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Abstract

The Z-invariant Ising model [3] is defined on an isoradial graph and has coupling
constants depending on an elliptic parameter k. When k£ = 0 the model is critical, and
as k varies the whole range of temperatures is covered. In this paper we study the
corresponding dimer model on the Fisher graph, thus extending our papers [7, [§] to the
full Z-invariant case. One of our main results is an explicit, local formula for the inverse of
the Kasteleyn operator. Its most remarkable feature is that it is an elliptic generalization
of [§]: it involves a local function and the massive discrete exponential function introduced
n [10]. This shows in particular that Z-invariance, and not criticality, is at the heart of
obtaining local expressions. We then compute asymptotics and deduce an explicit, local
expression for a natural Gibbs measure. We prove a local formula for the Ising model
free energy. We also prove that this free energy is equal, up to constants, to that of
the Z-invariant spanning forests of [10], and deduce that the two models have the same
order two phase transition in k. Next, we prove a self-duality relation for this model,
extending a result of Baxter to all isoradial graphs. In the last part we prove explicit,
local expressions for the dimer model on a bipartite graph corresponding to the XOR
version of this Z-invariant Ising model.

1 Introduction

The Z-invariant Ising model, fully developed by Baxter [3, 4, 5], takes its roots in the work of
Onsager [44], [47], see also [2], 45|, 38, [39, [13] for further developments in the physics community.
It is defined on a planar, embedded graph G = (V,E) satisfying a geometric constraint
known as isoradiality, imposing that all faces are inscribable in a circle of radius 1. In this
introduction, the graph G is assumed to be infinite and locally finite. The star-triangle
move (see Figure |5)) preserves isoradiality; it transforms a three-legged star of the graph
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into a triangle face. The Ising model is said to be Z-invariant if, when decomposing the
partition function according to the possible spins at vertices bounding the triangle/star, the
contributions only change by an overall constant. This constraint imposes that the coupling
constants J = (J¢)ccg satisfy the Ising model Yang-Baxter equations. The solution to these
equations is parametrized by angles naturally assigned to edges in the isoradial embedding
of the graph G, and an elliptic parameter k, with k? € (—o0,1):

— 1 1+ sn(6.|k
VecE, Jo=J@.k) = 210g<cnw(‘k‘))>,

where sn and cn are two of the twelve Jacobi trigonometric elliptic functions. More details
and precise references are to be found in Section When k£ = 0, the elliptic functions
sn, cn degenerate to the usual trigonometric functions sin, cos and one recovers the critical
Z-invariant Ising model, whose criticality is proved in [35, [I1l 36]. Note that the coupling
constants range from 0 to oo as k varies, thus covering the whole range of temperatures, see
Lemma

A fruitful approach for studying the planar Ising model is to use Fisher’s correspondence [19]
relating it to the dimer model on a decorated version G of the graph G, see for example the
book [40]. The dimer model on the Fisher graph arising from the critical Z-invariant Ising
model was studied by two of the present authors in [7, 8]. One of the main goals of this
paper is to prove a generalization to the full Z-invariant Ising model of the latter results.
Furthermore, we answer questions arising when the parameter k varies. In the same spirit,
we also solve the bipartite dimer model on the graph G® associated to two independent Z-
invariant Ising models [16] 9] and related to the XOR-Ising model [20, 48]. In order to explain
the main features of our results, we need to describe them in more details.

The Kasteleyn matriz/operator [22],146] is the key object used to obtain explicit expressions
for quantities of interest in the dimer model, as the partition function, the Boltzmann/Gibbs
measures and the free energy. It is a weighted, oriented, adjacency matrix of the dimer graph.
Our first main result proves an explicit, local expression for an inverse K~! of the Kasteleyn
operator K of the dimer model on the Fisher graph GY arising from the Z-invariant Ising
model; it can loosely be stated as follows, see Theorem [11] for a more precise statement.

Theorem 1. Define the operator K=! by its coefficients:

F -1
Vx,y eVY, Ky = ey fx(u + 2K)fy (u) e(x,y) (u)du + Cx y,
x5y
where f and e, see and @, respectively, are elliptic functions defined on the torus T(k),
whose aspect ratio depends on k. The contour of integration Iy is a simple closed curve
winding once vertically around T(k), which intersects the horizontal azis away from the poles
of the integrand; the constant Cy is equal to +1/4 when x and 'y are close, and 0 otherwise,

see ([19)).

Then K= is an inverse of the Kasteleyn operator K on G¥. When k # 0, it is the unique
inverse with bounded coefficients.



Remark 2.

e The expression for K- ; has the remarkable feature of being local. This property is
inherited from the fact that the integrand, consisting of the function f and the massive
discrete exponential function, is itself local: it is defined through a path joining two
vertices corresponding to x and y in the isoradial graph G. This locality property is
unexpected when computing inverse operators in general.

e As for the other local expressions proved for inverse operators [25, [8, [10], Theorem
has the following interesting features: there is no periodicity assumption on the isoradial
graph G, the integrand has identified poles implying that explicit computations can be
performed using the residue theorem (see Appendix , asymptotics can be obtained
via a saddle-point analysis (see Theorem .

e The most notable feature is that Theorem is a generalization to the elliptic case
of Theorem 1 of [8]. Let us explain why it is not evident that such a generalization
should exist. Thinking of Z-invariance from a probabilist’s point of view suggests that
there should exist local expressions for probabilities. The latter are computed using
the Kasteleyn operator K and its inverse, suggesting that there should exist a local
expression for the inverse operator K—!, but giving no tools for finding it. Until our
recent paper [10], local expressions for inverse operators were only proved for critical
models [25] [§], leading to the belief that not only Z-invariance but also criticality played
a role in the existence of local expressions. Another difficulty was that some key tools
were missing. We believed that if a local expression existed in the non-critical case, it
should be an elliptic version of the one of the critical case, thus requiring an elliptic
version of the discrete exponential function of [42], which was unavailable. This was
our original motivation for the paper [10] introducing the massive discrete exponential
function and the Z-invariant massive Laplacian. The question of solving the dimer
representation of the full Z-invariant Ising model turned out to be more intricate than
expected, but our original intuition of proving an elliptic version of the critical results
turns out to be correct.

In Theorem using the approach of [14], see also [8], we prove an explicit, local expression
for a Gibbs measure on dimer configurations of the Fisher graph, involving the operator K
and the inverse K~! of Theorem This allows to explicitly compute probability of edges
in polygon configurations of the low or high temperature expansion of the Ising model, see
Equation .

Suppose now that the isoradial graph G is Z2-periodic, and let G; = G/Z? be the fundamental
domain. Following an idea of [25] and using the explicit expression of Theorem |1, we prove an
explicit formula for the free energy of the Z-invariant Ising model, see also Corollary This
expression is also local in the sense that it decomposes as a sum over edges of the fundamental
domain G;. A similar expression is obtained by Baxter [3| 5], see Remark 24| for a comparison
between the two expressions.



Theorem 3. The free energy F{;ing of the Z-invariant Ising model is equal to:

log 2
2

K
Fing = — V11222 = 4| /0 2H'(26]K) log sc(6])) 6

O
+Z( (20, |) log sc(0. k) + / 2H’(29\k)10g(sc€|k)d9>,
0

eckEy

where sc = 3> and the function H is defined in Lemma .

It turns out that the free energy of the Ising model is closely related to that of the Z-invariant
spanning forests of [10], see also Corollary

Corollary 4. One has
log2

FIl;ing = 7‘V1| + Fforest

This extends to the full Z-invariant Ising model the relation proved in the critical case [§]
between the Ising model free energy and that of critical spanning trees of [25]. Moreover,
in [I0] we prove an order two phase transition at k = 0 for Z-invariant spanning forests, by
performing an expansion of the free energy around & = 0. As a consequence of Corollary [4]
we deduce that the Z-invariant Ising model has an order two phase transition at £ = 0 as
well. This is not so surprising but, what is remarkable is that this phase transition is (up to

a factor %) exactly the same as that of Z-invariant spanning forests. More details are to be
found in Section [£.3

It is interesting to note that the Z-invariant Ising model satisfies a duality relation in the
sense of Kramers and Wannier [30, [31]: the high temperature expansion of a Z-invariant Ising
model with elliptic parameter k£ on an isoradial graph G, and the low temperature expansion

of a Z-invariant Ising model with dual elliptic parameter k* = ¢ Jie On the dual isoradial

graph G* yield the same probability measure on polygon configurations of the graph G. The
elliptic parameters k and k* can be interpreted as parametrizing dual temperatures, see also

Section

The next result proves a self-duality property for the Ising model free energy, see also Corol-
lary[30] This is a consequence of Corollary [4 and of Lemma[29] proving a self-duality property
for the Z-invariant massive Laplacian.

Corollary 5. The free energy of the Z-invariant Ising model on the graph G satisfies the
self-duality relation

k Vil | e, Vil
FIsing k/ FIsing k*,

2 2
where k' = /1 — k2 is the complementary elliptic modulus, and k*' = 1/k'.

The above result extends to all isoradial graphs a self-duality relation proved by Baxter [5] in
the case of the triangular and honeycomb lattices. Note that this relation and the assumption
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of uniqueness of the critical point was the argument originally used to derive the critical
temperature of the Ising model on the triangular and honeycomb lattices, see also Section [4.4]

In Section [5| we consider the dimer model on the graph G® associated to two independent Z-
invariant Ising models. This dimer model is directly related to the XOR-Ising model [16 [9].
Our main result is to prove an explicit, local expression for the inverse X! of the Kasteleyn
operator associated to this dimer model. This is a generalization, in the specific case of the
bipartite graph G®, of the local expression obtained by Kenyon [25] for all “critical” bipartite
dimer models.

Theorem 6. Define the operator K1 by its coefficients:

1
-1
YV (bw) € BEx W, K| = Tir Jo fio,w)(w)du,
where f,.) s an elliptic function defined on the torus T(k), defined in Section . The
contour I'y ., is a simple closed curve winding once vertically around T(k), which intersects

the horizontal axis away from the poles of the integrand.

Then X~ is an inverse operator of K. For k # 0, it is the only inverse with bounded
coefficients.

We also derive asymptotics and deduce an explicit, local expression for a Gibbs measure on
dimer configurations of G®, allowing to do explicit probability computations.

Outline of the paper.

e Section Definition of the Ising model, of the two corresponding dimer models and
of their Z-invariant versions. Definition of the Z-invariant massive Laplacian of [10].

e Section Study of the Z-invariant Ising model on G via the dimer model on the
Fisher graph GF and the corresponding Kasteleyn operator K: definition of a one-
parameter family of functions in the kernel of K, statement and proof of a local formula
for an inverse K—!, explicit computation of asymptotics, specificities when the graph
G is periodic (connection with the massive Laplacian), and consequences for the dimer
model on GF.

e Section Behavior of the model as the parameter k£ varies: duality in the sense of
Kramers and Wannier [30)], [31], phase transition in k, self-duality property, connection
with the modular group.

e Section Study of the double Z-invariant Ising model on G via the dimer model
on the bipartite graph GQ and the Kasteleyn operator K: one-parameter family of
functions in the kernel of K, statement and proof of a local formula for an inverse X1,
explicit computation of asymptotics and consequences for the dimer model on GX.

Acknowledgments: We acknowledge support from the Agence Nationale de la Recherche (pro-
jet MAC2: ANR-10-BLAN-0123) and from the Région Centre-Val de Loire (projet MADACA).



2 The models in question

2.1 The Ising model via dimers

In this section we define the Ising model and two of its dimer representations. The first
is Fisher’s correspondence [19] providing a mapping between the high or low temperature
expansion of the Ising model on a graph G and the dimer model on a non-bipartite graph G¥.
The second is a mapping between two independent Ising models on G and the dimer model
on a bipartite graph G2 [16] [].

2.1.1 The Ising model

Consider a finite, planar graph G = (V, E) together with positive edge-weights J = (J¢)ccE.
The Ising model on G with coupling constants J is defined as follows. A spin configuration o
of G is a function on vertices of G with values in {—1,1}. The probability of occurrence of a
spin configuration o is given by the Ising Boltzmann measure, denoted Prging:

1
Prsing(0) = megMeXp< Z Je0x0y>,

where Ziging (G, J) is the normalizing constant known as the Ising partition function.

A polygon configuration of G is a subset of edges such that every vertex has even degree; let
P(G) denote the set of polygon configurations of G. Then, the high temperature expansion [30]
31] of the Ising model partition function gives the following identity:

Z1sing(G,J) = 2V T cosh Je >~ ] tanh Je.

ecE PeP(G) ecP

2.1.2 The dimer model

Consider a finite, planar graph G = (V, E) together with positive edge-weights v = (V¢ )eck-
A dimer configuration M of G, also known as a perfect matching, is a subset of edges of G
such that every vertex is incident to exactly one edge of M. Let M(G) denote the set of dimer
configurations of the graph G. The probability of occurrence of a dimer configuration M is
given by the dimer Boltzmann measure, denoted Pgimer:

HeEE Ve

P imer M) = > A\
d ( ) Zdirner(Gay)

where Zgimer(G, V) is the normalizing constant, known as the dimer partition function.



2.1.3 Dimer representation of a single Ising model: Fisher’s correspondence

Fisher’s correspondence [19] [16] gives a mapping between polygon configurations of a graph
G and dimer configurations of a decorated version of the graph, denoted G and called the
Fisher graph. For the purpose of this paper it suffices to consider graphs with no boundary.
The decorated graph G¥ = (VF,EF) is constructed from G as follows. Every vertex of G of
degree d is replaced by a decoration containing 2d vertices: a triangle is attached to every edge
incident to this vertex and these triangles are glued together in a circular way, see Figure

The correspondence goes as follows. To a polygon configuration P of G one assigns 2!V dimer
configurations of GF: edges present (resp. absent) in P are present (resp. absent) in G; then
there are exactly two ways to fill each decoration of GF so as to have a dimer configuration,
see Figure [T}

Figure 1: Left: a piece of a planar graph G and of a polygon configuration. Center and right:
the corresponding Fisher graph G and the two associated dimer configurations.

Let v = (Ve)ecpr be the dimer weight function corresponding to the high temperature expan-
sion of the Ising model. Then v is equal to

1 if the edge e belongs to a decoration,
Ve = ¢ tanh J, if the edge e arises from an edge e of G,
0 otherwise.

