intersect K and, therefore, does not intersect

{t =2,r <t—1}. We conclude that q.s(t,z) = ¢(t,x) = 0.

4.3. A classification of nonlinearities in the Einstein-massive field system. First,

we introduce a class of functions of particular interest.

Definition 4.2. A smooth and homogeneous function (defined in {r < t}) of degree « 1is,
by definition, a smooth function ® defined in {r <t} at least and satisfying

o O(\t, \x) = \*P(t,x), for a firzed a € R and for all X > 0,

o Supj,<; [0'®(1,z)| < +oo (for large enough |I|).

For instance, constant functions are smooth and homogeneous functions of degree 0. We
also observe that the elements of the transition matrix ®2 are smooth and homogeneous

of degree 0.
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Lemma 4.3. If ® is a smooth and homogeneous function defined in {r < t} of degree «,

then there exists a constant C' determined by ® and N such that
'L ®(t, )| < Cto 1,

Furthermore, if ® and ¥ are smooth and homogenous functions of degree o and (3, respec-

tively, then the product ® ¥ is smooth and homogeneous of degree (o + ).

Proof. Observe that if ® is homogeneous of degree «, then ®(At, A\x) = A*®(t,x). We
differentiate the above equation with respect to *: A0, ®(\t, \x) = A*0,P(t, ), which leads
to 0,®(\t, A\x) = A1, ®(¢,x). In the same way, we obtain J,®(A\t, \x) = \*10,®(¢, z).

For L,, we have

La®(Mt, Az) = (A28, B\, AT) + (M) 2D (ME, Az)

= (AN, D (¢, z) + (M)NT10,D(¢, )AL, P(t, 7).

We conclude that, after differentiation by d,, the degree of a homogeneous function will
be reduced by one while when derived by L, the degree does not change. By induction, we
get the desired estimate. Finally, we observe that the relation between homogeneity and

multiplication is trivial. Il

In the following, the nonlinear terms such as F,z and [0'L7, h*70,0,]hap are expressed
as linear combinations of some basic nonlinear terms (presented below) with smooth and
homogeneous coefficients of non-positive degrees. We provide first a general classification

of such nonlinear terms:

e ()S,(p, k) refers to at most p-order quadratic semi-linear terms in h,z. They are lin-
ear combinations of the following terms with smooth and homogeneous coefficients

of degree < 0:
'L’ (Ouhapuhas)

with [I| + |J| < p,|J| < k.
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o QS,(p, k) refers to p-order quadratic semi-linear terms in ¢. They are linear combi-

nations of the following terms with smooth and homogeneous coefficients of degree

<0:
0" L7 (0,00,0), "L (6 guw)

with [I| + [J| < p,|J| < k.
o QQu(p, k) refers to p-order quadratic quasi-linear terms in h, which arise from the
expression [0/ L7, h*0,,0,|has. They are linear combinations of the following terms

with smooth and homogeneous coefficients of degree < 0:
O L h 02 L720,0,hap,  har0,0,0" L hop

with |Il| + ‘]2| <p-— k?, |J1| + |J2| < k and |IQ| + ’J2| <p-— 1 and |J’| < |J|
* QQyy(p, k) refers to p-order quadratic quasi-linear terms in h and ¢. These terms
come from the commutator [0/L7, h**d,0,]¢. They are linear combination of the

following terms with smooth and homogeneous coefficients of degree < 0:
O L h 02 L720,0,0,  ha0,0,0" L7 ¢

with |Il| + ‘]2| <p— k?, |J1| + |J2| < k and |IQ| + ’J2| < P — 1, |J/‘ < |J|
Next, we provide a list of “good” nonlinear terms:

o Cub(p, k) refers to higher-order terms of at least cubic order, except the cubic term
hagh~sh,,, which does not appear in our system. This class covers all cubic terms
of interest, in view of the structure of the system under consideration. Moreover,
these terms are “negligible” as far as the analysis of global existence is concerned.

e GQS,(p, k) refers to “good” quadratic semi-linear terms in ¢h, that are linear
combinations of the following terms with smooth and homogeneous coefficients of

degree < 0:
0"L7 (04hapl harg),  (s/t)*0"L7 (Gthapbihars)

with |I] 4+ |J] < p and |J| < k.
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o GQQ,,(p, k) refers to “good” quadratic quasi-linear terms, that are linear combi-
nations of the following terms with smooth and homogeneous coefficients of degree
<0

"L g0 L720,0,hap, 0" L7 hop 0™ L720,0,hug,
harg 0" L7 0,0, hag, harg@' L7 3,0, has
with |Ii]| + || <p—k, |Ji| + || <k and || + | L] <p—1, |J] < |J|.

o GQQy(p, k) refers to “good” quadratic quasi-linear terms, that are linear combi-
nations of the following terms with smooth and homogeneous coefficients of degree
<0

N LM ey 02 L7"20,0,0, 0" LM hapdL720,0,0,
hapd' L7 2,0,9, harp @' L7 0,040
with |I]| + |L| < |I| =p—k, |h]| +|J2| <k and |L]| + |kl <p—1, |J| < |J|

e Com(p, k). These terms arise when we express a second-order derivative written in
the canonical frame into the semi-hyperboloidal frame. Since the coefficients of the
transition matrix ®2 and W? are homogeneous of degree zero, and the commutators
contain at least one derivative of these coefficients as a factor, these terms are linear

combinations of the following terms with homogeneous coefficients of degree < 0:
t_lQSh(p7 k)a t_lQS(z)(pv k)a t_laIIleauhaﬁalzLJQau¢7
t 0N Ly, 0 L2 0 by, E2ON LT Ry 0 L2, 720" L7y, 0" L2y,
where |I| <p—Fk,|J| < kand ||+ || <p—1, || +|L| <p—Fk ||+ || <E.

With the above notation, we can decompose the commutator [0 L7, h** 0,0, Ju, as follows.

Lemma 4.4 (Decomposition of quasi-linear terms). Let |I| = p —k and |J| = k. Suppose
h" 0,0, is a second-order operator with sufficiently reqular coefficients. Then [6' L7, h*"0,,0,]has
1s a linear combination of the following terms with smooth and homogeneous coefficients of

degree 0:

GQth(pa k)a t_l(9]3L‘]3huy(914L‘]467hM/,,/,
(4.14) | / |
ah LJ1h0l)aIz LJz atatha/% LhﬁOOaILJQ atathaﬁa hOO&Y&W 8ILJ ha,Ba
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where Iy + Iy = 1, Jy + Jo = J with || = 1, J + J5 = J with |J}| = 1 and |J'| < |J|,
| Ls| + [La] < L], [J5] + [ < |J].

Proof. We have
(4.15)
[8ILJ, h* 0,0, hap = [6ILJ,Q“”QHQV]/1Q5 + [51LJ, h““&N\I/Z/QV/]hag
= [aILJ7ﬁOOatat]ha5
+[0'L7 b*°0,0 hap + [0 L7, B**0,0,)hap + [0'L7, b 0,0, hap

+ [0TLT R0, WY 0, 1 hag.

The second, third, and fourth terms are in class GQQ,,;, (p, k) (ho‘ﬁ being linear combinations
of h*# with smooth and homogeneous coefficients of degree zero) and, for the last term,
we see that

[0'L7 h0,®Y 0 hag = Y, ML H™ORL"20,W0 08 L0, hag

I +Iy+1g=1I
J1+Jo+J3=J
3] +[T31<|T]+]J]

+ W0, U [0TLY 0, hag-

Then by the homogeneity of ¥ | the above term can be expressed as t 10 L' h,,,, 0" L"0,h .
Next, we treat the first term in the right-hand side of (4.15) :

[0'L7 80,0 hap = >, ONLMROPL00has + Y. LTh%0"L0,0,has
Iy +Ip=1I J1+Jo=J
Ji+Jdo=J[1 =1 [J1]=1

+ BO[O" L, 0,0 has.

We observe that [0 L7, 3,0;]has is a linear combination of the terms dydg0" lehag with
|J'| < |J]. We apply the commutator identity (3.43):

[GILJ, (7t(3t]ha5 == 5‘1[1)‘], atat]haﬂ == 5‘1 ([LJ, at]athag) + alé‘t ([LJ, (9t]ha5)
— 00,00, L7 has + 010,007 0 L7 hos + 027,010, L7 hag,

where |J”| < |J'| < |J|. This completes the proof. O
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A similar decomposition is available for the commutator [¢! L7, h**3,0,]¢: It is a linear
combination of the following terms with smooth and homogeneous coefficients of degree
< 0:

GQQyy(p, k), t 0L h,, 0" L"0,¢,
(4.16) , , /

ah LhﬁOO@[g LJQ atat(ba leﬁOOaILJQ atat¢’ QOOaaaﬁaILJ ¢7
where Iy + I, = I, J; + J, = J with |I1| = 1, J] + J) = J with |J{| = 1 and |J'| < |J|
and |I3] + | L] < |11, |J5] + |Ja| < |J]. In our analysis of the commutator estimates, we will

make use of the decompositions (4.14) and (4.16).

4.4. Estimates based on commutators and homogeneity. Let u be a smooth func-
tion defined in X and vanishing near the boundary {r =t — 1}. In view of ¢, = t "' L,, we
have
O'Lou=0"L"(t ' Lou) = ) "L (t7")0"R L L.
I +Ig=1
Ji+Jo=J
Since t~! is a smooth and homogeneous coefficient of degree —1, we have

(4.17) 'L/ 0,ul < Ct™ T |07 L Lyul.

[1"1<|1]
[RASE

As a direct application, for instance we have

'L/, 0ul <Ct™ Y |0"L Ladul = Ct' Y |07 LY Ly (RF 0,u).

[1]<|1| [1]<|1|
[771<]] [771<]]

The function ®” is smooth and homogeneous of degree 0, so that

(4.18) 'L 0,0,ul <CI, It > |0"L” Laoyul.

¥, |<|I|
[J1<|J]

A similar argument holds for

(4.19) 'L/, 0,ul <C(I,.t D [0 LY Ladyul.

v,a,|I7|<|I]
[J<|J]
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Furthermore, when there are two “good” derivatives, we consider

oL’ (Qaébu) =o'L’ (t_lLa(t_lLb)u) =o'’ (t_2LaLbu) oL’ (t_lLa(t_l)u)

= >, L)L Lalyu+ Y ML (T La(t)) 0" L Lo,

Iy +Ip=1 Iy +Ip=1
J1+Jdo=J J1+Jdo=J

and we find

0"L7(2,0,u)| = |0" L7 (7 La(t ™ Ly)u)|

(4.20) <Ct™? Y |0"L LoLyu| + Ct™2 . 8" L7 Lyu|.
<[] [<|1]
[71<|J] [71<]J]

4.5. Basic structure of the quasi-null terms. In this section we consider the quasi-null
terms P, and emphasize some important properties:
1. The expression P,z is a 2-tensor and this tensorial structure plays a role in our analysis.

2. In explicit form, it reads

1 ’ ’ 1 4 /
Pop = 197 6" CahnsOsharsy = 5677 9 ahyOphsy

and, in the semi-hyperboloidal frame,

1 ! ! 1 ! !
8= ZQW 9% 0o hys0hys — §9W 9°” 0oheyyQshsy

so the only term to be concerned about is the 00-component:

1 / ! 1 / !
BOO = Zg’w 966 ath'yéathﬂy/é’ - 5977 966 &ghw/@th&;/

1 ! ! 1 ! !
= Zgw g‘% Oth s0ih 5 — §gw g_]56 Oth Othsy + Com(0,0).
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Here Com(0,0) represents the commutator terms:

1 / / " " Z 1"
COm(O, 0) = Zgw'y g55 h,yué//(’/)t(\ljx \I/g )at(\ljz/ \Ijg/ )h,y//lé///

1 / ! " 1" " i
+ _g'Y’Y g55 \le \I]g (%@7//5//(3,5 (‘I]:;/ \I]g/ )h,y///(;///

4
+ ig”'y‘”’ G A0 VA G LN
U (8
LYW b (VU Vg
S (U U Y W g
We see that
Py = igwg“'(%hw@thw — %gwlg‘;‘yé‘tﬁw/&tﬁw + C'om/(0,0)
= im’”lm‘w@tﬁ%&thvw — %ﬂﬁ“’&tﬁwaﬁw + Com(0,0) + Cub(0,0).

Here the terms C'ub(0,0) stands for the high-order terms:

1 / !
Cub(0,0) = 2" m® 0:h

1 / 1. ss
75é’thw,5, + é_lm,y’y h,ﬂ;/@tﬁw;&thvw + Zh’w h&s é’th 51615@75/.

-

We summarize our conclusion.

Lemma 4.5 (Structure of the quasi-null terms). The quasi-null term P, are linear com-
binations of the following terms with smooth and homogeneous coefficients of degree < 0:
(4.21)

GQS,(0,0), Cub(0,0), Com(0,0), ¢ ¢" dih ., 0ihsy, m"'m* 0,k

Y

58th7/5/.
The quasi-null term P 5 are linear combinations of GQS,(0,0) and Cub(0,0) terms.

So, the only problematic terms in P,z are gwlg‘sy(?thw,(?tﬁw and mwlmé‘s/(?tﬁw;@thvw.

They will be controlled by using the wave gauge condition.
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4.6. Metric components in the semi-hyperboloidal frame. In this subsection, we de-
rive the equation satisfied by the metric components within the semi-hyperboloidal frame.

To do so, we need the identity
Cly(wv) = ulJ,v + vl ]u + 29* 0,udpv.
Then, we have
Blyhos = Dy (0805 hargr) = 055 Clyhars + 29" 0, (D] )0y + hargCly (02 D5,

Then we calculate explicitly the correction terms concerning the derivatives of <I>g’<1>§’:

e Case a = [ = 0:

PPy = 1, the other ones vanish,

O(@'dy) =0, (V5PY) = 0.
e Casea=a>0,8=0:
PUDY = 2 /t, LD =1,

2z° x®

1
O(®e®)) = — 5 a(@09F) = —75. u(@0f) = .
e Caseaa=a>0,=0b>0:
QOO = x%2b /12, DY = 29/t, DUDL =

a,.b b a
é’t(¢>2<1>2) _ 7295 T 7 &C((I)O(Pg) _ O’ + Oepx 7

t3

6%’ 264
t4 27

22 x?® 1
D((I)gq)lg) = _t_g’ at(q)gq)g) = _t_27 aa(CDOCDZ) = ;,

O(®a®;) = —

a

while the other ones vanish.
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Then we calculate the remaining terms (up to second-order):

Clohoo = B8 PL Quig + Py — 16m0100:p — 81 mgyd® + Cub(0,0),

~ / / 2
Clyho, = B8 D7 Qup + Py, — 1670,60,¢0 — 8T mo0° + zQahm —

(0,0),
ljgh(za = ¢g,(b§/QO/ﬁ/ + Baa - 167TQ(L¢Q(1¢ - 87rc2maa¢2’

T 4 4x° 2 6|xa)?
+ t—QQahoo + zQahOa - t_3h0a + (t_2 BT )hoo + Cub(0,0),

Dlghoy = D00 Quig + P,y — 16m0,00,¢ — 8tc?m 67,

2 2 6%zl
v L 5 hoo + 8h0b+ 8bh0a %

hOO

22 2x
- t—gh()a + Cub(O, O)

(a#b).
The most important point is that for the components h,4, the quasi-null terms P, 3 become
null terms. This tensorial structure will lead us to the fact that these metric components
do have better decay rate compared to hy,. In Section 9, these equations will be used
to derive sharp decay estimates for these components. For clarity, we state the following

conclusion:

~ 2 2z

(0,0) + GQS,4(0,0) + Cub(0,0),

~ 4 2 6|x2|? 4z@
ol = —5Cahoo + ( - |m|)hoo 8h0a—ih0a

Taa T 2 e T ta 3
(4.22) +GQS,(0,0) + GQS,4(0,0) + Cub(0,0),
~ 270 2z 6xamb 22¢ 2 220
Cghey = t—QQahoo + t—QQbhoo —hoo + 8 ofrob — 3 —5 hoy + ;QahOa - t_3h0a

+ GQS,L(0,0) + GQS (0, 0) + Cub((), 0).
4.7. Wave gauge condition in the semi-hyperboloidal frame. Our objective in the
rest of this section is to establish some estimates based on the wave condition ¢*°T"” op =0,

which is equivalent to saying

1 (6%
5908 a’yg o

(4.23) gﬁvaagaﬁ =3
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We have introduced

(4.24)

in which A% = ho'@ T2 W0, and hyy = has YD) .

Lemma 4.6. Let (gqs) be a metric satisfying the wave gauge condition (4.23). Then 0,h™
1s a linear combination of the following terms with smooth and homogeneous coefficients of

degree < 0:
(4.25) (s/t)?0uh™,  0,h, 7R, BTt hagh™
Proof. The wave gauge condition (4.23) can be written in the semi-hyperboloidal frame as
« "1« o « 1 o' B @
(4.26) g, 0,07 + gas Y W00 (95 ®F) = 2 G0+ S gash™ 0, (24,95,
This leads us to
1 wg 1 o' o - of <8 o
(427) mﬂ’ya h’ = igaﬁéfyh 6+§gaﬁh BQV (q)a’q)g/)_glgl'wq)zh 500&' (q)a (I)g )_hﬁfyéah ﬁ
Taking v = ¢ = 1,2, 3, we analyze the left-hand side and observe that
mﬂcéahaﬂ = mocéohoo + mbCQOQOb + mﬁcéahaﬁ7

which leads us to my,0,h" = mﬁcﬁah‘w — mbCQOQOb — mﬁcéaﬁaﬁ , so that

mOCMOcQoﬁoo =m° m O, haﬂ —m “my,.0 h — m% mﬁcﬁah“ﬁ,
An explicit calculation shows that m®m,, = %, m%m,, = —(s/t)>(2*/t) and thus
(4.28) (r/t)?0oh® = m™mg. 0,0 + (s/t)* ) (" /t)2ph" — m*m.0,h"".

b
Combining (4.27) and (4.28), we find

(r/)20,h% = (s/t)? (2% /1) 0oh™ — m"1ms.0,h™
(4.29) ' ”1
+m° ( 5Q0h + 29aﬂhaﬂ 0 (@g@g/) — gy D] haﬁaa,(q)g (pg) _ hﬁcéahaﬂ>7

which leads us to the terms in (4.25). O
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We now proceed by deriving some estimates based on the wave gauge condition. For

convenience, we introduce the notation

B = max|hog|,  |Oh|:= max|0hag|,  |Oh|:= max |0 Byl ¢=1,2.3.

Observe that ‘&‘_h‘ contains only the “good” derivatives of h,5. When ’0@‘ and ’h| are
supposed to be small enough, and, the rest of this section, we express the corresponding
bound in the form ¢, < 1, the algebraic relation between h? and h,s leads us to the

following basic estimates:

(4.30) ma/tgx ‘Qaﬁ‘ < C‘ﬁ‘, max ‘@haﬁ} < C‘@ﬁ‘, ma?j( ‘QCQO‘B} < C‘@_h‘

a,Byy

With the above preparation, the following estimate is immediate from Lemma 4.6.

Lemma 4.7 (Zero-order wave coordinate estimate). Let g = m®® + h*® be a metric
satisfying the wave gauge condition (4.23). We suppose furthermore that |8@‘ and ‘ﬁ’ are
small enough so (4.30) hold. Then the following estimate holds:

(4.31) 0,h”| < C(s/t)*|0h| + C|2h| + Ct™"|h| + C|on] |n|.

The interest of this estimate is as follows: the “bad” derivative of A*° is bounded by the
“good” derivatives arising in the right-hand side of (4.31). Of course, the “bad” term ‘8@
still arise, but it is multiplied by the factor (s/t)? which provides us with extra decay and

turns this term into a “good” term.

Lemma 4.8 (k-order wave coordinate estimates). Let ¢g® = m® + h*® be a smooth
metric satisfying the wave gauge condition (4.23). We suppose furthermore that for a
product o'L7 with |I| + |J| < N, |00"L7h| and |0'L7h| are small enough so that the
following bounds hold: max, g ‘81LJQO‘B‘ < C’}&’ILJQ , MaXy 5y |6’76’1LJ@°‘B‘ < C!@@ILJQ

)
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and maxc g ‘Qcé’ILJ@aﬁ‘ < C"Q@ILJ@‘. Then the following estimate holds:

(4.32)
0'L70, 0| + 00" L'h®| <C Y. ((s/t)*|ed" L7 n| +

[+ <[ T+ ]

L1

+C >, [o"Lh||oo™L7h).
11 ]+ Ia]< ]
[J11+]T2l<|J]

o" L7 oh| + 70" L h

i)

Proof. This result is also a direct consequence of Lemma 4.6. We derive the expression of
0,h™ which is a linear combination of the terms in (4.25) with smooth and homogeneous
coefficients of degree < 0. So, 0'L70,h" is again a linear combination of the following
terms with smooth and homogeneous coefficients of degree < |I| (since ¢'/L7 acts on a
0-homogeneous function gives a |I|-homogeneous function):
UL ((s/t)20uh™), 07 L7 (8,h77), 710" L7 (h*7), 0" L7 (AP 0,07, t 107 L7 (hash?)
with [I'] < |I| and |J'] < |J|. We observe that
07 L ((s/t)*0.1") | < C(s/t)* > [0 L7 (0.h™)].
R
The second, fourth, and last terms are to be bounded by the commutator estimates in

Lemma 3.22. The estimate for 0,0’ L7h" is deduced from (4.32) and the commutator

estimates. [l

4.8. Revisiting the structure of the quasi-null terms. In this section, we consider
the estimates on quasi-null terms P, together with the wave gauge condition and we use
wave coordinate estimates. We treat first the term gaa/é’tg 55 and formulate the wave gauge

condition in the form:
(87 1 (67
(4.33) g ﬁaahﬁv = 59 ﬁavhaﬁ'
Lemma 4.9. There exists a positive constant €,, = 0 such that if |h| + |0h| < &4, and the

wave gauge condition (4.33) holds, then the quasi-null term g*® gﬁﬂ ﬁtgaaﬁtgﬁﬂ, s a linear

combination of terms

(434) GQSh <07 0)7 Com(O, 0)7 CUb<07 0)7 QOGQOQOGQObQOQOb
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with smooth and homogeneous coefficients of degree < 0.

Proof. The relation (4.33) can be written in the semi-hyperboloidal frame in the form:

’ / " 1 1 / /
« af B _ af af o\, B
(4.35) g™ hg, + ®T g0, (qfﬁ \Iq,) hgr = 5970, has + 5970, (\Ila v ) By

“y=af

We fix v = 0 and see that
4" 0o = 26 8oy + 20 9000 (W0 ) s = 67000 (V5] ) b

This identity can be written as
(4.36)
gaﬂathaﬁ = 2maﬂéahﬁ0 + 2&‘16Qahﬁ0 + 2@3 maﬁaa (qjg \1131 ) hﬁ/,yl/ — maﬁgt <\I/g,qjg ) ha’,@’

’ af B/ " of o ,3’
+ 200 00, (WS ) g — 000, (050 ) B

In the right-hand side, except for the first term, we have at least quadratic terms or terms
containing an extra decay factor such as d, (\Ifgl‘lfz”) . So, we see that in an/ Qﬁﬁl Oy 9 g -

the only term to be concerned about is
4maa/mlgﬁléaho¢’()@ﬁhﬁ/0 .

