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Jan Giesselmann® and Philippe G. LeFloch?
July 2016

Abstract

We study nonlinear hyperbolic conservation laws posed on a differential (n + 1)-manifold
with boundary referred to as a spacetime, and in which the “flux” is defined as a flux field
of n-forms depending on a parameter (the unknown variable) —a class of equations recently
proposed by LeFloch and Okutmustur. Our main result is a proof of the convergence of the
finite volume method for weak solutions satisfying suitable entropy inequalities. A main dif-
ference with previous work is that we allow here for slices with boundary and, in addition,
introduce a new formulation of the finite volume method which involves the notion of total
flux functions. Under a natural global hyperbolicity condition on the spacetime and pro-
vided the spacetime is foliated by compact slices (with boundary), we establish an existence
and uniqueness theory for the initial and boundary value problem, and derive a contraction
property in a geometrically natural L'-type distance.
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1 Introduction

The mathematical study of weak solutions to hyperbolic conservation laws on curved manifolds was
initiated by LeFloch and co-authors almost ten years ago [1, 2, 7, 20], and this subject extended in
several directions [4, 5, 8, 6, 14, 15, 17, 19, 21]. The main motivation comes from geophysical fluid
dynamics (in which the problems are posed on a curved surface such as the sphere) and general
relativity (in which the Einstein-Euler equations are expressed on a manifold whose metric is
one of the unknowns). The class of hyperbolic conservation laws provides a simplified, yet very
challenging, model on which one can develop fundamental techniques and understand aspects of
nonlinear wave propagation and shock formation on manifolds.

In the present paper, we built upon the work by LeFloch and Okusmustur [20] and consider
conservation laws whose flux is expressed as a family of differential forms. Let M be an oriented,
smooth (n + 1)-dimensional manifold endowed with a smooth family of n-forms w = w(u) which
we refered to as a flur field. The conservation law of interest then reads

d(w(u)) =0, (1.1)

where d denotes the exterior derivative and in which the unknown u : M — R is a scalar field
defined on this manifold. The study of weak solutions to this type of equations started in Ben-Artzi
and LeFloch [7] for the class of equations

Owu + divy f(u) =0, M =R; x N, (1.2)

where N is a closed, oriented manifold endowed with a Riemannian metric g and f is a prescribed
family of flux vector fields on N. In a local coordinate system (¢, x!,..., ") associated with the
basis of tangent vectors 9y, 1, ...,0.n, we can express any vector field f by its coefficients f;,
i.e. one sets f(u) = Y, fi(u)0y:. The Riemannian metric can be expressed as g;j := g(0yi, 0yi),

so that
78901 ’i\/ ql),

where |g| denotes the absolute value of the determinant of (g;;).
Observe that we recover (1.2) from (1.1) by choosing

divy f =

w(u) = u/|gldzt A - Adz™ + Z(—l)ifi(u)\/ lgldt Adx' A~ A dai A - A da™.
i=1

Hence, the field w combines information on the flux field f and the volume form \/|g[dz' A---Adz™
induced by g. In particular, no separate information on the geometric structure of M is required
and the knowledge of the flux field is sufficient for writing (1.1). As pointed out in [20], using
the general form (1.1) instead of the corresponding formulations for Lorentzian or Riemannian
manifolds is not only more general but also allows one to develop a mathematical theory which is
conceptually and technically simpler.

Our main objective is to further extend the results in [20] and allow for time slices with a
non-empty boundary, i.e., there is a part of the boundary of M which does not constitute ’initial
data’ for the Cauchy problem and on which “boundary condition” must be prescribed. Recall that
imposing boundary conditions for nonlinear hyperbolic conservation laws is a delicate matter, since



the nature of the data to be prescribed depends on the (unknown) solution. In fact, the boundary
condition needs to be included in the very definition of entropy solutions, in a suitably weak sense.
This issue was first discussed in [3] in the class of functions of bounded total variation and later
in [23] for measure-valued solutions. We follow an approach initiated in the Euclidean setting by
LeFloch and Dubois [13] and later [9, 16]. An alternative approach to boundary conditions for
hyperbolic conservation laws goes back to Otto [22]. We also note that hyperbolic conservation
laws posed on Riemannian manifolds with boundary were studied in [17]. Recall that the theory of
initial value problems for entropy solutions to scalar conservation laws in the Euclidean space goes
back to Kruzkov [18] and DiPerna [12] and the present work relies on their pioneering contributions.

We will introduce here suitable notions of weak solutions and measure-valued solutions (a la
DiPerna). Our definitions make sense for general flux fields w but, in addition, an entropy condition
is imposed which singles out the relevant weak solutions. To this end, we impose that the pair
(M,w) satisfies a “global hyperbolicity condition”, as we call it, which in particular provides a
global time orientation and allows us to distinguish between “future” and “past” directions in the
spacetime.

Our main contribution is the formulation and analysis of the finite volume method based on
monotone numerical flux and on a fully geometric approach to the discretization of (1.1). For
technical convenience and in order to be able to formulate the method as a time-stepping scheme,
we assume that M is foliated by compact slices. We built here on several earlier works. The con-
vergence of finite volume approximations of the initial value problem for hyperbolic conservation
laws was established first in the Euclidean case by Cockburn, Coquel, and LeFloch [9] and later
for Riemannian manifolds in [1]. Further generalizations were then provided in [20] and [14].

We find here that in the finite volume discretisation of (1.1) it is very natural to view the
approximate solution u” as being defined via total flux functions along faces of the triangulation,
that is, the quantities denoted below by ¢. := fe i*w(ue), where e is a face and ¢* is the pull-
back operator associated to the inclusion i : e — M. For some faces which we call spacelike,
we are able to go back and forth between the total flux g. and the “physical value” wu.. One
important contribution in the present paper is that we have eliminated the need to introduce (face
size) averages |ej.| which were used in LeFloch and Okumustur’s earlier formulation [20]. In the
present proposal, we consider it to be natural to use the flux g, for every face e while the quantity
U is introduced for spacelike faces only.

Interestingly enough, the formulation of the finite volume scheme requires further structure on
the manifold, especially an n-form along its boundary. This is necessary in order to determine an
averaged value of the data within each boundary cell. It is not expected that stable schemes could
be design which would require only the fluxes across the boundary.

We will prove several stability results for the proposed scheme with an emphasis on discrete
versions of the entropy inequality. These stability estimates are sufficient to show that the sequence
of approximate solutions created by the finite volume scheme converges to an entropy measure
valued solution in the sense of DiPerna. By extending DiPerna’s uniqueness theorem we show
that the sequence indeed converges to an entropy solution. At the same time our analysis implies
a natural extension of the L' contraction property satisfied by hyperbolic conservation laws in
Euclidean space, see (3.9).

An outline of this paper is as follows: In Section 2 we introduce the notions of entropy
weak /measure-valued solutions taking into account boundary data. Then we discuss the con-
cept of global hyperbolicity and gather our main results in Section 3. Section 4 is devoted to
the presentation of the finite volume scheme and to the derivation of local stability estimates. In
Section 5, we are in a position to prove global stability estimates for the finite volume scheme
and to prove convergence of the approximate solutions toward the entropy solution of the Cauchy
problem.



2 Conservation laws posed on a spacetime

2.1 Weak solutions

In this preliminary section we present, in a slightly modified version, the formulation proposed in
LeFloch and Okutmustur [20]. We assume that M is an oriented, smooth (n + 1)-manifold with
smooth boundary M, which we refer to as a spacetime with boundary. Given an (n + 1)-form a,
its modulus is defined as the (n + 1)-form

laf := [@|dz® A --- A da™,

where o = @dxz® A -+ A dz™ is written in an oriented frame determined from local coordinates
r = (z%) = (2°,...,2"). If H is a hypersurface, we denote by i = iz : H — M the canonical
injection map, and by ¢* = 4}; the pull-back operator acting on differential forms defined on M.