From the correspondence, we know that:

Z1sing (G, J) = (HcoshJe> Zagimer(G, ). (1)

ecE

Note that the above is Dubédat’s version of Fisher’s correspondence [16]. It is more convenient
than the one used in [7], [§] because it allows to consider polygon configurations rather than
complementary ones, and the Fisher graph has less vertices, thus reducing the number of
cases to handle.

2.1.4 Dimer representation of the double Ising model

Based on results of physicists [21], [49, [I8] [50], Dubédat [16] provides a mapping between two
independent Ising models, one living on the primal graph G, the other on the dual graph G*,



to the dimer model on a bipartite graph GQ. Based on results of [43, 149], two of the authors
of the present paper exhibit an alternative mapping between two independent Ising models

living on the same graph G (embedded on a surface of genus g) to the bipartite dimer model
on G [9].

Since the above mentioned mappings cannot be described shortly, we refer to the original
papers and only define the bipartite graph G® and the corresponding dimer weights. Note
that dimer probabilities on the graph G® can be interpreted as probabilities of the low
temperature expansion of the XOR-Ising model [9], also known as the polarization of the
Ising model [20] 48] obtained by taking the product of the spins of the two independent Ising
models.

We only consider the case where the graph G is planar and infinite. The bipartite graph GQ =
(VQ,EQ) is obtained from G as follows. Every edge e of G is replaced by a “rectangle”, and
the “rectangles” are joined in a circular way. The additional edges of the cycles are referred
to as external edges. Note that in each “rectangle”, two edges are “parallel” to an edge of
the graph G and two are “parallel” to the dual edge of G*, see Figure

Figure 2: A piece of a graph G (plain grey lines) and its dual graph G* (dotted grey lines),
and the corresponding bipartite graph G® (plain black lines).

Let 7 = (Ve)ecpa be the dimer weight function corresponding to two independent Ising models
with coupling constants J. Then 7 is equal to [16] O]

tanh(2J.) if e belongs to a “rectangle” and is parallel to an edge e of G,
_ cosh(2J.)~! if e belongs to a “rectangle” and is parallel to the dual of an edge e of G,
Ve =
© 1 if e is an external edge,

0 otherwise.

2.2 Z-invariant Ising model, dimer models and massive Laplacian

Although already present in the work of Kenelly [24] and Onsager [44, [47], the notion of
Z-invariance has been fully developed by Baxter in the context of the integrable 8-vertex



model [3], and then applied to the Ising model and self-dual Potts model [4]; see also [45] 2] [26].
Z-invariance imposes a strong locality constraint which leads to the parameters of the model
satisfying a set of equations known as the Yang-Baxter equations. From the point of view of
physicists it implies that transfer matrices commute, and from the point of view of probabilists
it suggests that there should exist local expressions for probabilities, but it provides no tool
for finding such expressions if they exist.

In Section [2:2.1] we define isoradial graphs, the associated diamond graph and star-triangle
moves, all being key elements of Z-invariance. Then in Section [2.2.2] we introduce the Z-
invariant Ising model [3], 4, 5], followed by the corresponding versions for the dimer models
on G and G®. Finally in Section we define the Z-invariant massive Laplacian and the
corresponding model of spanning forests [10].

2.2.1 Isoradial graphs, diamond graphs and star-triangle moves

Isoradial graphs, whose name comes from the paper [25], see also [17, 41], are defined as
follows. An infinite planar graph G = (V, E) is isoradial, if it can be embedded in the plane in
such a way that all internal faces are inscribable in a circle, with all circles having the same
radius, and such that all circumcenters are in the interior of the faces, see Figure |3 (left).
This definition is easily adapted when G is finite or embedded in the torus.

From now on, we fix an embedding of the graph, take the common radius to be 1, and also
denote by G the embedded graph. An isoradial embedding of the dual graph G*, with radius
1, is obtained by taking as dual vertices the circumcenters of the corresponding faces.

The diamond graph, denoted G°, is constructed from an isoradial graph G and its dual G*.
Vertices of G® are those of G and those of G*. A dual vertex of G* is joined to all primal
vertices on the boundary of the corresponding face, see Figure [3| (right). Since edges of the
diamond graph G° are radii of circles, they all have length 1, and can be assigned a direction
+e'®. Note that faces of G® are side-length 1 rhombi.

Using the diamond graph, angles can naturally be assigned to edges of the graph G as follows.
Every edge e of G is the diagonal of exactly one rhombus of G°, and we let 6, be the half-
angle at the vertex it has in common with e, see Figure We have 0. € (0, 5), because
circumcircles are assumed to be in the interior of the faces. From now on, we ask more and

suppose that there exists ¢ > 0 such that 0, € (6,5 —¢). We further assign two rhombus
vectors to the edge e, denoted by €' and e'Pe, see Figure

A train-track of G is a bi-infinite chain of edge-adjacent rhombi of G® which does not turn:
on entering a face, it exits along the opposite edge [29]. Each rhombus in a train-track T
has an edge parallel to a fixed unit vector +e’®7, known as the direction of the train-track.
Train-tracks are also known as rapidity lines or simply lines in the field of integrable systems,
see for example [3].

The star-triangle move, also known as the Y- A transformation, underlies Z-invariance [3, 4].
It is defined as follows: if G has a vertex of degree 3, that is a star Y, it can be replaced by a



Figure 3: Left: a piece of an infinite isoradial graph G (bold) with its circumcircles. Right:
the diamond graph G°.

Figure 4: An edge e of G, the corresponding rhombus half-angle 6. and rthombus vectors e,
¢ibe

triangle A by removing the vertex and connecting its three neighbors. The graph obtained in
this way is still isoradial: its diamond graph is obtained by performing a cubic flip in G®, that
is by flipping the three rhombi of the corresponding hexagon, see Figure [5l This operation is
involutive.

2.2.2 Z-invariant Ising model
The Ising model defined on a graph G is said to be Z-invariant, if when decomposing the
partition function according to the possible spin configurations at the three vertices of a

star/triangle, it only changes by a constant when performing the Y- A move, this constant
being independent of the choice of spins at the three vertices.
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Figure 5: Star-triangle move on an isoradial graph G (plain lines) and cubic flip on the
underlying diamond graph G° (dotted lines).

This strong constraint yields a set of equations known as the Ising model Yang-Baxter equa-
tions, see (6.4.8) of [0] and also [44], 47]. The solution to these equations can be parametrized
by the elliptic modulus k, where k is a complex number such that k? € (—o0,1), and the
rapidity parameters, see Equation (7.8.4) and page 478 of [5]. In this context it is thus natural
to suppose that the graph G is isoradial. Extending the form of the coupling constants to the
whole of G we obtain that they are given by, for every edge e of G,

1 (1 + sn (B |k)

— B — : : 7 _ 1
Je =J(0.|k) = 5 log e (G.1k) > , or equivalently sinh(2J(6.|k)) sc(96|k:) (2)

where k is the elliptic modulus, 68, = §e¥, K=K

(k) = fog \/ﬁdT is the complete
elliptic integral of the first kind, cn(-k), sn(-|k) and sc(:|k) = ZEHZ; are three of the twelve
Jacobi trigonometric elliptic functions. More on their definition can be found in the books [1]
Chapter 16] and [34]; a short introduction is also given in the paper [10} Section 2.2]. Identities

that are useful for this paper can be found in Appendix [A]

For a given isoradial graph G, we thus have a one-parameter family of coupling constants
())&, indexed by the elliptic modulus k, with k2 € (—oo,1). For every edge e, the coupling
constant J(f.|k) is analytic in k% and increases from 0 to oo as k? increases from —oo to 1,
see Lemma the elliptic modulus k& thus parametrizes the whole range of temperatures.
When k = 0, elliptic functions degenerate to trigonometric functions, and we have:

— 1 1+ sin 6,
0.10) = =1 — .
J(0c[0) 2 0g< cos 0 >

The Ising model is critical at k& = 0, see [35] [IT], B6]. More on this subject is to be found in
Section [l

In Equation (7.8.4), Baxter actually uses the complementary parameter k' = v/1 — k2 and the parametriza-
tion, sinh(2J.) = —isn(if|k’). The latter is equal to sc(f.|k) by [34, (2.6.12)].

11



2.2.3 Corresponding dimer model on the Fisher graph G"

Let us compute the dimer weight function v on GF corresponding to the Z-invariant Ising
model on G with coupling constants J given by . For every edge e of G, we have

1+sn 6,
tanh(J>:62Je_1:chirgle—l:l—ksn&—cn@e: snf, :sc%dn%
T e2de 41 %4-1 1+sn6.+cnf, 1+cnb, 2 2’

see [34] (2.4.4)—(2.4.5)] for the last identity.
As a consequence of Section the dimer weight function v on the Fisher graph G¥ is

1 if e belongs to a decoration,
Ve = 1irég696 =sc %ﬁ dn %6 if e corresponds to an edge e of G, (3)
0 otherwise.

When k£ = 0 we have dn = 1 and sc = tan, which corresponds to the critical case.

2.2.4 Corresponding dimer model on the bipartite graph G®

In a similar way, we compute the dimer weight function 7 of the graph G® corresponding to
two independent Z-invariant Ising model. We have

1 /1+sn6, cn .
h(2J,) = = — nch,, 4
cosh(2Je) 2 < cn b, + 1+sn96> He )
sinh(2J.)
h(2J)e) = ——— = e-
tanh(2J.) cosh(2J,) sn 0

As a consequence of Section the dimer weight function 7 on the bipartite graph G® is

snf, if e is parallel to an edge e of G,
_ cnf. if e is parallel to the dual edge of an edge e of G, (5)
Vo —
¢ 1 if e is an external edge,

0 otherwise.

2.2.5 The Z-invariant massive Laplacian

We will be using results on the Z-invariant massive Laplacian introduced in [10]. Let us recall
its definition and the key facts required for this paper.

Following [10, Equation (1)], the massive Laplacian operator A™ : CV — CV is defined as

follows. Let x be a vertex of G of degree n; denote by eq,...,e, edges incident to x and by
A1,...,0, the corresponding rhombus half-angles, then
(A™F)(x) = Y pO:l k) (x) = f(¥)] + m? (x[k) £ (x), (6)
j=1
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where the conductances p and (squared) masses (m?) are defined by

pe = p(Oc|k) = sc(be|k), (7)
(m?)(x) = m?(x|k) = Y (A(6;1k) — sc(8;]k)), (8)
j=1

with

1 E-K
A(ulk) = E<Dc(u]k) +— u>,
where De(ulk) = [i de?(v|k)dv, and E = E(k) is the complete elliptic integral of the second
kind.

We also need the definition of the discrete k-massive exponential function or simply massive
exponential function, denoted e(. ) (-), of [10, Section 3.3]. It is a function from V x V x C to
C. Consider a pair of vertices x,y of G and an edge-path x = x1,...,X, =y of the diamond
graph G° from x to y; let €’¥ be the vector corresponding to the edge X;X;11. Then e(x’y)(-)
is defined inductively along the edges of the path:

Yue (C, e(xj,x]'+1)(u) = Z\/y SC(%),

n—1
€x,y) (u) = H e(x.77Xj+1)(u)7 9)
7j=1

where a; = aj%. These functions are in the kernel of the massive Laplacian @, see [10]
Proposition 11].

The massive Green function, denoted G, is the inverse of the massive Laplacian operator @
The following local formula is proved in [10, Theorem 12]:
k/
G (x.¥) = 3= [ ey )i (10)

4im
x,y

where k' = v/1 — k? is the complementary elliptic modulus, I'x y is a vertical contour on the
torus T(k) := C/(4KZ + 4iK'Z), whose direction is given by the angle of the ray RXy.

The massive Laplacian is the operator underlying the model of spanning forests, the latter
being defined as follows. A spanning forest of G is a subgraph spanning all vertices of the
graph, such that every connected component is a rooted tree. Denote by F(G) the set of
spanning forests of G and for a rooted tree T, denote its root by xt. The spanning forest
Boltzmann measure, denoted Pporest, is defined by:

VF € F(G), Ppyrest(F) = [Trer (M (x1k) [Toer p(0cK)) |

Zforest (G7 P m)

where Ziorest (G, p, m) is the spanning forest partition function. In [10, Theorem 41] we prove
that this model is Z-invariant (thus explaining the name Z-invariant massive Laplacian). By
Kirchhoff’s matrix-tree theorem we have Zgyest(G, p, m) = det(A™).
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3 Z-invariant Ising model via dimers on the Fisher graph G"

From now on, we consider a fixed elliptic modulus k? € (—o0, 1), so that we will remove the
dependence in k from the notation.

In the whole of this section, we let G be an infinite isoradial graph and GF be the corresponding
Fisher graph. We suppose that edges of GF' are assigned the weight function v of arising
from the Z-invariant Ising model.

We give a full description of the dimer model on the Fisher graph GF with explicit expressions
having the remarkable property of being local. This extends to the Z-invariant non-critical
case the results of [7, 8] obtained in the Z-invariant critical case, corresponding to k = 0.
One should keep in mind that when k& = 0, the “torus” T(0) is in fact an infinite cylinder
with two points at infinity, and that “elliptic” functions are trigonometric series.

Prior to giving a more detailed outline, we introduce the main object involved in explicit
expressions for the dimer model, namely, the Kasteleyn matriz/operator [22] 146].

3.1 Kasteleyn operator on the Fisher graph

An orientation of the edges of GF' is said to be admissible if all cycles bounding faces of the
graph are cw odcﬂ meaning that, when following such a cycle cw, there is an odd number of
co-oriented edges. By Kasteleyn [23], such an orientation always exists.

Suppose that edges of GF are assigned an admissible orientation, then the Kasteleyn matriz
K is the corresponding weighted, oriented, adjacency matrix of GF. It has rows and columns
indexed by vertices of G and coefficients given by, for every x,y € VF,

Kx,y = SgH(X, y)ny,

where v is the dimer weight function and

1 if x~yandx—vy,

—1 ifx~yandy— x

Note that K can be seen as an operator acting on cv'.