The remaining terms are quadratic in hP , h,g or linear terms on h,s; with decreasing
coefficients such as J, (ﬁ/g/\lﬁyﬂ). Then we also see that when |h| sufficiently small, A
can be expressed as a power series of h,s (Without zero order), which is itself a linear
combination of h,s with smooth and homogeneous coefficients of degree < 0. So, when
|| sufficiently small, h*” can be expressed as a power series of hes (without 0 order) with
smooth and homogeneous coefficients of degree < 0. We conclude that in the product
go‘a/ gﬁﬁlﬁtgaa,(%g L the remaining terms apart from 4@““’@55@&@&/0@5@5/0 are contained

in Cub(0,0) or Com(0,0).
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We focus on the term 4m‘m/mﬁﬁléaﬁwoéﬁﬁﬂ,o. We have

(2 Qalrovo) (1 d5h00)
= 4(maaléaho/o + mooéoﬁoo + moa/éohoa/) X (mbﬁlébﬁﬁ/o + mooéohoo + mObéohOb)
= 4(maaléaho/o + mooéoﬁoo) (mbﬁlébhﬁ/o + mooéohoo + mObéohOb)

+ 4m0aléohoa/ (hbﬁlébhﬁ/o + mooéohoo) + 4m0aléoﬁoa/m0béoh0b'

The last term is already presented in the (4.34). The remaining terms are null quadratic

terms (recall that m® = (s/t)?). O

Now we combine Lemma 4.5 with Lemmas 4.6 and 4.9.

Lemma 4.10. There exists a positive constant £,, > 0 such that if |h| + |0h| < €4, then
the quasi-null term Py, is a linear combination of the following terms with smooth and

homogeneous coefficients of order < 0:
(4.37) GQS,(0,0), Cub(0,0), Com(0,0), I¢hyyOihyg.

The term P,z 1s a linear combination of the following terms with smooth and homogeneous

coefficients of order < 0:
(4.38) GQS,(0,0), Cub(0,0), Com(0,0).

Proof. In view of Lemma 4.5, we need to focus on gw/ 255’ Oth Othss and m’' mo Oth 50t 5.
The first term is covered by Lemma 4.9 and the second term is bounded as follows: we

recall that
07 LIm™| = C(1, J)(s/t)?, |m*| < C.

Then, when (v,7') = (0,0) or (6,8’) = (0,0), we have m"'m® dh ;0h.5 becomes a
null term. When (v,7') # (0,0) and (6,6") # (0,0), we denote by (v,7") = (a,«) and
(0,8) = (b,B), so we see that m"'m® dih s0h.s is a linear combination of A4l Ol

with homogeneous coefficients of degree zero. O
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Finally, we emphasize that, in order to control the quasi-null terms, we must control
the term d;h,,,0thys which is not a null term. This term will be bounded by refined decay

estimates on dh,,, and we refer to our forthcoming analysis in Section 9.

~ao)’

5. INITIALIZATION OF THE BOOTSTRAP ARGUMENT

5.1. The bootstrap assumption and the basic estimates.

The bootstrap assumption. From now on, we assume that in a hyperbolic time interval
[2, s*], the following energy bounds hold for |I| + |J| < N. Here N > 14, (C4,¢) is a pair
of positive constants and 1/50 < ¢ < 1/20, say.

(5.1a) B (5,01 L7 hop)? < Ches’,

(5.1b) Epe2(s,0"L7¢)'? < Oyest*10.

For |I] +|J] < N — 4 we have (in which (5.2a) is repeated from (5.1a) for clarity in the

presentation)
(5.2a) E3(s,0" L7 hop)? < Ches®,
(5.2b) Eae(s,0'L7 ¢)V? < Cyes®.

In combination with Lemma 3.4, we see that the total energy of h,sg on the hyperboloid

H is bounded by
(5.3) Ey(s,0' L7 hop) < CCres’ + Cmg < 2C1e5°,

where we take mg < €. In the following discussion, except if specified otherwise, the letter
C always represents a constant depending only on N. This constant may change at each

occurrence.
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Basic L? estimates of the first generation. These estimates come directly from the above
energy bounds.

For |I] + |J| < N, we have

(5.4a) H(S/t)avalLJhaBHL?(%S) + HQaaILJhaBHLf,(J{S) < CCies’,
(5.4b) [(5/)0a0 L7 8l 1250,) + 040" L7 ¢l 1236,y < CCres™>™?,
(540) H(}ILJ(ZSHL?(}{S) < 001851/2+5.

For |I] + |J| < N — 1, we have

(5.5) H@aafLJQSHL%(%S) < CChes'/*°.

For |I| +|J| < N — 4, we have

(5.6) H(S/t)éaaILJCbHLf,(}cs) + ||QaaILJ¢||L§(ﬁS) < CChes’
and, for [I| +|J| < N -5,

(5.7) 020" L7820, < CChes’.

Basic L? estimates of the second generation. These estimates come from the above L2
bounds of the first generation combined with the commutator estimates presented in

Lemma 3.22. For |I| + |J| < N, we obtain

(5.8a) (/600" L7 03 hasl 2oy + 10727 Qs 30 < CCres”

(5:80) |5/ L 2udlizoc + 16 L 2830y < Cres™™,
while for |I| +|J| < N —1 (the second term in the left-hand side being bounded by (4.17))
(5.9 16 L7 00| 3o,y + 10" L7 0,0 3(ac,) < CCres >+

For |I| + |J| < N — 4, we have

(5.10) H(S/t)aILJaaMLi(:HS) + HaILJQMHL?(st) < CCies’,
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while, for |I| + |J] < N — 5, again from (4.17))
(5.11) 10" L7 0ad| 120,y + 80" L7 8] 2.3¢,) < CCyes’.

Basic L™ estimates of the first generation. For |I| + |J] < N — 2, we obtain

(5.12a) sup (t3/2(s/t)§7§ILJha5) + sup (t3/2Qa§ILjha5) < CCles’,
HE JC¥
(5.12b) sup (t?’/z(s/t)&a&ILngﬁ) + sup (tS/QQaaILJ¢> < 001681/2+6,
S U_CS
(5.12¢) sup (t3/2aILJ¢) < CCI€S1/2+5_
Hs

For |I] + |J| < N — 3, we have

(5.13) sup (t720,0' L7 ¢) + sup (t720,0"L”7 ¢) < CCyes™**.
9, He

Here, the second term in the left-hand side is bounded by applying (4.17) once more. For
|I| + |J| < N — 6, we have

(5.14) s;clp (t?’/z(s/t)ﬁ o'L7p) + sup (t3/28 0'L7¢) < CCes’,

while, for |I| + [J| < N =7,

(5.15) up (t320,0"L7 ) +sup (t°20,0'L7¢) < CCyes’.

Basic L™ estimates of the second generation. For |I| + |J| < N — 2, we obtain

(5.16a) sup (/2|0'L7 0, hag|) < CCLes™, sup (t*2|0'L7 0,has|) < CCyes’,

(.160)  sup ((VEIIILI2,0]) < CCres %5, sup (BHTL2,0]) < CCres™H,
Hs Ty

(5.16¢) sup (207 L7¢|) < CCyes'/**0.
Hs
For |I] + |J| < N — 3, we have

(5.17) sup (#2017 a@]) + sup (£72[0"L70,0]) < CCres'™*,
Hs Hs
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while, for |I| + [J| < N —6,

(5.18a) sup (t"2|0"L70,¢]) < CCres ¥, sup (t*2|0"L70,¢]) < CCies’,
Hs Hs

(5.18Db) sup (t*210"L7¢|) < CCres’.

For |I| +|J| < N — 7, we find

(5.19) Sup (t32[0" L7 0,0]) + Sup (t7%107L70,0|) < CCies’.
By (4.18) and (4.19), the following bounds hold:

(5.20) [0"L7 0,08 hagl| 250y + |07 L7 05 0y has | p2(sexy < CCres™ 2,

(5.21) sup (t3/2‘6ILJQaé’ﬂ/haﬁ‘) + sup (tg/Q}é’ILJé’ﬁ/Qahaﬁ‘) < CChes 9,
* Ik

5.2. Estimates based on integration along radial rays. For |I|+ |J| < N —2,
(5.22) 101 L hos(t, )] < CCue(s/t)t™2s° + Cmgt™' < CCye(s/t)t™ 1250,
This estimate is based on the following observation:

10,0" L7 hog(t, )| < C|0,0" L7 hop(t, x)| < CCret™ V27140 ~ OC et 02 (¢ — ) H2H02

Then we integrate 0,0 L7 h,p along the radial rays {(t,\z)|l < A\ < (¢t — 1)/|z]}. We
see when A\ = (¢t — 1)/|z|, 0,0'L7has(t, \x) ~ Cmgt™' since h,s coincides with the
Schwarzschild metric and, by integration, (5.22) holds.

6. DIRECT CONTROL OF NONLINEARITIES IN THE EINSTEIN EQUATIONS

6.1. L* estimates. With the above estimates, we are in a position to control the good

nonlinear terms: GQQy,;,, GQQyy, GQS), QS,, Com, and Cub.

Lemma 6.1. When the basic sup-norm estimates hold, the following sup-norm estimates

are valid for k < N — 2:

(6.1)  |GQS,(N —2,k)| < C(Cre)*t 272 |GQQu,(N — 2, k)| < C(Cre)*t3s%,



(6.2)

(6.3)

(6.4)

(6.5)
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[QSs(N = 2,k)| < C(Che)2 257122,
[GQQus(N = 2,k)| < C(Cre)*t7%s™,
[Com(N —2,k)| < C(Clg)2t—5/2s—l+26’

|Cub(N — 2, k)| < C(Cye)*t752s%.

Proof. We directly substitute the basic L* estimates, and we begin

|GQS, (N —2,k)| < |(s/t)*0,h0,h| + Z |01 L7 0, hos0™ L0 hey ).

I +Ig=I
Ji+Jo=J

By the basic decay estimate (5.16a), |GQS, (N—2, k)| is bounded by C(C;¢)*t2571*23 The

estimate for GQQ),, is similar, where (5.21) is applied, and we omit the details. The esti-
mate for QS , is more delicate and we have L7 (0,00,0) =D, 1y+15=1 0 L710,00™2 L720,¢.
Ji+Jo=J

o I =1,J; = Jthen |l5] = |Jz] =0 < N — 7. Then we apply (5.16b) and (5.19) we
have

‘ah LJ1 (9#¢(912L‘]2@V¢’ < 0(018)2t_28_1/2+26.

e N—3= ||+ |/i] = N =5 then || + |Jo] <3 < N — 6, then we apply (5.17) and
(5.18a).

o |I1]| +|Ji| = N — 6, this leads us to |I2| + |Jo] <4 < N — 3, then we apply (5.18a)
and (5.17).

o |I1| + |/i] < N — 7, this leads us to |I3| + |Jo] < N — 2, then we apply (5.19) and
(5.16b).

The estimate of ¢/ L7 (¢?) is similar and we omit the details.

The estimate for Com is much simpler, due to the additional decay t=!. We apply

the above estimates to ()5S, and the basic sup-norm estimate directly. For the cubic

term, we will not analyze each type but point out that the worst higher-order term is

hap(00)?, since 0'L70,¢ has a decay ~ t~32s¥/2%9 but this term is found to be bounded

by t~

52(s/t)s%. O
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6.2. L? estimates.

Lemma 6.2. one has

(6.6) |GQQu (N, )| 1233) < C(Cre)*s™¥2+%,
(6.7) |GQS,(N, k)| 2(90xy < C(Che)?s™ /242,
(6:8) |QS5(N =4, k)| 2aes) < C(Cre)?s 32+,
(6.9) |GQQu (N = 4, F)|120ez) < C(Cre)’s™*/2%,
(6.10) |Cub] 29,y < C(C £)2573/2+30,

Proof. For the term GQQ,,, we will only write the estimate of 0/' L' hy50"2L720,0,hag

in detail and, to this end, we distinguish between two main cases:
Case 1. |I;| = 1. Subcase 1.1 : When |I,| + |J;| < N — 2, we obtain

|6" L7 heygrd™L70,0,h < CCe|t 2571002 120, 0,h

aﬁHL?(ﬂ{j) af HLz(ﬂf)

< CCues ®PHEE (s, 02 L720n)"?
< 0(015) 3/2+2§

Subcase 1.2: When N > |I1| + |J2] = N — 1, we have |I5] + |Jo] <1 < N — 3, then in view
of (5.20)

|67 L7 hovr @™ L720,0, < COelt3257 (1 /5)|(s/£)0" L hovp

o8|l z23x) 123t

< 00153_3/“5“(3/15)511 LM hay O(Cye)?s™3/+2,

r2(c) S
Case 2. |I;| = 0. Subcase 2.1 : When |J;| < N — 2, then in view of (5.20) we obtain

L7 hyyd'L720,0,h < CCue|((s/t)t™ 2% + 71 L720,0 hov || 12 3¢
8 Bl

s 2goer)
< COe((s/t)t7 28" + 7)™ 50" L720,0, harpr| | L2002

< CCes B (s, 0 L 0h)YV? < O(Che)?s 322,
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Subcase 2.2 : When N > |J;| = N — 1 > 1, then we denote by L/t = L,L”1, we have
|I| +]J2] <1< N —3. Then in view of (5.21)

U

| L7 hogrd' L720,0,h < COwe|tPs Ly L hag

O‘BHLQ(}{;") L2(3¥)

< CCyelt™2s7499 LT hoyg | < O(Che)s 2%,

L2 (3%

The estimate on the term GQ.S, is similar, and we omit the details. For the estimate
for QS (N — 4,k), we will only writhe the proof on ¢'L’ (0a¢ds¢). For N = 9, we have
[252] < N — 7. So, at least [I1| + [1] S N —Tor ||+ L] <N -T:

O L7100 O L) 5 gy < CCre|[t™%25(8)5) (5/)0 LG o gy < C(Cre)?s 272,
L2(33) L2(365)

As far as GQQ4(N —4, k) is concerned, we only treat 0" L hoyg 0™ L720,0,¢. We observe
that |1, + |J1] < N — 4 and by applying (5.22)

[0 e 01 L 0,0,0 ey < | (/007287 + 7)™ (50 172,0,0)

L2(3(3)
< 00163*3/2””8812LJQQQQM¢HL2(9{§)

< 00188—3/2+5EM702 (3, aIQLJzLaQ“@ 1/2 < 0(016)28_3/2+26-

The higher-order terms C'ub are bounded as we did for the sup-norm: just observe that

the worst term is again h(d¢)? and can be bounded as stated. Il
Lemma 6.3. For N > 7, one has
(6.11) |QS (N, k)| r2@ex) < C(Cre)®s™2.

Proof. We discuss the following cases:

o |I1|+ |Ji] =N, N—7=>=0. So, in view of (5.8b) and (5.19) :

ONLM 0,002 L720.,¢
Y Y

‘Lz(ﬂ{?‘) < CCue [t7°25°(t/s) (s/t)o" L 67¢HL2(CH§‘)

< CChes 320 CChes'?M0 < O(Che)?s™ 1%,
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o || +|Ji| = N —1, then |l5] +|J2] =1 < N — 6. So, in view of (5.9) and (5.18a),

we have

|6 L7 0,00 170,

| agoery < COre 7725710 0N L1 0,0 oo

< CCues™ 2 CCLes™ 0 < O(Che)?s 12,

o [[1]| + |Ji] = N —2, then || + |Jo] =2 < N — 5. So, in view of (5.16a) and (5.11),

we have

Hah LJ1 8W¢812LJ28¢(/§

T R A

< CClz’:‘SilJr& 001886 < 0(018)2871+26.

o [[1| +|Ji| = N =3, then |5 + |J2] =3 < N — 4. So, in view of (5.17) and (5.10),

we have

|o" L7 o,90" L0, ¢

) S CCie Ht_?’/231/2+5(t/3) (S/t)aIQLJQaW(bHL?(

‘L2(9f;< HF)

< 00188_1+6 001886 < 0(018)28_1+25.

e When || + | /1] < N — 4 < 3, we exchange the role of I, I, and J;, Jo, and apply

the arguments above again.

7. DIRECT CONSEQUENCES OF THE WAVE GAUGE CONDITION

7.1. L” estimates. We now use the wave coordinate estimates (4.31) and (4.32). Com-
bined with Proposition 3.16, they provide us with rather precise L? estimates and L®
estimate on the gradient of the metric coefficient A°°. In view of these estimates, we can
say (as in [41]) that the quasi-linear terms QQy,;, and Q@ are essentially null terms. In
X, the gradient of a function u can be written in the semi-hyperboloidal frame, that is
0ot = U0 u = WO 0u + W20, u. The coefficients U2 are smooth and homogeneous of
degree 0. And we observe that the derivatives 0, are “good” derivatives. So our task is to
get refined estimates on 0;u, which is the main purpose of the next subsections. We begin

with the L® estimates, whose derivation is simpler than the derivation of the L? estimates.
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Lemma 7.1. Assume that the bootstrap assumption (5.1) holds with Ce sufficiently small
so that Lemma 4.8 holds, then the following estimates hold for |I| +|J| < N — 2:

(7.1) ’aILJaah%’ + ‘aaégILJﬁ00| < Ccl€t73/236’

(7.2) 101 L7R| < CCuet™2(s/t)%s° + Cmt L.

Proof. We derive (7.1) by substituting the basic sup-norm estimates into (4.32). Then we
integrate (7.1) along radial rays, as we did in Section 5.2 and we obtain (7.2). O

The following statements are direct consequences of the above sup-norm estimates and
play an essential role in our analysis. Roughly speaking, these lemmas guarantee that the
curved metric g is sufficiently close to the Minkowski metric, so that the energy estimates
in Propositions 3.1 and 3.5 hold, as well as a sup-norm estimate for the Klein-Gordon

equation (discussed in Appendix C).

Lemma 7.2 (Equivalence between the curved energy and flat energy functionals). Under
the bootstrap assumption with Cie sufficiently small so that Lemma 4.7 holds, there exists
a constant k > 1 such that

KBy (s,0" L hap) < E}(s,0" L7 hag) < K2 Ejf(s, 0" L7 hag),

(7.3)
K 2By e2(s,0'L7¢) < B, 2(s,0'L7¢) < k*Ep2(s,0' L7 ).

Proof. We only show the first statement, since the proof of the second one is similar. From

the identity

2 a
Ej(s,u) — Ey(s,u) = < — h%|0pul* + R0, udpu + Z %hw&gu&t@ dx

*
s

<h“68auﬁgu +2 Z %h“ﬁétuﬁﬁu — 2h0’38tu85u> dx

*
S

2 a a1 1l
(@aﬁgaugﬁu + ) ‘;’f b7 ©2, 08, udgu — 20" @g,@g,(?tuﬁgu) dz

I
N > o= -
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and then
E(s,u) — Ey(s,u)
= J h”ﬁéauéﬁudx + f (Eﬁa0|6tu|2 + %Qabé’tuéb@ dx
g g t t

2z°
t

2z

Ea0|5tu|2 o ;

+ J ( — 2@00|6tu|2 — ZQObétquu — h“b&tuébu> dx
JE

— f (— %ol + Qabéaquu) dr = f (= (t/s)*h”|(s/t)opul* + h“béauébu) dx,
¥

¥

we obtain
; ) - ]T/[ ) = 2_00 Loo(3E) _ab Lo(3HF) ]T/[ ) :
|Eg(s,u) = Eqy(s,u)| < C([|(t/s)°R" + 2,12 ER(s,u)
a,b

Then, recall that in view of (7.2), || < CCie(s/t)t71/2s% + Cmgt™'. When Cje is suffi-

ciently small, we have
(7.4) |h*f) < C’maﬂx |hag| < CCre(s/t)t™2s° + Cmgt ™.

On the other hand, from (7.2), we obtain || < CCie(s/t)*t=1/2s% + Cmgt™", which

implies
(7.5) (t/5)?h%] < CCLet™2s° + C'myg.

Now, when Cie is sufficiently small, (7.4) and (7.5) imply that |E}(s,u) — E},(s,u)| <
(1/2)E3;(s,u), which leads us to the desired result. O

Lemma 7.3 (Derivation of the uniform bound on M,g). Under the energy assumption

(5.2), the following estimate holds:

(7.6) M.s[0"L7h] < C(Cie)?s™%2*2  |I| + |J| < N,
and
(7.7a) M[0'L7 ] < C(Cye)®s™ 2242 |I| +|J| < N — 4,

(7.7b) M[o'L7¢] < C(Cie)®s™ 2 |I| +|J| < N.
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Proof. We only provide the proof of the third inequality, since the other two are easier.
Recall the definition of M [0 L7¢]

(7.8) J (/)] 0ug 0, (9"L7 9) 0, (0" L7 ¢) — %&gﬂ”au(a%"cb) 0,(0"L7¢)| da
7.8 :
< M[0'L7¢](s)En(s, 0" L7 ¢)'.

We perform the following calculation:

(s/)0,9" 0, (0"L7 ) 0, (0"L7¢) = (s/t)0,h"* 0, (0"L7 ) 0, (0"L79)
— (s/08,00, (0"L76) &, (0'L76) — (/)0 (Wi Wy ) W0 (0'176) &, (0"L70)
= (s/t)0;h™0, (0'L7 ) 0, (0"L7 9)
o + (s/t)ain™ 0, (0'L7¢) &, (0"L7¢) + (s/)2,h"0, (9'L7 ) &, (0" L7 )
+ (5/1)0,h"0, (0"'L79) &, (0"L7¢)

~ (s/0)0w (0w ) W0 (0'L76) 0, ("179)
and then observe that

| slena (@' Lo o (@' L0)] dx = | (/910 |5/ (2L o) da

S

< CCie f (t/s)t™25 |(s/t)0, (7L @) | da
H

s

< CChes 2P E) (s, 0" L7 ¢)

C(Cre)2s 3 2 By (s, 0T L7 9)V2, ||+ |J| < N — 4,
<
C(Cie)?s 2By (s, 0" L7 )2, N =3 < |I| + |J| < N,

where we have used (7.1), (5.1b) and (5.2b). The second, third, and fourth terms in the

right-hand side of (7.9) are null terms, we observe that the second term is bounded as
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follows:

J |(s/t)0:h™ 0, (0"L7¢) &, (0'L7 )| da < L |0:h%| |0, (0"L7 &) (s/t)o; (0'L7 )| da

S

< CCues PP By (s, 0 L7 ¢)

C(Cie)2s 3/ 2 By (s, 0T L7 ¢)2,  |I) + |J| < N — 4,
<

C(Cre)2s 2 By (s, 0T L7 ¢)2, N =3 < |I| + |J| < N.
The third and fourth terms are bounded similarly and we omit the details.
The last term is bounded by applying the additional decay provided by 0, (\Ilﬁ/\lll’jl)
This term is bounded by ¢t~!. We have

L{ ’(S/t)a,/ (‘I’Z/\IJZ/) ™o, (aILJ¢) 3, (aILJ¢)‘ di

< CCe f 1t /s) W | | (s/t)on (0L ¢) (s/t)@y ("L ¢)| da

s

< cclsf s+ (s/1)8) [(s/1)an (97 L79) (s/); (' L79)| do

s

< CChes PP B (s, 0" L7 ¢)

C(Cie)2 s~/ 2 By (s, 01 L7 )2, |1+ |J| < N — 4,
<

C(Cie)s 2By (s, 0" L7 p)YV2, N =3 < |I| + |J| < N.