We denote by C°>°A*(M) the space of all smooth fields of differential forms of degree k < n+1,
and by DA¥(M) c C*A*(M) the subset of compactly supported fields.

Definition 2.1. 1. A flux field w on the (n + 1)-manifold M is a parameterized family w(u) €
C®A"(M) of smooth fields of differential forms of degree n, that depends smoothly upon the real
parameter u.

2. The conservation law associated with a fluz field w and with unknown u : M — R reads

d(w(u)) =0, (2.1)

where d denotes the exterior derivative operator and, therefore, d(w(u)) s a field of differential
forms of degree (n+ 1) on M.

3. A flux field w = w(w) € C®A"(M) is said to grow at most linearly if there exists some
a € C°A™M such that for every hypersurface H and u € R

—iya < iy,0,w(@) < iy (2.2)

Given a smooth solution u of (2.1) we can apply Stokes theorem on any open subset .S that is
compactly included in M and has piecewise smooth boundary 0.:

0= [ dtwtw) = [ i*(ww). (2.3)

There is a natural orientation on S (as a subset of M) and, therefore, on 95 such that (2.3) indeed
holds. Similarly, given any smooth and compactly supported function ¢ € D(M) = DAY(M), we
can write

dw(u)) = dp Aw(u) + ¢ dw(u)),
where the differential di is a 1-form field. Thus we find
[ awe) = [ avnww
M M
and, by Stokes theorem,

[ dvnw = [ i), (2.4)

This identity is satisfied by every smooth solution to (2.1) and this motivates us to reformulate
(2.1) in a weak form.



Definition 2.2. 1. A function u: M — R is said to be locally integrable (respectively integrable)

°

if it is measurable and for every non-negative, (n + 1)-form field o € DA™ Y(M) (resp. o €

C>® A" (M)) one has
/ lu| o is finite.
M

The space of all such functions is denoted by Li (M) (resp. L*(M)).

loc

2. Given a fluz field w with at most linear growth, a function u € Li (M) is called a weak

o

solution to the conservation law (2.1) posed on M if for every test-function v € D(M)

/M dy Aw(u) =0.

The above definition makes sense, since (2.2) implies that for every 1-form field p € DAY (M)
there exists a non-negative (n + 1)-form field 3 € DA™ (M) such that

sup [p A uw(u)| < B, (2.5)
ueR

so that under the conditions in Definition 2.1 the integral [}, di» A w(u) is finite.

The above definition can be immediately generalized to functions defined on the boundary and
we denote by L'(OM) and L{ _(OM) the space of all integrable (resp. locally integrable) functions
defined on the boundary of the manifold. Observe that the L' norm of functions in Li (M)
or L'(M) is not canonically defined. On the other hand we will also use the standard notation
LA™ (H) for the space of all integrable n-form fields defined on an (n-dimensional) hypersurface

H; it should be observed that the L! norm of such a field is uniquely defined.

2.2 Entropy solutions

As is standard for nonlinear hyperbolic problems, weak solutions must be further constrained by
imposing initial, boundary, as well as entropy conditions, which we now discuss.

Definition 2.3. A field of n-forms Q = Q(u) € C°A"(M) depending Lipschitz continuously on
@ is called a (convex) entropy flux field for the conservation law (2.1) if there exists a (convez)
Lipschitz continuous function U : R — R such that

Q@) = / .U (%) duw(¥) 5,  TER.
0
1t is said to be admissible if, moreover, sup |0, U| < oo, and the pair (U, Q) is called an (admissible,

conver) entropy pair.

For instance, if one picks up the family of functions U(w,7) := |t — |, where T is a real
parameter, the corresponding family of entropy flux fields reads

Q,7) = sgn(v — 1) (w(F) — w(@)), (2.6)

which provides us with a natural generalization to spacetimes of Kruzkov’s entropy pairs.
Based on the notion of entropy flux above, we can derive entropy inequalities in the following
way. Given any smooth solution u and multiplying (2.1) by 9,,U(u) we obtain the balance law

d(Q(u)) — (d€2)(u) + 0,U (u)(dw)(u) = 8,U (u)d(w(u)) = 0.



However, for discontinuous solutions this identity can not be satisfied as an equality and, instead,
we impose the entropy inequalities

d(Q(w)) — (dQ)(u) + 9, U (u)(dw)(u) <0 (2.7)

in the sense of distributions for all admissible entropy pairs (U,€2). These inequalities can be
justified, for instance, via the vanishing viscosity method, that is by searching for weak solutions
that are realizable as limits of smooth solutions to a parabolic regularization of (2.1).

To prescribe initial and boundary conditions, we observe that, without further assumption
on the flux field (yet to be imposed shortly below), points along the boundary OM can not be
distinguished, and it is natural to prescribe the trace of the solution along the whole of the
boundary OM. This is possible provided the boundary condition

u|aM =Uup (2.8)

associated with some data up : M — R, is understood in a sufficiently weak sense, as now
defined.

Definition 2.4. Let w = w(u) be a fluz field with at most linear growth and let up € L*(OM)
be a prescribed boundary function. Then, a function u € L}OC(M) is called an entropy solution to
the boundary value problem determined by the conservation law (2.1) and the boundary condition

(2.8) if there exists a field of n-forms v € L}, _A"(OM) such that

loc

[ (0 500 + 6 (@) 0) ~ w0,V () w)
- / Ponr (" Qup) + 0,U (up) (v — i*w(up))) >0
oM

for every admissible convex entropy pair (U,Q) and every function ¥ € D(M).

In the above definition, all integrals under consideration are finite, in particular the one involv-
ing the entropy flux since u € L (M) and any admissible entropy flux also satisfies the condition
(2.5).

The above definition can be generalized to encompass solutions within the much larger class of
measure-valued mappings. Indeed, following DiPerna [12], we consider solutions that are no longer
functions but locally integrable Young measures, i.e., weakly measurable maps v : M — Prob(R)
taking values within the set of probability measures Prob(R) and such that

| wl-ha

is finite for every (n 4 1)-form field v € DA™ (M).

Definition 2.5. Given a flur field w = w(u) with at most linear growth and given a boundary
function ug € LY(OM), a locally integrable Young measure v : M — Prob(R) is called an entropy
measure-valued solution to the boundary value problem (2.1), (2.8) if there exists a boundary field
v € LE _A"(OM) such that the entropy inequalities

loc

[ (e ng0)+ o (@0) - 0.00) @)
_/ 1/’\8M<i*Q(UB) +3UU(UB)(’y—i*w(uB))) >0
oM

for every admissible convex entropy pair (U,Q) and every function ¥ € D(M).



Finally, we introduce a geometric compatibility condition which is quite natural (and will
simplify some of the follow-up statements), since it ensures that constants are trivial solutions to
the conservation law —This is a property shared by many models of fluid dynamics such as the
shallow water equations on a curved manifold.

Definition 2.6. A flux field w is called geometry-compatible if it is closed for each value of the
parameter,
(dw) (@) =0, u e R. (2.9)

When (2.9) holds, then it follows from Definition 2.3 that every entropy flux field € also satisfies
the geometric compatibility condition

(dQ)@) =0, TeR. (2.10)

In turn, the entropy inequalities (2.7) satisfied by an entropy solution u : M — R simplify

drastically, and take the form
d(Q(u)) <0. (2.11)

3 Well-posedness theory

3.1 Global hyperbolicity

In general relativity, it is a standard assumption that the spacetime should be globally hyperbolic.
This notion must be adapted to the present setting, since we do not have a Lorentzian structure,
but solely the n-volume form structure associated with the flux field w.