F
VieCY VxeVE, (Kf= Y Ky
yeVF

Outline. Section [3] is structured as follows. In Section [3.2] we introduce a one-parameter
family of functions in the kernel of the Kasteleyn operator K; this key result allows us to prove
one of the main theorems of this paper: a local formula for an inverse K—! of the operator K,
see Theorem [I1] of Section Then in Section [3.4] we derive asymptotics of this inverse. In

2Throughout the manuscript, we shall abbreviate clockwise in cw and counterclockwise in cclw.
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Section [3.5] we handle the case where the graph G is periodic. Finally in Section we derive
results for the dimer model on GF: we prove a local expression for the dimer Gibbs measure,
see Theorem and a local formula for the dimer and Ising free energies, see Theorem
and Corollary we then show that up to an additive constant the Ising model free energy
is equal to % of the spanning forest free energy, see Corollary

Notation. Throughout this section, we use the following notation. A vertex x of G belongs
to a decoration corresponding to a unique vertex x of G. Vertices of GI corresponding to
a vertex x of G are labeled as follows. Let d(x) be the degree of the vertex x in G, then
the decoration consists of d(x) triangles, labeled from 1 to d(x) in cclw order. For the j-th
triangle, we let v;(x) be the vertex incident to an edge of G, and w;(x),w;1(x) be the two
adjacent vertices in cclw order, see Figure [6]

There is a natural way of assigning rhombus unit-vectors of G°® to vertices of GF: for every
vertex x of G and every k € {1,...,d(x)}, let us associate the rhombus vector e@i(®) o
w;(x), and the rhombus vectors €/ ) ei@i+1(X) o v;(x), see Figure [6f we let 6;(x) be the

half-angle at the vertex x of the rthombus defined by €®) and ™+ with §;(x) € (0, Z).

eiaj +1

G G®
Figure 6: Notation for vertices of decorations, and rhombus vectors assigned to vertices.
Since no confusion occurs, the argument x is omitted.

Recall the notation 6, = 58% and o = a% for the elliptic versions of 0, (rhombus half-angle)
and @ (angle of the rhombus vector €@ of G°).

3.2 Functions in the kernel of the Kasteleyn operator K

The definition of the one-parameter family of functions in the kernel of the Kasteleyn op-
erator K requires two ingredients: the function f of Definition [3.1] and the massive discrete
exponential function of [10].

The function f uses the angles (@;(x)) assigned to vertices of G¥, the latter being a priori
defined in R/27Z. For the function f to be well defined, we actually need them to be defined
in R/477Z, which is equivalent to a coherent choice for the determination of the square root of
'@ () This construction is done iteratively, relying on our choice of Kasteleyn orientation.
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Fix a vertex x¢ of G and set the value of @;(xg) to some value, say 0. In the following, we
use the index j (resp. £) to refer to vertices of G belonging to a decoration x (resp. y) of G;
with this convention, we omit the arguments x and y from the notation. For vertices in a
decoration of a vertex x of G, define

Ty = aj—l-ng iij—>Wj+1, (11)
i aj + 2@ +27 it wip — wj.

Given a directed path +, let co(y) be the number of co-oriented edges. Here is the rule
defining angles in the decoration corresponding to a vertex y of G, neighbor of the vertex x.
Let j and £ be such that v; is incident to vy, as in Figure m Consider the length-three directed
path wj, vj,ve,wy from w; to wye. Then

& = {aj —m if co(wy, vy, ve, wy) is odd, (12)

o +7 if co(wj,vj,ve, wy) is even.

Figure 7: Defining angles in neighboring decorations.

Lemma 7. The angles (0j(X))xev, jef1,...d(x)} are well defined in R/4AnZ.

The proof is postponed to Appendix |C] It is reminiscent of the proof of Lemma 4 of [§] but
has to be adapted since we are working with a different version of the Fisher graph.

Definition 3.1. The function f : VF x C — C is defined by

f(wj,u) == fu, (u) = ne(“54),
flvj,u) ==1f,(u) =Ky, w,fw, (u) —1— Kw, 1, fwy o (1) ' (13)
= Ky, ne(552) + K,y v, ne(F552).

Definition 3.2. The function g : VF x VF x C — C is defined by

g(x,y,u) == gyey(u) = fx(u+ 2K)f, (u) €(x,y) (u), (14)

where e(. .y(+) is the massive exponential function of [I0], whose definition is recalled in Sec-

B

tion [2.2.5
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Remark 8. The function g is meromorphic and biperiodic:

8(x,y) (U + 4K) = 8(xy) (u + 4iK,) = 8(xy) (u)a

so that we restrict the domain of definition to T(k) := C/(4KZ+ 4iK'Z). Note however that
taken separately, fx(- +2K) and f,(-) are not periodic on T(k): only their product is.

The function g can also be seen as a one-parameter family of matrices (g(u))yer(x), Where for
every u € T(k), g(u) has rows and columns indexed by vertices of G, and g(u)yy = B(xy) (1)
We have the following key proposition.

Proposition 9. For every u € T(k), Kg(u) = g(u)K = 0.

Proof. Note that since K is skew-symmetric, and that up to a sign, the functions x — g, ,)(u)
and x — gz (u + 2K) are equal:

8(z) (u+2K) = f,(u+4K)fy(u+2K) €(z,x) (u+2K) = —fy(u+2K)f,(u) €(x,2) (u) = —E(x,2) (u),
it is enough to check the first equality.

Let us fix z. We need to check that for every vertex x of G,

d
> KBz (w) = 0,
=1

where x1,...,xq are the d (equal to three or four) neighbors of x in GF. We distinguish two
cases depending on whether the vertex x is of type w or v.

o If x = w;(x) for some j, then x has four neighbors: w;_;(x) = wj_1, wjt1(x) = wji1,
vj—1(x) = vj_1 and v;(x) = vj, see Figure [6| Since all these vertices belong to the same
decoration, the part f;(u + 2K) e(, x)(u) is common to all the terms g, x,(u). One is left with
proving the following identity:

(KFw; = Ky 1 f o 4 Ky fwg g+ Ky fyy o+ Ky fy = 0.

Using the second line in Equation to express f,; and fy,_, in terms of f,’s, one gets for
the left-hand side of the previous equation:

(KWJijA + KijvjflKijlijfl)ijfl + (KWj:Vj va,Wj + KijijlKWijfl)ij
+ (Kwjaws 1+ Ko Kwg v )
The coefficient in front of f,
K v Kvjwy + Ky K vs o = _(ijvvj)Q + (KWJ‘Nj—l)Q =-1+1,

is trivially equal to zero. Moreover, because of the condition on the orientation of the triangles
in the Kasteleyn orientation, we have:

KWj,Wj—l + KWj,Vj71KVj71,Wj71 = KWj,Wj+1 + KWij KWj+1,Vj =0. (15)
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Indeed, to check this, it is enough to look at the case where the edges of a triangle are
all oriented cw, and notice that the quantity is invariant if we simultaneously change the
orientation of any pair of edges of the triangle, which is a transitive operation on all the (six)
cw odd orientations of a triangle. So (Kf)y,; is identically zero.

o If x = v;(x) = v; for some j, then x has three neighbors: w;(x) = w;, w;y1(x) = wj;1 and
ve(y) = vg. Factoring out f,(u + 2K) e(, x)(u), it is sufficient to prove that

va,wjfwj (u) + KV].’W].+1fW].+1 (u) + KVjNerZ (u) €(x,y) (u) =0.

Note that under inversion of the orientation of all edges around any of the vertices wj, w1
and vj, all the signs of three terms either stay the same, or change at the same time. To fix
ideas, we can thus suppose that the edges of the triangles w;,w;i1,v; and wy, wpiq, vy are all
oriented cw, and that the edge between v; and vy is oriented from v, to v;, as in Figure m
Returning to the definition of the angles mod 47, see and , and simplifying notation,
we obtain

a=qaj(x), f=a4(x)=a+26, o =apy) =a—-2K, B =ap1(y) =d +20 =3-2K.

We have:

Ky fw; (1) + Koy wy g fwg g (0) = fuj (u) — fw, (0) =

On the other hand, entails that

/ -V 1 Sd(u) =+ Sd(u;)
f,, (1) = fu, (1) + fu,. (1) = en(“=2) + en(¥22) = — = 2 2
o (1) = fu, (W) + fuwpy () = en(55%) +en(57) = =7 S(42) sd ()
This has to be multiplied by Ky, , = —1j_ncg9 and by the exponential function ey yy(u), so
that:

snf 1 sd(*5%) +sd(%5> By

KV‘V fv - - / u—a u=p
pee(x,y)(u) ,(w) T+ ond ¥ Sd(152) sd (2 ) (—=k") sc(“5%) sc(*57)
~snf sn(%5%) dn(*59) +sn(%5?) dn(*52)
1+cnb en(%5%) en(452 )
Proving that
va,ijWj (u) + KVj,Wj+1ij+1 (u) + KVj,Vg €(x,y) (u)fvg (u) =0 (16)

amounts to showing that
(1+cn9){cn(#)—cn(%)}—sne{sn 459) dn(*57 5)+sn( )dn(“Qa)}.

However, the addition formula (see Exercice 32 (v) in [34, Chapter 2] and also the similar
relation (H4))) reads:
en(u+v)cenu = cnov — sn(u + v) snudnw.
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Evaluated at u = “5%, v = —# and u +v = 0 (and exchanging the role of a and $ for the

second equation), we obtain

S

cn(%) cnf = cn(“5%) + sn(#) dn(“5%)sné,
en("3%) end = en(*3?) — sn(*5*) dn(*3%) sn.
Taking the difference of these two equations yields the result. O

Remark 10. If p is a measure on T(k) and if we define hyy = [ gy (u)du(u), then by linearity
of the integral, one also has Kh = hK = 0. A particular case, which will be important for
what follows (see also [25], §]), is the case when p is the integration along a contour on T(k).

3.3 Local expression for the inverse of the Kasteleyn operator K

We now state Theorem proving an explicit, local formula for coefficients of the inverse K~
of the Kasteleyn operator K. This formula is constructed from the function g of Definition [3.2}

Theorem 11. Consider the dimer model on the Fisher graph G¥ arising from the Z-invariant
Ising model on the isoradial graph G, and let K be the corresponding Kasteleyn operator.
Define the operator K1 by its coefficients:

_ ik'
Vx,y e V¥, KX; = 87r/p gy (u)du + Cyy (17)
X,y
14
=5 A fx(u + 2K)fy(u) e y) (u)du + Cx y, (18)
X,y

where the contour of integration Iy is a simple closed curve winding once vertically around
the torus T(k) (along which the second coordinate globally increases), which intersects the
horizontal axis in the angular sector (interval) sy, of length larger than or equal to 2K, and
the constant Cy y is given by

. 1 if x =y = wj(x),
Cry = 1 (=1)"0Y)if x = wj(x) and y = wy(x) for some j # ¢, (19)
0 otherwise,

where n(x,y) is the number of edges oriented cw in the cclw arc from x toy in the inner
decoration.

Then K~ is an inverse of the Kasteleyn operator K on GF.
When k # 0, it is the unique inverse with bounded coefficients.

Alternatively, the coefficients of the inverse of the Kasteleyn operator admit the expression

"
= f(ut 2K)f (1) ey (W) H (u)du + Gy, (20)
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where the function H is as in Lemma[{3, Cx, is a trivial contour oriented cclw on the torus,
not crossing I'xy and containing in its interior all the poles of gy and the pole of H, and

Cyy is defined in (19).

Before we go on with the proof of this theorem, let us make a few comments about the
formula of the inverse Kasteleyn matrix:

e As soon as x and y are not in the same decoration, or one of them is of type v, then
the constant Cyy is zero, and the formula for Ko’ ; as a contour integral has the same
flavour as the Green function of the Z-invariant massive Laplacian introduced in [10]
Theorem 12].

e The constant Cy« is here to ensure that K Lis 0 if x is of type w (the integral is 0 when
x is of type v as we shall see later).

e As one can expect, the full formula is skew-symmetric in x and vy.

e To obtain the alternative expression from , one can make use of a meromorphic
multivalued function with a horizontal period of 1, like the function H defined in ([65])—
, originally introduced in [10]. Following this way, one may rewrite the integral as an
integral over a contour bounding a disk, allowing one to perform explicit computation
with Cauchy’s residue theorem. One can add to H any elliptic function on T (k) without
changing the result of the integral, given that €., encloses all the poles of the new
integrand.

e Adding to the columns of K~! functions in the kernel of K yield other inverses, with
different behaviour at infinity. Such a function in the kernel is obtained by integrating
8(xy)(+) along a horizontal contour in T(k), see Remark As a consequence, if we
replace in the contour I'y, by a contour winding a times vertically and b times
horizontally, with a¢ and b coprimes, and divide the integral by a, then we get a new
inverse for the Kasteleyn operator K, which has an alternative expression as a trivial
contour integral involving integer linear combinations of functions H and V, as defined

in Appendix

e When k& = 0, the “torus” T(k) is in fact a cylinder, with two points at infinity. The
contour I'y, has infinite length. The function gy y(u) decays sufficiently fast at infinity
to ensure convergence of the integral. By performing the change of variable A = —e®
in the integrals or , one gets the adaptation to this variant of the Fisher graph
of the formula for the inverse Kasteleyn operator in [8], as an integral along a ray from
0 to oo, or as an integral over a closed contour with a log.

We now turn to the proof of Theorem We show that the operator K~! with those
coefficients satisfy KK=! = Id and K™'K = Id. These identities, understood as products of
infinite matrices, make sense since K has a finite number of non zero coefficients on each row
and column. Moreover, by skew-symmetry, it is enough to check the first one. When k # 0, it
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turns out that these coefficients for K™ go to zero exponentially fast, see Theorem This
property together with K~'K = Id imply injectivity of K on the space of bounded functions
on vertices of G, which in turn implies uniquess of an inverse with bounded coefficients.

The general idea for proving KK—! = Id follows [25], but it is complicated by the fact that
the Fisher graph GF itself is not isoradial. In this respect, the proof follows more closely that
of Theorem 5 of [§] with two main differences: we work with a different Fisher graph G and
more importantly we handle the elliptic case, making it a non-trivial extension. Section [3.3.1
corresponds to Sections 6.3.1 and 6.3.2 of [§]. It consists in the delicate issue of encoding
the poles of the integrand f,(u + 2K)fy (u) e(xy)(u); for this question there are no additional
difficulties so that we have made it as short as possible and refer to the paper [8] for more
details and figures. Section consists in obtaining a sector sy, on the horizontal axis
of the torus T(k) from the encoding of the poles; this is then used to define the contour of
integration I'y . It corresponds to Section 6.3.3 of [§] but requires adaptations to pass to the
elliptic case. Section is a non-trivial adaptation of Section 6.4 of [§], handling a different
Fisher graph GF and more importantly handling the elliptic case.