We conclude that

[ 16mag=a, @re) o (@'17)] as

s

C(Che)2 s~ 2 By (s, 01 L7 )2, |I) + |J| < N — 4,
<
C(Cre)?s ™ Ey(s, 0 L7 ¢) 2 N — 3 < |I| + |J| < N.

The term 6,0, (é’l L’ gb) Oy (8I L’ qu) is bounded similarly and we omit the details. O

Lemma 7.4. Following the notation in Proposition 3.15. When the bootstrap assumption

(5.1) holds, the following estimate holds:

(7.10) 1) o (A)] < COe(s/t) A2 4+ COe(s/t) A2
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s

Proof. Following the notation in Proposition 3.15, we have h; ,(\) = 7" <’\t ’\S—x> Recalling

s

that 7' = (¢/5)2h" we find hio(N) = (t/5)2h% <ﬁ %) which leads us to

(7.11) RORER G

s s
Here we recall also that 0, h* = ‘:—jﬁthoo + %Qahoo = i—;é’thoo + %Lahoo. We see that, in
view of (7.1), |(t/s)8tﬁoo‘ < OC1e(s/t)/?573/2%9 and, in view of (7.2),

|(t/s)?s™" L.h™| < CChe(s/t) 257328 4 Cmgts™.
By combining this result with (7.11), the desired conclusion is reached. O
7.2. L? estimates. We first establish an L? estimate on the gradient of 0/ L’h™.

Lemma 7.5. Under the bootstrap assumptions (5.1) and (5.2), the following estimate
holds:

(7.12) |07 L7 0ah™| gy + 060" LB o gy < CCres™.

Proof. The estimate is immediate in view of (4.32). Namely, thanks to the basic L? esti-

mates, we have
|(s/t)200" L” b 12 (sery + 207 L7 | 1290y < CChes®.
By (3.39), we get
(7.13) [t710" L7 B pagaery < C D 2,0" L7 | paesy + Cmigs™ < CCyes’
Now, from (4.32), we need to control the term [0t L/*h0o™ L72h|. When |I;| +|J;| < N —2,
we apply (5.22) and (5.4a) :
|01 LM hoo™ L7 R 12 ggexy < C’Clas‘sH(s/t)t’m(?hLJQQHLQ(%;;) < CChes’.

When N — 1 < |I1] + |Ji] < N, we see that |I| + |Jo] < 1. We have

||8IlleﬁﬁﬁbLhﬁHLz(ﬁ) < 001556||t_1/25_1611LJIEHLZ(}(?)

< 001536||t_1811LJ1QHL2(g{;=) < CChes®,
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where we have used (7.13). O

We are going now to derive the L? estimate on (the “essential part” of) 0/ L7h". This

is one of the most challenging terms and we first decompose h” as follows:
B™ = x(r/t)hg’ + 13",

where h)" = h%’ is the corresponding component of the Schwarzschild metric and the
function x is smooth with x(7) = 0 for 7 € [0,1/3] while x(7) = 1 for 7 > 2/3. We

introduce the notation by’ := x(r/t)h% and an explicit calculation shows that in K o)
|h’| < Cmgt™ < Cmg(1 +17)71, 10ah)’] < Cmgt™ < Cmg(1 + 7)1

This leads us to the estimate

(7.14) 10at0’ | 2 9c) < C'ms, 10012”2236,y < C'mis

and we are ready to establish the following result.

Proposition 7.6. Assume that the bootstrap assumptions (5.1) and (5.2) hold with Cie
sufficiently small (so that Lemma 4.8 holds). Then, one has

(7.15) 10T L7h%) < Cmgt™ + |0' L7

and

(7.16)
||(S/t)_l—“ss_l(allfjh(l)oHLQ(Q{j) < CC() e+ C Z ER}(S, ('}ILJhaﬁ)l/Q

<117 <|J]
o,B

+C ) J 7B (1,00 LY hop)V2dr < CCLes®.

1 |<i1, 17 |<] ) Y2
a,B

Proof. In the decomposition of A%, the term 0,0 L’h)" vanishes near the boundary of

K|2,5%], since in a neighborhood of this boundary, A% = p% — @80. Furthermore, we have

(7.17)  (s/t)°0a0 L7 03" | r2aety < I(5/8)° 00l LB p2gocr) + | (5/)°0ad” LY 1 12 903
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We recall that 0, = —%&t + 0,, that is, d, is a linear combination of ¢, and ¢, with

homogeneous coefficients of degree 0, so the following estimates are direct in view of (4.32)

[ (5/t>5aaaILJﬁ00 HLQ(U{Q")

<0 3 (100" L Bl gaery + 100" L7 Bl gacey + 170" L Bl 2o )
(7.18) |+ 1< 11+

[771<]]

oalL 7 J1 Is 1 Jo
+C > |(s/pPon L hod" L B g2 00,y

17|+ 12| <]
[J1]+]J2]<]J]

Here the first sum in the right-hand side is easily controlled by

D1 Ei(s, 0" L hap)'? + Clt71 0" LR paoer.

E4ESHNPAENP]
a,p

For the last term, we observe that when N > 3, either |I;|+|J;| < N —2 or else ||+ |.J5] <
N —2. When |I;| + |/Ji| < N —2, in view of (5.22),

[(s/0°0" L7 oo L7h] 1 ) < COE|(5/)e7 2 4 47) 0" L2 00 o

< CCue|(s/)0" L70h] iy < CCre ) Eifls, 0" L7 hop)' .

PAESPINPAISH
a,f

When |I5| + | Jo| < N —2, we see that |I;|+|J;| = 1. Then we need to distinguish between
two different cases. If |I;] = 1, then
[(s/0)90% oot 0] | < OO 1257190500 L],

2 (01,)

< OOt 2572 (s 1)) (s /)" L B poaesy < CCres™ N1 Eiyls, 0" L7 hag) V2.

I1<11,101<1]
a,B
When |I,| = 0, we see that |J;| = 1. In this case we set L = L,L”t with |J{| = 1. Then
SAIL T Jipy AnT2 T
|(s/t)20n L7 hod™ L 2EHL;<H5>

< CCye|(s/t)’t™2s7 L, LTk

0y = COl8/ 427000, 1780
= CclgHt1/2—58—1+25QaLJ{hHL2(g{ : < OC,e Z E, (s, aI'LJ'haB)yg
F(0ts

['<|1, 17 < ||
o, B
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Then the above discussion leads us to

(119) [(5/00 0’ LD ooy < 3 Byl L hop)? + Ot L7 Bl s

<1, |7 <|J)|
a,B

Now based on (7.19), we continue our discussion. Recalling the adapted Hardy inequality

(3.39), we obtain
|67 0" L B o gery < |r 0" L7 Bl 2 aexy < €207 L7 B 1230y + Cmgs™,
so that

H(s/t)‘;&a&ILJ@OOHLz(g{?) <C Z Ex (5,07 L hap)V? + Cmgs™.
I<ITLTI<1 ]
a.B
On the other hand, by explicit calculation we have Hé’aéleﬁgoHLa(g@) < Cmgs~ . So in

view of (7.17)

||(S/t)(saaaILJh(l)OHLz(g{?) < C Z E}\k/[(s, aI/LJ,ha/B)lﬂ + C’mgs_l.

[<|1],| 7<)
a,B

We also recall that by the basic L? estimate, HQaaILJ@?OHL?(%S) < OC\es’. By Proposition
3.16 with ¢ = 1 — §, the desired result is established. O

7.3. Commutator estimates. Next, we use the basic estimates and the estimate for A%

in order to control the commutators [0/ L7, 0,0, hag-

Lemma 7.7. Assume that the bootstrap assumptions (5.1) and (5.2) holds, then for |I| +
|J| < N — 2, the following estimate holds in X:

[0"L7, W 0,0, ) hag)|

7.20 :

(7.20) < C(Cre)t s £ CCe (71 + (s/t)*t7128°) ] ]atatafLJ heg| -
|7|<1|

Proof. We recall Lemma 4.4, to estimate [0'L”, h*3,,0,]hap, we need to control the terms

listed in (4.14). We see first that, in view of (6.1), |GQQ,,(p, k)| < C(C1e)*t3s%. For the
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term ¢ 10" L7 h,,, 0" L7 0, hyy,, we observe that |13+ |I,] < N —2 and |1y +|Jy| < N —2,

SO

710" L7 Dy, 01 L7 0, by | < C(Cre)® (871 + (s/t)t28°) t712671H0 < C(Che)®t 35,

For the term 0/t L1 h* 0% L7200, o5, we see that |I)|+|J1| < N—2and || = 1, |Io|+]Jo] <
N — 3, so in view of (7.1)

(7.21) |07 L7 h®0" L7 0,0,ho5| < CC1e5° 72|07 L7 0,0, hag).

For terms L/1h" 0! L'20,0,has and h*°0,0.,0' L h,p, we first observe that by the condition
|J5| < |J] and |J'| < |J]|, [I| + |J5| < N = 3,|I| + |J'| < N — 3. Then they are bounded by
applying (7.2). We only write in detail L/t1h" 0" L720,0hqp:

(722) LJ{hooﬁlLJéﬁtﬁthag

< CCe (/272 +171) Y] ‘é”LJ,&t&thaﬁ
[J/|<|J]

In view of the commutator estimate (3.54), we have |0/ L7 0,0,has| < C'>) -
|7<1|

We observe that (and this is an argument frequently applied in the following discussion,

0405 0T L" hog)

as it says that 0,0, is the only “bad” component of the Hessian):

Oy0att = Oubru = O, 00u — %atatu,
(7.23) .

a a,.b a
Bulyt = 0,041 — %@Qbu - %Qa&gu + i—fatatu — 0, (/) A+ %at (/%) dyu.
Here we observe that the term 0,0,0' L'" hop is bounded by 0;0,0' L”" hs plus other “good”

terms. We see that, in K, }&f (xb/t)| <Ct™', 9, (:L‘b/t) < Ct™!, so that

a, (xb/t) 6t(91LJ”hag + x?@ (a:b/t) 8t61LJ”ha5 < CCet™32g 149,

The terms 0,0,0' L7 Uhag, 00,01 L7 Nhag and 0,0,0' L7 ”haﬂ are the second-order derivatives,
where at least one derivative is “good” (i.e. d,). We apply (4.18), (4.19) and (4.20) and ba-
sic sup-norm estimate, then we conclude that these terms are bounded by CCyet=3/25~1+9.

We conclude that

(7.24) 0,00 L7 hop| < CCret 325710 110,0,0' L7 hp)| .
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Now we substitute this into (7.22) and obtain

LHRO0 L% 0,0ihas| < C(Cre)* 35 + CChe ((s/0°728° +171) Y] ‘atatafLJ’

PANSE

By combining the estimates above, the desired result is proven. Il

Lemma 7.8. For |I]| + |J| < N, one has

|s[o"L7, h**0,0,]h < C(Che)*s®

aﬂ”m(ﬂf;k)

+CCes’ ‘52 s/OY LY 0,0,k
(7.25) 1 J;gl‘ (s/t) tOtlap Lo (3%

+CCyes? Y H s/1)520,0,0' L7 h

| 1<I]

L2(3¢%)
Proof. The proof relies on Lemma 4.4 and we need to estimate the terms listed in (4.14).
The term GQQ), is already bounded in view of (6.6). For the term ¢ 10" L/t h ,, 02 L720,hyy,,
we have the following estimates. When |I1| + |J;| < N — 2, we see that

|st™1 0" L7 by, 02 L7 0y, < | (2 (s/t)s%) (/)0 L0k

f 9{5 f(?'fs)
< 0(018)25’1/2”5.
When || + |Ji| = N —1 = 1, we have |I5| + | /o] <1 < N — 2. We distinguish between
1

two subcases: when |I;]| = 1, we obtain

|st= 0" L7 by, 0" L7 0 by,

sy < OOt L 265
C(C E) 3/2+25
When |[;| = 0, then |J;| = 1. We denote by L7 = L,L71 and

|st™1 0" L7 by 0 L2 0 b |,

= |50, L7 h 02 L7280, By,

2 (90,)
J! —1/2 —1+6 2 —1/2+425
< CChe|s@, L7 by, t 1257 1F HL?(%S) < C(Che)?s 122,
For the term 8IILJ1Q008[2LJ23t8tha5 with |I;] = 1, we observe that
e When 1 < |[;| +|/Ji]| < N —1 we apply (7.1) :
50 L H0% L7 3,00h a1, < CCrE 585255 4/5) (570007 L7 u0uha 2 e

C(O 5) 1/2+26
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e When |[1| + |Ji| = N, then || +|J2/ =0< N —3. So

[s0™ L7 B0 L7200 hag| 2 gee) < CCre st 257 0 N LI RO

< 00163_1/2+5 HahLthOOHLQ(%*) < 0(016)28—1/24-36’

where we have applied (7.12).

For the term L/1h°°0! L720,0,h,s, we apply the energy estimate to L”h" by Proposition

7.6 and the sup-norm estimate provided by Lemma 7.1.

e When |J]| < N — 2, we apply (7.2)

HSLJ{hooélLJé atathaﬁ

< CCe Hs (7 + (s/t)27Y25%) 0T L%50,0has

L2(HT) L2(3F)

< COCe H(s/t)&ILJéé’téthaB

.t CCyest/2+o H(s/t)ﬁ’/QafLJéatathaﬁ

L2(% L2(3%)

< O(C16)28° + CCyesh/2+d Z H(S/t)f)/QaILJ’atathaﬁ”L2(j{*)
7111 5

e When |J{| = N — 1, we apply Proposition 7.6

H SLJEEOOaILJé 6t§tha5

< CChe |st10 LB 0uhag

) + “sLJih(fO@ILJéﬁté’thag

L2(H¥) L2(H¥ L2(3F)

< O(Che)?s® + HSLJi B8 L%0,0,has

L2(3€F)

h s/t) 001 L720,0,hys

< C(Cre)2s + H(s/t)—1+5s—1LJ1h°°

|
12(90%) L2(35)

< C(Che)*s’ + CChes’ Z HSQ(s/t)l_‘s&IL‘]/é’tathag

[J/|<1

L2 (3E)
For the term h*0,0,0! L h,z, the estimate is similar. We apply (7.2) and

H s@ooéﬁy 6ILJ, haﬁ

L2(3(¥)

< 0016 H (S/t)&ya,ylﬁllzjlhag

) * H(S/t)Zt_l/QsHéawav’aILJ,haﬁ

L2(3¢% L2(3¥)

< C(Cie)’s’ + CCues Y H(s/t)‘r’ﬂ@v&v/a]bﬂhaﬂ
=1

L2(3F)
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Now we need to treat the last term and bound it by |(s/t)*20,0,0"'L” hag| p2(3cx). We rely

on the discussion after (7.23) and conclude that

h*0,0.,0'L”" h,
H_ 7O Al 2o
< Z Hhooéaauéllfﬁhoﬁ||L2(g.(§<) e, Z ”hooatataILJ”haﬁHLQ(:H::)
1210 [J7]<]J’|
< C(Che)?s7 10 4 CChes™ /240 H £)%/20,0,0"L”" h,, . O
(Cre)’s + Claes 2 (s/t)”=0u0y Bl er)

|7 [<|J|

8. SECOND-ORDER DERIVATIVES OF THE SPACETIME METRIC

8.1. Preliminary. We now establish L? and L* bounds for the terms ¢;0,0' L”h,5 and
0T L7 0,0thas, which contain at least two partial derivatives ¢; and which we refer infor-
mally to as “second-order derivatives”. We can now apply the method in [39, Chapter 8|.
However, we are here in a simpler situation, since the system is diagonalized with respect
to second-order derivative terms. We recall the decomposition of the flat wave operator in

the semi-hyperboloidal frame:

2
3
(8.1) O = (s/1)20,0u + 2;(x“/t)éa6tu - Z 0,01+ :—38tu + Zau

We also have the decomposition h*”d,0,has = h""0,0,has + W0, (\I/l'j/) 0,hap of the
curved part of the reduced wave operator. The main equation (1.6a) leads us to
(8.2)
. r? 3
((s/£)2 = h®) 8,0thap = —2 Za:(x /1)0,0thas + Z 0afahep = 5 0has = 5 Oihap

+ 10,0, hap + ™0, 0thag + h0,0yhas + W0, (xy) 3, has

— Fop + 1670400306 + 8T gas.
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Let us differentiate the equation (1.6a) with respect to 0/ L7, then by a similar procedure

in the above discussion,

(8.3)
((s/t)*> = B*) 0:0,0" L” hog

2
= -2 Z(m“/t)@a&tﬁlbjhaﬁ + ZQQQG&ILJhaﬁ — :—38t6[L‘]ha5 — %étélLJhaﬁ

+ 1%0,0,0" L7 hos + h™0,0,0" L hag + h™0,0,0'L” has + 10, (m) 00" L7 hag
— 0'L7Fop + [0"L7 W 0,0, ) hag + 1670" L7 (0agpdsd) + 87c?0' L7 (¢ gag) -
For convenience, we introduce the notation

2
IrJ. 1. a IrJ IrJ r IrJ 30 ar,
Sci|[0'L7u] : = —2 Ea (x/t)0,0:0" L u + Ea QaQaé’Lu——tsétaLu—Z@@Lu,

Seold' L7u] : = b*0,0,0" L7 u + h*°0,0:0" L' u + h*0,0,0" L u + 10, <‘P5) 0,0 L'y
and (8.2) becomes
(8.4) ((s/t)* = h™) 100" L hag = Ser[0" L7 hap] + Sea[ 0L hag]
= O'L Fop + [0"L7, W 0,0, Jhas + 1670 L7 (0a9030) + 870" L7 (6 gas)

Now we apply the estimate (7.2) to h” and see that when ¢ > 2 (which is the case if we

are in X) and Ce sufficiently small, then
(s/t)> — b = (s/t)? — CCie((s/t)t7 2" +¢71)
= (s/t)* (1 = CCiet™ 28" — CCets™?) = %(S/lﬁ)?
This leads us to the following estimate. Later, this equation will be used to control the L?

and L® norms of 0;0,07 L7 hp.

Lemma 8.1. When Cie is sufficiently small, the following estimate holds for all multi-
indices (I,J):
(8.5)

|(5/t)20:0,0" L hag| < C (|Sci[0"L7 hag)| + | Sca[0' L7 hag)|) + [0' L7 Fop| + |QS,(p, k)|

+ [[0"L7, 1" 0,0, ] hag| + |Cub(p, k)|.
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8.2. L* estimates. In this section, we apply (8.4) and the estimates of nonlinear terms

presented in Lemma 6.1. First we need to establish the following pointwise estimates

Lemma 8.2. For any (I,J), the following pointwise estimate holds in K:

(8.6)  |Sea[d'L7u]| + |Seald L7u)| < Ctt Y] ‘8a&IILJu‘ + 0t N |0ad" LaL |
<l ao

Proof. The estimate on the term Se¢; is immediate by applying (4.18) and (4.19). The

bound on Sc, is due to the fact that A% are linear combinations of hep with smooth and

homogeneous functions of degree zero plus higher-order corrections, which are bounded in

X. U

Lemma 8.3. When the bootstrap assumption (5.1) and (5.2) hold, the following estimate
holds in K gx):

(8.7) 10,0,0" L7 hop| < CCret2s342  for |I|+|J| < N —4.

Proof. The proof is a direct application of (8.5), where we neglect the higher-order term
Cub. We just need to estimate each term in the right-hand side. We first observe that by
the basic sup-norm estimate (5.12a) combined with (8.6)

|Sei[0" L7 u)| + |Sea[0' L7 u]| < CCret 257170

The estimate for ¢/ L F, 5 can be expressed as QS,(p, k), Cub(p, k), which is bounded
by |0/ L7 F,5| < C(C1e)?t"1s72+2. The estimate on the commutator [0 L7, b 0,0, has is
obtained by applying (7.20) :

10" L7 10,0, has| < C(Cre)*t s 42 4 CChe (7 + (s/0)4728%) Y] )atatafLJ’haﬁ .
|| <[J]

The estimate for QS is derived as follows. We only estimate L7 (0np0s¢), since dealing

with the term 0/ L7 (¢?) is easier:

'L (Gatipd)| < D, [0" L7 0ag 0™ L7200,

[I1|+Ig|=1
[J1]+]J2|=T

Recalling that |I| + |J| < N — 4, we obtain:
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e When || + |J1| < N -7,

0 L7 0,0 0" L7 05¢| < OCe|t™2s°| OCelt ™27V < C(Che)t 25 /2%,

e When N — 6 < |I1| + |1] < N — 4, we see that || + |Jo] <2< N —7 and

01 L7106 02 L72050| < CCrelt= V25124 | OOye|t=3250| < C/(Cre)? 2512+,
So, we conclude that [QS,(N — 4,k)| < C(Cie)?(s/t)*s™>?*2%. We thus have

|(5/t)20,0,01 L7 hos| < CCLet™32s7 140 4 C(Che)?(s/t)?s75/22
(88) +CCe (1 + (s/t)t712s0) Z ‘Otat(?ILJ/hag‘.
|/ 1<]]
Observe that when |J| = 0, the last term in the above estimate disappears and we conclude
with (8.7). We proceed by induction on |J|. Assume that (8.7) holds for all |J| <m—1<
N — 4. We will prove that it still holds for |J| = m < N — 4. We substitute (8.7) (case

|J'| < |J] = m) into the last term of (8.8). O

8.3. L? estimates. The following two estimates are direct in view of (4.18) and (4.19)

combined with the expression of the energy E7;.

Lemma 8.4. For all multi-indices (I,.J), one has

|200a0" L7 hag | ooz + 1002a® L7 R

(89) < CsT'Ey(s,0'Lal” o) ? + Cs™' YT Epy(s,0" L7 hap)'.

[7'[<| 1]y
A direct consequence of these bounds is that, for any (1, .J),

(8.10)
|Ser[0' L7 hap]| agaery < O™ DB (5,0 Lol hap)'? + Cs™ > Eiy(s, 0" L7 hap)'?.
a 1'|<|1]
This estimate will play an essential role in our forthcoming analysis. Our next task is the

derivation of an L? estimate for Scy. The term h*0,¥Y 0,,h,s is bounded by the additional
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decay of |6’M\111’j/‘ < t7!, and we thus focus on the first three quadratic terms. We provide

the derive for the first term (but omit the second and third terms):

[ (t/5)%2h%0,0,0" L” hag HL2(}C;")

< CCie H(t/s)3/2 (t7" + (s/t)t12s%) atQaaILJhaBHB(ﬂfz‘)

< CCyes™2(0,0,0"Lh + CChe |s727°010,0"L” hap| L2 ses)

aﬂHm(J{;F)

< COves™ 2 )0,0,0" L hag| oy, -
Then we apply (8.9) and obtain

/512002, L B sz < CCrE™ 3, Ei(5,0" Lk )

(8.11) ,
+ CChes 240 Z Ei(s,0" L hop) .