From now on a flux field w = w(w) is fixed. The following definition imposes a non-degeneracy
condition on that flux, which will be assumed from now.

Definition 3.1. The fluz field w = w(@) of the conservation law (2.1) on the manifold M is said
to satisfy the global hyperbolicity condition if there exists a 1-form field T € C°A (M) called a
field of observers such that

T A Oyw(u) >0 u e R. (3.1
A hypersurface H is called spacelike if for every normal 1-form field N
N A Oyw(Tw) # 0, u e R, (3.2)

and one fizes the orientation on H so that
i7,0uw(@) > 0, u e R. (3.3)
To every hypersurface H and entropy flux Q0 we can associate the function
@ R—R, T — / i*Q(7),
H
which represents the total entropy flux along the hypersurface H. When 2 = w, we also use the
short-hand notation g3 := ¢4;.

Lemma 3.2. If H is a spacelike hypersurface, then the total flux function qy is strictly monotone
and, therefore, one-to-one on its image.
The orientation on H implies the following positivity property of Kruzkov’s entropy flux fields

i7,Q(u,v) > 0, u, 7 € R. (3.4)
Moreover, the total entropy flux functions q% satisfy the identity

0 (4% 0 43") = 0uU o g3 (3.5)



Proof. Since H is spacelike, (3.2) holds. We introduce a vector field X along H (not tangential to
the hypersurface) such that (N, X) > 0. Then, at each point of H we can supplement this vector
with n vectors tangent to H so that (X, ey,...,e,) is a positively-oriented (say) basis. The main
point is to make a continuous selection along H, the specific sign being irrelevant for our present
argument. Hence, by (3.2) one has (N A d,w(u))(X,eq,...,e,) keeps a constant sign for all w.
Since N is a normal form we have

(N A Oyw(u))(X,e1,...,en) = (N, X) (Ouw(u))(er,...,en),

so that (Oyw(u))(e1,...,en) also keeps a constant sign for all u. This shows that the function
> fH i*Ouw (W), never vanishes. Hence, the flux g3 is a strictly monotone function.
From the definitions, we can compute

i7,Q(u,v) = sgn(v — u) ij{/ Oyw(W) dw > 0,

which is (3.4). On the other hand, the proof of the last identity (3.5) is obvious from the definitions.
U

3.2 Existence and uniqueness results

The given observer 1" canonically determines the following notion of causality.

Definition 3.3. Given two closed hypersurfaces H,H' C M such that OH,0H' C OM, one says
that H’' lies in the future of H and one writes H < H' if there exists a smooth and one-to-one
mapping F : H x [0,1] = M such that

F(H x {0}) =H, FHx{1})=H, (3.6)

(I, DF(0,)) > 0, F(OH x [0,1]) C OM, '
where DF denotes the tangent map and 0s = 0/0s denotes the coordinate tangent vector corre-
sponding to [0,1]. The set B(H,H') := F(OH x [0,1]) C OM is called the boundary of the region
limited by H and H'.

To state how the boundary conditions are assumed we need the following definition.

Definition 3.4. Given any open subset S C M with piecewise smooth boundary, a smooth 1-form
field N on H defined on a smooth manifold H C 0S is called outward pointing with respect to S
if (N, X) >0 onH for all tangent vectors X € T,M \ {0} associated with curves leaving S. One
calls H an outflow boundary of S (respectively an inflow boundary of S) if the hypersurface H is
spacelike and any outward pointing 1-form field N on M satisfies the sign condition N AO,w(w) > 0
(resp. N A Oyw(T@) < 0) for all @.

In the following, we require that the inflow boundary of the spacetime (OM)~ is non-empty,
as this ensures that the boundary data will be assumed in a strong sense on an open subset of the
boundary, at least. We will give an example later (in the appendix) which shows that (M)~ # 0
need not be a consequence of the hyperbolicity condition.

From now on we assume the existence of a foliation by spacelike hypersurfaces of M, i.e.

M= ) M, (3.7)



where each slice H; is a spacelike hypersurface and has the topology of a smooth n-manifold NV
with boundary. Furthermore we impose that #H is an inflow boundary of M. By the foliation we
have M = [0,T] x N topologically and a decomposition of the boundary is induced:

OM = Ho UHp UM, OM = U OH;.

(3.8)
0<t<T

Our main theory of existence, uniqueness, and stability is as follows. Observe that the L!
stability property is fully geometric in nature, in that it is stated for any two hypersurfaces such
that one lies in the future of the other.

Theorem 3.5 (Well-posedness theory for conservation laws on a spacetime). Let M be an (n+1)-
dimensional spacetime with boundary and w = w(w) be a geometry-compatible fluz field on M
growing at most linearly, and assume that the global hyperbolicity condition (3.1) holds, the inflow
boundary (OM)~ is non-empty and M admits a foliation. A boundary data ug € L (M) being
prescribed on OM, the boundary value problem determined by the conservation law (2.1) and
the boundary condition (2.8) admits a unique entropy solution u € Lj, (M) which, moreover,
has well-defined L' traces on any spacelike hypersurface. These solutions determine a (Lipschitz
continuous) contracting semi-group in the sense that for any two hypersurfaces H < H' and any
Kruzkov entropy Q@ and any Ag € L¥A"(OM) such that

|8uw|aM| < AB m OM x R

the following inequality holds

\//Z‘;_L/Q(’U/H/,’UH/) §/7{i%9(uH,UH)+/L%|quB}AB, (39)

where B := B(H,H') is the boundary between H and H'. Moreover, the boundary data up along
any (inflow with respect to M ) spacelike parts Hg C OM is assumed in the strong sense

1. ok Q — -k Q .].
Hi)nﬁB 'HZH (UH’,UH) /’HB ZHB (UB’UB)’ (3 O)

where H is a sequence of hypersurfaces approaching the boundary Hp in a sufficiently strong
topology.

More generally, one can also express the contraction property within an arbitrary open subset
with smooth boundary: similarly to (3.9), the total flux over the outflow part of the boundary of
this subset is controlled by the total flux over the remaining part. We can also extend a result
originally established by DiPerna [12] (for conservation laws posed on the Euclidean space) within
the broad class of entropy measure-valued solutions.

Theorem 3.6 (Uniqueness of measure-valued solutions for conservation laws on spacetimes). Let
w be a geometry-compatible fluzx field on a spacetime M growing at most linearly and satisfying the
global hyperbolicity condition (3.1). Then, any locally integrable entropy measure-valued solution v
(see Definition 2.5) to the initial value problem (2.1), (2.8) reduces to a Dirac mass at each point,
more precisely

V= Oy, (3.11)

1
loc

where u € Lj, (M) is the unique entropy solution to the same problem.



4 Finite volume scheme based on total flux functions

4.1 Triangulations and numerical flux functions

To introduce the finite volume scheme, we first need to introduce a triangulation (or, rather, a
family of triangulations).