3.3.1 Preliminaries: encoding the poles of the integrand

Let G be an infinite isoradial graph and let G® be the corresponding diamond graph. In order
to encode poles of the integrand of K ;, we need the notion of minimal path which relies on
the notion of train-tracks, see Section for definition. A train-track is said to separate
two vertices x,y of G° if every path connecting x and y crosses this train-track. A path from
x to y in G° is said to be minimal if all its edges cross train-tracks that separate x from y,
and each such train-track is crossed exactly once. A minimal path is not unique in general,
but all minimal paths consist of the same steps taken in a different order.

For every pair of vertices x,y of GF, we now define an edge-path Yx,y of G® encoding the poles
of the integrand of K ; Consider a minimal path from x to y and let e’ be one of the
steps of the path, then the corresponding pole of the exponential function is ay + 2K . Since
el 2K — gittim — _ i@ this pole is encoded in the reverse step. As a consequence, poles
of the exponential function are encoded in the steps {—e?*} of a minimal path from y to x.
We now have to add the poles of the functions fy(u + 2K) and fy(u). The difficulty lies in
the fact that some of them might be canceled by factors in the numerator of the exponential
function. By definition, the function fy(u + 2K') has either one or two poles {¢;}, encoded
in the edge(s) {¢%} of the diamond graph G®; let T = {T¢} be the corresponding train-
track(s). Similarly, the pole(s) of f,(u) are at {a} + 2K} and are encoded in the edge(s)
{—eiag'} of G°, and T, = {TV} are the corresponding train-track(s).

Let us start from a minimal path -, , from y to x. For every j, do the following procedure:
if 7Y separates y from x, then the pole a;- + 2K is canceled by the exponential and we leave
Yx,y unchanged. If not, this pole remains, and we extend -, , by adding the step —€'@ at the

beginning of 7y y. The path 7y, obtained is still a path of G°, denote by y the new starting
point, at distance at most 2 from y.
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When dealing with a pole of fy(u 4+ 2K), one needs to be careful since, even when the
corresponding train-track separates y from x, the exponential function might not cancel
the pole, if it has already canceled the same pole of f,(u); this happens when T} and T,
have a common train-track. The procedure to extend -y, runs as follows: for each j, if
T separates y and x and is not a train track of T}, then the pole «; is canceled by the
exponential function, and we leave vy, unchanged. If not, this pole remains, and we extend
Vx,y by attaching the step '@ at the end of Vx,y- The path obtained in this way is still a path
of G°, starting from y. Denote by X its ending point, which is at distance at most 2 from x.

3.3.2 Obtaining a sector s, from ,

Let x,y be two vertices of GF and let Y,y be the path encoding poles of the integrand of
KL ; constructed above. Denote by {e™i} the steps of the path, seen as vectors in the unit
disk; the corresponding poles of the integrand are {7;}. Using these poles, we now define an
interval/sector sy, in the horizontal axis R/4KZ of the torus T(k). Given the sector sy,
the contour of integration I'xy of K- ; is then defined to be a simple closed curve winding
once around the torus vertically, 4.e., in the direction ¢, along which the second coordinate
globally increases, and which intersects the horizontal axis in sy, see Figure |8 below.

General case. This case contains all but the three mentioned below. We know by Lemmas 17
and 18 of [§] that there exists a sector in the unit circle, of size greater than or equal to T,
containing none of the steps {77 }. Equivalently, there exists a sector in the horizontal axis
R/4KZ of the torus T(k), of size larger than or equal to 2K, containing none of the poles
{7j}. We let s, be this sector, it is represented in Figure [§]

21K’
,’ u I A
’ II
.’ / T Sxy
__4;’ / X,y
7
Ie ,—4"'
7 UXxy ,
/7 4
— o000 = — @@
v \
_____ -7 \\_____
Fx7y
RN
.|

Figure 8: Left: the torus T(k) with the contours of integration I'y, and €y y; the poles of the
integrand f(u + 2K)fy(u) e(x ) (u) are represented by black bullets and the pole 2iK” of the
function H by a black square. Right: in blue the sector sy, used to define the contour of
integration I'y .

Here are the three cases which do not fit in the general situation.

Case 1. The path 7, consists of two steps that are opposite. Then, the two poles separate
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the real axis of T(k) in two sectors of size exactly 2K, leaving an ambiguity. This can only
happen when x =y = w;(x) and the two poles are {«;, a; + 2K}. In this case, the standard
convention is thatﬂ Swiw; = (0, a5 + 2K), and by Lemma we have

ik! 1
fw, (u + 2K )fw; (u)du = —. (21)

87T ij 0

We choose the value of the constant Cy,; w; to compensate exactly the value of this integral
so as to have Kv;17wj = 0, that is Cw, w; and we recover the first line of the definition

= —17
of Gy, of Equation (T9).

Figure 9: Standard convention for the definition of the sector Sw;wj -

Remark 12. It will be useful for the proof to consider also the non-standard convention
with the complementary sector, defining a contour I’(,ijwj. Returning to the definition of the
function fw, (u), we have that the integral over I',,_,, is equal to minus the one on the contour

- -1 _ / _
L'w; w;, so that in order to have Ki,©, =0, we set C, - = —Cu;,w;-

The two other cases correspond to situations when |T} ()7y| = 2. The corresponding path
Yx,y does not enter the framework of Lemmas 17 and 18 of [§]. They occur when x and y are
equal or are neighbors in G, and both of type ‘v’. In other words, one has x =y = v;(x), or
(x,y) = (vj(x),ve(y)), with x ~ y in G, j and ¢ being such that vj(x) ~ v(y) in GF.

Case 2. Suppose first that x =y = v;j(x). Then the poles are {a;, a; + 2K, o1, a1 + 2K}
(the exponential function is equal to 1 and cancels no pole). If we take sy, v, = (aj, a;j11),
then the integral is zero by symmetry. Indeed, the change of variable v — aj41 + o; —u
leaves the contour invariant (up to homotopy) and f,;(u + 2K) is changed into its opposite,
whereas f,, (u) is invariant. Note that taking sy, v, = (a; + 2K, aj11 + 2K) also gives a zero
integral, because it is related to the previous one by the change of variable u — u + 2K.
These two choices of sectors will be useful in the proof of Theorem [11] see Figure [L0| (center).

Case 3. Suppose now that (x,y) = (v;(x),v¢(y)). Then f, (x) and f, ) induce twice the same
poles {aj, aj11}. The exponential adds the poles {o; + 2K, a1 + 2K} and the numerator
cancels one pair of {¢, a;j11}, implying that there remains the poles {¢;, o;+2K, oj 1, 011+
2K}. We set the convention given in Figure [10| (right).

3When indicating sectors on the circle, the convention we adopt is that (a, B) represents the sector where
the horizontal coordinate increases from « to 3.
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Figure 10: Definition of the sectors sy, v; (center) and sy, , (right).

3.3.3 Proof of the local formula for K~! of Theorem [11]

We need to prove that
Vx,y €V, (KK™Y)y = 6y

We use the following notation. The vertex y is y = w;(y) or v;(y), for some vertex y of G and
some j € {1,...,d(y)}. If y = w;(y), it has four neighbors w;_1(y), v;j—1(y), v;(y), wj+1(¥);
if y = v;(y), it has three neighbors w;(y), w;11(y), ve(y’), see Figure We denote by x; the
neighbors of x, with ¢ ranging from 1 to 3 or 4.

Figure 11: Notation for the cases where the general argument for proving (KK*1)><7y = Oxy
does not work and which have to be treated separately.

As long as the computation of (KK™1),, = 37, Ky K.}, only involves terms K.} for which
the constant Cy; y is 0, and the sector sy, , defining the contour I'y; , does not use any special
convention, that is when

e x is not in the same decoration as vy, if y = w;(y),
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o x & {w;(y), wit1(y),ve(y)} Uiwe(y”), wes1 ("), vi(¥)}, if y = vi(y),

then by the argument of [25] [§], all contours of integration I'y,y can be deformed into a
common contour I', crossing the horizontal axis in the nonempty intersection of the sectors
i Sxi.y» 80 that by Proposition [J] (see also Remark we have:

E:KMa% fg@+2KﬁﬂWemwhmm:i%E:Kmﬁdu+2Kﬁth@yﬂWdu:Q
i L: Ly

g5y

Let us check the remaining cases separately.

Suppose that y = w;(y). The degree of the vertex y is d(y) and indices below should be
thought of as being modulo d. We have to handle all cases where the vertex x belongs to the
decoration y, whether it is of type ‘v’ or ‘w’.

e We first compute (KK™1),\,, when x = v,.(y) for some r € {1,...,d(y)}. The vertex x has
three neighbors w,-(y),w,+1(y) and a vertex of type ‘v’ in a neighboring decoration. We now
omit the argument y from the notation.

When r € {j —d+1,...,j — 2}, we are in the general case of the definition of Iy, y; when
r = j—1, we choose the standard convention of Case 1, that is I'y; w,; and Cy; w,; when r = j,
we choose the equivalent, non-standard convention of Case 1, that is F(Nj w; and Cy,.

With these choices, the three sectors appearing in the expressions of K;i,le' have non-empty
intersection, so that the contours Iy, , in the three integrals can be continuously deformed
into the same contour I', and thus the combination of the integral parts gives zero.

Since vertices of type ‘v’ have no constant contribution Cy; ,, we are left with proving that
Vrel{j—d+1,...,5 =1}, Kyw,.Cwow; + Kvpwii Oy = 0, (22)
and that
Ky w; C\ivaWj + Ko wj a1 Gy gy = 0 (23)

Multiplying each of the equations of by Ky, w,, and using that —Ky, w, Ky, w, 11 = Kw, w1
by the cw odd condition on triangles, we have that the first set of equations is equivalent to,
forallr € {j—d+1,...,5 -1}, Cy,w; =K Cw,41,w;, which in turn holds if and only if

W ,Wpr1
j—1
C&M:<HKWMmyMM:GWWWWMM. (24)
m=r
Recalling that Cy; w; = —i and returning to the second line of the definition of Cy y, we see

that this is indeed the case, whence is proved.

We are left with proving that Equation is satisfied. Doing the same steps as above, and
using that C,, = (—1)"Wj-dt1W; )C’Wj w,, this is equivalent to proving that

j—d+1:Wj 5

/ _ _1\n(Wj—dy1,w5)
CWj,Wj - CW]aW]( 1) J i KWj7Wj7d+1'
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Observing that (—1)Wi—at1:%;) Kw, w;_q.1 = —1 because of the cw odd condition on the inner
circle of decorations, and recalling that C'\’N = —Cuw,w, (see Remark . we deduce that
this equation is indeed true, thus ending the proof when x = v,.(y).

e We now compute (KK™! Jxw; when x = w,.(y) for some r € {1,...,d(y)}. The vertex
x = w,(y) has four neighbors: w,_1(y), wr11(y), vr—1(y) and v,(y), and we now omit the
argument y.

Let us first handle the integral part. When r # j + 1, we are either in the general case of the
definition of Iy, y or in Case 1, and we choose the standard definition. When r = 5 + 1, we
choose the non-standard deﬁmtlon of Case 1, that is F\’N w; and C'\;,j w;- With these choices,
as long as r # j, the four sectors have non-empty mtersectlon, so that the combination of

the integral parts is equal to zero.

When r = j, then the four sectors enter the framework of the general case and are not

compatible, see Figure [12]
Wi+1
vy
Wi 1rw;
Vji—1

Swj_1,wj Svj—1,wj Svj,wj SWji41,Wj

Figure 12: Sectors sy, y when x =y = w;.

A vertical contour I passing between «; and a4 is contained in the three sectors Swj_1,w;
Sv;_1wj» Swjpw;- 1f the fourth integral was taken along this contour, the combination of the
four would be zero. By adding and subtracting the integral for the pair (v;,w;) along I'', we
have that the contribution of the integral part of (KK*I)W]. w; 1s equal to

k/
%ij,vj ( ?{ . f ) o, (1 + 2K ), (u)du. (25)
VoW I/

The contour I'y; w, — I is the (negatively oriented) boundary of a cylinder in the torus, which
contains only one pole of the integrand, at u = a;. The function fy, (u) has no pole in the
cylinder, and only the term involving f,,; of the function f,, (u + 2K) = Ky, w,fw; (u + 2K) +
Kw;1,v;fw, 1 (u+2K) has a pole at u = ;. As a consequence, the contribution of the integral
part is equal to

Z’“'(;,{VW 7{) s (U 2EK)fy,; (u)du = Zk/(f/ 7{WW> (ut2K)f, ()d“:%’

by continuously deforming the contours to those of Case 1, and using Equation and
Remark [121
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We now handle the constant part of (KK‘I)WMNJ.7 keeping in mind that vertices of type ‘v’
have no constant contribution. As long as r+ 1 ¢ {j + 1,5 + 2}, we have by Equation

CWr,Wj - Kerl,Wr KWT‘7WT+1CWT+1,]'7

so that

KWmWr—lCWr—l:Wj + KWT7WT+1 CWr+17Wj = (KWT,WT—IKWr—hWr KW’I‘aWT‘+1 + KWT7W7‘+1)CW7‘+17Wj =0.

When r = j + 1, recalling that we have chosen the non-standard definition from Case 1, fac-

toring wawj 41, using Equation (24) to write C’Wj Law = C’WF A2 Wi and finally remembering
that Cy, v, = —Cw,w,, we have

/
Kw; 1, CWj wy T Ry Cwjiow;

= Kujwj (1+ KijWjHKWj+17Wj+2(_1)n(wj7d+2’wj))CijWj’

which is equal to 0 by the Kasteleyn orientation condition on inner cycles of decorations.

When r = j, using a similar argument, we obtain

Kw;ws 1 Ow; 1wy K w1 Oy = —20w;w; = 9
Wrapping up, we have proved that (KK_l)WT’Wj is equal to 0 when r # j, and to % + % =1
when r = j.

Suppose that y = v;(y). Note that since y is of type ‘v’, we always have Cy, , = 0. We
have to handle the cases where x € {w;(y), w;+1(y), ve(y’)} U{we(y’), wer1(y'),v;(y)}, and
need to check whether the sectors defining the contours I'y, , in the integral part of Ky, , have
non-empty intersections.