[< |1,y
We conclude that

“(t/s)3/2502[61L‘]hQ5

1 poggesy < CCres™270 Y Eiy(s,0' LaL” hap) 2

(8.12) ,
+ CChes 3210 Z Ei (5,07 L hap)'?.

<]y

With the above preparation, in the rest of this subsection we will prove the following.

Lemma 8.5. Under the bootstrap assumption (5.1) and (5.2)
(8.13) |5%720,0,0' L' hog | 12 0%y < CCres™, Il +|J] < N-1.

Proof. Step I. Estimates for the nonlinear terms. The estimate of (8.13) is also based on
Lemma 8.1.

1. This is done by direct application of (8.10) combined with the energy assumption:

HScl[@ILJhag ) < 00188_1+5.

]HL2(J{;"

2. For the term Scy is bounded in view of (8.12) combined with the energy assumption:

|Sc1[0"L7 hag] | ) S C(Che)?s~3/2+20

L2 (33
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3. Now we are about to estimate 0/ L’ F,3. We observe that this term is a linear combina-

tion of QS (p, k) and Cub(p, k). We see that the term @S, (p, k) is bounded as follows:

CENCRS TP S Y LW

a,B, a’ﬁ’ [T |+]Ia]<|I]
vy Ml Tel<] ]

L2(H¥)

When N > 3, we must have either |I;| + [J;| < N —2 or |I5| + |Jo] < N —2. So

a H&Il LJ1 a\/hoéﬁ 612 LL2(9,Y/ha//3/ < Cle‘: Ht_l/QS_l—HSaIz LL2 O'J,Y/ha/ﬁz

L2(3¥) L2(3¥)

001586 H t/S t_1/2 —1+6 (s/t)@I2LL26 h o B

L2(3F)

< CCies By (s, 0" L hay)'? < C(Cre)*s™ .

We can conclude that H(?ILJFMHLZ(%*) < C(Che)?s™ 142,
4. QS is bounded directly in view of (6.10).
5. The estimate on the commutator is the most difficult. We combine the sup-norm

estimate (8.7) and the estimate (7.25) :

[ L7, b 8,0, < C(Cie)*s™ + CChes® Y H (/)00 L 0duhas|

<1

O‘BHLQ(}(;") o (3F)

FCCEs 0N (/7200000 L s
1 1<|J]

< C(Che)*s® + 0(015)235||32(s/t)1_5t1/23_3+26||Loo(}f3<)

L2(3%)

+0Ces? Y] H 5/)5/26,0,01 L ha,

L2 (3¥)

.

PARSP
< C(CCies® + CCres 24 3 | (502000 L h BH
PARSP
We thus conclude Step 1 with the inequality
(8.14)
34—2AI 7 J 1/2+6 5/2 IrJ'y,
[5%720" L7 010uhap | o ey < CCres™ + CCest/* U%J' (/620,000 L s .

and we remark that when |J| = 0 the last sum is empty.
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Step II. Induction argument For |I| + |J| < N — 1, we proceed by induction on |J|. When
|J| = 0, the last term in (8.14) does not exist. Then in view of (8.5), we have

Hs3t_2§t(9t(3]LJha,3HLQ(}@:) < 0(015)826

Then we assume that (8.13) holds for |J| <n < N — 1, we want to prove that it still holds

for |J| = n. In this case, by our induction assumption, we have

[5°720 L7 Qsduhas] aggee) < CCCre)%™ + CCres™ 0 N | (/4)720,040" L s
<11

L2(3¢3)
< C(Che)*s™.

Then in view of (8.5), the desired result is established. O

8.4. Conclusion for general second-order derivatives. In the above subsection we

have only estimate the terms of the form 0,00 L h,s, but we observe that by the identities

(7.23) (and a similar argument below it in the proof of (7.8)) and the commutator estimates

(3.54)

(8.15) 00030 L7 hap| < OO et"/2s7342, \I| +|J| < N —4,
(8.16) |5%7200050" L” hag | p2(30+) < CCres™, I+ |J] <N -1,
(8.17) 10" L7 0,05hap| < CCLet'/?s7342, 11| +|J| < N —4,
(8.18) |s* 720" L7 0a0shap| 1232y < CChes™, 11| +]J| < N —1.

8.5. Commutator estimates. In this section, we improve the sup-norm and L? estimates

for the commutators: our strategy is to apply Lemma 4.4.

Lemma 8.6. Assume that the energy assumptions (5.1) and (5.2) hold, then for all |I| +
J| <N —4

(8.19) ‘[aILJ 1 0,0,] aﬁ\ 016)2t_28_1+36+0(016)215_1/23_‘%'%7
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while for all |I| + |J| < N
(8.20)
10" L7 1 8,0, has 2 ey < C(Cre)2s 4 4 CCre Y Hs%—?atatafy’haﬁ

1/ ]<|J]

L2(3F)

Proof. The proof of (8.19) is immediate by combining (8.15) with (7.20). The proof of
(8.20) relies on a refinement of the proof of (7.25). We will improve upon our estimates on

L0 L720,0,hag and h*°0T L7 h,p. First we observe that for L/1h°°01 L/20,0hp

oWhenlé\JﬂéN—2

HsLJihooafLJéatathag wery < CCr Hs (£ + (s/t)27Y25%) 01 L730,0,hns
L2(H

L2(3HF)

< CCye H(s/t)&ILJéﬁtathag

+ OCyest2+ H(s/t)5/2afLJé &:0shas

L2(3F) L2(3(3)

+OCs Y] H(s/tf/QaILJ’atathaﬁ

|/ [<|J]

< CCye H(s/t)&ILJéatathag

L2(3(F) L2(3€¥)

L2(3€¥)
e When |J/| = N — 1, then |Jj| + |I| <1< N — 4, we apply (7.6) to 0/1h%:

< O(Che)2s V243 L 00 e ‘(s/t)&ILJéététhaﬁ

HSLJiQOOafLJéatathaﬁ
L2(3¢¥)
< CCye|[st710 L% 00uhas + [sLA RO L% 0o
L2( * LQ(U'C;‘)
elte; H £)0! L%8,0,ha H £)~14+3 71 00 H 2(5/t)1 00! L%3,04ha
(Cie) | (s/t) t0thag) , o + (s/t)” L oy (s/t) ] P

< O(Cre)2s V243 L 0Ce H(s/t)@ILJ20t(9tha5

L2(3F)

For the term h*0,0,/0'L” h,g, the estimate is similar:

H 8@00&767/ 81L‘], haﬁ

L2(3¥)
< 0015 H(s/t)@wayﬁlbﬂhag 1230

2,-1/2 145 IpJ
| (/0271 251490,0,0 L s .

< 0015 H(S/t)a’yayﬁllfﬂhag L2(30%)

0N H 5/t)520.0,0"L” hag

1= 1] L2@e)

< C(Cre)2s~ V238 1 OCe H(s/t)(%(?yalll‘ﬂhag

L2(HF)
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Now, ‘61LJ&t6tha5‘ < D= ‘é’wé’yﬁlLJ/hag} in view of the commutator estimates
vy

(3.54), and, by the same argument after (7.23),

3 H(s/t)atﬁt(?ILJ/hag

|/ 1<|J]

N

H(s/t)&y&v@[LJhaﬁ

~1+6
HLQ(%:) Lot + CChes .

So, we conclude that

[(5/)0" L7 Gulrhas] o gz + [(5/4)05030" L7 hasg | o s

<C Y 000 L b

|/ 1<|J]

+ CCies 0. O
L2(3F)

9. SUP-NORM ESTIMATE BASED ON CHARACTERISTICS

9.1. Main statement in this section. Our goal in this section is to control null deriva-

tives, as now stated.

Proposition 9.1. Assume that (5.1) and (5.2) hold with Cye sufficiently small, then for
I+ |J| < N —4,

9.1) (0 — )" L7 0| < CCyet 4",

(9.2) (0 — 0:)0" hyg| < CCret ™.

Proof. The proof relies on our earlier estimate along characteristics. We first write the
estimate on the components h,, in details, and then we sketch the proof on h .
Step 1. Estimates for the correction terms. We observe that the equation satisfied by hy,:

2x¢
t3

~ ! ! 2
Clyho, = B 7 Qup + Py, — 1670,00:6 — 8mm,00° + ;Qahoo — hoo + Cub(0,0).

Differentiating this equation with respect to ¢/L”7, we have
(9.3)
(1, (6" L7 hy,) = 0'L7 (0§ 7' Qup) + 0" L7 (Py,) — 16m0' L7 (0,00:8) — 870" L (my,08°)
2 2x°
— [0'L7 13,0, |hyy + 'L (;Qahoo - tighoo) + 'L Cub(0,0).
Then we apply Lemma 3.8 to this equation. We need to estimate the L® norm of the

terms in the right-hand side and the corrective M,[d! L7 h,,, h].

28a0
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First of all, in view of (6.1), the null terms ®§ ®%' Qs decay like C(Cye)?t=2s71+2
and in view of (6.2), the quadratic terms QS is bounded by C(Cie)?t~2s~Y/**%_ We also
observe that by the tensorial structure of the Einstein equation, the term ¢/ L7 P,5 is also
a null term, so it is bounded by C'(Cye)?t~2s71%2. We also point out that the high-order
terms ! L7Cub(0,0) enjoy also the sufficient decay C(Ce)*t 257142,

We focus on the linear correction terms o' L” (%Qahoo — Qf—;hoo). We observe that this
term is a linear combination of t =20/ L/0, hoy and t20! L7 hoy with |I| + |J| < N — 4 with
smooth and homogeneous coefficients of degree < 0. Then, these terms can be bounded
by CCet=>2s0.

Then, we analyze the commutator term [0/L7 W 0,0,]h,,. We recall that h,, is a
linear combination of hpg with smooth and homogeneous coefficients of degree zero, then
the estimate for this term relies on Lemma 4.4. In the list (4.14), we observe that we need
only to estimate the terms allL‘]l@OO&I?LJZ@t&thaﬁ, Ljiﬁooﬁijéatﬁthag, Qooayﬁyalbﬂhw,
since the remaining terms can be bounded by C(Cie)?t2s712° (see the proof of Lemma

7.7). For the above three terms, we apply (8.15), (8.17) and (7.2) :

L W0 L726,0,hap

< CCye ](t*l + (s/t)247Y265) 01 L7 0,0,hag

< CCpet™ ‘61L‘]§5té’tha5 +O(Che)?t 257149

<COEt™ Y (0,000 L has
FAEEY
vy

+O(Che)’t 21,

and |h*°0,0,0' L7 hyp + C(Cye)*t72s71%  where in the last

< CCiet™ |0,0,0"L” hg

inequality we applied (8.15). Then thanks to (7.23) and the discussion below these iden-
(’)VavfﬁlLJ'hag‘ < 0015t73/2871+6 + }@@t&ILJ'haB

tities in the proof of Lemma 7.7, , SO

that

100,00 L o < C(Cre)t 25749 4 CCyet ™ [0,0,0" L B

Then, by combining this with the commutator estimates, we obtain

(04) LI W00 oo < Omst™ D [0'L7 Gallhuol + C(Cre)t 2571,
ASE
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Finally we analyze the correction term M,[d!L”h,,, h]. We recall that

M0 L g, h] = 1) (rQa)* w + h°WA[0 L hyo] + r R[0T L Ry, h.

a<b

We see that r'Qq = 20, — ‘ETan is a linear combination of the “good” terms. So by
a similar argument to (4.20), we have }(r‘lﬂab)z 0'L7hyo| < CCLet™2s°. The term Wy
is a linear combination of first- and second-order derivatives with coefficients bounded in
K\K™"t. We apply (7.2) to h”, and we get [R"W; [0/ L7 h,o]| < C(Cie)*t~2s%. The term
R[0'L7h,,, h] is bounded similarly, and is a linear combination of the quadratic terms of the
following form with homogeneous coefficients: h*? 0,050 L7 by, t71 heP 00" L7 hy. For the
first term, we apply (4.20) and (5.22) : the linear part of A is a linear combination of hags
with smooth and homogeneous coefficients of degree zero. The second term is bounded by
the additional decreasing factor ¢! and therefore |R[0'L7 by, h]| < C(Cie)?t*s*. Then

we conclude that

|M,[0TL7 b, h](t, )| < CCet™3%s% 3/5<r/t<1, |I|+]|J|<N—4.

Step II. Case of |J| = 0. Now we substitute the above estimate into the inequality (3.18)
and observe that when |J| = 0, the first term in the right-hand side of (9.4) disappears.

Then, we have

(0 = 0,)0"hool < Ct71 sup {[(0 — 0:)(r0"Dgo) [} + CE0" hy (1, )|

int
(9BJC[27S*]U<?JC

+ C(Cre)*t! f

ao

t t

TR 4 OChet™! f 732430

ao

<CCiet +Ct™' sup {|(0 — 0,)(rd" hy)l}-

opKist, LK

Observe that on the boundary 6350[121?50], r = 3t/5. We have
(0 = 0:) (10" ho)| <7101 = 01)0" hgo| + [0 g
< CCrert 2579 4 Omget™ + CCye(s/t)t™ V280

< CCLert ™32+ L 0CLet™ + C'C’le(s/t)t_l/gs‘S < CChe.
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We also observe that on 0K, h,, = h

Zsal?
|(0; — 0,) (10" hyg)| < 7|(0r — 0)hyo| + Byl < Cmgert™ + Cmget™ < CC\e.
This leads us to (9.2) for hy,.

Step III. Induction on |J|. The proof of (9.1) is done by induction on |J|. The initial
case |J| = 0 is already guaranteed in view of (9.2). We assume that (9.1) holds for all
0<|J'| <n < N—4and we will prove it with |J| = n. First, based on (9.1), the following

result is immediate:

(9.5) 000" L7 hyo| + |0" L 04hy,| < CCLet™ 0% |I| + |J| < N — 4,

(9.6) 1000 h,o| < CClet™, |I| < N — 4.

These are based on the identity 0; = t’TT(?t + ti—aréa + H%(@t — 0r), where 0, can be expressed

by the “good” derivatives and ¢; —0,. Furthermore, we have 0, = Qa—%ﬁt and, then, based
on the basic L estimate of the “good” derivatives and (9.1) and (9.2), the derivation of
(9.5) and (9.6) is immediate.

Then we substitute the above estimates on the source terms and corrective term into

(3.18). Observe that by the inductive assumption, (9.4) becomes
I[07L7, h™°0,0,]hye| < C(Cre)*t™ 257130 4 C(Ce)2t 210",

where we have noticed that 33, _ |0/ L7 Cadphye| < CCies™ 79 (by the commutator

estimates and (9.5)). This leads us to (in view of (3.18))

(00 = 0:)0' L7 hgol < Ct71 sup {[(0 = 0:)(rd" L hgg)[} + C1|0" L7 By (£, )|

639@[255*]u5%

t t

4 + CCet ™t J 32420y

ao

- C(Cre)! f

ag

SCCet ™+ 0t sup {[(0 — 0,)(rhyo) ).

anKi[gfso] uoK

Then, similarly as in the argument above, (9.1) is proved for hy,.
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The estimate for h,, is similar, where we also observe that the quasi-null terms P, are
eventually null terms, and the correction terms behave the same decay as in the case of

h g

La0-

9.2. Application to quasi-null terms. Our main application of the refined sup-norm

estimate concerns the terms P,g.

Lemma 9.2. Let (I,J) be a multi-index and |I| + |J| < N. Then, one has

(9.7)
[0"L7 Pag o g0r) < CCres™ 3 Ej(s,0' L hap)? + CChes™ Y Eif(s,0" L hory)'?
o B! ['|<1|
a/,B/

+ 0018571+CC15 2 E;\k/[(s’ 8I'LJ/ha/5/)1/2 + 0(016)2873/2+26_

[1'<|1, 197 < |
of B!

Proof. We apply Lemma 4.10 combined with the estimates (9.5) and (9.6). We first observe
that due to its tensorial structure, the estimate for P,3 can be relined on the estimates on
P,s. Furthermore, the components P,; or P, are essentially null terms (see (4.38)), so
that H‘aILJPaBHB(g{*) C(Cye)?s73/2+2% We focus on P,,. We see that in the list (4.37),
the non-trivial term are linear combinations of d;h,,0h,s With smooth and homogeneous
coefficients of degree zero. Then we only need to estimate H&I L’ (8tﬁaa8t@bﬂ) for

|I| + |J] < N. We have

| z20cs)

H ILJ (at athbﬁ) HL2 (j—(;") g Z H(?Il LJI athaa (312.[/]2 (’}thbﬁHLg (g{*

I +1g=1I
Ji+Jo=J

Recall that N > 7 then either |I;| + |Ji| < N —4 or |I5| + |J2] < N — 4. Without loss of
generality, we suppose that |I1| + |J;| < N —4. Then

e When J; = 0, we apply (9.6):

Hah Othge aI2LJatthHL2(g-c;k) <CCe Ht_l aIQLJathb[?HB(}c*

< CCies™ (/)" L7 by | oy < COres™ D0 Eiy(s, 0" L hop) 2.

[|<| 1,17 <] |
¥
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e When |Ji| > 1,1 < |[1] + | /1| < N — 4, we apply (9.5):

|07 L7 Othy 02 L7 011y | 20y S CCres™ 190 ||(s/ t)abLhathbﬁHLQ(ﬂf;*‘)

< 0018571+CC1€ Z ER}(S, aI/LJ/h%»Y’)l/2

1<|12], 1 1<] 2]
a,B

< CCes 09 N Ey(s,0"L7h, )2 O

[I'1<|Ig],| <] J]|
o,

10. Low-ORDER REFINED ENERGY ESTIMATE FOR THE SPACETIME METRIC

10.1. Preliminary. In this section, we improve the energy bounds on E%;(s, 0! LY h,g) for
|I]+]J| < N—4. We apply Proposition 3.1. In this case the L? norm of ¢/ L7 (0,036 + ¢?)
is integrable with respect to s. We need to focus on the estimate of F,,3 and the commu-

tators [0TL7, h* 3,0, | hag.

Lemma 10.1. Under the bootstrap assumption (5.1) and (5.2) with Cye sufficiently small,
one has for |I| + |J| < N:

H&ILJFQ[;HLQ(%?) < C(Che)?s 3% 4 CChes™ Z E(s, 6ILJha/5/)l/2
a/’ﬁ/
+ CClES_l Z EZ}(S,&I,LJ}LO/B/)UQ
(10.1) i<t

+ CCes T N Ery(s,0" L hovg)'2.

<1197 <] ]
a/ /

Proof. We use here (9.7). We observe that F,g = Qa3 + Pas, where Q,3 are null terms
combined with higher-order (cubic) terms. Then trivial substitution of the basic L? and
sup-norm estimates (see the proof of (6.7)) shows that H(?ILJQMHLZ(H?) < O(Che)?s73/2+2%,
The estimate for P,z is provided by (9.7). O
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Lemma 10.2. Under the bootstrap assumption (5.1) and (5.2), the following estimates
hold for |I| + |J| < N —4:

(10.2)
[[0" L7 1 0,0, hag| paygesy < C(Cre)*s ™22 4 CCes™ 37 Efy(s,0"Lal” hap)"
a|J'[<|J]
+CCies 709 3 N Eyy(s, 0" L hovgr)'2.
iz

Proof. This is based on (8.20). We need to estimate the term |(s/t)?0,0,0'L”h
with |J'| < |J]. We are going to use (8.5). We see that in view of (8.10) :

O‘BHL2(J{;")

H801 [0TL7 hos]

< Cs7' Y Ery(s,0'LaLl” hap)? + Cs™ Y. Ejy(s,0" L7 hog)'.

L2(3C*
() <)

The term Scy is bounded in view of (8.12) HSCQ [0TL” hog) C(C1€)?573/2+20 The

HL2(J-£;’.‘) S

term F,3 is bounded by Lemma 10.1.