Definition 4.1. o A triangulation T of the spacetime M is a set of disjoint open subsets
K C M called cells such that Uxe7K = M and the boundary of each cell K is the union of
finitely many smooth hypersurfaces e C M, called the faces of K. The set of faces of K 1is
denoted OK . For any two cells K, K' one also requires that KNEK isacommon face of K
and K' or a submanifold of M with co-dimension 2, at least.

o The triangulation is said to be admissible if every cell K admits one inflow face e and one
outflow face e; (in the sense of Definition 3.4 and with respect to K ). The set of remaining
faces (which might also be inflow or outflow faces) is denoted by °K := 0K \ {e}‘;}. In
addition, one requires that every inflow face ey is the outflow e}, of some other cell K' or
else a subset of Ho, and that every vertical face €9 € 0°K is also a vertical face of some
other cell or else a part of the vertical boundary 0°M .

e A triangulation is said to be associated with the foliation if there exists a sequence of times
0=ty <ty <--- <ty =T such that all spacelike faces 6;(76;2 are subsets of the slices
Hp := Hy, for somen =0,...,N and determine triangulations of them.

It will be convenient to fix the orientation as follows. Each face e € 9°K is oriented such that
an n-form n € C*°A"(e) is positive if it satisfies N A 5 > 0 for every outward pointing 1-form N.
These orientations together with the orientations of e}i( given in definition 3.1 will yield the desired
signs in the definition of the finite volume scheme as can be seen by the following observation: For
every smooth solution u of (2.1) Stokes theorem yields

/e+ Tw(u) = /eK Fwlu) = Y /e?( i*w(u). (4.1)

K €9, €OKO

The finite volume scheme, as we propose to define it here, relies on approximate total flux
along the spacelike faces efi(7 that is if u is a solution we replace the total flux by its average for
some constant state Ug:

/ei Fwu) = Q.= (’U,eli().

K

The evolution of these values is determined by the Stokes formula provided we prescribe the

total flux along vertical faces €% € 9YK. Precisely, for each cell K and e € 9K (oriented as

above) we introduce a Lipschitz continuous numerical flux Qx . : R? — R satisfying the classical
consistency, conservation and monotonicity properties

. Queo(mT) = (7).
i QK,e(ﬂ7 6) = —QKe,e(ﬁv ﬂ)
o %QK,@(E76) Z Oa %QK,e(ﬂa @) S 07

where K. denotes the cell sharing the face e with K. Note that in the right hand side of the first
condition it is understood that e is oriented as a boundary of K.

10



Now, the consequence (4.1) of Stokes formula suggests to pose, for each cell K,

qeJr (ue;) = qe;( (ue;() - Z QKye(ue;(’ue;(e)7 (42)

K
e€dK

as long as e is not a part of the boundary of the manifold. The set 9°K, by definition, may also
include boundary faces: for such faces, the element K. is not defined and, instead, we determine
the corresponding state u e (still denoted with the same symbol, with now K, being a “fictitious”

cell), as follows. Along the boundary, to handle non-inflow faces e® C M we fix a positive n-form

field ap (once for all) and define
—1
Ug0 := (/ a3> / ug ap. (4.3)
e e0

This definition is used even on the inflow parts of the boundary (where we could also inverse the
total flux function so that the additional n-form field is not really necessary on inflow faces).

Finally to guarantee the stability of the scheme we impose the following version of the CFL
stability condition: for all K € T

2

e0edOK

SUPy, , OuQ e0 (4, V) — Ou@ e e0 (1, v)
inf, Ouq,+ (u)

< (4.4)

1
2

in which the supremum is taken over range of upg.

4.2 Convex decomposition and local entropy inequalities

Our analysis of the finite volume scheme is based on a convex decomposition of the fluxes. This
technique goes back to Tadmor [24] for one-dimensional problems, Coquel and LeFloch [10, 11]
for equations in several space dimensions, and Cockburn, Coquel and LeFloch [9] for finite volume
schemes. Due to the geometry compatibility of the flux (2.9) and our choice of orientations of
faces Stokes Theorem implies for each cell K

0= [ dwlu)) = g (u) = 0 )+ 2 Qunligouig)
ele
Subtracting this identity from (4.2) yields
qe; (ue?() - qe; (ue;() + 0% (QK,EO (ue;( ) ue;(eo ) - QK’SO (ue;( ? ueK)> = 0
eVed' K

Suppose we are given some real Ag .o > 0 for each vertical face e? € O°K with K € T such
that Y ocgox Ai,e0 = 1 and define g o by

- 1
e i) = 1 (1) = 5o (@i )= Qi) ) (09)

where we will have to show that the right hand side lies in the image of ¢ + . So we have a convex
K
decomposition

Gor () = D Ake0d,s (lirc o). (4.6)
e0cd'K
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For the choice of Ak .0 > 0, at least the ratio

1
AK,e0

(Quea et ) = Qo))

should be finite so that A K00t (g e0) is well-defined. This is fulfilled with the following defini-

tion:
A Z SUPy, 4 (&LQK,eO (u,v) - &)QK,eO (uv U)) < 1 A . )\K,eo
K -— p = 3> K,e0 -— —% .
ok mfu@uqe; (u) 2 MK
:ZS\K,eO

We will show that the right hand side of (4.5) lies in the image of ¢, + for the case u,,- - <

Y
eKO

the other case follows analogously. We have

0<—+ (QK (U= U= ) = Q0 (- ’ue))
K,el K o ® x
1 inf auqe <u)
=3 av e ’ - —Uu,_-
= 25up,, 4, |0yQ K e0 (u, v)|supu,v| Qre0(u U)|(uekeo ueK)
1
< 5l (e ) — 4 (u)

e

due to the monotonicity of ¢+ . Hence the right hand side of (4.5) lies in the interval [g_+ (u,- ), ¢+ (u - )]
K K K K K0

and therefore in the image of Qe - The convex decomposition (4.6) enables us to prove entropy
inequalities, as follows.

Lemma 4.2. For every convex entropy flux  and cell K we have

Q /~
(ue;r(> S Og[{ )‘K,eoqe; (UK,60)7 (47)

q;

+
K

which makes sense as e} is oriented.

Proof. Using integration by parts we get

Z AK,e0 ( UKeO)—i*Q(ue;r(D

e0ci'K
3 AK,QO[[auU(m*w(v)]ﬁK;O + / K Dl ()i (v) dv}
OO K K g 0
3 ke [auU(ue; ) [i*w(aK,eU) (g )}
eVeco'K
—l—[ i DuuU (v) (i*w(v) — i*w (g e0)) du]

K,e0

When we integrate over ej; the first term in the last line vanishes due to (4.6), while the latter
term is non-negative because U is convex and i*0,w is a positive n-form. O

The next step is the derivation of an entropy inequality for the faces. Note that here and in
the sequel we do not require entropies to be admissible.

12



Lemma 4.3 (Entropy inequality for the faces). For every convex entropy pair (U,Q) and each
K €T and e € °K there exists a numerical entropy flur function QK 0 : R2 — R satisfying

for everyw,v € R :

° Q%eo is consistent with the entropy flux 2:

QF (T 1) = / P*Q(a). (4.8)
€0
e Conservation
Q% 00 (W, 7) = Q% , o (0,7). (4.9)
e Discrete entropy inequality
Q (=~ Q —_ 0%
qe; (queo) é qe; (ue;() )\K 0 (QK eo( uef_{eo ) QK,EO (ue;( ’ ue} )> . (410)

e Discrete boundary entropy inequality

)+

QJr (aK,eO) < q(%r( (’U, -

e e
K K o

q

e

<QK eo( ue;( ) - Q%’,eo (uel} ’ue; o )) ) (411)

)\Keo

where U (o is defined by

_ 1
Gt (g e0) i= qet (ueK )+ (QK o (u I_(,ue;(eo) — QK e0 (uel_( ,uEI_(CO )) . (4.12)