There are three values of x where one of the neighbors of x is y = v;(y): namely when
x € {w;(y),w;+1(y),ve(y’)}. We now omit the arguments y,y’ from the notation. In these
three cases, the sectors s, iV and sy, 41, are compatible and intersect, either in the arc from
a; to ajq (2 first cases), or from o + 2K to ajiq + 2K (last case). In all these situations,
using the two possible definitions of Case 2 to write K;ﬁvj = 0 as the integral with a contour
in that common sector, then by the general argument, we get that (KK‘I)x,vj =0.

-1

We now need to check the remaining three cases where the combination uses K, Vi)
K

sponding to the situation where x € {we(y’), wet1(y’),v;(¥)}.

corre-

In the two first situations, using the general Case and Case 3, we see that the sectors are
compatible, and we can conclude with the general argument that (KKil)XN]. =0.

Suppose now that x =y = v;. Its three neighbors are w;, w; 1 and vy and the corresponding
sectors are not compatible, see Figure
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Wi 41
Vj Vy
Wy
Vji—1

Swjvj Swjt1:vj Svgvj

Figure 13: Sectors sy, y when x =y = v;.

The two sectors for w; and w;i 1 are compatible and intersect in the arc from «; to aj41,
whereas according to the convention of Case 3, the one for vy is the arc from «o; + 2K to
ajr1+2K. A vertical contour I passing between a; and ;41 is contained in the three sectors
Swjvis Swii1v; and Svgv;- If the third integral was taken along this contour, the combination
of the three would be 0. By adding and subtracting the integral of the pair (vg,v;) along I,
and using Proposition [9] to write

Ky vefur (u 4 2K) eyr y () = = (Kuwfu, (04 2K) + Ky fuy o (u 4 2K))

we obtain

. zk:’
(KK l)Vj:Vj = <£ f},) Vi Wi fWJ (U + 2K> KVJ 7WJ+1fWJ+1 (U + QK)) fVJ( )du
VZ V

By a change of variable u — u + 2K, the integral of the first term in the sum is

zk’
(74 74 ) viw; fw; (u+2K)fVJ( u)du
r Tuy;

'k;/
__w Ky, w; <7{ 7{ ) fvj(u—l—QK)fWJ( w)du,
8m I"4+2K . 42K

VeV

which is exactly the same integral as the one computed in . Indeed, TV 4+ 2K (resp.
Ly, + 2K) is homologous to Ly, w; (resp. to I'). Therefore it is equal to %

Using the same argument as for the computation of , we obtain that the integral of the
second term in the sum

zk"
, T Vj 7W]+1fWg+1 (’LL + 2K)fvg( )d
VZ V
zk' 1
_ 7{ 7{ fu o1 (4 2K)fy,, . (u)du = =
o Jr,., 2
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Therefore (KK‘I)V].NJ. = % + % = 1, which completes the proof. O

Note that the proof uses essentially the fact that the contour I'; , winds once vertically, but
makes no use of the horizontal winding of the contour, which can be arbitrary. However,
“verticality” of the contour plays a crucial role for the exponential decay of the coefficients
of K71, as stated below in Theorem

3.4 Asymptotics for the inverse Kasteleyn operator K

For any x,y € G, define
1 .
x(u) = H log{exy)(u + 2iK")}, (26)
with the exponential function introduced in Section [2.2.5] The main result of this section

(Theorem shows the exponential decay of the inverse Kasteleyn operator, with a rate
that can be directly computed in terms of .

Since |x — y| will be typically large in this section concerned with asymptotic results, we are
in the general case, according to Section [3.3.2l The poles of the exponential function are
{7;}; they belong to a sector of size strictly less than 2K, say 7; € 7 + (— K, K).

Theorem 13. Assume that k # 0. As |x —y| — oo, one has
1o —f(up + 2K + 2iK")f, (ug + 2iK")

’ 4y/2m[x = y X" (uo)
where ug is the unique v € T+ 2K + (=K, K) such that x'(u) =0, and x(ug) < 0.

ey Ix(uo) | (1+0(1)),

Proof. Tt consists in applying the saddle-point method to the contour integral . It is
very similar to the proof of Theorem 14 in [I0], which is devoted to the derivation of the
asymptotics of the Green function . Indeed, the integrands of and only differ
by the prefactor function fy(- + 2K)f,(-) (as well as a constant multiplicative term). This
prefactor function will affect the asymptotics by multiplying by its value at the saddle-point
ug & 2i K’ the asymptotics of . Let us give some brief details.

e It follows from [10, Lemma 15] that the equation x’(u) = 0 has a unique solution ug
in the interval 7 + 2K + (=K, K), and moreover x(up) < 0 (cf. [I0, Lemma 16]). The
point ug &= 2:K’ will be interpreted as the saddle-point.

e We then move the contour I'y , of into a new one, denoted by I’;’y, going through
ug £ 2¢ K’ and satisfying some further properties. The validity of this change of contour
is based on the fact that neither the exponential function nor the prefactor have poles
in the sector sy, see Figure

e We adjust the new contour FQ,y so as to have, classically, a contribution exponentially
negligible outside a neighborhood of uy 42K’ (this can be done by introducing suitable
steepest descent paths).
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e In the neighborhood of ug & 2iK’, we apply (a uniform version of) the saddle-point
method, which eventually yields to the expansion written in Theorem O

Remark 14. Let us note that the constant —fy(ug + 2K +2iK’)fy (ug+2iK’) in Theorem [13]is

positive. Indeed, by (L3)), f(u) is the sum of one or two terms nc(“5). Due to the location
of the poles described in Section aj € T+ (—K, K). Hence

+ 2K —
w € K +iK' + (-K, K),
and by Table nc(%m) = nc(K +iK'+vo) = ik’ 'k en(vg), with some vy € (—K, K).
Consequently, the constant —fy(ug + 2K + 2¢K')f,(ug + 2iK’) equals minus the product of
two (sums of) terms ik’ 'k cn(vg). The positivity follows from —i2 = 1.

3.5 The case where G is Z2-periodic

In this section, we suppose moreover that the graph G is Z?-periodic, implying that the
graph G is also Z?-periodic. We consider the dimer model on the graph G arising from
a Z-invariant Ising model on G, and the Z-invariant rooted spanning forest model on G.
Note that the weight function corresponding to each of the models is periodic. Consider
the natural operators associated to the two models, that is the Kasteleyn operator K acting
on (CVF, arising from a periodic admissible orientation of the edges of G¥'; and the massive
Laplacian operator A™ acting on CV.

Using Fourier techniques, see for example [12], an important tool for understanding each
of the models is the characteristic polynomial of the respective operators. In this section,
we prove that the characteristic polynomials of the two models are equal up to an explicit
constant. We state implications of this fact for the spectral curve of the dimer model on GF.

In the periodic case, we have two explicit expressions for the inverse operator K=!. The one
given by Theorem and the one obtained using Fourier techniques. In Corollary we
prove that the two are equal.

These two facts are used in Section for obtaining explicit expressions for the dimer model
on GF and relating its free energy to that of the rooted spanning forest model.

3.5.1 Quasi-periodic functions

A natural toroidal exhaustion of G is {G,, = G/nZ?},>1; in a similar way {GE = GF /nZ?},,>1
is a toroidal exhaustion of GF. The smallest graphs G; and G} of the exhaustions are known
as the fundamental domains.

We note with an addition sign the action of Z? on vertices, edges, faces of G and GF. Let
Yz, Yy be two simple paths in G* connecting a given face fy , with fo + (1,0) and fo + (0, 1)
respectively.
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To simplify notation, we write also v;,7, for the images of these paths when quotienting
by the action of Z?, which are now non trivial cycles of G} generating the first homology
group of the torus on which G is drawn. For (z,w) € C?, denote by (CXZ w) the space of

(z, w)-quasi-periodic functions on vertices of G:
Vx eV, VY (z,w) €C? f(x+ (m,n)) =z""w "f(x).

For every vertex x of Gy, define dx(z,w) to be the (z,w)-quasi-periodic function equal to 0
on vertices which are not translates of x and to 1 at x. Then the collection {dx(z, w)}xev, is

a natural basis for CE/Z w)"

Note that v,,~, can be deformed to directed cycles of the dual graph (G)* (or of the diamond

graph GY). In a way similar to (CE/Z w) Ve define (CE/ZFU)), the space of (z,w)-quasi-periodic

functions on vertices of GY', with basis {d4(z, W) }yevr-

3.5.2 Characteristic polynomials and spectral curves

Let K(z,w) be the matrix of the restriction of K to the space CY i the basis {d,(z, W)} yevr-

(z,w)
The matrix K(z,w) is obtained from the Kasteleyn matrix of the fundamental domain G} as
follows: multiply coefficients of edges crossing v, by z (resp. z~1) if the edge goes from the
left of v, to the right (resp. from the right of v, to the right); coefficients of edges crossing

7y are multiplied by w or wh

\

In a similar way, A™(z,w) is the matrix of the restriction of A™ to the space Clomw

basis {0x(z, W) }xeg, -

) in the

The dimer characteristic polynomial of GF is the determinant of the matrix K(z,w),
Pk (z,w) = det K(z,w).
The massive Laplacian characteristic polynomial of G is the determinant of A™(z, w),

Pam(z,w) = det A™(z,w).

Consider a Laurent polynomial P(z,w) in two complex variables z,w. Then, the spectral
curve of the polynomial, denoted by C(P), is defined to be its zero locus:

C(P) = {(z,w) € (C*)? : P(z,w) = 0}.

The following proves that the two characteristic polynomials are equal up to an explicit
multiplicative constant. The constant is determined in Section [3.6.3

Proposition 15. There exists a nonzero constant ¢ such that

Pk (z,w) = cPam(z,w).
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Proof. Let us first prove that Pam(z,w) divides Pk(z,w), using an argument similar to that
of [T, Lemma 11]|. By [10, Proposition 21], any point of the spectral curve of the Laplacian
is of the form (z(u),w(u)), with u € T(k), and

z(u) = H (Z\/Esc(%)) , w(u) = H (zx/ysc(%)) . (27)

et ey, eivery,

The function g. ) (u) of Equation is (z(u), w(u))-quasi-periodic, as it involves the func-
tion f.(u), which is invariant by translations, and the discrete massive exponential function,
which is (z(u),w(u)) quasi-periodic. By Proposition [J] it is in the kernel of the Kasteleyn
operator K. Therefore, Pk(z(u), w(u)) = 0. As a consequence, Pam(z,w) divides Pk(z,w).

Now by [16] we know that, up to a constant, Pk(z,w) is equal to the dimer characteristic
polynomial on GR. The graph G® being bipartite, the corresponding spectral curve is a
Harnack curve [28]. Hence, the characteristic polynomial on G®, and thus Pk(z,w), are
irreducible.

The fact that Pam(z,w) divides Pk(z,w) and that Pk(z,w) is irreducible implies that the
two polynomials are equal up to a constant, and concludes the proof. ]

By Proposition properties of the spectral curve of Pam obtained in [10], are automatically
transferred to the spectral curve of the dimer characteristic polynomial Pk.

Corollary 16. Let k> # 0.

e The spectral curve of the dimer model on G¥ is a Harnack curve of genus 1, with
(z,w) ¢ (271 w™t) symmetry.

o Every Harnack curve of genus 1 with (z,w) <> (271, w™') symmetry arises from such
a dimer model.

e The characteristic polynomial Pg(z,w) has no zero on the unit torus {(z,w) € C? :
2 =1, jw| = 1},

Proof. For k? > 0, this follows from our results of the paper [10]. For the last point we use
the fact that (0,0) does not belong to the amoeba of the spectral curve. For k? < 0, we prove
later in Section [4] that the spectral curve is the same as for an elliptic parameter (k*)2 > 0,
such that (k*)'k = 1. O

Remark 17. For k = 0, the spectral curve of the dimer model on G is still the spectral curve
of the Laplacian with conductances tanf. It is a Harnack curve of genus 0 with the same
symmetry, with a double point at z = w = 1, see [27, [7, [10].
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3.5.3 Inverse Kasteleyn operator

Because of the periodicity of the graph, it is possible to define an inverse for the Kasteleyn
matrix, by inverting in Fourier space the multiplication operator K (z,w): define the operator
K~! by its coefficients

~_ 1 [Cof K (z,w)]|x x r_pdz dw
K ! , ;N = ——— ’ X m'—m, .n'—n ’ 2
x+(m,n)x'+(m’,n') (27”')2 PK(Z, w) z w 72 411) ( 8)
{(zw)eC?:[z|=1,|w|=1}

for all x,x' € G, and m,m’,n,n’ € Z.

By Corollary E we know that the characteristic polynomial Pg(z,w) has no zero on the
unit torus. This means that Proposition 5 of [7] holds, and we have:

Proposition 18. The inverse Kasteleyn operators K-! and K~} given by FEquations
and , respectively, are equal.

Proof. For k # 0, there is no root of Pk(z,w) on the unit torus, by Corollary As a
consequence, the quantities K;j(m,n)%, are the Fourier coefficients of an analytic periodic
function, and as such, decay exponentially fast when |m| + |n| goes to oo. In particular,
these coefficients are bounded. By the uniqueness statement in Theorem K1 and K~}

are equal.

For k = 0, adaptating the computation of the asymptotics of the integral formula for K—1
from [8, Corrolary 7] proves that these coefficients go to 0. The result then follows from [7,
Proposition 5], stating uniqueness of the inverse of the Kasteleyn operator with coefficients
tending to 0 at infinity on a periodic Fisher graph. O

Note that as what has been done for the Green function of the Z-invariant Laplacian [10]
Section 5.5.1], it is also possible to understand directly the transformation from the double
integral expression to the contour integral , by computing one integral (e.g., with
respect to w) by residues, and then perfom the change of variable from z on the spectral
curve to u € T(k).