For the term QS,, we will only analyze in detail the term 0n¢ds¢ and omit the proof
on ¢?. We see first that 0/ L7 (0,0050) = 3. 111 o1 L7 0,¢ 0™ L7205¢. We then observe
that, for N > 7 and |I|+|J'| < N—5, either |;;|+12\T]i[ < N—6or |Io|+|Ja| < N—6. Suppose
without loss of generality that |I1]+ |Ji| < N —6. Then we have |0/L” (0a¢050)| . ety S
|09 L7000 7350)

e when I, = J; = 0, we see that 0 < N — 7, then we have
0L @uvis0)|, o < N0/)200 (/000 L7006 1

< CCie H(zﬁ/s)t’ms‘5 (s/t)@IQLh@ﬁ(ﬁHLQ(% )

< CChes 30 H(s/t)@bLb@g@’Lg(m) < C(Che)?s™ 322,
e when 1 < |[;]| + |[o| < N — 6, we see that |I5] + |Jo] < N — 5. So we have

HﬁIL‘]' (CatpOp) < [0 L7 0ot i )

L2(HE) ’512[/25 ¢HL2 (HE)

< CCies™? CCles® < O(Che)?s7 342,

We conclude that

(10.3) |QS 40, 1) 2gery < C(Cre)’s™7% p< N —4.
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The term [0' L7, h#*3,0,]has is conserved. Then we see the following estimate are estab-
lished:

(10.4)
H [0°L7, W Thag HLQ(J-C;")

< 00158_1 Z E;X\}(S, aILaLJ/hO/B/)l/2 + 00158_1+061€ Z E]T/[(S, aI/LJ,ha/B/)1/2
o ,Ba o B!
[]<|J] [1<|1]
11<1J]

+ Z H[aILlehMVaM&V]ha/,B/ 0(015)23_3/2-',-25,

alvﬁ/
17/ |<|J]

+
13(3¢,)

We proceed by induction on |J|. In (10.4), if we take |J| = 0, then only the last term in the
right-hand side exists, this concludes (10.2). Assume that (10.2) holds for |J| < n —1 <
N — 5, we will prove that it still holds for |J| = n < N — 4. We substitute (10.2) into the
last term in the right-hand side of (10.4). O

10.2. Main estimate established in this section.

Proposition 10.3 (Lower order refined energy estimate for h,g). There exists a constant
g1 > 0 determined by Cy > 2Cy such that assume that the bootstrap assumption (5.1) holds
with (C1,¢), 0 < e < &1, then the following refined estimate holds

1
(10.5) Ey(s,0' L7 hap)? < 56'1550015, a,8<3, |I|+]J]<N—-4

Proof. The proof relies on a direct application of Proposition 3.1. We need to bound the
terms presented in the right-hand side of (3.2). The term F,z is bounded by Lemma 10.1,
the term @S, is bounded in view of (10.3). The estimate for [0 L7, h**0,0,]hqap is obtained
in view of (10.2). By (7.6), the term M,3[0?L”h] is bounded by C(C1¢)2s~%%*2% Then in
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view of (3.2) :

D En(s,0'L hap)'? < CCye + C(Cre)* + CChe Y | J T B (7, 0T L hap) 2 dr
a8 a8 2

+CChe Z JT_lE;}(T,&FL‘]haB)I/QdT

1<z ¥2
a,fB

(10.6) . .
+CCe ) J 7O B (7,07 L hop) P dr

1 |<|1, 17 <] ) Y2
a,B

+CCe )] JTlEMT,aILaLJ’haﬁ)I/QdT.
2

a,B8,a
[J/1<|J]

The rest of the proof is based on (10.6). When |J| = 0, the last two terms in the
right-hand side of (10.6) disappears. Then, we have

Z EM(S, @Ihaﬁ)lﬁ < C (Cog + (Cl€)2) + 0015 Z J TﬁlEM(T, alha5>1/2d7'-
@B ap V2
|[I|I<N—4 |[I|I<N—4

Then by Gronwall’s inequality, we have

(107) Z EM<S, 61ha5)1/2 < C(Cg€ + (015)2)80016.

o,B
|[I|<N—4

Here we can already ensure that ZQBEM(S’thaﬁ)uz < 101250 by choosing €19 =
ulgégc with C; sufficiently large.
1

We proceed by induction on |J| and suppose that

(10.8) D1 Eun(s,0"hap)? < C(Coe + (Cre)?) 79

o,B
|[I|l<N—4



110 PHILIPPE G. LEFLOCH AND YUE MA

holds for |J| < n < N — 4, we will prove that it still holds for |J| = n. Substitute (10.8)
into the last two terms of the right-hand side of (10.6), we see that

ZEM(S, 61LJha5)1/2 < CCye + 0(015)2 + CCngJ T_lEM(T, aILJhaB)l/QdT
a,B a,B 2

S

+ CCe Z J T B (1, 0" L hog)2dr + CChe (Coe + (Cie)?) f IO,
ap J2 2
I1'|<|1|

+ CC4e Z fT_IEZT/[(T,aILaLJ,ha5)1/2dT,
2

a0,
[97]=]J]-1
thus

2 E(s,0"L7hap)'? < C (Co + (Che)?) sCC1E 4 C’C’lezf T BN (1,01 L hog) Y 2dr
o, a,B 2

+CCie ). J T By (7,0" L7 hap) Pdr + CCre ) JTlE&(T,aILJ’haﬁ)l/Z‘dT
as Y2 ap Y2
11<[1| [1=1]

This leads us to

D En(s,0'L7hap)'?

a,B,|J|=n
|[I|ISN—4—n

< C(Coe+ (Cie)?) s + CCye Z f T B (r, 01 L o) Y2dr.
a,B,|J|=n 2
[I|<SN—-4—n

Then by Gronwall’s inequality, we have (by taking some constant C' larger than the one

provided the above estimate)

2 E1]\4($7 aILJhag)l/Q < C (C0€ + (Cl€)2) SCClE.

B
[T|<NZa—|J]

By choosing €q,, = %, we see that . as  Ep(s, 8ILJhaB)1/2 < %C’lesCClE. Then,
1 |I|<N-4—|J|

we choose £ = ming<p,<n-4{€1,} and conclude that for € < €1, (10.5) is thus proven. [

10.3. Application of the refined energy estimate. The improved low-order energy

estimates on h,s will lead us to a series of estimates. Based on (10.3), the sup-norm
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estimates are direct by the global Sobolev inequality (for |[I| + |J| < N — 6):

(10.9) 107 L7 0, hos| + 0407 L7 hog| < CCyet /2571400,

(10.10) 107 L7 0, hag| + 10,0" L7 hop| < CCLet=3250C1,

Based on this improved sup-norm estimate, the following estimates are direct by integration

along the radial rays {(¢, \z)|1 < A < t/|z|}:
(10.11) 107 L7 hop| < CCre (7 + (s/t)t"250C1%) |

We take the above bounds and substitute them into the proof of Lemma 4.8, following

exactly the same procedure, we obtain for |I]| + |J| < N — 6:
(10.12) 6717 0,8 | + |07 L7 0,h"| < CCyet =257

and also by integration along the rays {(¢, A\z)|1 < A < t/|z|} (and taking into account the

exterior Schwarzschild metric):
(10.13) ‘6ILJQOO| < CCye (tfl I (s/t)Ztl/Qscclf) '

Two more delicate applications of this improved energy estimate for h,g are now ob-

tained. We begin with Fl, in view of (10.9).

Lemma 10.4. For |I| + |J| < N — 6, one has

(10.14) 01LY Fyg| < C/(Cre)2 200 — )~ 14CCe,

Proof. Observe that Fiz is a linear combination of GQS, and P,s and in P,g the only

term to be concerned about (by Lemma 4.10) is mO“mObé‘th%&tQOb, the remaining terms

are GQS},, Cub or Com which have better decay. We observe that in view of (10.9),
'L (Buhondilyg)| < C(Cret's24C0e . O

Then, a second refined estimate can be established.
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Lemma 10.5. For |I| + |J| < N — 7, one has

(10.15) 10:0:0" L hag| < CCyet'Ps™3¢Ce,

Proof. The proof is essentially a refinement of the proof of (8.7). We see that when the
energy is improved, in view of (10.9), |Sci[07 L7 has]| is bounded by CCyet=3/2571+CCe (
in view of (8.6)). The term F,3 is bounded by the above estimate (10.14). The terms Scs,
QS and the commutator are bounded as in the proof of (8.7). Then we get the following
estimate parallel to (8.8) :

|(S/t)28tataILJhaB| < C«Clgt—S/ZS—H-CCla + C(C«lg)Zt—ls—2+Ccla

+CCe (7 + (s/)%1280) Y ‘&tﬁtallfﬂhag.

| 1< ]

By induction, the desired result is thus established. U

11. Low-ORDER REFINED SUP-NORM ESTIMATE FOR THE METRIC AND SCALAR

FIELD

11.1. Main estimates established in this section. Our aim in this section is to estab-

lish the estimates: |I|+|J| < N —T:

(11.1) |LJha,8| < COlet_lsc(Cls)l/Q’
(11.2) (s/t)P2(0TL7 | + (s/t) %07 L7 2, ¢| < CCyes™¥/2HCC1"?,
(11.3) (s/)% 2|0 ¢| + (s/t)* 3]0, 0"¢| < CChes™2,

Let us first point out some direct consequences of these three estimates, by noting the
relations 0y = (s/t)™* (0, — %-9,) and d, = d, — £-0; and the sharp decay rate on J, (for
I+ |J|<N-=T)

10,01 L7 (t, z)| < CCLet™>/251/2+9,

So, (11.1), (11.2) and (11.3) lead to

(11.4) 10,07 L7 $(t, )] < CChe(s/t) 35~ ¥2CC™ T 4 | ]| < N — 7,
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(11.5) 10,07 L7 §(t, )] < CChe(s/t)> s~ ¥2C@™ 1| 4 1] < N -8,
We also have

(11.6) 0,070 (t, )| < CCue(s/t)%s32  |I|< N -7,

(11.7) 10,076 (t, )| < CCe(s/t)* s, |I| < N —38.
In particular, we see that
(11.8) 1000 (t, )| < CChe(s/t)?> 25732,

We observe that by the commutator estimates:

0717 00| < CCre(s/t)t=Hs3/2C(Cre)2 1| +]J| <N -7,
(11.9) |07L70,0| < CCye(s/t)* 5752, 11|+ |J| < N =38,
0717 0a050| < CCre(s/t)' 35~ 2+C(C2) 11| +]J| < N —8.

11.2. First refinement on the metric components. We begin the proof of the refined

sup-norm estimate by the following bound on L (h#*0,,0,haz).
Lemma 11.1. For all |J| < N — 7, the following estimate holds:
(11.10) |L7 (W 0,0,hag)| < C(Cre)’t 21 (t — r)~1HCCe,
Proof. We have the following identity
W 0,00 hag = h®00thas + h0,0has + B0, hag + h0,dyhas + W0, (111) 3y hag.

We obtain
|L7 (W 0,0,hag)| < |L7 (h%°0,0thag)| + |L7 (A*°0,0thag)|
L (B008yhas)| + L7 (B0, 04has)| + L7 (00, (€)) 2,has )

The second, third, and fourth terms are null terms, they contain at least one “good”

derivative and can be bounded directly by applying the basic sup-norm estimates. We
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only treat h“oéaﬁthaﬁ, since the third and fourth terms are bounded similarly:
’LJ (huoéaathaﬂ)‘ < Z }LthaOLhQaathaB’ ]
Jitda=J
We observe that
|L20,0has| = [L” (t7' LaGthag)| < > |L% (t71) L™ LaOthag) -
J3+Jy=Jo
Observe that L7 (t7!) is again smooth, homogenous of degree —1, which can be bounded

by Ct~! in K. So the above sum is bounded by

Do O L Ghag| < COpet s,

|J|<|J]+1

where we have applied (10.9). On the other hand, in view of (10.11), we have
|L7 1) < CCre (17 + (s/t)t712s999)

since A" is a linear combination of hap with smooth and homogeneous coefficients of degree

zero plus high order correction terms. We conclude that
IL7 (h*°0,0thag)| < C(Che)?t 357 .

Furthermore, the term ‘LJ (h*”’é’u (\Ifl,j/) d, hag) ‘ is bounded by making use of the additional
decay provided by |L”'0, (¥%)

< C(J)t7!, and we omit the details and just state that
‘LJ (h*wa# (@) Qy,hag)‘ < O(Che)?t350Ce,
Now we focus on the most problematic term L” (ﬁooét(?thag). We apply here the sharp
decay of h” provided by (10.13) and the refined second-order estimate (10.15) :

L7 (h%0,0hag)| < D |L L7 0100hqs]

J1+Jo=J

< CCie (t_l + (S/t)2t_1/230015) 001€t1/2s_3+0015
< 0(016)2t_1/28_3+0016 + 0(016)2t_28_1+0016

< C(Clg)2t—2+ccls(t o ,r,)—l—i-CClE.
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Lemma 11.2 (First refinement on h,g). Assuming that the bootstrap assumption (5.1)
holds with Cie sufficiently small, one has

(11.11) |hag| < CCret™'s%.

Proof. We apply Proposition 3.10 and follow the notation therein. The wave equation
satisfied by hap

Cohas = Fap — 16T¢0a¢05¢ — 8T 924
leads us to
Dhag = —h“"@uﬁyhag + Fag — 167T(b(3a¢(95¢ — 87T62(b2ga5.

We can apply (11.10) and (10.14), and we have
(11.12) |Sm3’ < C(Che)!t72CGe(t — )~ 11CCe,
Second, by the basic sup-norm estimates, we have

[SES | < C(Cre) 220t — ) T2H T+ || < N — 6.
We can choose g5 > 0 sufficiently small so that ¢ < g5 and C'Cie < §, hence

1S slt, @, 0T L] < C(Cre)*t 20 (t — r) = *0
and, by Proposition 3.10,
|ha5<t, .T)| < C(Cl€)2(t — 7’)267571 + CCléftil < CCléf(t — T)6t71+6. O

11.3. First refinement for the scalar field. In this section, we apply Proposition 3.15

and consider first the correction terms.

Lemma 11.3. Assume the bootstrap assumption (5.1), (5.2) and take the notation of
Section 3.4 and Proposition 3.15, then for |I| + |J| < N —4

(11.13a) IR, [07L7 ]| < CCye(s/t)2s73/2+0,
(11.13b) IR,[07L7 ¢]| < C(Cye)?(s/t)¥/2s 32438,

(11.13c) IRs[07L7 8]| < C(Che)?(s/t)3/2s73/2+3
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Proof. We apply the basic sup-norm estimate to the corresponding expressions of R;. For
R[0T L7 ¢], we apply (4.20). For the term Ry[0!L7¢], we observe that ‘EOO‘ = |(t/s)*h"|
and we recall that the linear part of A% is a linear combination of hap with smooth and
homogeneous coefficients of degree zero. We see that, in view of (11.11) (after neglecting

the higher-order terms which vanish as |h,s|? at zero),
700 —1_—1426
W < CCie(s/t) s :

Similarly, we have
R

| < |(t/s)R”

Y

so that
b
B < CCyes™'+2

and, for 2" = b, we have }Eab‘ < CCye(s/t)?s71%20. We also note that dgp = (s/t)0s¢.

Then, substituting the above bounds leads us to
|Ro[0" L7 $]| < CCve((s/t)?2s™ 32430,
A similar derivation allows us to control |Rs[0!L7¢]| < CCie(s/t)¥2s™%/2T%. O

Proposition 11.4 (Estimate on ¢ and d¢). Assume the bootstrap assumption (5.1) and
(5.2) hold with Cy > Cy and Cie sufficiently small, then

(11.14) (s/)°2|g(t,2)| + (s/1)*°|2,6(t,2)] < OCres™2.

Proof. We apply Proposition 3.15 and follow the notation there. Recall that Lemma 11.3

and Lemma 7.4, we have

|F(1)| < f | Y Ril¢l(At/s, Ax/s)|dA < C’Cls(s/t)S/Zf AN < CCye(s/t) sy P,

|1} o (A)] < CCLe(s/t) A3 4+ COe(t/s)A 2.

We observe that, in the inequality (3.30) we need

f |7}, (A)dA| < O(Jw(s/t)l/?f AT + CChe(s/t) J A72d\

T 0 S0

< C’Clzz(s/t)1/2.951/%‘S + CChe(s/t) syt
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By (3.30), we have

[s¥20(t,2)| + |(s/t)"'s* 20, 9(t, )| < V (L, )

with
oulur + o) (14 [ 11,1 et
Vi(t,z) < < + F(s) + f F(3)|h, ,(3)]eC s MaWdrgs 0 < r/t < 3/5,
2
F(s) + J S F(3)|h) ,(5)]eC s MM g, 3/5 <7/t <1.
\ S

0

When 0 < r/t < 3/5, we get 4/5 < s/t <1 and sy = 2. This leads us to
V(t,l') < 0018 + OClg < COlg,

where we recall that Cyp < C;. When 3/5 < r/t < 1, the estimate is more delicate. In this

case, we have sy = \/g ~ (s/t)~!. This leads us to the following bounds:
|F(7)| < CCye(s/t)*™, JS |hy (AN < CChe.
Substituting these bounds into (3.30), we obtain
|s¥20(t,2)| + |(s/t)"'s*20, (¢, )] < COre(s/t)*.
U

11.4. Second refinement for the scalar field and the metric. In this section, we

establish the following result.

Lemma 11.5 (Second sup-norm refinement). Assume that the bootstrap assumption (5.1)

and (5.2) hold with Cy > Cy and Ce sufficiently small, then for all 0 < |[I| < N —7,

11.15 s/302101p| + (s/8)27310, 01| < CChes™ /2,
( ) (s/t) ¢ 1079

(11.16) |hag| < CCret™ 15719,

We need to control the commutators first.
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Lemma 11.6. For |I| + |J| < N —7,

[07L7, 1 ,8,16] < C(Cre)?(s/t)2s
(11.17) _— ‘LJiQOOatatafLJéqb +

FPARPARY, [J/|<|J]
FARIE

‘ 1°0,0,0'L7 | .

Proof. We need to estimate all the terms listed in (4.16). As far as the terms GQQ),,, are
concerned, we will only treat in detail the term 0" L7 hyrg 0™ L720,0,,¢. For |I]+]J| < N—T,

we have

0" LM ey 0" L720,0,0| < |0" L hovgy

0" L"0,0,9)
< CCie ((s/t)t728° +¢71) |02 L7 (t7 Lo0,9)]

< CCet™ ((s/t)t™ 28 +¢71) Y] ‘aféLJéLaans‘
151<I1a]
|73 1<1 T2
C(C 8) -3 25 (Clg)2<s/t)3873+25.
Other terms of GQQ),4 are bounded similarly, and we omit the details.
For the term ¢ 10 L% hy 5014 L7410, ¢, due to its additional ¢t~! decay, the basic sup-norm

estimates are sufficient to get the following bound:
‘t_lél?’L‘L”hazﬂxﬁl‘*LJ“é’v(b‘ < C<01€)2t_28_2+5 = 0(018)2(S/t)28_4+25 < C(Ol€)2(8/t)38_3+26.

For the term 0 L*h%°0% 720,0,¢, we observe that |I;| > 1, so it can be bounded in view

of (7.1):
| IlLthOO 7]2LJ2(’3tat¢} C E) 3/2 6t 1/2 —1+46 < C(CI€)2(S/t)2873+26.

For the remaining terms in (4.16) we observe that the term o/ L/20,0,¢ and 0,0,,0' L7 ¢
are bounded by 0;0,0" L7 ¢ plus some corrections: [0/L”20,0,0| < CY, .. [0,0,0
FASEA

Then in view of (7.23) and the argument presented below it (but now ¢ plays the role of
hap in (7.23)), we have

‘&ILJé 8,000 8,0,0"

<CCet™Ps"+C )]

L]//|<|J/
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So the last two terms in (4.16) is bounded by

C(Cre)’t?s* +C Y [L/i0,0,0 L%+ C ). |hV660"L7 ¢

\J{H/ué\sm [J/|<]J|
|77<]J]|

This yields us the conclusion. On the other hand, when |J| = 0, the last two terms do not

exist. O

Proof of Lemma 11.5. The proof of (11.15) is similar to that of Proposition 11.4. The
only difference is that we need to bound the commutator [0, h**0,0,]¢ (which, with the
notation in Proposition 3.15, plays the role of f in the definition of F'). We apply (11.17)
[0, h0,0,]¢| < C(Cie)*(s/t)2s™3+3.

Then (following the notation in Proposition 3.15) in view of (11.2) and by an argument

with |J| = 0 and, in this case,

similar to the one in the proof of Proposition 11.4, we have
|F(1)] < CCye(s/t)*2sy 2+ + C(Cre)?(s/t)?sy T,
|1} L (A)] < CCe(s/t) AT 4+ COe(t/s)A 2,

I ()| < CCre(s/t) 25y ™0 4+ CCOe(s/t) Lsy

T

In view of (3.30), the desired results are thus proven.
The proof of (11.16) is an application of (11.15). We rely on the proof of Lemma 11.2
and we have that (11.12) still holds. We furthermore observe that in view of (11.15),

1S5 < C(Cre) ™3, I+ ]I < N -T.
Furthermore, since Che < 1, we take, in view of (11.12)
’S}/Vaﬁ‘ < C<01€)2t—2+0015(t . T)—l—&-CCls < 0(018)2t_2+0(015)1/2 (t . T)—1+C(Cla)1/2.
In view of Proposition 3.10, we arrive at

o, C(Cie)? —14C(C1e)V2 1y \NC(Cre)Y/? —1_C(C1e)1/?
|ha5| < OOpEt + mt (t ’I“) < O(Clé)t S . g
1
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11.5. A secondary bootstrap argument. In this section, we improve the L® bounds

of O'L7¢ and 0,0'L7¢ for |I| + |J] < N — 7.

Proposition 11.7. There exists a pair of positive constants (Cy,es) with C; > Cy such

that if (5.1) and (5.2) hold with C and 0 < € < 9, then for all [I| +|J| < N -7,

(11.18) (s/)P 20 L7 | + (s/t)*0 30,07 L7 ¢| < CChes3/2+C(C1a"7

(11.19) L7 hos| < CCLet™sCC19"?

Proof. We proceed by induction, by relying on a secondary bootstrap argument. Recall
that the bootstrap assumptions (5.1) and (5.2) hold on [2, s*], and we suppose that there
exist constants K,,—1,Cy,—1 > 0 and €/, _; > 0 depending only on the structure of the main

system such that

(11.20) (s/) 210" L7 6] + (s/1) 10,0 L §| < Koy Cres™¥>+Omna (@9,

(11.21) L7 hos(t, )| < Ky Cret™ 1 sCm=1(C1)'2

holds on [2,s*] forall 0 <e <¢/, ;and |[J|<m—1< N —7and |[|+|J| <N —7. This
is true when |J| = 0, guaranteed in view of (11.15) and (11.16) (since there the constant
C' depends only on N and the structure of the main system). We want prove that there

/

exist constants K,,, Cy,, €., depending only on the structure of the main system such that

(11.22) (s/8) 2|0 L7 §| + (5/8)° 310,09 L7 §| < KuChes™¥240m(@19),

(11.23 L7 hos(t,2)| < K Cret ™ sCnl€19)

hold for 0 < e < ¢/, and all |J| < N — 7.
We observe that on the initial slice Hy n KX, there exits a positive constant K ,, such

that

(/)20 L7 ¢| + (s/t)*%|0, 0" L7 ¢| < KomCoe < KomChe,
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We also denote by Ko, a positive constant such that sup,_s |, < (ts=OmC | LT b s(t, 2)|} <
KomCoe < KomCie, since we have chosen Cy > (. Here we observe that on {t = 2} n X,
V3 < s <2, so when C,, > 0, the constant Ky, can be chosen independently of C,.

So, first, we choose K, > Ko, and set ™ := sup o o] {(11.22) and (11.23) holds in Ko g+ }.

By continuity (K, > Ky,,) we obtain s** > 2. We prove that if we choose &/, sufficiently

/ *k

small, then for all e < ¢, s** = s*. This is done as follows.

We take K,, > K,,_1, C,, = 2C,,_1 and see first that under the induction assumptions
(11.20), (11.21) and the bootstrap assumptions (11.22) and (11.23), (11.17) becomes (in
K[Zys**])

107, 1 0,0,]10] < C(Cre)*(s/6)s™% + CK, (Cre)(s/t)> s o2,

We observe that, in the right-hand side of (11.17), the last term is bounded directly by
applying (11.16) and (11.23). The second term is more delicate. We distinguish between
two different cases. When [Jj| = 0, we apply the bootstrap assumptions (11.23) and
(11.15). When 0 < |J5| < |J]|, we have |J{| < m — 1, so we apply (11.20) and (11.21) and
observe that we have chosen C,, = 2C,,,_1.

We then recall Lemma 11.3 and, by Proposition 3.15 (following the notation therein),
we have in both cases 0 < r/t < 3/5 and 3/5 <r/t <1,

S S

7_73/2+36d7_ + CKTQn<Clg)2J 7_71+Cm(015)1/2d7_

S0

F(s)] < CCe(s/t)? f
1/2

< CChe(s/t)* sy VP 4 CCOTV K2 (C1e)32 (5/t)2 30 sOm(Cre)

1/2

< CCie(s/t)>™® + COT K2 (Cre)*? (s /t)> 30 s0m(Cre)

We also have, in view of (7.10), |h;.(\)] < CCre(s/t)/2A=3/270 4+ CCye(s/t) A% and then,
in both cases 0 < r/t <3/5 and 3/5 <r/t <1,

J |hie(N)] < CCye(s/t)YV? f AT32H0 4N 4 CCla(S/t)‘IJ A72d\

S0 S0

< COe ((s/1) s 10 + (s/t) tsgt) < CChe.