AK,e0 <0

0

Remark 4.4. Similarly to the proof of the well-definedness of tix o one can show that the right
hand side of (4.12) lies between Qe+ (ue;() and Gt (ue;( ). Hence t co is well-defined.
e0

Proof. Step 1: Foru,v € R, K € T, ¢’ € 3°K and K’ € {K, Ko} we introduce the notation

(QK/,eO (’LL7 U) - QK’,eO (’LL7 u)) )

H k1,00 (u,0) 1= gt (u) —
where
QK p,e0 (u,v) == —Qg 0 (v,u) for e e M
and observe that
HK,K’,eO (U, u) = qe; (U)
We claim that Hg g .o satisfies the following monotonicity properties:
0 0
%HK,K’,eO (U,’U) 2 0, %HK,K’,eO (U,’U) Z O (413)

The second property is obvious because of the monotonicity properties of the numerical fluxes.
For the first property the monotonicity properties and the fact that 8uqef+( is positive imply

9
ou

1
HK,K’,eO(ua'U) > auqe;( ) |a QK’ eo(u U)‘ )\K ) |82QK/,60(U7U)|

AKe

A
(1—2 Ke? >8uqe+
/\Keo K

> (1-24k) dug.
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which is non-negative due to the CFL-condition (4.4).

Step 2: We will establish the entropy inequalities only for the family of Kruzkov’s entropies
). Therefore we introduce the numerical versions of Kruzkov’s entropy fluxes

Q%eo(u,v,c) =Qreo(uVe,vVe)—Qgeo(unc,vAc),

where a V b := max(a,b) and a A b := min(a,b). We observe that Q? .0(u,v,c) satisfies the first
two assertions of the lemma when the entropy flux is replaced by Kruzkov’s entropy flux 2 = €.
We observe that by definition of Hg 7 co

Hy g eo(uVe,vVe)— Hg greo(uAe,vAc)

(4.14)
= q:}; (u,c) — (Q%’eo (u,v,¢) — Q¥/7eo (u,u, c)) ,
e
where we used
Q -
Gt (u,c) := Gt (wVe)— Qe+ (uAc).
Next we will check that for any ¢ € R
Q ~
Hp K e0 (UER Ve, ue;{CO V) — Hi k0 (ue;( Ac, ue;{Eo Ae) > 9.+ (g e0, ). (4.15)
To this end, we first observe that due to the monotonicity of H o
Hpy greo(u,v) V Hg gr eo(c,¢) < Hig o eo(uVoe,v Ve, (4.16)

Hp goreo(u,v) N Hg o eo(c,¢) > Hg o co(u A c,v Ac).

Inserting K' = K, u = U and v = U in (4.16) yields

HK7K7eo(u8;< Ve u,- . Ve) — HK,K,eO(ue;( At . Ac)

e e

Z HKaKaeo (ue;{’ue;{ ) - HK,K,eO (C, C)

e

(4.5) .
= qe1 (g e0) = g ()]

= Sgn(aK,eo - C)(qeir( (ﬂ’K,eO) - qe; (C)) = q?;r( (dK,eOa C).

This proves (4.15). Combining (4.15) with (4.14) (using K’ = K, u = U~ and v = u - ) yields

0

the third assertion of the lemma.
Let us now prove:

HK,KEO,GO(ue;( . Ve, U Ve)— HK,Kco,e"(ue;( . /\c,ue;( Ac) > Q?;(@K,eo,c)- (4.17)

e e

It follows by inserting K’ = Ko, u =u,- andv = U in (4.16) which yields

KCO

Hg K g0 (ue;( . Ve, -V ¢) = Hy K g0 (ue; . Ayt A c)

e e

> |HE i g ,e0 (ue}_( O,ue;() — Hg K 4,e0(c; )]

(4.12) _ _
= |q5;r( (uK,eO) - qe; (C)| = qe% (UK,607 C)~

Inequality (4.17) combined with (4.14) (setting K’ = Koo, u = U~ and v = uel_{) and the
0

conservation property of Q?( .o vields the fourth assertion of the lemma. O
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Combining the last two lemmas we get:
Lemma 4.5 (Entropy inequality per cell). For each cell K € T we have
Q Q
) = )+ 3 (@R ) - Qi) <0
e0ed'K
Finally, we turn our discussion to the boundary of M.

Lemma 4.6 (Discrete boundary condition). For all convex entropy pairs (U,) the following
discrete boundary condition holds

T u - U -
QKe”( ex eK ) QKe“( eKeo’ eKeD)

> 0.U(u,- )|:QK6(€,ueKO)_QK,eU(UeKO;UeKO)]a

for each €.

Proof. According to Lemma 3.2 the function q% o q;r1 is convex so we have using (4.12)
K K

qit (Upce0) — q% (u,-

EACEI
K K,

!/
> (q?}t ° qe}:) (gez (e ) (qe; (rce0) = e (e ))
1
T Ak
1
AK o0

i
Q —
(48 00t e ) Qs )= Queslu v )

(auU)(uei} U) <QK,e°(ueK’ueK 0) — QK,eO(ue;{ U~ )) )

Combining this inequality with (4.11) yields the assertion of the lemma. O

5 Global estimates and convergence analysis

5.1 Global entropy bounds and inequalities

We now establish a global bound on the “discrete derivatives” of the approximate solutions. To
state it we introduce the following notation:
OT? = {? € °K|K € T, c "M}, T, ={K € Tleg C H,},

5.1
T ={e* € O°K|K € T;,¢” c 3° M}, aT; = {® € 3°K|K € T;}. (5.1)

Lemma 5.1 (Global entropy dissipation estimate). The following estimate for the entropy dissi-
pation holds

(inf, Ougq + )
Z q? Ut )+ec Z AR 0 ———F—=— p— |t e0 _“e;P
KeT; e0€aT; Py uqe (5 2)
= 2 QReolugug )+ D g
0edT? KeT;
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where 2c is a modulus of convexity of U and ) is the associated entropy flux field. When ) is the

n-form entropy flux field associated to the entropy U(u) = u?, we have
(infy Ouq.+)? )
Z >\K,e0#|uf<,e0 - ue;|
e0€dT; Py “qur (53)
- > Qelugug )+ D a
0€dT? e KET;

Proof. We multiply (4.10) by Ag .o and sum over all €% € 9°K and all K € T;. Due to (4.9) this

yields
> Ao (G E:q%f 2
e0edT; KeT;
(5.4)
+ Z QKEO ZQKGO e’e)SO'
0€qTy? €dT;
Applying qg o (I;l to the convex decomposition (4.6) yields
K K
Q?;(ue;)+ﬁ Z )‘K,e("qe;r((al(,eo)_q u + 2 < Z )‘Keoq uK,eU)a
e0coVK eOcOOK (55)

=:A

where 23 is a modulus of convexity of q + 0q. + Using Lemma 3.2 we have on the one hand

1
o _ -1 -1
Oqq(d.x 0 q+) = (OuulUoq ) = |
K K K 8uqe;r< o qe}

which implies 8 > On the other hand

sup,, Bu 4+ ’

190 o) = @ (g ) 2 (8 Bug Plicer = e [

So we have b Do s )?
(in q
A>c Z AK,e0 el |UK,e0—ue+2
00K SUPy 8uq % .
Combining (5.4) and (5.5) we get
(inf, Ouq, +)
DL IS B VL LL LA A
KeT; e0€dT; Pu Gulef KeT;
Q
< - Z Q% oo Ug—s U~ ) + Z Qke0 (U s U )-
0€aT? 0EdT;
Because of (2.10) Stokes Theorem implies for every K € T
Q
7qe'};( )+q Z QKPO er’ e )

e0cd'K
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Inserting this in the last inequality yields