3.6 Dimer model on the graph G"

Consequences of the results of Sections|3.3 on the dimer model on G¥ are investigated: in
Section [3.6.1] we prove an explicit local expression for a Gibbs measure, in the case where the
graph G is periodic or not. In Section we prove an explicit local expression for the free
energy of the dimer model. Combining this with the high temperature expansion, we deduce
an explicit local formula for the free energy of the Ising model, as a sum of contribution for
each edge of the fundamental domain, similar to the one given by Baxter, see [0, (7.12.7)]
and [3].
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3.6.1 Gibbs measure

When the graph is infinite, the notion of Boltzmann measure is replaced by that of Gibbs
measure. A Gibbs measure on the set of dimer configurations of G' is a probability measure
satisfying the DLR conditions: if one fixes a perfect matching in an annular region of GF,
then perfect matchings inside and outside of this annulus are independent. Moreover, the
probability of an interior perfect matching is proportional to the product of its edge-weights.
Let F be the o-field generated by cylinders of G, a cylinder being the set of dimer config-
urations containing a fixed, finite subset of edges of GF. Following the argument of [12, 4],
we obtain the following.

Theorem 19. There is a unique probability measure Paimer on (M(GF),F), such that the
probability of occurrence of a subset of edges & = {e1 = x1y1,...,en = XnYn} of GI in a dimer
configuration of G is:

Pgimer (€1, - - €m) = <H Kxﬁy‘j) PfI{(K™1)e], (29)
j=1

where K~1 is the inverse Kasteleyn operator whose coefficients are given by , and (K~1)¢
is the sub-matriz of K~! whose rows and columns are indexed by vertices of &. The measure
Pdimer 78 a Gibbs measure.

Moreover, when the graph GV is Z2%-periodic, the measure Pgimer is obtained as weak limit

¥ and coefficients of K~1 are

of the dimer Boltzmann measures on the toroidal exhaustion G, ,

also given by K1 of Equation .

Proof. Convergence of the Boltzmann measures in the periodic case follows the argument
of [12]. The delicate issue in the convergence comes from the possible zeros of the dimer
characteristic polynomial on the torus {(z,w) : |z] = 1,|w| = 1}. By Corollary we know
that whenever k # 0, it has no zero, and the argument goes trough. When k = 0, it has a
double zero at (1, 1), the argument is more delicate and has been done in [7].

The argument in the non-periodic case follows that of [14]. The key requirements are the
convergence of the Boltzmann measure in the periodic case, uniqueness of the inverse Kaste-
leyn operator decreasing at infinity, and the locality property of the formula given by Theo-
rem [Tl O

Example. Consider an edge e = v;(x)v¢(y) = v;v¢ of GI' corresponding to an edge e = xy
of G with rhombus half-angle 6.. Then, the probability Pgimer(€) that this edge occurs in
a dimer configuration of GF, or equivalently the probability that this edge occurs in a high
temperature polygon configuration of G, is equal to

1 1-2H(20,)

Pdimer(e) = Ky,v, Koy, = 2 2cnf, 30
e
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This is computed in Lemma 45| of Appendix

To compute probabilities of edges occurring in low temperature polygon configurations one
uses the duality relation of Section [4.2]

3.6.2 Free energy

Suppose that the isoradial graph G is Z?-periodic. The free energy F of a model is defined
to be minus the exponential growth rate of its partition function, that is

1
k . F
Fdimer = - 'n,h—>ngo ﬁ log Zdimer(Gn’ V)v

. 1
Fllzing = — lim ﬁ log ZIsing(Gna J)’

n—o0

. 1
FfIZrest = - nh_)nolo ﬁ log Zforest(Gna Py m)7

where v, J, m? and p are given by , , and , respectively.

In Theoremwe prove an explicit local formula for the free energy F leimer of the dimer model
on the graph GY arising from a Z-invariant Ising model on G. From this we deduce an explicit
formula for the free energy Ff;ing of the Z-invariant Ising model, see Corollary Then in

Corollary we compare the latter to the free energy Ff’f)rest of Z-invariant spanning forests
on G.

Theorem 20. The free energy of the dimer model on the Fisher graph GY arising from the
Z-invariant Ising model on G is equal to,

log 2
F(fimer:_(‘Ell—i_’VlD 2
1 0. 0, 1—2H(26, Oe
+ gE: (_210g (SCan 2) + <2()> logscé, + /Gﬂat 2H'(20) logsc@d@) .
ecEy ¢

Proof. By Corollary [16|the dimer characteristic polynomial Pk (z,w) has no zero on the unit
torus. This implies [12] that the free energy Fgimer is equal to

1 dz dw
Fy = —— log P — . 31
dimer 2 //Z|:|w|:1 8 K(Z7 U)) 2imz 21w ( )

Following an idea of Kenyon [25], the next step consists in studying its variation as the
embedding of the graph is modified by tilting the train-tracks. Note that the idea of tilting
the train-tracks can already be found in the section free energy of [3].

Let us consider a smooth deformation of the isoradial graph G, i.e., a continuous family of
isoradial graphs (G(t));c|o,1] obtained by varying the directions (ar(t)) of the train-tracks
smoothly with ¢, in such a way that G(1) = G and G(0) = Ggas, where Ggug is an isoradial
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graph whose edges have half-angles gt equal to 0 or 7. Let GF(t) be the Fisher graph
corresponding to the isoradial graph G(t), and let Fyimer(t) be the corresponding free energy.
We thus have Fgimer = Faimer(1)-

As the angles of the train-tracks vary smoothly with ¢, recalling that Pk (z,w) = det K(z, w),
one has:

F
dd& = —// —logdet K(z, w)— dz _dw
|2|=|w|=1 d¢ 2miz 2miw
_ 1 // Z dlogdet K(z,w) dK(z,w)xy dz dw
2 |z\:|w|:1 8K(z, w)xy dt 2miz 2miw
yevl ’
dK(z,w)xy dz dw
:_, K 1 N ) X,y
; > / / (K0 i
XyevF |2]=[w|=
dKy dlogu
— 1 7y _ e
- Z ny - Z IEDdlmer Qb
e:XyEE}f e= xyEEF

In the penultimate line we used that for an invertible matrix M = (M, ;), one has

0log det M

= (MY,
8A4ij ( )L

In the last line we used: the explicit ¢ expressmn for K~ ! given by Equation (2§] , Corollary |18 .
and Theorem H implying that KXyK = Kyy K_7 = Pdimer(€), and the fact that ve = [Ky|.

The weight of an edge e of a decoration of Glf is equal to 1, i.e., is independent of the rhombus
angle, so that it does not contribute to M““%}fr(t).

If e corresponds to an edge of Gy having rhombus angle 6., we have by Equations and :

1 1-—2H(26,) sn .

Pimer(e) = 5 Tn@e =P0e), ve= Tcnt% 1= v(0e). (32)
Integrating the identity
dFdlmer dlogy (@ ) dé.
Rl a
ecEq

along the deformation, we have

dF 1mer dl 0
Fdimel“(l) = Fdimer / Z d dt Fdlmer Z /gﬂ . Md@ (33)

ecE; ecky
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We first consider the integral part of the above equation, and then the term Figiper(0). Re-
placing P(0) using (32), we have:

—/P(H)dk’g”(g)de: _/ <1 1 —2H(29)> dlog(6)

dé 2 2¢cnf de
——ilogu(ﬁ)—&—/ <1—2H(29)) legy(Q)dH.

2cnf do

Using the explicit expression of v(6) (see again (32))) and the formulas sn’ = cndn, cn’ =
—sndn, cn? +sn? = 1, gives

dv(f)  (cnf+cn?6+sn*f)dnf  dné

do (1+cn6)? ~ 14cnf’

which readily implies that
dlogv(¢) dn6
dd  snf ds0.

As a consequence,

(1 - 2H(20)> dlog v(0) (1 - 2H(29)> G L 2H(26) dlogsch

2eno a0 2cnd 2 a

using that s¢’ = 4 = (logsc)’ =

cn

dlogv(d) ., 1 sné 1—2H(20) / ,
—/IP’(O) 0 d9——210g1+cn0—|—< 5 logscO + | 2H'(20) logsc 6 do.

dn

snen”

Integrating by parts, we obtain

0 1-2H (20
Fio + (25

values of 612t e., for 612¢ € {0, K} since gt ¢ {0,%}.

When § — K. We have sn K = 1, cn K = 0 and H(2K) = 1, see for k2 > 0 and the
duality relation for k? < 0; so that

We now need to compute —% log 5 logsc @ in the limit & — 6%t for possible

1 sn K 1 - 2H(2K)
—=1 1 K =0.
2 % T+emK ( 2 ) o851
Moreover as 0 — K, #@I() = O(0 — K) implying that limgy_, #@mlogcrﬁ = 0.
Wrapping up, we have
1 sné 1—2H(20)
lim ——1 1 0 =0.
Py 2Og1+cn9+< 2 )Ogsc 0

When 6§ — 0. We have sn0 =0, cn0 =1, H(0) = KZ(O) = 0; implying that

™

1 1 <1 — 2H(0)

1
—= 5 >logcnO:2log2.

2 %1+ en0
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We are left with handling, (—5 + 5 — H(260))logsn6 = —H(26) logsn6. As 6 — 0, H(20) =
0(0), thus limy_,o H(20)logsn# = 0. Wrapping up, we have

1
lim —=1
el—% 2 ©8

sn 0 (1 — 2H(20)

1
logscd = - log 2.
1+cnf 2 >°gsc 5 %8

Plugging this into Equation , we obtain

log 2 —fl
Fdimer(]-) :Fdimer(o) - § |{€ € E1 : eeat = O}H‘
1 snf 1—2H(20) O
+§ <_2log1+cn0+< 5 )10gsc€—|—/6ﬂat2H (20)logsc6do | .
e€E; €

Let us now compute Fgimer(0), that is the free energy of the dimer model on the flat graph
Ggat. By Fisher’s correspondence, for every n > 1, the number of dimer configurations
of the toroidal graph Ggﬁat = Ggat /nZ? is equal to 2lViln® times the weighted number of
Tng
expansion. Let us describe G, see also [25, [§]. Since the sum of the rhombus-angles
around vertices of Gga¢ is 27, and since rhombus half-angles are equal to 0 or F, there is
around every vertex exactly two rhombi with rhombus half-angle 7, with corresponding high
temperature expansion weight equal to 1. The other rhombi have rhombus half-angle 0; with
corresponding weight equal to 0. The graph G,, .t thus consists of £ disjoint cycles covering
all vertices, for some k& = O(n). A polygon configuration has even degree at every vertex
so that for each such cycle there is exactly two polygon configurations. As a consequence,

Zdimer(Gn flat) = 2‘V1|"22k, implying that Fyimer(0) = —|V1|log2.

polygon configurations of G, g,; with edge-weights arising from the high temperature

Gﬂat

From the geometric description of the graph , we also know that

—flat —flat
H{e€E1:0," =0} =|E1|—{e€E1:0," =7/2}| = |E1| — [V4|.

As a consequence, the dimer free energy Fyimer = Faimer(1) is equal to

log 2
= (|Ex[ + [V1]) 5
1 sn 6, 1—2H(26,) /9e )
——1 1 0 2H'(20)1 0do
+Z< 2Og1+cn96+< 2 0850 + ofat (20) log sc ’
e€E1 e
and the proof is concluded by recalling that lirégeee =sc %@ dn %e. O

We obtain the free energy of the Z-invariant Ising model, similar to the one given by Baxter,
see [B), (7.12.7)] and [3].
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Corollary 21. The free energy of the Z-invariant Ising model is equal to

log 2

k
Flsing = _‘V1| 2

K
—|V1|/ 2H'(20) logscfdo
0

Oe
+ Z < ¢)logsco, +/O 2H'(26) 10gsc€d0>.

ecEq
Proof. From the high temperature expansion, see Equation , we have for every n > 1,
ZIsing(Grm J) = H COSh(Je) Zdimer(GSa V)‘
ecE,

Let us compute cosh(Je) for the Z-invariant coupling constants. By Equation (4]), we have
cosh(2J¢) = nc ., so that

1+cosh 2Je) 1+cné, 1+cn9
h(Je) =\ ———F—" =\ =\ = 4
o8 2cn b, 2sn 6, (34)

As a consequence,

FIsing = Fdimer — Z log COSh(Je) (35)

log 2 1 sn 6 1
= Fdimer + |E1‘ § + Z (5 log Hﬁee — 510gsc9€>
ecEq €

log 2
—|Vi| 5 + Z (—H(%e)logscee—i—/

flat
ecEq gea

be

2H'(20) logscf d9> .

We can moreover write

flat
Ge

O
> / 2H'(20) logscOdf = ( / 2H'(26) log sc 6 df — / 2H'(20) logs09d0>
e€E; o=t ecEq 0 0

—Z(/ 2H'( 29)logsc¢9d9> \v1|/ 2H(26) log sc 6 d6,

ecEq
since there are |V | edges whose rhombus half-angle is Z in G, This concludes the proof. [

Corollary 22. The free energy of the Z-invariant Ising model and spanning forests are related

by

log 2 ! f’f) est
4 —orest 36
2 ( )

k
FIsing |V1 ‘
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Proof. This is obtained by comparing the expressions for the free energies proved in Corol-
lary 21| and [10, Theorem 2. O

Remark 23. In the case k = 0, Corollary is obtained in [8, Theorem 3|; the free energy
becomes (the key point being that as k — 0, H(u) — 5=, see Lemma

Ff;ing = —]Vl\lo§2 — Z [f: log tan 6, + %(L(Ge) + L(g - 96))} ,
eckEq

where L is the Lobachevsky function: L(f.) = — fog"’ log(2sin(t))dt. Moreover, for k = 0,
Corollay [22|is derived in [§], below Theorem 3.

Remark 24. It is possible to recover Baxter’s “local” formula for the free energy when
k # 0 without deformation argument, but rather by computing more directly the double
integral , by first fixing w and evaluating the integral in z with residues: since Pk is
reciprocal, and has no root on the unit torus, then up to a multiplicative constant, one can
rewrite Pk (z,w) for |z] =1 as

d z: (w)
il z; (w) z

where ij(z), j =1,...,d are the roots of Pk(,w), ]zj(w)\ > 1 and z; (w) = (z;-“(w))*l.
The log of this product can be expanded in series in z, whose term of degree 0 is the sum
of logarithms of the roots z;“(w) this is the contribution we get when dividing by 2imz and
integrating over the unit circle. Ending here the computation for the square lattice yields
the expression of the free energy of the Ising model on Z? given in [5, Equation (7.9.16)].
We can go even further, for general periodic isoradial graphs, if we perform the change of
variable from w to u, as in [10, Section 5.5] to pass from the Fourier expression to the local
expression of the massive Green function on periodic isoradial graphs. The roots (z,w) of
Pyg where |z| > 1 and |w| = 1 form a closed curve on the spectral curve, which is mapped
under log | - | to a horizontal segment joining the two connected components of the boundary
of the amoeba, and lifts on T'(k) as a contour I" winding once vertically. We can then write

d dw w'(u) du
og 27 (w = ¢ logz(u —
[ Ytons g = oz 2

w|=1 =1

where z(u) and w(u) are given by (27). As in [I0, Section 5.3.3] when computing the area
of the hole of the amoeba, the product of logz(u) and w'(u)/w(u) can be rewritten as a
sum over intersections of train-tracks on G, i.e., over edges of the fundamental domain, thus
yielding a local formula.