122 PHILIPPE G. LEFLOCH AND YUE MA
By Proposition 3.15, we have
(s/t)30~253/2 |aILJ¢| (s/t)¥35732 ‘6 aILJQS‘
< CKomChie + CCie + CC K2 (Cye)?2s0m (@192

e (Km—cho,m—Qo

2
YoR SCI ) > 0, and then we

We can choose K, sufficiently large and fix €/,
see that on [2, s**]:

1/2

(11'24) (s/t)35 2 3/2‘51LJ¢‘ s/t 35 3¢ 3/2‘6 aILJ¢| K C\es Cim (Cre)

Here we need to emphaze that C,, is determined only by N and the structure of the system:
we have Cy, determined in view of (11.16) where the constant C' is determined by N and
the main system. Then, C,, = 2C,,_; thus C,, are determined only by N and the structure
of the system.

In the same way, we follow the notation in Proposition 3.10 combined with following

estimates deduced from (11.22) : as [I| + |J| < N —7
|SKG g, J| Cm(016)2(S/t)4_658_3+cm(01€)1/2

< O(chlg)Qt—3+35+%Cm(clg)l/Q (t B T)—35+%Cm(clg)1/2

I

where we rely on a similar argument for the estimate of ‘[81 L7, h‘“’auﬁl,]gb‘.

We also recall (11.12) for [I| +|J| < N =7
|SIV,VaB| < 0(015)275—%0015(75 . T)—1+Ccle < 0(016>2t_2+0(018)1/2 (t . T)—1+C(C1a)1/2‘
This leads us to (by Proposition 3.10)
|0"L” hag)

< Cmget ™! + %t—“@(cw)m (t — T)C(Cls)l/2 + O(Km01€)2t—1scm(cls)1/2
1

< CCL K et + CCyet™ 0O (1 )OCD™ 1 O(F,, Cye) 7 (1 — ) (@19
< CCve (Ko + 1+ K2C1) t—1 4 C (Che) V2 (t — p)Cm(Cre)1 2
We check that when e < &/, on [2, s**]:

(11.25) 0"L7 hag| < K mCie.
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Now, in view of (11.24) and (11.25), we make the following observation: when s** < s*,

by continuity we must have

(11.26) (/) 2|0" L7 | + (s/t)*0 310, 0"L ¢| = K, Cres 3/2+C(Cre)'2
or
(11.27) ‘Ljha5<t,$)| = chlst_lsc(cla)l/g.

*

This is a contradiction with (11.24) together with (11.25). We conclude that s** = s*.
That is, (11.18) and (11.19) are proved for |J| = m. By induction, (11.18) and (11.19) are
proved for |J| < N — 7. This concludes the argument, by taking eo = €/y_. O

12. HiGH-ORDER REFINED L? ESTIMATES

12.1. Objective of this section and preliminary. In this section we improve the energy
bounds of both h,s and ¢ for N —4 < [I]| + |J] < N. We rely on the energy estimates
Proposition 3.1 and Proposition 3.5. In order to apply these two propositions, we need a

control of the source terms:

e For o' L7h,p, we have the terms 0/ L' F,3, QS,, [0TL7, W 0,0, hag.
e For 0'L’¢, we have the terms [0/ L7, h#*0,0,]5.

In this section, we derive the L? bounds and apply them (in the next subsection) in the
proof of the main estimate. Note that the estimate for F,z is already covered by Lemma

10.1. We begin with Q5.

Lemma 12.1. Assume the bootstrap assumptions (5.1) and (5.2) hold. Then the following
estimates hold for |I| + |J| < N:
(12.1)

[0 L7 (2a6050) agsery + 10" L7 (@) | o oery

< CChes 32 2 Ene(s, 01 L7 9)2 + CCles™3/2+0(C9) Z En (s, 0" L7 ¢)V2.

[77|<[1] 1<)
|7 <]J]|

1/2
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Proof. We only treat ¢! L7 (0,¢03¢) and omit the argument for ¢/ L7 (¢?) which is simpler.
We have 0/ L7 (0n¢050) = > n41,=1 01 L7100 02L7205¢. Assuming that N > 13, we have
J1+Jo=J
either |I1| + || < N =T or |lo| + |J2| < N — 7. Without loss of generality, we suppose
that |[1]| + [Ji] < N —T:
e When |[;| = |J;| = 0. We apply (11.8) :
LpJ Iy 7 J IrJ
H(? L 0ap 0L 285925”1;2(9{;*‘) - H@agb(? L @3¢HL2(H*)
< CCie “(3/75)2*355*3/2(15/5) (S/t)aILJag(ﬁHLQ(%::) < C’C’las*?’/QEM’Cz(s, (9ILJ¢)1/2.
e When |J;| =0,1 < |[[;] < N —7, then |5 + |J2| < N — 1. We apply (11.6) :
[0 190,02 L7008 oy = 17000 2L
< CChe H(s/zﬁ)l_?"ss_?’/2 (312LJ05¢HL2(%§) < CChes 32 Z By (07 L7 )V

)<
e When 1 < |Ji| and |I1| + | /1] < N — 7, then |I5| + [Jo| < N — 1 and |J5| < |J|. We
apply (11.4)

Hah LJ1 §a¢ 5I2LJ256¢HL2(9{*) < CCie H (S/t>1—368—3/2+0(015)1/2 aIQLJQ aﬂ¢

L2(3(¥)

< CCyes 1+0C19)!2 =172 Z Eye(s, 0 L7 ¢)V2. O

I'<|I|
|J'|<|J]|

Lemma 12.2. Under the bootstrap assumption, for |I| + |J| < N one has

(12.2)

H aILJ h* 0, 0v] aﬁHB(ﬂ-ﬁ*)

<CCes™ >0 Eif(s,0" Lol hap)'? + CCes™ 49O N Eri(s,0" L7 hovgr)'?

B’ a1’ |<|I| o B, 1'|<| 1]
[771<]J] [J/1<|J]

+ CChes —3/2 Z EMC2 s, o LJ¢)1/2 + CC, e53/2+C(Cre) 1/2 Z EMC2 s aI'LJ’¢)1/2
|'|<|1 ||§;I<I§‘|

+ C(C E) —3/2+36

and, in particular, for |J| =0,

|07, h*0,0,] < CCes™2 ' By o(s,0"9)? + C(Che)?s 329,

'|<]

aﬁHL2 (HF)
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Proof. We rely on the estimate (8.20) and (8.5) combined with (12.1). In view of (8.20),
we need to estimate H(s/t)28t6t61LJ/ha5HLZ(%?) for |J'| < |J|. Then, in view of in view of
(8.5), the above quantity is to be bounded by the L? norm of Se; [0 L7 has], Sca[0 L7 hag,
0'L” F,3, and 0'L”'QS,,. These terms are bounded respectively in view of (8.10), (8.12),
Lemma 10.1 and (12.1). With all these estimate substitute into (8.5), we have for |.J'| < |J|,

(12.3)
£)20,0,0"L” he,
(/00020 L |,
< CS_l Z E]E(S, a[/LaLJ/ha/ﬁ/)l/Z + 00168_1+C(Cla) Z E]TJ(S, 61/L‘tha//3/)l/2
o \plha, | I of B, 1< |1
[7"<1J]| [77]<]J]|

+ 00183_3/2 Z E;\kJ7C2 (S, a]’LJ¢)1/2 + 00158_3/2+C(016)1/2 Z E;,C/[’CQ(S? aIILJ/¢)1/2

RESH |/ |<|1|
177]<|7|

b ) OTE B 0,0, hel 12 o) + C(Cre)s 2,

|/ |<|J]

That is, we have

H [o'L7, huyéuav]haﬂum(:}{g‘)

<CCies™ Y. Ei(s,0"LaL” hap)'? + CCres A N B (5,0" L hor) '

o B a,| ' |<| T ol 8| 1< |1
[7'<]J] [77]<]J]|
_ U —3/2 1/2 I’ U 1/2
+CCies™? Y By a(s,0"L79)"? + CCles 2O N By a(s, 0" L7 ¢)Y
['[< || 17’ |<|1|
177 <]J]

+ 3 OTE B 0,0, hel 12 o,y + C(Cre)s 2,

| |<[ ]

Then, we proceed by induction on J and the desired result is reached. When |J| = 0,
in the right-hand side of the above estimate there exist only the third and the last term,
this proves the desired result in this case. Then, by induction on |J|, the desired result is

established for |I]| + |J| < N. O
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Lemma 12.3. Under the bootstrap assumption, for all |I| + |J| < N one has

(12.4)
l[e’L”, huua“a,,wHL?(%S)

< 0016871/2 Z E;\}(S,lehag)lm + 0016871/2 Z J TﬁlE;&(T’ LJ/haB)I/QdT
2

\J’I=BIJI [J=|J]
+ CCyes OO N B (5,07 L7 9)2 + COLes™ 0O N B (5, LY hoyp) '
[I'|<|I|+1 |71 1<1J]
|J7<]|J| o B!

+ CCres™ P+ % f T B (7, L hoe) V2dr + C(Cye)2s™ /240",
2

174 1<171
O‘/76/
When |J| = 0, one has
(12.5) 107, 1 0400)0] 1 o, < C(Cre)*s ™.

Proof. We need to estimate the terms listed in (4.16). The estimates on first two terms

are trivial: one is a null term and the other has a additional decay t~!. We just point out
that for the first term we need to apply (4.18), (4.19) combined with (5.22) or (3.39) and

write down their L? bounds
) L2(3F ot 0! L2030 < 1£)%s .
(126) 'L CQQuglrzes) + 170" L 0y 0 L0, 20cx) < C(Cre)s™

We focus on the last three terms.

Term 1. 0" L' h*°0"2L720,0,¢. Recall that |I;| = 1. The L? norm of this term is bounded
by a discussion on the following cases:

e Case 1 < |I1|+|Ji] < N —2. We apply (7.1) combined with the basic energy estimate:
H&IlL‘hﬁooabL‘]28t&t¢HL2(%§) < CCie|t™?25(t/s) (s/t)(?I?LJgat&t(bHLQ(ﬁ) < C(Che)?s™H30,

e Case N — 1 < |[1]| + |Ji] < N, then || + |Jo] <1 < N — 8. Then we apply (7.12)
combined with the basic sup-norm estimate for 02 L/20,0,¢:
Iy 7 J1 1,00 Al 7 Ja Iy 7 J1 7,00 —3/2.6
|07 L7 R0 L726,00 o ey < CCre [[(s/6)0 L7 B™ (t/5)t72°| ey

< 0(016)23_3/2+36.

< CChes 20| (s/t)o" LJI@OOHH(&C?) =
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Term 2. L7'h" 0" L”720,6,¢. Recall that |J;| = 1 so that |Jo| < |J| -1< N — 1.
e Case 1 < |Ji| < N — 7. In this case, we apply (11.19) to L”*h" (seen as a linear

combination of L71h,s with |J!| plus higher-order corrections):

< CChes 1H0(@9)7 H(S/t)aILhatath(aff)

< CCOes OO N By (s, 0" L7 )12,
| |<[ ]
e Case N —6 < |J;| <|J|—1< N—1then |[I|+|Jz] <6 < N —8. In this case we apply
Proposition 7.6 to L1h% and (11.4). First of all, by the estimates (3.54) of commutators
and (11.4), we deduce that |0'L"20,0,¢| < CChe(s/t) 305324019 Then, we have

|7 B2 L%00048 | o e

< HthgOaILJg atat¢‘|L2( + HLJlﬁ?OaILJQ atat¢”L2(g{§)

HE)

< CCe 170" L0000 oy + CCre L7 B (st)! 205732000 s

SCCis™ 3T Eaels, 0" L79)2 + CCwes™ O™ |51 5ty LI BY) o)

1< I|+1
|7 1<|J]

< 0018_1 Z EM,c2(Sv a[/LJ/¢)1/2 + 00158_1/2+C(018)1/2 HS_I(S/t)_H(sLth(l)OHm(}f*)

)< [1]+1
[7'1<1J|

+ CCpes /HCET f S TLEE (7, L7 hag) V2dr + C(Cye)2s 12092

171<]g] Y2
a,fB

where in the last inequality we applied Proposition 7.6.
e Case 1 < J; = J then |J| = 0.
When |J| = N — 6, we see that |I| < 6 < N — 7 provided by N > 13. In this case we

apply (11.6) to ¢! L720,0,¢ and Proposition 7.6 on L/

|2 B0 L0000 pagaes) = |L7B" 0000 oo
< CCe Ht_lalatathHLQ(%?) +CCe H(S/t)l_%s_g/zLJ@?OHLQ(J{?) '
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The first term is bounded by CCies™! 2r<ir+1 Barez (0" ¢)'/2. For the second term, by
applying Proposition 7.6, we have

H (S/t)l_gds_S/QLJh(l)OHLz(g{;k)

< H (S/t)1—368—3/23(8/t)1—6 8_1(S/t)_1+6LJ@?0HL2(}(§<)
<CCies™? Y0 Ejy(s, L7 hap)'?
PASE
a,B
+ 00188 Z f _1EM<T Ltha5)1/2dT + C(O 8) —1/ 2.

|77 1<]J]
a,f

When |J| < N — 7, we apply (11.19) to L'p%:
HLJlﬁooalLJQatathHLz(}c*) <0G gs_HC(Cla m”( /t)alat5t¢HL2 HF)
< CCes1H0C1)"2 B2 (0"000)V2.

We emphasize that such a term does not exist when |J| = 0 since the condition 1 < |J;] <

|J| is then never satisfied.

Term 3. h*0,0,,0'L”" with |.J'| < |J|. This term is easier. We apply (11.16) to h*:

1%0,2,0"L” 9| | ) < O8O (5100000717

L2(H¥)

< 00153_1+C(018)1/2 Z Ej\}(s’ aI/LJ/¢)1/2-

RMISHES!
[7/]<]J|

We now collect all the above estimates together and the desired result (12.4) is proved.
Furthermore, when |J| = 0, the condition |J| < |J| in the sum of the third, the fourth
and fifth term in the right-hand side of (12.4) indicate that these three terms disappear.
Furthermore, when |J| = 0, the term L71h"0!L720,0,¢ and h*°0,0,0" L7 do not exist
(since they demand |J;| = 1 and |J’| < |.J|). So, the only existent terms are 0/*h*0%0,0,¢,
the null terms and the commutative terms with additional t~! decay. They can be bounded

by C(C1e)%s71%% and this concludes the derivation of (12.5). O
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12.2. Main estimates in this section.

Proposition 12.4. Let the bootstrap assumptions (5.1) and (5.2) hold with Cy/Cy suffi-
ciently large, then there exists a positive constant €3 sufficiently small so that for all e < e3

and for N -3 < |I|+|J| <N

1
(12.7) Ex, (s, 0TL7 hop)'? < 50163(?(016)”2,

1 1/2
(12.8) Enre(s,0'L7¢)"? < 501531/“0(015) .

The proof will be split into two parts. First, we will derive (12.7) and (12.8) in the case

|J| = 0. In a second part, we will propose an induction argument for the case |J| # 0.

Proof of Proposition 12.4 in the case |J| = 0. In this case, the following estimates are di-

rect by Lemma 10.1, (12.1), (12.2) and (12.4) :

|0 Fagl p2oery < CCres™ S By (5,0 hag) ' + C(Cre)?s~9/2+%

|'|<|1]|
a/,,(?/

and

H&I(8a¢65¢) HL2('J{§<) t Hal (¢2)HL2(}(§) < C(Che)s™ Z Eea (s, o" ¢)1/2
[1]<[1]
<C(Ce)’s ™ 4 C(Cre)s ™2 YT Eye(s, 0¢)',
N-3<|I'|<|T|
while

”[(717 h““&uay]ha5\|Lz(g{§) < 0(018)2873/2+36 + 0016873/2 Z EM,CQ (8, 6IILJ¢)1/2,

N-3<|I'|<[1]
v - 1
|[o", h* 8M8V]¢|‘L?(%S) < C(Che)?s 1.
And by Lemma 7.3, we obtain M,s[0!L7h](s) < C(C1e)?s™%2+% and

M['L76](s) < C(Cre)’s .
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We conclude that in view of (3.10) and (3.2) (by observe that (3.1) is guaranteed by Lemma
7.2):

(12.9) Eae(s,0'0)2 < CCye + C(Cre)?s™.

E}y(s,0"hap)* < CCpe + C(Cre)* + CCre ). J F VB (1,0 ha)

1<) ¥2

(12.10) o
+ CCe 2 f T*S/QEM,CQ (T, (31/<b)1/2d7'

N-3<|I'|<|1] V2

Substituting (12.9) into (12.10), we obtain

) Bhi(s,0'hap)? < CCoe + C(Cre)* + CCre ) J TV (7,0 hory) V.

(12.11 ,

<]
a/,ﬁ,

Now, in view of (12.11), we introduce the notation Y (s) := Y i<y E%,(s, 0 hap)/?. With
o.B
this notation, the estimate (12.11) transforms into
(1212) Y(S) < CC() €+ 0(015)2 + COI&J T_IY(T)dT.
2
Then Gronwall’s inequality leads us to

(12.13) D1 En(s,0"hap)'? = Y (s) < C(Coe + (Cre)?)s .

|I|I<N
o,B

In (12.9) and (12.13), we take g5 = S525 and for all 0 < & < &5, we obtain
1
EM(S, (9Iha5)1/2 < 501880015
and

1
Epr (s, 5Iha5)1/2 < 501850018.

This yields the desired result for |J| = 0. O
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Proof of Proposition 12.4, Case 1 < |J| < N. . We proceed by induction on |J| and as-
sume that for |[I| +|J|< N—1and |[J|<m—-1<N

Eni(s,0'L” hag)"? < C(Coe + (C12)?) s @9,
(12.14) / .
Eyr (s, olL’ ¢)1/2 <CO(Coe + (Cls))231/2+0(015) n

We will prove that it is again valid for |J| = m < N by using Propositions 3.1 and 3.5.

From the induction assumption,

1/2

||&ILJFa5HL2(g{§) < 00168_1 Z E?\‘/[(S, 8I/L‘Iha5)1/2 + 0016 (008 + (015)2) 8_1+C(Cls)

1< 1]
o,
thanks to (10.1),

H(}ILJ (5a¢55¢)HL2(9{§) + HaILJ (¢2)HL2(3{§)

<CCies™ Y Epels, 0" L79)2 + CCie (Coe + (Cre)?) s~

<]

thanks to (12.1), and finally in view of (12.2).

H [0'L7, W 00y Jhap ”L2(9{§<)

< CChes™! Z E (s, aILJ'ho(ﬁ)l/2 1+ CChe (008 i (015)2) G~ 1+C(Cre)V2
7/ =1]

<1

On the other hand, in view of (12.4), we have

H [aILJa huya,ual/]ngLZ(g{;F)

<CCes™ Y0 Eif(s, L hop)'? + CCres™? ) f B (1, T hag) '

\J/Fﬂ\J\ ‘J/‘ m
+ CC4e (Co + (015)2) G 1/24C(Cre) 2

+ CC4e (Co €+ (018)2) 5~ 1/2+C(Cre)'/? JS FHC(CV g o 0(016)25_1/2+C(015)1/2
2

<CCes™ 30 Eiy(s, L hop)'? + CCres™? ) J T B (1, T hag) Y

[7'1=]J]| \J/\ \J\
a,B

+ 0(015)28_1/2+C(016)1/2.

Also, in view of (7.6) we have M,3[0L7h] < C(C1e)?s™%2+% for |I| + |J| < N
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With
Win(s) = > Eul(s,0'L7hep)"?
[J|=m,e, B
[I|+|J|<N
and

Kn(s) =57 > Eye(s,0'L7¢)',

[J|=m
[T +]|J|<N

the energy estimates (3.2) and (3.10) lead us to a system of integral inequalities:

S

W(s) < C (Coe + (Cre)?) s CGre)'? C’Claf T (Win(7) + Ko(7)) dr

2

(12.15) Kn(s) < C(Coe+ (Cre)?) s CC | 0Ces 1/2J VW, (r) dr

2

+ 00155_1/QJ T_l/QJ n_lwm(n)d’nd’r
2 2
Lemma 12.5 stated and proven below will guarantee that (12.15) leads us
Win(s) + Kn(s) < C (006 + (015)2) 5C(C1e)'?

This leads us to the desired |J| = m case. Then, by induction, (12.7) is valid for all

J| =m < N. We see that we can choose 5 := Y2260 with € > 2CC), then
2CC?2

1 1/2
Win(s) + Kin(s) < 501680(016) !
for 0 < € < g3. This concludes the proof of Proposition 12.4. O

Lemma 12.5. Let W and K be positive, locally integrable functions defined in [0,T], and
suppose that

W(s) < C(Coe + (Cre)?) s 4 CClsf TP (W(r) + K(7)) dr,

2

(12.16) K(s) < C (Coe + (Cre)?) s9C9" 4 CCpes™ J T V2W(r)dr

2

+ CCes WJ -1/ f n)dndr

hold for some constant C' > 0 and a sufficiently small constant C1e > 0. Then, one has

W(s) + K(s) < C (Cye + (Cye)?) s9C9" s €0, 7).
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Proof. We define
W*(s) := sup {T’C(CIE)UQW(T)}
T€[0,s]
as well as
K*(s) := sup {T‘C(Cle)l/QK(T)} :
s€(0,s]
With this notation, (12.16) yields us to (after taking the supremum over s)

S

W"(s) < € (Coz + (Cue)?) + CCres CCOT (W2 (5) 4 K*() [ 7140 dr

2

Y

which leads us to

W*(s) < C (Coe + (Cre)?) + C(CLe)2 (W*(s) + K*(s)).
A similar argument can be applied to estimate K and we also find
(12.17) K*(s) < C (Coe + (C1e)?) + CCLeW*(s) + C(Cye) W™ (s).

By taking the sum of the above two estimates and when (Ci¢) is sufficiently small, there

exists a constant £4 > 0, such that if ¢ < C’l_154,
(12.18) W*(s) + K*(s) < C (Coe + (C1e)?) + C(Cre)* (W*(s) + K*(s)).
Since C(Cye)Y? < 1/2 (for C,e sufficiently small) we have
W*(s) + K*(s) < C (Coe + (Cre)?),
which leads us to the desired result. U

12.3. Applications to the derivation of refined decay estimates. With the refined
energy at higher-order, we can establish some additional refined decay estimates. This
subsection is totally parallel to Section 10.3. First, by the global Sobolev inequality, for
I+ |J] <N -2

12.19 1LY 0y hag| + 0,01 L7 hag| < COet ™25 140
v'vapB ¥ ]

12.20 OTL7 D hog| + 10, 0T L7 hos| < CCLet3/2sC(C1)' 2,
altap a B8
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Based on this improved sup-norm estimate, the following estimates are direct by integration

along the rays {(t, \x)|1 < X < t/|z|}:

(12.21) 107 L7 hos| < CCye (t—l + (s/t)t_1/230(015)1/2> .
From the above estimates and Lemma 4.8, we have

(12‘22) ‘aILJaQQOO‘ 4 !é’IL‘]ﬁahOO‘ < Cclet—3/2sc(cla)1/z
and also by integration along the rays {(¢, \x)|1 < A < t/|z|}:
(12.23) 6717 W] < CCye (t—l + (s/t)Qt_l/QsC(Clg)l/2> .