(inf,, Ouq +)2
S e Y AK,EOTCKWK,SO_W 69
Ker; eVedT; SUPy Culef
= ) Qkeolugug )+ D ah
e0€aT? e KeT;

This proves the first assertion of the Lemma. Noting that for U(u) = u? we have
Q
qe;r( (Ue;) >0
yields the second assertion. O

Let us choose a finite number of charts covering M (once and for all, independent of h) in
such a way that (for h small enough) each element of our triangulation is contained in one chart
domain. These charts induce n-forms .o corresponding to Hausdorff measures on the faces e°.
Then we define for any ¢ € D(M) and cell K € T with vertical face €® € 9°K

Yook = Y Ak.eotheo-

e0cd'K

Lemma 5.2 (Global entropy inequalities). Let Q be a convex entropy flux field and ¢ € D(M) a
non-negative test-function supported in M \ Hr. Then the finite volume approzimation satisfies
the following global entropy inequality

_Z/dwﬂ Z ’(/JZ*Q Z '(/)eOQKeO( e’7 e 0)

KeT KeTo e0edTo
< A0+ B+ Clo) 4 D) + B
with
AW = S Ao Worie — ) (% (o) — 0% (1))

KeT,e0€0°K

Bu)= Y[ w0,

KeT,e€d"K

W= 3 [ el o) (#0) -#00,)).

KeT,el€d%K

D) :=— Y AK 00U (4 ) (I (i 0) — i*w(u,2)),

KeT,eP€d°K

Z/ (Worre — ) (" Qg ) " 9u,))

KeT

Proof. By Stokes theorem we have for each cell K

_/ /WQ /WQ + Y [ e =0 (57)

V€K e’
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Multiplying (4.10) by t.0 A o and summing over e” € 9°K we have for each cell K
Z AK eoi/)eoq + uKeU - Z )‘Keoweoq ( )

eVed'K e0cd'K
(5.8)
+ Z 1/}60 <QKPO( ef’ueK ) QKeO( e’ueK)) S 0.
eVedK
Furthermore, we have
77[}801((] + Z 7/1801()\1( e0q, +( ) 0, (5-9)

e0edOK

where we used »_ ocgox Ax,e0 = 1. Adding (5.7), (5.8) and (5.9) and summing over all K € T

yields
-3 [+ Y | )= 3 [ et

KeT KeT KeT Y€k

- ) Akeo(Woox — theo) (qu; (Ug,e0) — q?; (%,}))

KeT,e%€d°K

(5.10)
- Z 77[}60 - *Q Z Z[)eOQK eo( ef’ueK )
KeT.evea0 i /e 0O <
Q [~ Q
+ Z Yook < Z AK,e0 G+ (Uke0) — Tt (%;)) <0,
KeT e’ K

where we used ZKET,eOGGOK Y0 Q%eo (ue;{,ue} 0) = > 0coro 1&@0@%760 (uef U ) due to the

conservation property (4.9). We observe that

Z B wi*Q(ue;{) = Z 7,/11 Qu + / Vi Q(u

KeT Y€k KeT KeTo
< z Aucoit i) + 3 / i .11
KeT,e%€d"K KeTo

_> / A e0$0uU (gt ) (i w (i e0) = i*w(u,+ )

KeT,%€d"K

similar to the derivation of (4.7). Finally inserting (5.11) in (5.10) yields

-3 [ dvey Z/wzﬂ

KeT KeTo
+ Z wGOQKeU( e_’ueK )
0EdTO <

+ Z /e A0 (Yoo — V) (z Qi o) — i*Qu, )) (5.12)

KeT,e0ec'K
Y /Amowa Ul )" wliig.e) — wlu,y ) < AW) + B(),
KeT,e0ed'K

where we have used that

AR) = S Axe@oox —ve) (¢ (ixew) — o7 (u,)) (5.13)

KeT,e2€d'K
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since for all K € T
Z A e0 (Voo — ¢e0)qg+< (Ue;() = Z Ak, e0 (Voo — weo)qit (Ue;;) =0.

OcHOK e0ci'K
Using the definitions of C'(v)), D(v), E(¢) the assertion of the lemma follows from (5.12). O
An easy consequence of Lemmas 5.2 and 4.6 is as follows.

Lemma 5.3. Let (U,Q) be an admissible, convex entropy pair and ¢ € D(M) a non-negative
test-function compactly supported in M \ Hr. Then the finite volume approximation satisfies the
following global entropy inequality

-3 [ - Y [ vt + X[ vert )

KeT KeTo 0CaTO €0 .0
(5.14)
+ 0287_0 1!]60 auU(ue;{E() ) (QK,eU (Uel_( 5 Uel;eo ) — QK,eO (ue}?eo , ueREO ))
e’e

SAW) + BY) +C) + D) + E(¥),
where A(y), B(y),C(¢), D(v), E(¢) were defined in Lemma 5.2.

5.2 Convergence analysis

Recall that we fixed a positive n-form field ap along the boundary OM in (4.3). We emphasize
that such a structure is necessary for the analysis of the convergence of the finite volume scheme,
only, and was not required in the well-posedness theory.
We assume that there exists a constant ¢ > 0 such that we have for every compact subset D
of a spacelike hypersurface H
sup,, au qD (U)

<e. 1

For the convergence analysis we need to fix a metric d on M. Then let {T"},-0 be a family
of triangulations of M which are admissible with respect to the foliation {H; }c[o,] satisfying the
following conditions: There is a constant ¢ > 0 such that

d(z,y) <ch forallz,yc K,K €T",

h
— < inf ﬁuqﬁ< (u) < sup ﬁuqe; (u) < ch™ forall K € Th,
c u u

/ ag <ch® foralle® c °K,K € T",¢% c 9°M, (5.16)
GD

#{?c K}y <c forall KeT",
#{e" € 0K : K € T)',e® C 0°M} < ch'™™ forall j €N.

We also impose that for each compact subset D C M there is some constant ¢(D) > 0 such that

#{K T KND+#0} <c(D)h™™ for all integery,

#{JEN:IK €T : KND#0} <c(D)h". (5.17)

In addition, for any admissible entropy field 2, any @ € R and any face ¢° € 97" we define
¢ () : e = R via
Z:[)Q('l_l,) = ?0 ('l_I,)OLeO.
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We also define ¢ () as the mean value of ¢ (@) with respect to ao.
We impose the following two additional conditions on the triangulation:

1. Uniformly in @ for all K € T", e € 0°K

Lo 1Sk (@) — 6% (@) |oveo

Q0
0 e

=o(1) forh—0. (5.18)

2. For every j > 1, every ¢ € C§°(M), every 4 € R and every admissible entropy field

2 ‘/, (Yoo - — ¥)i"Qu,-) — /+ (ook — $)i*Qu, )| = olh), (5.19)

KeT) K
J

where for K € T; we denote by K~ the cell having e} as outflow face.

Remark 5.4. 1. Note that (5.18) is not a trivial consequence of (@) being a smooth field of

n-forms. Derivatives of gb?o do not only depend on Q since the regularity of €° (i.e., curvature
in some compatible Riemannian metric) enters via %

. For hyperbolic conservation laws on Riemannian manifolds, i.e. (1.2), assumption (5.18)
is satisfied provided the curvatures of the faces of the (spatial) cells are uniformly bounded
under mesh refinement.

. A careful study of the estimate of B"(1)) in Lemma 5.5 reveals that we may slightly weaken
assumption (5.18), e.g., it is not a problem if it is violated for some faces € as long as their
number inside any compact D C M is bounded by ¢(D)h™".