3.6.3 Computing the constant in Pg(z,w) = ¢Pam(z,w)

With the computations of free energies, we can now compute the constant in Proposition
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Corollary 25. The dimer characteristic polynomial of the graph GY arising from the Z-
invariant Ising model and the Z-invariant spanning forests characteristic polynomial are re-
lated by

cnf
Pk (z,w) = 2MiI+IEl H <e> Pam(z,w). (37)
cE 1+cnéb,

Proof. In Proposition we proved that Pk(z,w) = ¢Pam(z,w). Moreover, the dimer and
spanning forests free energies can be computed using the characteristic polynomials:

1 dz dw
Fimer = — 5 log P s —_— ,
d 2 //{z|:|w|:1} og Pr(= w)227rz 2imw
dz d
Frorest = — // log Pam (z,w) ,Z 'w .
{|2|=|w|=1} 2imz 2imw

This implies that

log C = Fforest - 2F‘dimer
= 2}Plsing - 2Fdimer + |V1| IOg 2a by Corollary

=-2 Z log cosh Je + |Vi|log2, by Equation (35),
ecE;

cn b,
E{|log2 I _— V1| log 2 by (34). O
Eilos2 3 og (s ) + Millog2, by @3
1

This is coherent with [§, Corollary 14], concerning the case k = 0.

4 Duality and phase transition in the Z-invariant Ising model

This section is about the behavior of the Z-invariant Ising model as the elliptic parameter
k varies. Section exhibits a duality relation in the sense of Kramers and Wannier. In
Section 4.3 we derive the phase diagram of the model and compare it to that of the Z-invariant
spanning forests of [10]. In Section |4.4| we extend to all isoradial graphs a self duality relation
proved by Baxter in the case of the triangular lattice. Finally in Section we relate duality
transformations to the modular group.

4.1 Dual elliptic modulus

Let k € [0,1) be a fixed elliptic modulus, and recall the notation ¥ = /1 — k? for the
complementary parameter. By definition, the dual parameter of & is:

1
k* or equivalently k&* = —. (38)

k
— K
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Notice that k? — k*? is an involutive bijection between [0,1) and (—o0,0]. As we shall see,
the dual parameter £* parametrizes the dual temperature.

We need the following duality identities relating elliptic integrals and Jacobi elliptic functions
with parameters k£ and k*:

VEK(K) = VE'K(KY), [I, 17.4.17) (39)
VE sc(ulk) = VE sc(K'ulk*), [I 16.10.2 and 16.10.3]. (40)

4.2 Duality in the Z-invariant Ising model

Kramers and Wannier’s duality [30), B1] says the following. Consider an Ising model on a
planar graph G with coupling constants J and an Ising model on G* with coupling constants
J*. Perform the high temperature expansion of the first Ising model, and low temperature
expansion of the second. Both expansions yield polygon configurations on G. The Ising
models are said to be dual if both induce the same measure on polygon configurations. This
is true if the coupling constants satisfy the following duality relation:

Ve € E, tanh(J.) = e e+ = sinh(2J.)sinh(2J%) = 1, (41)
where e* is the dual edge of e. Duality maps a high temperature Ising model on a low

temperature one and vice versa.

In this setting, the Z-invariant Ising model on G with parameter k and the one on G* with
parameter k* are dual models in the sense of Kramers and Wannier. Indeed, for the first and
second model we respectively have, for every edge e of G and dual edge e* of G*,

sinh(21;) = sinh(2J(0, | ) = se (3, 2K (k) k).

™

sinh(2J%.) = sinh(2J<g ~0[k)) = se(K (k) - 062K7(Tk*) k).
Moreover,
sc (K(k*) — 0, 2K7(Tk*) k*) = % cs (962K7r(k*) kz*), by Table 2]
= cs<9€2[;(k)‘k‘>, by , and ,

from which we deduce the duality relation for Z-invariant Ising models:

k)) =1 (42)

The elliptic parameters k and k£* can be interpreted as parametrizing dual temperatures.

sinh(2J(8,|k)) sinh (2J (g 9.

Note that this duality relation together with the computation of Example [30| can be used to
obtain the probability of an edge occurring in a polygon configuration arising from the low
temperature expansion of the Ising model.
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4.3 Range of the Z-invariant Ising model and phase transition

The following lemma shows that the Z-invariant coupling constants are analytic in k? and
that the whole range of temperatures is covered as the parameter k varies.
Lemma 26. Let G be an isoradial graph and consider an edge e of G. Then the coupling
constant ) ) (6.1)

— + sn (0,

J(Oc|k) = =1 _—

( 6| ) 2 Og< Cn(96|k) >
defined in , seen as a function of k2, is analytic on (—oo, 1) and increases from 0 to oo as

k% goes from —oo to 1.

Proof. Jacobi’s amplitude am(-|k), defined by am(ulk) = [’ dn(v|k)dv, relates Jacobi and
classical trigonometric functions. For the function sc we have

sc(ulk) = tan(am(ulk)).
The fact that J(0.|k) is an increasing function of k% on [0, 1) comes from the relation

sinh(2J(@.|k)) = sc (@ 2K (k) yk) - tan(am(@eﬂir(k)m)) (43)

s

together with the fact that sinh™!, tan, am and K are all increasing functions. Moreover,
as k — 1, am(u|k) — 2arctan(e*) — 7, see [I, 16.15.4], and thus am(GEQK(k) |k) — 5. Using

iy
then leads to

lim J(0.|k) = lim sinh(2J(6c|k)) = oc.

k—1 k—1
From the duality relation and from the case k* € [0,1), we deduce that J(6.|k) is
increasing on k? € (—oo, 0] and goes to 0 as k? — —oo.

The analyticity of J(6c|k) is clear on (—o0,0) and (0,1). For the neighborhood of 0 we use
the series expansion of sc in terms of the Nome ¢ = exp(—nwK'(k)/K(k)), see [1 16.23.9]:

p. 2Ky T an(f o 3 - ”7q2n sin(2n@
SC@ET““) RN =T (96)+WK(1€);( D g sin(@nfe). (44)

O

The following proves a second order phase transition, which together with Lemma [26] allows
to derive the phase diagram of the Z-invariant Ising model (see Figure . Comments on
the result are given in Remark

Corollary 27 (Phase transition). The free energy F{;ng
an isoradial graph G is analytic for k> € R\ {0}. The model has an order 2 phase transition

at k = 0. Namely, one has

of the Z-invariant Ising model on

1 Vil
FII;ing = Flging - |k‘210g |k‘ 17 + O(k2)
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Proof. We start from Corollary 22] relating the free energy of the Z-invariant spanning forests
and Ising model, and from [10, Theorems 36 and 38]. The analyticity for k2 > 0 and the
phase transition when k2 > 0 tends to 0 immediately follow from these results.

In the case k? < 0, the key point is the expression of the free energy of rooted spanning
forests, derived in [10, Theorem 38] whenever k? > 0. It is an integral expression in terms of
the function H. It turns out that a similar expression holds in the case k? < 0. Performing
an asymptotic expansion (along the same lines as in the proof of [10, Theorem 38]) of the

so-obtained expression of F{;ing when k tends to 0 then concludes the proof.

In the case k2 < 0, we could also use the forthcoming Corollary relating F{;ing and

F{gng. This would allow us to express F{;ing in terms of the free energy associated with the
elliptic modulus k*, whore square is positive. This way we could again use and [10]
Theorem 38]. O
Remark 28.

e In the particular case of the square lattice, Corollary is derived in [B, (7.12.7)],
proving criticality at k = 0 of the Z-invariant Ising model on Z2. Our result is thus a
generalization of the latter to all isoradial graphs.

e Criticality for the Z-invariant Ising model has been proved in [35, 11, B36], with a
different parametrization of the temperature and with different techniques: the authors
multiply the Z-invariant weights at £ = 0 by an inverse temperature parameter /3, and
prove that when 8 = 1, the model is critical.

e What is remarkable and not present in the physics literature is that the phase transition
of the Z-invariant Ising model is (up to a multiplicative factor %) the same as the phase
transition of the Z-invariant spanning forest model. As explained in the proof, this
follows from fact that the free energies of the two models are related by a simple
formula proved in Corollary

We deduce the following phase diagram for the Z-invariant Ising model:

e k? = 0: critical Ising model,

e k2 € (0,1): low-temperature Ising model,

e k? € (—00,0): high temperature Ising model.
Note that the phase diagram is nicer when expressed with the complementary elliptic modulus
(k)2 =1—k* € (0,00), see Figure In the rest of the paper we have nevertheless chosen

to use the elliptic parameter k since it is the one classically used in the notation of elliptic
functions.
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critical

sub-critical \L super-critical
A \ = (k)

0 1
Figure 14: Phase diagram of the Z-invariant Ising model on an isoradial graph G as a function
of the complementary elliptic modulus (k")2.

4.4 Self-duality for the Z-invariant Ising model

We now prove a self-duality relation for the Z-invariant massive Laplacian. From this and
Corollary we deduce a self-duality relation for the Z-invariant Ising model, extending a
result of Baxter proved in the case of the triangular lattice, see Remark

Lemma 29. The Laplacian operators associated to k and k* satisfy the following self-duality

relation:
e A — Sl Am(k)

and hence the discrete massive harmonic functions are the same.

Proof. Due to the particular form of the Laplacian operator @, Lemma is equivalent
to proving that vk'sc(f.|k) = \/?sc(%(k’)?e%) and \/?Z?Zl A(0;]k) are self-dual. For
the first quantity, this directly follows from and . For the second one, we write
0; = %L{a] and use n times the addition theorem and finally the periodicity relation

. We obtain

VDY DAB1k) = =) {VE se(ay k) HVE sc(ay k) HVE se(aj — oglk)},

j=1 j=1
which is self-dual, for the same reasons as previously. O

Corollary 30. The free energy of the Z-invariant Ising model on the graph G satisfies the
following self-duality relation.
V1] V1

Ff;ing + N log k' = Fllgng + TN log k*'.

Remark 31.

e In the case of the triangular lattice this is proved in [B, (6.5.1)], our result thus extends
the latter to all isoradial graphs.

e There is no simple self-duality relation between the coupling constants J(f.|k) and
J(0.|k*) so that this result is not straightforward. Baxter’s argument in the triangular
case reads as follows: he transforms the Z-invariant Ising model with parameter k& on
the triangular lattice into the one on the honeycomb lattice with the same parameter
k by using Y- A moves, from this he deduces that the partition functions differ by
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an explicit constant; then he uses Kramers and Wannier duality to map the partition
function of the Z-invariant Ising model with parameter k& on the honeycomb lattice into
the one of the triangular lattice (dual graph) with parameter k*. Making the constants
explicit allows to relate the free energies with parameters £ and £* on the triangular
lattice. It is not obvious that this argument should extend to general isoradial graphs:
first, it is not clear that one can go from the primal of a graph to the dual using Y- A
moves, second when working out the constants in Baxter’s computation, there seems
to be some cancellations that are specific to the triangular and honeycomb lattices.

e This self-duality relation and the assumption of uniqueness of the critical point is used
in [5, (6.5.5)—(6.5.7)] to compute the critical temperature of the Ising model on the
triangular and honeycomb lattice. Corollary [30] allows to extend this physics argument
to all isoradial graphs.

4.5 Dualities of the Ising model and the modular group

Various changes of the elliptic modulus k are considered throughout this article. Besides the
intrinsic complementary transformation k +— k', we have seen the importance of the dual
transformation k — k*, as many quantities are self-dual:

o VE'K(k), see (39);
\/ESC(QK(k)U‘k), see (40);

™

the exponential function @D;

the modified Laplacian operator, see Lemma

the modified free energy, see Corollary

the rescaled function H, as H (K (k)ulk) = H (K (k*)u|k*), see (66).

Moreover, in the proof of Theorem we make use of the ascending Landen transformation
k % VI-k? (note, this does not appear explicitly in the proof, as we refer to the
companion paper [10] for the details).

Our aim in this paragraph is twofold: first we shall reformulate the self-duality as a parity
property of expansions in terms of the Nome ¢, then we shall relate the various transfor-
mations of k to the modular group. Links between the Ising model and the modular group
already exist in the physics literature, see in particular [32, Chapter 8] as well as [37, [6].

4.5.1 Self-duality and expansions in terms of the Nome

Let us first mention that a function of the elliptic modulus k? is analytic at 0 if and only if
it is analytic at 0 as a function of the Nome ¢ = e~™5'/K_ Indeed, ¢ is analytic in terms of
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k2 and

k2 k2 2 k?2 3 k2 4
= — — 4 — 2 — 1, 17.3.21]).
q 16+8<16> +38 <16> +99 <16> +..., ([ 17.3.21])

Accordingly, any generic quantity of our article admits an analytic expansion in terms of the
Nome at 0. The following simple criterion translates the self-duality property as a matter of
parity:

Lemma 32. Let f(k) be a function analytic in k* around 0. Then f is self-dual (i.e.,
f(k) = f(k*)) if and only if its expansion in terms of the Nome is even.

Proof. When k is replaced by k*, the quarter-periods become K (k*) = k'K (k), see (39)), and

K'(k) + iK (k)

K'(k*) = K(K'(k) + iK(k)) = i (L, 17.4.17)). (45)
1—k*
It becomes obvious that ¢(k*) = —q(k), Lemma [32] follows. O

With Lemma [32] the question of finding expansions in terms of the Nome comes up. In fact,
such expansions typically appear rather indirectly, when writing Fourier expansions of Jacobi
functions or elliptic integrals; cf. for the Fourier expansion of the sc function, as well as
[1, 16.23 and 16.38] and [34], Section 8.7] for a more systematic treatment.