Two more delicate applications of this higher-order, improved energy estimate are dis-

cussed in the following. They are also parallel to Lemmas 10.4 and 10.5.

Lemma 12.6. For |I| + |J| < N — 2, one has

1/2

(12.24) 0L Fp| < C(Cre)t s 2H0(e)

Proof. We focus on F,3. Recall that F,,3 = Qap+ Pas. We see that (omit cubic and higher-
order terms, which have good decay), the quadratic part of F,s are linear combinations
of 0yhap0yhep. Then, we apply (12.19) and see that, for |I| + [J| < N — 2, we find
OTL (03haplyharg) < C(Che)?t s 2+0(C19)2, O

A second refined estimate parallel to Lemma 10.5 can now be derived. The proof is
essentially the same as that of Lemma 10.5. The only difference is that we apply the

sup-norm estimates presented in Lemma 12.6 for |I| + |J| < N — 2.

Lemma 12.7. For |I| + |J| < N — 3, one has

(12.25) |0:0:07 L hog| < CCyett/?s3+(CC1e)2,

By a similar argument as done below (7.23), we have

(12.26) 100080" L7 hog| + 10" L7 000hag| < CCyet'/2s—3+(CC1,
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Apart from the above refined decay on h,g, we also have the following refined decay for ¢,

deduced from (12.8). For |I| + |J| < N — 2, we have

‘aILJaa¢‘ + |aaa]LJ¢‘ < CvcvlZ_:_t—1/28—1/2+C(C’15)1/27
(12.27)
0127 2,0] +|0,0"L7 6] + |0 L7 6] < CCret= 32520,

while, for |I| + |J| < N — 3, we apply (4.17) and get
(12.28) |07L70,8] +[0,07L7¢| < CCret™52s1/2+C(@2),
Finally, for |I| + |J| < N — 4, we have

(12.29) 0117 050,0| + 2,050" L7 9| < CCyet~P261/2+C(C1e) 2

(12.30) 1000307 L7 ¢| + |07 L7 00059)| < CCyet 3251202,
13. HiIGH-ORDER REFINED SUP-NORM ESTIMATES

13.1. Preliminary. We begin with our refined estimates for &' L7 (h**0,0,has), QS and
[0 L7 1 3,0,]6 for |I] + || < N — 4.

Lemma 13.1. For all |I| + |J| < N — 4, the following estimate holds:
(131 17 (W 6,00hag)| < C(Cre O™ ¢ — s

Proof. The proof is is parallel to that of Lemma 11.1. The only difference is that there we
only have refined decay estimates on 0! L70,0;has and L7h% for |I| + |J| < 7 but here we
have, in view of (12.25) and (12.26), the parallel estimate for |I| 4+ |J| < N — 3. O

Lemma 13.2. For |I| + |J| < N — 4, the following estimate holds:

(13.2)
[0"L7, 1 0,0,]¢] < C(C1e)*(s/t)*s 2% 4+ CCre(s/t)* s> X" |0,0,0™ L7 ¢
[T2]<|I]-1
[J2|<|J]

+ OCet 0@ N ‘8t6t61LJ'q§

[ 1<|J]

+ CCe(s/t)\= 35 32+C(Cre) )1/2 'LJ s
a,B

L CChe(s ) —3/22@% 4

[7"1<|J1,
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and, when |J| =0,

(13.3) [0, h*0,0,]6] < C(C1e)*(s/t)*s ™22 4+ CCre(s/t)* P52+ X7 [6,0,0"¢].
|L2|<|1]-1

Proof. The proof relies on the decomposition presented in (4.16) combined with the refined
decay estimates on 0h, ¢ and 0¢ presented in Section 12.3. We see that the null terms
and the terms of commutators listed in (4.16) are bounded by trivial application of the
refined decay estimates presented in Section 12.3. We only write the estimate on the null
term 011 L1 h*°0%2 720, 0,6 (and omit the treatement of the other terms). We see that h*°
is a linear combination of h,s with smooth and homogeneous coefficients plus higher-order
correction terms:

Case 1. When |I;| = 1, we apply the basic sup-norm estimates (5.12a) and (4.18) :
‘a[l LJlﬁaOé’IQLJQQa@tgb! < CCl€t_1/2S_1+5 CClgt_3/281/2+5 < 0(018)2(S/t)28_5/2+26.

Case 2. When |I;| = 0, we apply (5.22) and (4.18) :

‘511 L7 p0p" LJQQa8t¢’ _ }LJ1haOaILJ2Qaat¢‘

< CChe ((s/t)t 28" +171) COwet 261210 < C(Cre)?(s/t) s+,
We then focus on the estimates of the last three terms.

o We treat first the term 0" L1 A% 0% L720,0,¢ with |I;| = 1. We apply the sharp estimate
to o1 L h" provided by (7.1) :

|01 L7 W0 L720,0,6] < CChe(s/t)*Ps77H0 N |02 L720,0,9) .

[Ia]<|1]
[Jal<[J]

By the commutator estimate (3.54), we have

0L 000 <C Y \avayaf/;%
FAETA

Then we rely on the decomposition (7.23) and a similar argument and obtain

aWaWIaILJégb < 5t5t8[LJ§¢ +0016t_5/231/2+67
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so that
0" LN B0 0" L720,0,0)
< COe(s/t)¥2s73270 N (0,0, L7 ¢| + C(Cre)2(s/t)'s /2.
[To|<|T]—1
[J2|<|J]

e The term L71h"07L”2¢ is bounded as follows. We see that |J5| < |J| and we will
discuss the following cases:

Case 1. When 1 < |J]| < N — 7, we apply (11.19) :

‘L‘qﬁOO&ILJéatatqb

< CCuet™'s“@9" cpe Y ’61L‘]'6t6t¢

|J"[<J]

Apply the same estimate for ‘81 L7 lﬁté’t(b‘ as above, we conclude that

1/2

‘L‘]iﬁooaleéat&tqﬁ

< CCet 50D 15,001 L7 6| + C(Cre) (s )25+

[/ 1<|J]
Case 2. When N — 6 < |J]| < |J| — 1, we have |I| + |J}| <2 < N — 8, then we apply the
last inequality of (11.9) to &' L”20,0,¢:

‘LJ{QOOa]LJéat8t¢

< CCe(s/t) s 2™ N 1

[J<|J1,
o,

Case 3. When N — 6 < |Jj| and J| = J, we have |I| <2 < N — 8 and |J5| = 0. We apply
(11.6) :
‘LJiQOOaILJéatat¢’ = |L700" 61016] < CCre(s/t) 572 Y | L hag| .
a?ﬁ
The term h*0,0,0' L” ¢ is bounded by
CCyet™! 0@ )atatafLJ’¢‘ + O (Cre)(s/t) s 730,
| |<[]
We omit the details of the proof which are essentially the same as in Case I for 01 L7 h%0% L2 ¢.
Therefore, we have established (13.2).
For (13.3), when |J| = 0, the third and fourth terms in the right-hand side of (13.2)

disappear. The last term also disappear since, if we follow the proof of (13.2), we see that

when |J| = 0, and the case 3 of L1h*°0' L”2¢ does not exist (N —6 < J; and J, = J is
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contradictory). This is the only place that the last term in the right-hand side of (13.2)
appears. Therefore, we have established (13.3). d

13.2. Main estimate in this section.

Proposition 13.3. There exist constants Cy,e4 > 0 such that if the bootstrap condition
(5.1)-(5.2) holds with Cy > Cy sufficiently large, then there ezists a constant €4 > 0 such
that for any € € (0,e4) and N —6 < |I| +|J| < N — 4:

1/2

(13.4) |L7 hog| < COLet 997

(13.5) (/)2 20TL7 | + (s/)¥ 3|07 L7 0, 6| < COvet 25019,
The proof is divided into two parts and we analyze first the case |J| = 0.

Proof of Proposition 13.3 in the case |J| = 0. We see that (13.4) is already guaranteed by
(11.16). To establish (13.5), we rely on Proposition 3.15 and follow the notation therein.
The terms R; are already bounded by Lemma 11.3, while the commutator term [0, h**0,,0, ¢
is bounded in view of (13.3). Hence, we have (always with s = 1/t? — r?)

F(t,z) < 0015(8/t>3/2f _3/2+35d7+(](015)2(s/t)3f 3426 3/2 0

S0

+ CChe(s/t)? Z J A0 ‘61 010y | (At/s, A\x/s)dA
H|<]—
SO
F(t,z) < CCe(s/t)* sy > + C(Cre)?(s/t)?
+ CCe(s/t)*? Z J A0 ’81/@8@ (At/s, A\x/s)dA

'|<[1|—

< CCie(s/t)*™ + CChe(s/t)*? )] f Adlél'ﬁt&tqﬁ (\t/s, Az /s)d\

'|<|]—1

2
<

where we recall that s ~

Setting

X, (1) := Z sup ((s/zﬁ)?"s 2 3/2|6I¢‘ + (s5/t)>73 3/2‘8 ﬁlgzﬁ‘)

|T)<n X271
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we claim that
(13.6) (s/6)71 0" 0,010 (t, ) < Cs™2X(s) + Ot le(s/t)? 712571250,

which will be explained at the end of this proof. Replacing ¢ by At/s and integrating in A,
we then obtain

(13.7)
F(t,z)
< O(Cre)(s/t)> % + C’Cls(s/t)5/2_36J </\_3/2+6Xn()\) n G(S/t)36+1/2>\—3/2+26> A\

< C(Cie)(s/t)> ™ + CChe(s/t)>*=3 <Xn(s) JS

S0

A2\ 6<S/t)35+1/2 JS \—3/2+26 d)\>

S0

< C(Che)(s/t)* % + CCie(s/t)* ™M X, (5) + CCLe%(s/t)/*%,

where we used that X,,(-) is non-decreasing and sy ~ £. Also, recall that (7.10) gives the
desired bound for h; , and, therefore, by Proposition 3.15 we deduce that

(s/t)* 232 |01 p| + (s/t)*%s%%(0,0"¢| < CChe + CCLe + CCreX,(s).

Taking the sup-norm of the above inequality in K, 5, we obtain X, (s) < CCye + CCe +
CC1eX,(s). Then, if we take in the bootstrap assumption that &j, sufficiently small so that
CChie < 1/2 for 0 < € < g, we have X,,(s) < CCye + CCie < CCie, which is the desired
result (since C > C’O).

It remains to derive (13.6) and, with the notation above, we write at any (¢, z)
ol 0,0,0| = |(t/5)2 (0, — (x/1)8,) 0" 00| < (t/5)*]@.0" uo| + (t/5)?|(x “/t)Qa&I/&tgﬁ
|

< (s/)7 P57 PX(s) + (t/9)t7 ) | La

a

in which we used the definition of X,, and, on the other hand, the fact that ¢ is of order
|I| — 1 at most. Recalling (5.16b) (together with the commutator estimates), we obtain

D Lad" 08 < CCyet 25120 = CCye(s/t)*s72,

which leads us to ‘6 é’tétgb} (s/t)' ¥ s732 X, (s) + t 7 CChe(s/t) /2572, [
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Before we can proceed with the proof of Proposition 13.3 in the case |J| > 1, we need

to establish the following result.

Lemma 13.4. For |I| + |J| < N —4, one has
|0'L7 (0a0dp9)| + |0'L7 (¢7)] < CChe(s/t)* 532 Y |07 L70,¢| + 0" L7 ¢|

[11<|1|
~

(13.8) y
+ C«Cl€(S/t)82—358—3/2+0(015) / Z ’apLJ,a»y(b‘ n ‘a[/LJ/¢"

PUESFIRPAESP
5

Proof. We only consider 0,03, by relying on (13.5) in the case |J| = 0. Observe that

'L (Cagpd)| < D [0 L7 0ad| [0 L7059 .

I +Io=1I
Ji+Jo=J

When J; = 0 or Jy = 0, thanks to (11.15),
|01 L7 00| |07 L7 050| < CCre(s/t)* 5782 0" L70,¢].
v

When 1 < |Ji| or 1 < |Ja| we see that |Jo| < |J| and |Ji| < |J| and it remains to apply
(11.18). O

Proof of Proposition 13.3 in the case |J| = 1. We proceed by induction and with the help
of a secondary bootstrap argument (as in the proof of Proposition 11.7). We will not
rewrite the argument in full details, but only provide the key steps. Suppose that on

the interval [2, s*| there exist positive constants K,, 1,Cy,_1,€., ; (depending only on the

m—1

structure of the main system and N) such that

(139)  (s/)¥ 2R [FLIg] + (5552 |0,31L79] € Kypor CresOrn (@0,
(13.10) L hug| < KpyrCresCri @9
forO0<e<e, ;and |I|+]|J|<N—-4and |J| <m—1< N —4. We will prove that there

exist positive constants K,,, Cp,, €', (determined by the structure of the main system and

/

the integer N) such that the following inequaities hold for 0 < e < ¢/

m*

(13.11) (s/t)° 72532 |01 L7 6| + (s/t)P735%% |0, 0TL7 | < K,y Cresm (@),
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(13.12) t[L7 hog| < K, Cres@m @97,
We begin the formulation of the secondary bootstrap argument and set

s** := sup {s/(13.11) and (13.12) hold in Kz}

s€[2,s%*]
Suppose the K, that we have taken is sufficiently large such that s** > 2 and C,,, = 2C},,_;
(see the argument in the proof of Proposition 11.7.)
We substitute the assumptions (13.9), (13.10), (13.11) and (13.12) into (13.2). This
gives

1/2

(13.13) |[0"L7, ™ 0,0,]8| < C(Cue)2(s/t)*s 5+ 4 CK2 (Che)(s/t)> 305 /2+Om(C2)

With the notation in Proposition 3.15 (recalling that A}, is bounded in view of (7.10)
and R; are bounded by Lemma 11.3), we obtain

—1/2+36 1/2
1 1
|F(s)] < CCue(s/t)¥2sy 2 1 OO (Cre)*2 (s /)23 50 (C19)
Then in view of (3.15), we have

(S/t)?)& 2 S/Q‘aILng‘ S/t 35 3 3/2‘6 aILqu‘

< CKopCie + CCie + CC K2 (Cye)?2s0m (@)

2
. o 2, ( Kn—2CKg m—2C
Then, as in the proof of Proposition 11.7, we choose ¢/, = Yon (W) . Then,

for 0 < e < ¢, we have
(s/6)5=26%2 |0 L7 | + (s/)¥3s%2 |9, 0" L7 | < K - esCCeM?

The estimate for L”h,g is checked as the argument in the proof of Proposition 11.7. We
omit the details and point out the estimates on QS is covered by Lemma 13.4 and the
induction-bootstrap assumption (13.9), (13.10), (13.11) and (13.12). Other nonlinear terms
such as F,3 and h* 0,0, hap are bounded in view of (12.21) and (13.1). The same argument
as in the proof of Proposition 11.7 leads us to the desired result with e, = min(e},, €f),

where £, was determined at the end of the proof for |J| = 0. O
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14. Low-ORDER REFINED ENERGY ESTIMATE FOR THE SCALAR FIELD
It remains to establish the refined energy estimate in order to complete the proof of our

main result.

Proposition 14.1. Let |I| + |J| < N — 4 and suppose that the bootstrap assumptions
(5.1) (5.2) hold for Cy sufficiently large, then there exists some €5 > 0 such that for all

0<€<€5,’

1/2

1
(14.1) Epe(s,0'L79)? < 5Clgscwlf)

Proof. Our argument now relies on the energy estimate in Proposition 3.5, in which the
coercivity condition (3.1) is guaranteed by Lemma 7.2. The estimate for M[0'L7¢] is
provided by (7.7b). So the only issue still to be discussed is the estimate of the commutator

|[o"L7, hwa#a,,]qs]}ﬂm . Here, we use (4.16) and, in view of (6.8), obtain

)
|GQQu(N = 4, k)| 20,y < C(Cre)?s™2/2+2,
For t=1013 L3 hyy g 01 L7430, ¢, we have
[t 05 L harg O LM 0l 1 acy < 7 + (s/ )72 ) ML 0,0 g
< 0(018)28_3/2+26,
while the term 0t L71h*°0"2 L720,0,¢ is bounded by applying (7.1) :
|6 L7 h®0" L7 0,0, 12(3cxy < CCres ™2 ||(5/t)320™ L7 0,0, | 12 (30x) < CCres™2%,

The term L71h" 0" L720,0,¢ is bounded by applying (13.4) and observing that |J;| > 0:
J} 3,00 A1 1 J —1.C(Cre) 2 Al T .}
A0 L5006 0, < COSOOP AL 3,

_ 1/2 !
< OC s 110 (C2) H(S/t)alLJ2atat¢HL§(9{s)

< CCyes 10" 2 B (s, 0" L7 ¢)V2.
[ <[]
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And for the term h*°0,05, we apply (11.16) :

HEOOaaaﬁélLJ’

<00183_1 Z EM,CQ(aILJ/¢)1/27

L2(3,)
<]

so that [[07L7, W 0,0,]6] jaepy < COres O Y 1 Eyyea(s, L7 )12, So by

Proposition 3.5, we have

S

EjM,c2 (87 aILJ(b)l/Q < CO €+ C(Cl€)2f 7'73/2+26d7'

2

(14.2) ;
+CCe . J TN By (7, 0TLT 9) R dr,

l77|<|J] ¥2

When |J| = 0, the last term disappears. We have
(14.3) Ere(s, 0'¢)? < CChe + C(Che)*.
We are going to prove that for all |I| + |J| < N — 4,
(14.4) Eye(s, ' L7 $)? < CCye + C(Cye)?2sCC1a)”,

When |J| = 1, we proceed by induction on |J| and see that (14.4) is guaranteed by (14.3)
(Cye smaller that 1). Assume that (14.4) holds for |[J| < m — 1 < n — 4, we will prove it
for |J| = m < N — 4. We directly apply the induction assumption in (14.2) and conclude
that Eye(s, 0/ L7¢)V? < CCye + C(C1e)32s(C19)"” for |I| + |J| < N — 4 and, by taking

2
g5 = [ G=2 the desired result is proven. [l
2ccy? ) 7

In conclusion, in view of (10.5), (12.7), (12.8) and (14.1), if the bootstrap assumption
holds for Cy > Cj sufficiently large, then there exists some gy := min{e; €9, €3, €4, €5} such
that

(8, 0T L hos)? < =ChesC@9” |+ |J| <N

En(s, 0 L7¢)V? < =Cyes'?HCCa"” N _3 < |I|+|J| <N

H[\DIH[\DIH

En(s, o' L7 )2 < 5Cres C(Gre)?, 11| +]J] < N —4.
This improves the bootstrap assumptlon (5.1)-(5.2). We see that (5.1)—(5.2) hold on

the time interval where the solution exists. In view of the local existence theory for the



144 PHILIPPE G. LEFLOCH AND YUE MA

hyperboloidal foliation (see the last chapter of [39]) the global existence result is thus
established.

APPENDIX A. REVISITING THE WAVE-KLEIN-GORDON MODEL

A wave-Klein-Gordon model was “extracted” from the Einstein equations by the au-
thors in [40, 41] when they were beginning to analyze the Einstein equations via the
Hyperboloidal Foliation Method introduced in [39]. This model® provided to the authors
a simple, yet highly not trivial, example of coupling between a wave equation and a Klein-
Gordon equation, before developing the method for the full Einstein system, as we do in
the present monograph. We revisit here the proof of existence in [41] since our presentation
missed one bootstrap condition in the list (5.1) which however turns out to be necessary

for dealing with the (comparatively easier) wave component when k = 0 in (5.1).

When k = 0, the first bound in (5.1) in [41] should be weakened to
(A1) En(s,0'u)V? < Cles®,  |I| < N,

while a similar remark applies to (5.2). Doing so has no effect on the derivation of the
sup-norm bounds (in Section 6.2, on which Section 7 is based), since in the application of
the Klainerman-Sobolev inequality one uses one boost at least, and the additional growth
allowed by (A.1) is negligible. Note in passing also that, in Section 6.5 of [41], the Hardy-
based estimate (6.20a) is valid for &k = |J| = 1 only, while we already pointed out in [41]
the next inequality (6.20b) is never used.

In Lemma 8.1, the estimate (8.4) can be improved to
(A.2) M(s) < Ches 32k,

TA.D. Tonescu and B. Pausader recently further investigated our model via Fourier techniques; see

ArXiv:1703.02846.
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which is checked for |I| +|J| < N — 1 by writing

J ‘(37ha5(7‘a(31L‘]v}2dx < Cng t71s72 laa(?ILJU‘Qda: < C’las?’f ‘ﬁaﬁlLJv}de
s s

s

< Cres™ Z E,.(s,0,0"L7v).
In Lemma 8.2, when k& = 0 (8.6) can be improved to
(A3) I[H* 02025, 0ol 30, < (CePs™2%, |1 < N,

Namely, only the term 0"t L"*u0™2L720,05v with |I;| = 1 and J; = 0 need to be considered:

[05ud™ L7 0a0pv]| 12 5c,) <[(s/)0yullz23c,)

.4

In Lemma 8.3, when k = 0 (8.7) can be improved to
(A.5) |0 (P*P0,v05v + Rv?)| < (Che)?s™ 110, |I| < N.

Namely, in 0" (0,v03v) = X 41—y 0" 0av 020 we can assume that || < |5, hence
\I1| < [|1]/2] < N — 5, and then by (7.23b) (with 070, of order < N —4) and (6.5) (third

and last inequalities):
(A6) 27 (@il 30, S (G I8/ 72(4/5) (5105 2p0l 30 < (Cre)s™

In the proof of Proposition 5.1, when |J| = 0 thanks to (A.5)

(A7) En(s,0'u)2 <CChe + T(Che)? J 514 45 < CCoe + O(Che)2s",

2

and for (8.14) with £ = 0, one has [I| < N — 4 and we can apply (A.2)-(A.3):

(A.8) B (s, 070)2 < CCye + O(Che)? J 524K g5 < CCpe + C(Che).