. Condition (5.19) restricts temporal changes (of the geometric properties) of the triangula-
tion. For hyperbolic conservation laws on manifolds with Lipschitz continuously evolving
Riemannian metric it is automatically satisfied, if the triangulation does not change in time.
The change of its geometric properties due to the evolving Riemannian metric is compatible

with (5.19).

Lemma 5.5. Let (U, Q) be an admissible entropy pair with U(0) = 0 and v € DM a non-
negative test function. Let {T"}nso be a family of triangulations of M satisfying (5.16) and

(5.17). Provided ug € L>(M) we have A*(1p), B"(v), C" (), D"(), E" (1)) — 0 for h —
the functions A(vy), B(¢), C(¥), D(v), E(¢) defined in Lemma 5.2.

Proof. We start by showing A" () — 0 for h — 0. Note that

0, for

‘Ah(w)‘ < )\K,eo ‘¢30K - 1/}60 ‘ sup |8qu+ ||’ELK,€0 — Ut |- (520)
ep K
KcThelcoO'K “
We have due to (5.15)
0ug, (u)] = /+ 0 ()i*0,10| < €0, 0 D (u),
°K
and hence
1/2
A< | D Ak inf Dugy [oo i — ool
KeTh,ef€d'K
1/2
C Y ke infugylire —ugl® | = (IR (5.21)

KeThefecd'K
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Let D := supp ¢ then (5.16) and (5.17) imply

I <Ce(D)Ph™" sup  [gox — heol*.
KeTh,efed'K

Now (5.16) and the fact that » € DM imply
|w80K - "/Jeo| <Ch

and hence
It — 0 for h — 0.

In order to derive an estimate for I we define
hM={KeT":KnND#0}and °L" := {* € °K : K € L" " c 3° M},
and note that it is sufficient to find an estimate for

Th ._ § : : ~ _ 2
I2 = )\K,eo lgf auqe-}—( |UK,eo ue;
KeLh,e€d'K

instead of 5. Using the first assertion of Lemma 5.1 we have

B<OY (o (u) — 0 () = D Qeoluug )
Lh

e0edoLr
= C(I} +1}).

In I} all terms which are inflow as well as outflow faces cancel out and hence

I = Z q?},((ue;() < / / K 0, U (v)1*Opw(v) dv

KeThnL? KeTIn
<loUle Y / u,.|a
KGT}L Lh
< loUlsluole 3 / a<Clule [ o
KeTdnLh HonD
Furthermore we get using (5.16) and (5.17)
Z QK eo u — u )
e0eooLh
Lemma 4.6
S QKeO ’ue}} )
<0 20
pOGGOLh
(u€;<eo ) [QK,@O (ue;( ) ugf?ﬁo ) - QK,eO (ue;fco ,ue;feo )} ’)
(4.4) .
< Z < O’L Q(Ue;( )’ + ||8 U”oolnfauq ( ) e;( _ue;( o )
e0cooLh ¢

(/ / Koo 9, U (v)i* Oy (v )dv) + Ce(D)2h~h'= "h”( sup \ue;{|+uu3\|o@)
KeT

eoeaoLh

< Cllusllso|0aUllo0 / ot
OOMND
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Note that supgcyn |ue;<\ < |luplls because of the CFL condition (4.4) and since w is geometry

compatible. So finally I% is bounded and hence A" (1)) goes to zero.
Let us now turn our attention to B"(v))

|Bh<w>|=\ DI RCRERO T I

KeThelcdK

> (oo — 1) (6% (u,- ) — 8 (u,- ) ven

KGT" 0ok e’

> diam(eo)o(l)/ a0 = o(1),

0
KeL",e9€dOK €

IN

where we used the regularity of v, (5.18), and (5.16)2 and (5.17) which imply #{e® € K : K €
LM}y < Ch~(Hh),
The term D" (1)) can be estimated as follows:

Dy =— 3 /Amow b J0uU (1, ) (i o0) — i* (1),

KeThePco'K

where 7,/16; is any average of ¥ on e}, because of (4.6). Using admissibility of U and regularity of
1) we obtain
h . + ~
|D*(y)| < C Z diam(ej;) sgp(auqe;ﬂul(,eo — Ugt |
KeTh,e%€d’°K
This bound for |D" ()| can be estimated exactly as the bound for |A"| obtained in (5.20). The

term C”(¢)) can be estimated analogously to A”*(¢)) and D"(v).
Finally we consider E" (1) and note that by regrouping terms we obtain

DY ([ o= —wir0t) - [ o —wir00,))

Jj=1le0coTh

Z / Yoor — P)i"Qu,-)

e0cdTh

=: B} () + B3 (¥),

where for K € 7}h we denote by K~ the cell having ey as outflow face. Due to the regularity of

¥ we have E () — 0 for h — 0. Moreover, Ef'(y)) — 0 for h — 0 due to assumption (5.19).
O

For every triangulation 7" the finite volume method (4.2) generates an approximate solution
of (2.1),(2.8) defined by
ul(z) = U for z € K. (5.22)

Theorem 5.6 (Convergence of the finite volume schemes on a spacetime). Let w be a geometry
compatible flux field with at most linear growth and satisfying the global hyperbolicity condition on
a spacetime M and let {u”},~¢ be the sequence of approzimate solutions generated by the finite
volume method associated to a family of triangulations T" satisfying (5.16), (5.17), (5.18) and
(5.19). Then u" converges to an entropy solution of the initial boundary value problem (2.1),(2.8)
for h — 0.

22



The proof of Theorem 5.6 follows from Theorem 3.6 and Lemma 5.7 below. The proof of
Theorem 3.6 is omitted since it follows along the same lines as in the Riemannian setting treated
in [7], once charts are chosen which are compatible with the foliation.

As the CFL condition (4.4) implies L stability of the finite volume scheme there exists a
Young measure v : M — Prob(R), which allows us to determine all weak- limits of composite
functions a(u”) for all continuous functions a, as h — 0,

a(uh) 2 (v,a) = / a(A) dv(X). (5.23)

R
Lemma 5.7 (Entropy inequalities for the Young measure). Let v be a Young measure associated
with the finite volume approzimations u”. Then, for every convex entropy fluz field Q and every
non-negative test-function ¢ € D(M) supported compactly in M\ Hr, there exists a boundary field
v € LE _A"(OM) such that

loc

[ (v n9)+ 0 (@) - U0 @)))
M (5.24)

- / Yiom (i*Q(uB) + BUU(uB)(’y — i*w(uB))) > 0.
oM

Proof. We start with the inequality from Lemma 5.3. Recalling (d(¢Q))(u) = dy AQ(u)+1(dQ) (u)
and dw = 0 we see that the first summand of (5.14) converges to

— [ (mewn90)+ 0 (@)0) - AU ) () (5.25)

for h — 0.
We define v as the weak-* limit of the sequence {QK’EU (ue;,ue;{ )} on °M and by v =
&0

t*w(up) on the rest of M. We know that U~ —up strongly and thus using the definition of
0

v we see that the other summands on the left hand side of the inequality converge to

| wians (1 02um) + 0.0 () (3~ i*w(un) ). (5.26)
oM

Finally by Lemma 5.5 the right hand side of the inequality converges to zero, which finishes the
proof. O

Proof of Theorem 3.5. The existence of entropy solutions follows from the convergence of the finite
volume method, once we have shown that a family of triangulations on M exists which satisfies
(5.18) and (5.19) for h — 0. First, we fix a Riemannian metric on N. This can be achieved
by fixing an atlas {U;, p;}ier of N, with a finite index set I, and a partition of unity which is
subordinate to the open cover {U; };c;. The pull-back of the Euclidean Riemannian metric under
each chart ¢; induces a Riemannian metric on U;. Using the partition of unity these Riemannian
metrics can be combined to a Riemannian metric on N. This immediately induces a Riemannian
metric on M = N x [0,T].