2
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APPENDIX B. SUP-NORM ESTIMATE FOR THE WAVE EQUATIONS

Proposition B.1. Let u be a spatially compactly supported solution to the wave equation
- DU = f7
(B.1)

U|t=2 =0, atU|t=2 =0,

wn which f is spatially compactly supported in K and satisfies
(B.2) [fl < Cpt 7"t — )0

for some Cy > 0,0 < pu<1/2, and 0 < |v| <1/2. Then, one has

S 0<v<1/2,
(B.3) ut,z)l < { ™
G C ~1/2<v <0,

We denote by do the Lebesgue measure on the sphere {|y| = 1 — A} and x € R?® with

r = |z|, and consider the integral term

I(N) = IO\ £y 2 /t) = J do(y)

lyl=1=X\,| 7 —yl<A—t=1 ()\ e ybl_“'

Clearly, when 0 < A < &2 we have I(\) = 0.

t—
2t

Lemma B.2. When % < A <1, we obtain

(A(1—=X) [t—r\" t—r+1 t+r+1
) —— <A< —/—,
wr t 2t 2t
—14+p
t t t+r+1 t—
n(S ) ()T et
I(\) <4
t +1 t—
provided rr < 7“7
2t t
1—=MNt [t—r\" t—r t 1
( ) r | A 7" +r+ <a<l.
L ur t t 2t

Proof of Proposition B.1. From the expression

(B.4) u(t,z) = %L =

1
- f f(5,x —y)dods,
S Jly|=t—5
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in which the integration is on the intersection of the cone {(3,y) /|y —=z| =t—5,2 <5< t}

and {(t,:zc)/r <t—1,t2—r?<s?t> 2}, we obtain

C t <—2—v(g _ _ —1+p
lu(t, z)| < —ff J G Gl Ul Ve
4T Jy ly|=t—3,|z—y|<5—1

t—35s
¢ [ (1= 2 Adod) .
) T—{IJ_MJ J x 1-p ()\ = 8/t7 y/ = y/t)
" sy (A= 2=y
< 1 —I 72V do
:Tfu-uf(l_A) )2 J L
" yl=1-A 2 -yt (A =% =)

When |£ —y/| < A —t71, we get = < A < 1. In the following, we replace 4 by y. We

distinguish between two cases:

t+r+1

e
Case 1: >

< r< % We write

C ! N —2-u do
o)l < | = | i

—r41 yl=1=\|F—yl<A—t~1 ()\ — ’% - y‘)l_u

2 |
t+r+1

< f SR e S Gt (t - r>ud)\

t—r+1 T

C; 5 o t+r e\ T
1 v(1 - ) (20—
+ T n ﬁ+r+1 ( )\) A ( )\) . A A ; d\

2t

Cy fl (1—A)—1A—2—”<1;A)t (t—r)“d)\’

t

t—r

Cy ¢ o, [t+r t+r\
e J;+rt+1 A ( T )\) (2)\ - ) dA

2

t t— 14 1
LG 8 r A2 AN
pttrv—ro t tor
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Recall that r < =% and that 0 < |[v| < 1/2, we have

t+r+1

1+v
t t
LT oo < (t ) <1,

T Jt=r+1 — T
2t

and
t+r+1

— H t
Cf E t r f 2 )\—1—1/ d)\
ptttv=re \ ot toril

2t

S Cpu Mt =7y

For the second integral term, we note that

t

tor —4p
J A2 <“t”ﬁ—x> <2A—ttr) )
thrtl

2t

t=r —1+p n =
G t+ 1 t+ ¢ 1
sf oN— LT dr=— (20T =
t+r+l t M t thr+1 1%
2t 2t
thus
Cy (T t+ t+r\ C
f A (D) (2o - L < ——1
Hrv—u | t t Mtl-i-l/—u
2t
For the third term, from =2 > 2 > 1 we get

o norl o [
Cf E t T f )\7271/ d)\ S Cf E t T J 22+u d)\
lut1+1/7,u, r t - Iult1+1/7,u, r t P

Case 2: % > t_TT s> % The second case in Lemma B.2 can not occur. We have

t+r+1

Cf t_T H 2t —1— ! 2
< 14 v
u(t, z)| < utw_“( . > <f+ A d)\+ﬁ+m/\ X | .

2t 2t

t+r+l

57— = 1/2, the second integral term is bounded by some constant C'. For the first

Since

integral, when v > 0,
t+r+1

J 2t A—l_”d)\sl<t_r+1> ’
t—r41 v t

2t

thus |u(t, z)| < Cp(pv) H(t —r)* vt 1t
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When v < 0, we write

tgl 1 t T 1 v 1
t + +
Allld)\<_(—) g_

el | t ]
and obtain |u(t, z)| < Cp(plv]) =1t —r)t=1v. -
Proof of Lemma B.2. When r = 0, the estimate is trivial. When r > 0, we can set z =

(r,0,0). The surface Sy := {|ly] = 1 — A} n {|Z — y| < A — ¢t~} is parameterized by:

e ¢: angle from (1,0,0) to y with 0 < 0 <,
e ¢: angle from the plane determined by (1,0,0) and (0,1,0) and the plane deter-
mined by y and (1,0,0) with 0 < ¢ < 2.

We have y = (1 — \) ( cos @, sin 6 cos ¢, sin  sin gb) and distinguish between two cases:

Case 1. When = < A < B®ZEL we only have a part of the sphere {|y| = 1 — A}
(r/t)2+(1-X)2—(A=t71)”

CTBIEY . So we set

contained in the ball {|£ — y| < X\ — ¢!} where cos(d) >

(r/t)2+(1-N)2— (A—t~1)”
PRIy

Oy := arccos ( ) and see that

— |3 =yl = A=y 5 + (1= A2 —25(1 = A)cosf

t2
and do = (1 — X\)?sin(#)dfd¢. The integral is estimated as follows:

do

1-p
fyllx\fylsx\t—l ()\ - ‘E - y|)

t

T 0o -1+
:f d¢f (1—/\)281n0()\— r (1—)\)2—2i(1 Y cose) i
0

t2

6o Cu
:27TJ (1-=X) sme( \/— (1—=X)2—-2- (1—)\)0086) do
0

—1+p
=27T(1>\)L ()\ :2 (1—X)? 2t(1/\)c089) dcosf
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thus, with w = cos 0,

f do
lyl=1=X|§ —yl<A—t1 (>‘ - |% N y‘)l_u

_on(1— \)? f (/\ e ao e 27 (1 - A)w)_wdw

cos g t2
mt(1—N) (A’ -1 mt(1—\) (AN
S )J (=) iy = 2T )f = Q) dg,
PV r ¢

where v = I—; + (1 —=X)? =251 - MNw and ¢ := XA — /7. We distinguish between two

sub-cases.

Case 1.1: £ < 1— A or, equivalently, A < t_T’” We have

_ —[5=1=N)]
z—ﬂt(lr a\ J T e e

—1

Comt( =N (PE AL = ) (t — )
_2TL1 CHEAN=0)dC S m P

Case 1.2: 1 — \ < 7 or, equivalently, A > t’TT We have

A= Q) dC

-1

,THL =) JA—HH)'
r t

A1 =) (& —r)*
ur th

(1= )) = i
A - g s

Case 2. When “2H < X < 1, the sphere {|y| = 1—A} is contained in {|(z/t) — y| < A—t"'}

and

J do B J do
e O L R O

T r2 r —14pn
:27rf (1—)\)281n9<)\— —+(1—)\)2—2¥<1—)\)COSQ) do
0

_ 9m(1 — A)? fl (A oy 21 )\)w) i
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Therefore, we have

d t(1— ) (Al
| | A= Q) de
1M 2 —yla—t (A = | —y]) AR )
_ ) Pl
TN IO = O de.
r 22— Hr

We distinguish between two sub-cases.

Case 2.1: When 7 <1 — X or, equivalently, A < t_TT, we have

_ =7 —(1=X)]
M=) | T e

r 2X— 4
1— 22— —1+p
=2MJ <—1+M(Afg)dg<0(14)(t”m> <2AJ+T) ,
r g)_ ttr t t

t

where the function ¢ ~1"#(\ — () is decreasing and we can bound this integral by the value

at the inferior boundary (which is 2\ — “) times the length of the interval 2r/t.

Case 2.2: When 1 — A < £ or, equivalently, A > t_T’", we have

_ =5 —(1=X)]
ulChy | T e e

24T
1 . t—Tr t?r
SN s gacsca-nE [ e
r 22—t " Jan-tr
g C(l—)\)tcu T C=Mt (t=r "
ur 0 ur t

When % < t_TT, both case above may occur, while only Case 2.2 is possible if the

opposite inequality holds true. ]

APPENDIX C. SUP-NORM ESTIMATE FOR THE KLEIN-GORDON EQUATION

We provide here a proof of Proposition 3.15.
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Lemma C.1 (A decomposition of the Klein-Gordon operator). For sufficiently smooth
solutions v to (3.29), the function wy () := N?v(\t/s, \x/s) is a solution to the second-
order ODE in \
d? c?
— W (N) + —
d\? 1+ 2 (\t/s, Ax/s)
— (1+ 1" (M/s,Ax/5)) " (Ri[v] + Rafv] + Rs[v] + s%2f) (At/s, Aa/s).

Wiz (N)

Lemma C.2 (Technical ODE estimate). Let the function G be defined on some interval
[s0, 51] and satisfying sup |G| < 1/3 and let k be some integrable function defined on [sg, $1].

The solution z to
2

c
1) 2"(A) + TG(A)Z()\) = k(X),
2(s0) = 20, 2 (sg) = 21,
(for some initial data 2y, z1) satisfies the uniform estimate for s € [so, s1]
(C.2)
2(5)] +12/(s)] < (J20] + || + K (5)) + f (120l + 21] + K (5)) 1G/(3)|eC F1E DI g5

S0

with K (s) := §. |k(3)|d5 and a constant C' > 0.

Proof of Lemma C.1. 1. Flat wave operator. Recall s = v/t? —r2 and r = |z|. an

elementary The flat wave operator [] in the hyperboloidal frame reads
— — % _ 3—

C.3 —[1= 0000 — ) 0404 +2 ) —090, + —0p.

(C.3) L1 = doo Zal Za: 0o 500

Given any function v, we write

w(t,z) = s 2(t,x) = (22 — [22)u(t, o),
and
3w 3290 ,w

(C.4) —s¥°o = Qodgw — Y Pudarw + 2 %Eoéaw 2

452 52
a

Consider the function of a single variable

wy . (N) := w(At/s, \x/s) = X 2v(\t/s, A /s),
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so that
C%\ww(/\) = (0o + s 2“0, )w(At/s, Az /s) = EQLw (At/s, \x/s)
and
d? ozl
(C.5) d)\gwtm( ) = <80(90+2—508 +—-0 (95) (At/s, Az /s).

Combining with (C.4) and recalling w(t,z) = 33/2v(t, ), we obtain

(80&0 + 2—60 0,0 )w

a

3/2[]1)—1—20 ﬁw—i— 86bw+—w+23I w = —5*w + Ry[v].

(C.6)

2. Curved wave operator. We write
—[v = h* 0,050 — v+ f
and perform a change of frame:
WP 0,050 =h" Bads + hP0, ), Bgv
— 180000 + 20" B0 + " Budyv + W00, T Dy
We get
— P = —§¥ 250050500 — 2 (25%505“} + Eabgaa,v + hoB 60[@'2/ 55/1)) — 2532y 4§32 f

=— 5005050 (53/21)) — 25

_ 3 B o o o
i (4;/2 - 381/250”) B 53/2(2h0b50(3bv + 13,0 + h“ﬁﬁa\lfg Jgv) + s f,

and conclude that

— 3w = _Eoogo%w —Pw + EOO< 5 + 351/2(701))
451/2
(C.7) — 2 (2000w + B But + WP, Dgv) + 572 f

= 1" 300w — w + Ry [v] + s%2F.

Combining (C.6) and (C.7), we get

a,.b

f 0a0pw — Eoogoéow + Pw = Ri[v] + Refv] + s¥2f

(C.8)  Bodow + 2“”?5@@ + 2
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3. Conclusion. We now write

axb

5 aﬁb) w+ w

T

(1+1") (5050 + 2%50@ +

ZE‘(L’b——

A (2 000a + 88b>w+R1[]+R2[v]+s3/2f

This implies that
d? Awyp(N)
o Yt A :
(C.10) et + 1 (\t/s, A /s)
= (1+ EOO()\t/s, )\x/s))_l (Ri[v] + Ro[v] + Ra[v] + s*2f) (At/s, Ax/s).

0

Proof of Lemma C.2. We consider the vector field b(\) " and the matrix

0 1
A(N) = and write v/ = Ab + . Consider the diagonalization
—A1+G)™ 0

A = PQP" with
z'c(l + G)_l/2 0
Q= . —1/2
0 —zc(l + G)

(1+G)1/?

b 1 1 i _ 12 2=
e ___ic ’ 1jp —urare |

(1+G)1/2 (1+G)1/2 2ic

0
We thus have b’ = PQP~'b + , leading us to
k

and

(P7'0)" =Q(P'0) + (P7) b+ P! ( Z )
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We regard (P_l)'b as a source and write

s ) s s — O
Pb(s) = el QDEpTp(sp) + f S QE)dE p=1 dA
o k

+ f B QOB (P=1Y (X) b(\) dA.

S0

When supyc(; o G(A)| < 1/3, the norm of P(A) and P~()) are bounded for \ € [so, s].
The norm of (P’l)/()\) is bounded by C|G’())| for a constant C' depending only on ¢. The

norm of @) is bounded by a constant C' > 0. Observe also that

s ic(C(1+ G)Y2(3)ds 0
A 0 —ic§3(1+ G)"V3(5)ds
therefore
ic§3(1+G) =2 (3)ds
Jemas _ | ¢ 0
0 e—ic§3(1+G) "2 (5)ds

The norm of e$x @®4 ig yniformly bounded and we have proven:

[2(5)] + |2'(s)] < C(lz(s0)| + [2'(s0)]) + C K (s) + Cf G I[N+ 12" (V)] dA,

S0

and it remains to apply Gronwall’s lemma. U

Proof of Proposition 3.15. We have
Wi . (AN) = /\3/20()\15/3, Ar/s),
W () = g)\l/%(/\t/s, o/s) + EA?’/QQLU(M/S, \t/s).
The function wy, is the restriction of w(t, z) = s*?v(t, z) to the segment {(\t/s, \z/s), A €

[s0,s]}. Apply (C.2) and (C.10) to this segment, with

2, 0<r/t<3/5,

50 = t+r

t—r

. 35<r/t<l.

This is the line {(At/s, Ax/s)} between (¢, ) and the boundary of Ks) ;o).
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The function v is supported in K and the restriction of v to the hyperboloid JH, is
supported in Hy n K. We recall that when 3/5 < r/t < 1, wi.(sg) = 0 and when
0 <7/t <3/5, w,(s0) is determined by vy.

When 0 < r/t < 3/5, we apply (C.2) with sg = 2. When A = 2, we write w;,(2) =
w(2t/s,2x/s) = 2%%0(2t/s,2x/s) = 23%vy(22/5), and

d 3
d/\()\/ v(At/s, Az /s))

zg\va(%/s 2z/s) + 2% (s/t) " 0, v(2t /s, 22/s)

=3\—fv(2t/s 21/s) + 282 (s/t) L o0(2t/s, 22 /5) + 2¥%(2/s)0,u(2t /5, 22/ 5)

w;,x(Q) |)\:2

=¥Uo(2x/s) + 252(2%/5)0,00 (22 /s) + 2% (s/t) 10y (2t /s, 22/ 5).

Recall that when 0 < r/t < 3/5, we have 4/5 < s/t < 1. So we see that |w.(so)| +
[w; . (s0)] < C|vollLo@ey) + [v1]L=@e,)). Then by (C.2) and (C.10) we have

[wia(8)] + [ 1 ()] < Cvo]Lee) + [v1]0@e) + CF(s)

+ C([lvoll e (36a) + 101l 2 362)) L |} ,(5)|eC e e NIdA g5
+ CJ ‘h’ — ng‘h;,x()‘)‘d)‘ ds.

When 3/5 < 7/t <1, wy4(s0) = wi ,(s0) = 0 and so

S

|wea(5)] + |wi,(s)] <CF(s) + Cf F(8) |1 5()]e s V1 g,

s0
which leads to [wy(s)| + [w},(s)| < V(t,2). Recall finally v(t, z) = s**w, ,(s) and

3 3
(s/6)'s¥2 0, 0(t, @) = wi(s) = 5570t @) = w,(s) = 55 wia(s).

APPENDIX D. COMMUTATOR ESTIMATES FOR THE HYPERBOLOIDAL FRAME

In this appendix, we provide some further details on some important properties shared

by the commutators arising in our problem. The vector fields d,, and L, are Killing for
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the wave operator [], so that

(D.1) [6a, 0] =0,  [L., O] =0.

By introducing

(D.2) [Lay 0] = 0050, [0ay@s) = 7' T050,,  [Lai05) =2 0040,
we find
@ZO = _537 @Zb = _6ab58/7
l’b
(D3) Ly = =0 = Wydy, Lo =0, L%, = dads.,
R I A B

All of these coefficients are smooth in the (open) cone X and homogeneous of degree 0.

Furthermore, we also get

(D4) ng == 0, SO that [La, 617] aba

—=C)

which means that the commutator of a “good” derivative ¢, with L, is again a “good”

derivative.

Lemma D.1 (Algebraic decomposition of commutators. 1). There exist constants \.,

such that
(D.5) = > AL
RIS
Proof. We proceed by induction and, for |I| = 1, this is (D.2). Assuming that (D.5)
holds for all |I;] < m, we are going to prove that it is still valid for |I| < m + 1. Let

I = (0, Q1 - - -y a1) and Iy = (Q, Q1 - - ., 1), S0 that &7 = 0,0". We find

[0", Ld]

(060", L] = 04 ([0™, La]) + [0as La]0™ = 0., ( DAl aJ) —071,0,0h

|7]<I1]

= D Aabfad” = 5,00,

|JI<IT1]

which yields the statement for |I| = m + 1. O
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Lemma D.2 (Algebraic decomposition of commutators. II). There exist constants GQJ 50
that
(D.6) (L0l = >, 60,L7.

[JI<IT|=1y
Proof. The case |I| = 1 is already covered by (D.2). Assuming that (D.6) is valid for
|I| < m, we are going to prove that it is still valid when |I| = m + 1. We write L' = L,L"

with |I;| = m, and find

[L, 04] =[LoL"™,04] = La([L", 0a]) + [Las 0a]L"

- La< D e{;]a,yLJ) +>.07,0,L"
2l

J1<I -1y

_ Il'Y J Y I

= ) 0L L +)60,0,L
[JI<|[T1]—1,y v

SO

(L' a = > 0o Lag + ) 0[La o) + > 0],0,L"

_ Iy J Iy Y J v I
= ) egeLJ+ ). 0ere L + ) e],0,Lh.
[JI<H1l=1,y [JI<[T1] -1,y v

As a consequence of (D.6), we have

(D.7) [0'L7 0uJu= > 62,0,0'L"u.
[ 71<1y
Lemma D.3 (Algebraic decomposition of commutators. III). One has
(D.8) [0'L7, 05 = > 000" L7,
IS <]

I+ | <[ T+ ]

where Q[[;ﬁ ' are smooth functions satisfying

C (|11, |J1, |I1], | J1]) ¢~ when |J'| < |J|,

<
C(|]|7 |J|a |Il|7 |J1|> ti‘h'il when ’]/| < |I|
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Proof. Consider the identity

[0'L7,0,] = [0'L7, ®}0,] =@3[0"L7, 0,] + > N LMo L7,
Iy +Ig=1,J1+Jo=J
[Tq|+]J1I<[T|+]J]

Commuting 0"2L" and @, we obtain
[0'L7,05] =®}[0"L7, 0,]

+ > ohrheje et + Y. ohLeg[oL”, 0,

Iy +Ig=1,J1+Jo=J I1+Ip=1,J1+Jo=J
[T+ < [T]+]J] [T+ I<I[+]J]
= >, ohLhejetr+ ) ahLhe[oRL”, 0]
Iy +Ia=1,J1+Jo=J I1+I5=1I
[T+ 171 1<+ J1+Jo=J
/
= >, ohLheeetr+ Y Y (AMLhe)) 67050 L,
2
I +Ia=1,01+Jy=J I1+I3= 1 [J51<|J2|
[T+ T1I<[T]+]] Ji+J2=

Hence, ¢/, are linear combinations of 0/ L”1®} and (6IILJ1®7)6,‘YIQJ‘§ and J; + J, = J,

which yields (D.8). Note that «9‘]2, are constants, so that

oL (ML DY) = 00" LR L @),

By definition, q)g is a homogeneous function of degree zero, so that ¢/t L7 <I>g is again

homogeneous but with degree < 0. We thus arrive at (D.9). O
Lemma D.4 (Algebraic decomposition of commutators. IV). One has

(D'lO) [LI>Q0] = Z JngaLJ7

|/I<]

where the coefficients ol are smooth functions and satisfy (in X)
(D.11) 0" Lol < O ) [ Il [,

Proof. This is also by induction. Again, when |I| = 1, (D.10) together with (D.11) are
guaranteed by (D.4). Assume that (D.10) and (D.11) hold for |I| < m, we will prove that
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they are valid for |I| = m + 1. We take L! = L,L” with |J| = m, and obtain

[LI7QC] :[LGLJ7QC] = La([LJ’Qc]) + [LGL?QC]LJ
=La( > ol LJ) + b0,
| [<|J]

Y Loolo, L+ ) oliLuo, L7 + 050,17,

| 1<]] [ <[]

so that

= > Lol L+ Y olo, Ll + Y ol [Le, )L + €5.0,L7

7/1<1J] 7<) 71<1J]

! ! U
> Leolo L+ Y oo, Ll + ) olhed o, + 600,17
7/1<1] <] 71<1]

In each term the coefficients are homogeneous of degree 0 (by applying (D.11)), and the

desired result is proven. ]

The following result is also checked by induction along the same lines as above, and so

its proof is omitted.

Lemma D.5 (Algebraic decomposition of commutators. V). One has

(D.12) [0, 0] =t plyd’,

US|

where pl; are smooth functions satisfying
(D.13) [0 L7 piy| < C(1 |J1, L [

The following statements are now immediate in view of (D.5), (D.6), and (D.10), and
(D.12).

Proposition D.6 (Estimates on commutators. I). For all sufficiently reqular functions u

defined in the future cone X, one has

(D.14) [0"L7 daJu| < C(II, 1)) D] [0s0" L7 ul,
|J'1<]J .8
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(D.15) \[afLJ,QC]u\<C(|I|,JD< DU 12,0" L u + 7y \af’LJ’u|>,
|7/ |<|J],a 71|17
111<|1] ISP

(D16) [[0'L7 2,ul| < CUILIIDET Y |os” L ul + CQUI 1) Y [ose" L

B I"<|I| B, <1
[7/1<1J] [7"1<]J]|

’

Y

(D.17) [0'L7, 0adplu| < C(IL 1)) >, [6500"L7w
<igmin

(D.18)
[0"L7,0,05]u| + |[0"L7, 0,0, ]ul

<C(|f|,|J|)< R R R S ) S TG SIS S [N A

e, | < || e, | I <|T] v, '] )
[J'<|J]| [J<|J] [J'<|J]|

Further estimates will be also needed, as now stated.

Proposition D.7 ([Estimates on commutators. II). For all sufficiently regqular functions

u defined in the future cone X, one has (for all I, J, a)

(D.19) |07 L7 ((s/t)0au)| < |(s/1)0ad L7u| + C(I1 1)) > |(s/t)0s0" L .

B T'I<|T|
11<]J]

Finally, recall from [39]) the following technical observation concerning products of first-

order linear operators with homogeneous coefficients of order 0 or 1.
Lemma D.8. For all multi-indices I, the function
=87 = (t/s)0" L7 (s/t),

defined in the closed cone X = {|x| <t — 1}, is smooth and all of its derivatives (of any

order) are bounded in K. Furthermore, it is homogeneous of degree n with n < 0.
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