Let us now fix a triangulation on NN using so-called Karcher simplexes, [25], denoted {Tj };¢ s for
a finite index set J. For each of these simplexes the so-called barycentric map [25, Def. 5.4; Thrm.
6.17) is a C?-diffeomorphism from the standard simplex to T;. By subdividing the standard simplex
using smaller simplexes we obtain subdivisions of the T; whose faces have bounded curvature (since
the second derivatives of the finitely many barycentric maps are bounded). If the subdivisions of
all T; come from the same uniform subdivision of the standard simplex, then the ratios of cell
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diameters and cell volumes will be uniformly bounded. Thus, the triangulation 7 defined in (5.27)
will satisfy (5.16) and (5.17).

Then, for some given (sufficiently small) h > 0, we define a triangulation 7 of M by fixing
a triangulation S of N such that the maximal diameter of any element of S is bounded by h/2.
Then, we fix a 0 < h < h such that T'/h is a natural number and the CFL condition is satisfied
for the following triangulation:

__yr@—=1)h ih . 2
T._H 5 ,2}xs.1gzgﬁ,5es}. (5.27)
The temporal faces of this triangulation have bounded curvature such that (5.18) is fulfilled,
compare the first two items of Remark 5.4.

In order to see that T also satisfies (5.19), note that due to the construction of T for each cell
K the “previous” cell K~ is just a translation of K in time. In particular, for any K the faces
e} and ey are (temporal) translations of each other. Since all terms in the integrands in (5.19)
depend smoothly on time we have

K

‘/7 (Vgor— — 1/))2*Q(ue;{) - /+ (Yoo — ¥)i"Q(u, )‘ < R B < g2,
Due to (5.17) we obtain
S| o = 0)iru) ~ [ o = 00| < 1.
KeT; “°k €K

This completes the proof of existence of entropy solutions.
In order to prove the L' stability property (3.9) we first need to determine v in Definition
2.5. We choose a test-function ¢ € C§°(OM) with sufficiently smooth support and a sequence

{be}tes0 C C§°(M) such that ¢, =9 YHgpr in the sense of distributions, where Hgp; denotes
the n-dimensional Hausdorff measure on 0M induced by the metric chosen above. Using ¢. as
test-function in the entropy inequality and letting & go to zero, we obtain

[ w(06) = 2un) - 0.0 (um) - wlun)) 2 0 (5.23)
oM

for every admissible convex entropy pair (U, ). By choosing U(u) = tu and Q(u) = +w(u) we
obtain

/aMz/J(:l:w(u)ﬂFv) >0 (5.29)

which allows us to identify v = w(u).
Since 1 was arbitrary we obtain

/ (Q(u) = Qup) — 0,U(up)(w(u) —w(up))) >0 (5.30)
U
for any open U C OM. Choosing Kruzkov’s entropy pair equation (5.30) amounts to
/ (sgn(u — k) —sgn(up — K)) (w(u) — w(ug)) > 0. (5.31)
U

By checking carefully several cases we obtain that (5.31) and a similar inequality for (v,vg) imply
the following inequality for traces on M :

Q(u,v) > —|lup —vp|Ap (5.32)
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for any Ag € L®A"(OM) such that |Oyw|on| < Ap in OM x R. The existence of one such Ag
follows since w grows at most linearly.
By the classical doubling of variables method we obtain (in the interior of M)

dQ(u,v) <0  weakly. (5.33)

Let us now pick hypersurfaces with H, H’ such that H’ lies in the future of H with a corresponding
function F : H x [0,1] = M. Due to the non-degeneracy of DF(0;) we can associate with each
x € Im(F) a “time” s = s(x). For each € > 0 we denote by x. : M — [0,00) the map given by

?7) Ix(gl)m(()S

lsx’ x € Im(F z) <e¢,

Xe(@) = 1, zeIm(F), e < s(z) <1-—¢,
L(1 = s(a)), z € Im(F), s(z) 21 -e.

Similarly we denote for any § > 0 by ¢s5 € D(M) a function satisfying
Yslosr =0, Ys(x) =1 forallze M : dist(x,0M) > §

This definition makes sense, once we have fixed a Riemannian metric on M. Using ¢ = x. - 5 as
test-function for (5.33) and letting § — 0 we obtain

1 1
f/ Q(u,v) A Fi(ds) — 7/ Q(u,v) A Fi(ds) — | xeQ(u,v) > 0, (5.34)
F(Hx[0,e]) F(Hx[1—e,1]) B

where F, denotes the push-forward along F. Inserting (5.32) into (5.34) implies

1 1
7/ Q(u,v) A Fi(ds) < 7/ Q(u,v) A Fi(ds) + / lug — vplAp. (5.35)
F(Hx[1—e,1]) F(Hx[0,e] B

This implies (3.9) as soon as we can show that the & — 0 limit is well-defined.
To this end we define

Uy = 2"/ Q(u,v) A Fi(ds), by ::/ |lup —vB|AB.
F(Hx[0,2—7]) F(Hx[0,2="])NOM

Then, choosing suitable test functions in (5.33) we get a,,4+1 > a, — by, and |b,| = O(27™), which
means that f?—t Q(u,v) = lim,,_, o ay, exists. Similarly it can be shown that

1
3 Uu0) A F(ds) Y [ 0u0), (5.36)
€ JF(Hx[1—-e,1]) '

which completes the proof of (3.9). The proof of (3.10) is analogous. O

Appendix
The purpose of this appendix is to give examples showing that 0~ M # @) does not follow from the

hyperbolicity condition and that the existence of a foliation does not follow from the hyperbolicity
condition and 8~ M # 0.
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Example 1 The assumption (OM)~ # () cannot be dropped, as it is essential for our finite
volume scheme and does not follow from the other properties of the problem in consideration, as
can be seen in the following example.

We consider the following compact and bounded manifold with boundary:

R={(z,y) eR*:1<2” +y* <2}

with the differentiable structure as a subset of R? and the orientation determined by saying that
dx N\ dy is positive. Let us study the conservation law associated to

w(x,y,u) = uzrdx + uy dy.

So, Oyw(x,y,u) = xdx + ydy, i.e., Oyw is independent of v and w has at most linear growth.
Furthermore, w is geometry compatible, since (dw)(x,y,4) = 0 holds for every @ € R. An observer
can be defined by T(z,y) := ydx — xdy € C°A'R, since

T AOyw = (22 +y*) dx A dy

is a positive 2—form. Hence, w satisfies the global hyperbolicity property. For every (x,y) € OR
we have

Tiey)OR = {M(~y 0» + £ 0,)|\ € R}.

Therefore normal 1-forms have the form N = p(xdx 4+ ydy) with g € R and hence N A 9, w = 0,
due to the anti-symmetry of the A-operator on 1-forms. This shows that there is no spacelike, and
in particular no inflow, part of the boundary.

Example 1 The existence of a foliation is not a consequence of the other assumptions made on
the problem under consideration. We consider M = {(z,y) € R?|(z,y) € [0,3]?\ (1,2)?} with the
differentiable structure and orientation as a subset of R%. Obviously M does not admit a foliation
in the sense of (3.7). However, a geometry compatible flux field and an observer are given by
w = —udr and T = dy. The inflow boundary is 9~ M = [0,3] x {0} U [1,2] x {2} # 0.
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