On the other hand, the Ising weights (2), which are at the heart of our whole construction,
are not self-dual. This default of duality is responsible for the non-analyticity (and in some

sense of the phase transition, see Corollary of the free energy F{Zing at 0.

4.5.2 Dualities and modular group

The modular group (see [34, Chapter 9] for an introduction) is the group generated by the
transformations S(7) = —1/7 and T'(7) = 7 + 1, acting on the upper half-plane. This group

is the set of all transformations
c+dr

Hi
T a+ br’

(46)

with a,b, c,d € Z such that ad — bc = 1.

Two pairs of complex vectors (1,7) and (1,7") generate exactly the same lattice Z + 7Z =
Z+7'7 if and only if 7’ is obtained from 7 by a modular transformation (46)), with ad—bc = 1.
The quantity 7 should be interpreted as ratios of quarter-periods; for instance 7 = % (and
then the Nome is ¢ = ™).

It is interesting to notice that both generators of the modular group correspond to a duality:
S is the complementary duality and T the self-duality, see Table

The set of all transformations with ad — bc > 1 forms also a group, called the extended
modular group. The quantity ad — bc is then named the order of the transformation . In
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Elliptic Name of the change of | Transformations of the
modulus modulus modular group

k No change T

K Complementary S(t)=—1/7

k* (Self-)duality T(r)=7+1
72*’“2*’32\/@ Landen transformation 27

Table 1: Correspondance between changes of the elliptic modulus and transformations of the
modular group.

our elliptic treatment of the Ising model we have also encountered higher order transforma-
tions: namely, the Landen ascending transformation (used in the proof of Theorem has
order 2, see again Table

This short discussion suggests that combinatorial links could exist between any two Ising
models associated with elliptic modulus whose 7’s are related by a transformation (46)).

5 The double Z-invariant Ising model via dimers on the graph G®

In the whole of this section we consider the dimer model on the bipartite graph G® arising
from two independent Z-invariant Ising models defined on an infinite isoradial graph G. Edges
of GQ are assigned the weight function 7 of ).

In Section we introduce a one parameter family of functions in the kernel of the Kasteleyn
operator X of this dimer model. This is the key object used in Section to prove a local
expression for an inverse of the operator K. In Section [5.4] we derive asymptotics of this
operator, and in Section we derive consequences for the dimer model Gibbs measure. We
aslo give a few examples of computations.

5.1 Kasteleyn matrix/operator

Let us recall the construction of the bipartite graph GR. Every edge of the graph G is replaced
by a “rectangle” and the latter are glued together in a circular way using external edges. Each
“rectangle” has two edges “parallel” to an edge of G and two edges “parallel” to the dual
edge, see Figure [2| For instance, if G is the square lattice, G is the square-octagon lattice.

When the graph G is isoradial, so is the graph GQ with radii of circles being one half of
those of G. The isoradial embedding of G® is such that external edges have length 0 and
“rectangles” are real rectangles; vertices of the rectangles are in the middle of the edges of
the diamond graph G°, and each rectangle is included in a rhombus of G°, see Figure[15]or
For the sequel it is useful to note that every vertex of G2 belongs to a unique rhombus of G°.
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The graph G? being bipartite, its vertices can be split into white and black V& = WQ U BQ.
In this case, the Kasteleyn matrix X has rows indexed by white vertices and columns by black
ones. Following Kuperberg [33], instead of considering an admissible orientation of G as we
have done for G¥, one can assign phases (ei¢u’b)wb€EQ to edges of GY, in such a way that, for
every face of G2 whose boundary vertices are wq, b1, . .., wy, by, in cclw order, we have

n
(_l)n—l H ei¢wjbj eii(’bijrlbj —1. (47)
7=1

In our case, we define the phasing of the edges to be:

1 if the edge wb is parallel to an edge e of G,
el — )1 if the edge wb is parallel to the dual of an edge e of G,
_;s if wbis an external edge and w belongs to a rhombus of G® having
half-angle 6.
The fact that Equation holds is proved in [15, Lemma 4.1], see also [25].

Coefficients of the Kasteleyn matrix K are then given by, for every white vertex w and every
black vertex b of G,

—1e

fKw,b = ewwbywba

where 7 is the dimer weight function , see also Figure

Figure 15: Coefficients of the Kasteleyn matrix K around a rectangle face of GX.

Note that K can also be seen as an operator mapping CB? to CW:

VIeCE YueW?, (Kflw= Y Kupfo
beBQ

More precisely, since every white vertex w has degree 3, denoting by b1, b2, b3 its neighbors
as in Figure [15] this relation can be rewritten as,

VfeCB? YweW? (Kf)y=snbfy, +icnbfy, —ic f,. (48)

5.2 Functions in the kernel of the Kasteleyn operator X

We now define the function f in the kernel of the Kasteleyn operator X. Note that it
generalizes to the elliptic case the function f introduced by Kenyon in [25] when the bipartite
graph is GQ.
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Rhombus vectors. In order to define the function f, we need to assign rhombus vectors
to edges of the graph G®. Since the graph G® is isoradial, it also has a diamond graph (G®)°;
note that thombi of (GR)® are obtained by cutting those of G® in four identical thombi, see
Figure [T

Consider an edge bw of GX. Then we let 3@ and 626 be the two rhombus vectors of (G®)°
of the edge bw, where l @ is on the rlght of the orlented edge (b,w). Some examples are
given in Figure [T6]

Remark 33. The angles @ and (3 above are defined so that 3 — @ € (0,2K).

Definition 5.1. For every edge bw of G and every u € C, define

de(¥5%) de(*5~ B if bw is parallel to an edge e of G,
Fibuy (1) = —ik'ne(%5%) ne(“55) if bw is parallel to the dual of an edge e of G,
3 if bw is an external edge and w belongs to a rhombus
of G® having half-angle 6,
(49)

fewpy (W) = (fpw) (u))~t.

The function f : B x WQ x C — C is then extended to all pairs (b, w) inductively as follows.

Let b = by, w1, by, wo,...,b,, w, = w be a path from b to w, then:
n n—1
\V/'U/ € (C’ f(b,’u) H bj,w] H f('LUj,bj+1)(u)‘

Remark 34. As the function g of Definition[3.2] the function f is meromorphic and biperiodic:

fto) (0 +4K) = fo ) (u+ 4K") = frp 0 (u).

This comes from and from the addition formulas of cn and cd by 2K, see Table [2| We
therefore also restrict the domain of definition to T(k) = C/(4KZ + 4iK'Z).

Before proving that this function is well defined, i.e., independent of the choice of path from
b to w, we give some examples of computation that are useful for the sequel.

Ezample 5.1. We compute f( ) (u) for b € {b1,b2,b3}, where by, bg, b3 are the three black
vertices incident to a white vertex w of G2, see Figure Let €@ and e be the rhombus
vectors of the rhombus of G containing the rectangle as in Figure then the two rhombus
vectors of (GR)° of the edge:

e byw are £e™@ and %ezﬁ, implying that f, ) (v) = de(*5%) dc(#),

e byw are 26( ~™) and £¢'@, implying that f(bow) (1) = —ik’nc(“_ﬁ%ﬂ()nc(“za),

e bsw are elﬁ and 3 ¢'(B+™) implying that fog ) (0) = zeledc( By de(v= 5 B2KY
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Figure 16: Computation of f, ) (u) for b € {b1,b2,b3}, and of f(y ) (u) for b € {b1,b2}. To
simplify the picture, the factor % is omitted in the notation of the rhombus vectors in the
bottom part of the picture.

We also compute f, ) (u) for b € {b1,ba}, where w’ is the white vertex facing w along the
diagonal of the rectangle, see Figure Then, the two rhombus vectors of (GR)° of the edge:

M)
)

o byw' are 1e® and 1e @t implying that Fior ) (w) = —ik'ne(“52) ne(v=2

o byw' are 1e'@F7) and %ei(ﬁ“r), implying that f, ., (u) = de(4=2%25) de(“=2-2,

Lemma 35. The function f is well defined, that is independent of the choice of path from b
to w.

Proof. 1t suffices to check that when traveling around each face of the graph, the product
of the contributions of the edges is 1. There are three types of faces to consider: rectangles
which correspond to edges of the graph G (or G*), faces corresponding to those of the graph
G, and faces corresponding to those of the dual graph G*.

Let us first check that this is true for rectangles, using the notation and computations of
Example Recalling that f(, ) (u) = f(byw)(u)*l, we have for a rectangle by, w, by, w’,

Fio1,0) (W) Fawpo) (W) Fbg ) (W) frar ) (1) =

u—LB+2K u—o u—p u—a—2K
u—o u— Cn( ) CIl( ) U—— u—LB— Cn(i) Cn(i)
= de(%5%) de( Qﬂ) Q—ik’ 2 7 def : 2K e ,32 2K) 2 — 2
dn(*=2)(q u—f d u—a—2K d u—pB—2K
- _ Cn(u_ﬁ;QK) nc(u—62—2K) Il( 2 ) n( 2 ) n( 2 ) n( 3 )

(K')?

dn(%=2) 4 u—p3 d u—a—2K d u—B-2K
_ n(*3%) dn(55") ?;,)22 ) dn(T ), since cn(u + K) = —cn(u — K),

=1, because dn(u — K)dnu = k' by Table

We deduce that the function f is well defined around rectangles. We now turn to faces which
are not rectangles, and do some preliminary computations. Thanks to Example [5.1] again,
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we have (see Table [2| for the various simplifications involving Jacobi elliptic functions in

and (51))

Fvs.0) () Fu ) (1) = €™ de(*52) de(“=F2K) ed(45) ed(*52)

= et cd(452) do(LE2K )= _ jeif gn(Um(0F2K) ) pg(us By, (50)

[\

We also have
cd(*57) ed(*=7725)
7 ez’&

= ¢ 0 5d (UL g (umas 2K, (51)

Fitonw) (W) Fra gy (1) = —ik e (Y225 ) ne(u52)

. cn(%) nc(*5%)

eif

We have expressed the product f(y, ) fwb) (€SP f(by,w) f(w,ps)) using the thombus vectors
rooted at the vertex of the dual graph G* (resp. at the vertex of the primal graph G), because
this is what is needed to handle the product of local factors around faces of G corresponding
to those of the graph G or G*.

Indeed, consider a face of G corresponding to a face of degree n of the dual graph G*. Denote
by b1,w1,ba, ..., wy, by, wy, its vertices in cclw order. For every pair of black vertices b, bj41
denote by %ei%’, %eio‘f‘rl the rhombus vectors rooted at the dual vertex corresponding to the
face, and by 6; the rhombus half-angle, see Figure [17| (left).

b w
wg 1

¢ Wn
bn Wj+1

Figure 17: Faces around dual (left) and primal (right) vertices.

Then, by we have f(, ) (W) f(w; b, (@) = (—i)e' sn(*=5*2) ns(“5). Moreover,

(—i)el?i = e~ im/2705) = =5 (@j1-a)

see Figure (17| (left), implying that

Fioj ) (W) Frw; ,40) (W) = e~ 2 (@1 =5) g (V%) g (U,

As a consequence, for every k < ¢ (with cyclic notation for indices), we have
-1 ,
LT 6509 () Frawy ) () = €7 2@ 7% sm (U520 ms (2. (52)
j=Fk
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It is important to notice that the right-hand side of is independent of the determination
of the angles @, and @;.

In particular, the product around the face is (with a1 = a1 + 4K)

e Msn(*=5H ) (Y51 ) = —sn(Y5 — 2K)ns(Y5) = 1.

Consider now a face of degree n of the graph G corresponding to a face of the graph G.
Using similar notation, the picture differs in that the vertex at the center of the face belongs
to G, that black and white vertices are exchanged and that the angle 20, is at the center of
the face, see Figure 17| (right). By , we have

f(bj,wj)(u)f(w]',bj+1)(u) _ eil@f Sd(u—a2j+1)ds(u—2aj) —e %(53-4-1 @) Sd(u_§j+1)d8(u_2aj),

since we have 6; = %(aj+1 — @;), see Figure |17 (right). As a consequence, for every k < ¢
(with cyclic notation for indices), we have

wawwn ) fug by 1) () = €723 sd (U520 ) ds(H5). (53)

In particular, the product around the face is (with a1 = a1 + 4K)

e Msd(*5H ) ds(M5M) = —sd(Y5 — 2K) ds(Y5) = 1. O

Note that Equations and are used again in the proof of Lemma which proves
an alternative expression for the function f.

Next is the key proposition used in proving the local expression for an inverse of the Kasteleyn
operator X.

Proposition 36. Fizing a white base vertex wo of WX, for every u € T(k), the function
fwo) (W), seen as a function on BQ, is in the kernel of the Kasteleyn operator K of the
bipartite graph GY.

Proof. As we shall see, Proposition [36] follows from the identity
sn(u+v)cnu —cn(u+v)dnvsnu —dnusno = 0, (54)

which can be found in (iii) of Exercise 32 in [34, Chapter 2].

By Equation , we need to prove that, for every white vertex w with neighbors b1, bs, b3
as in Figure [15], and every white base vertex wg, we have:

SN0 fiy, wo) (1) +3en 8 fiyy o) (u) — z'e_igf(b?”wo)(u) =0.

Since the function f is defined inductively on the edges of G, it suffices to prove:
sn 6 fy, w)(u) +icend fiy, ) (uw) — ie_ief(b&w) (u) = 0. (55)
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Using the computations of Example this reduces to showing:

56 de(*5%) de(*37) + i en 0(—ik’) ne(“=52E ) ne(5)
— ie_iaieigdc(%) dc(“_ﬂ#) =0. (56)

Using some identities from Table [2] this is equivalent to proving

sn9ns("_o‘2_2K) ns(“_ﬁ;ﬂ() + cn@nc(“_@_zK) ds(“_o‘2_2K) - ns(u_ﬁQ_QK) dc(“_ﬁz_QK) =0.

Multiplying by sn(“=%-2K) sn(“_BQ_ZK) cn(“_@_ﬂ() and using that c¢n and dn are even func-
tions and that sn is an odd function, this amounts to proving:

sn90n(—7u_62_2K) — cn@dn(“_o‘2_2K)sn(—u_62_2K) — dn(—u_ﬁz_QK)sn(“_o‘Q_QK) = 0.
As announced, this is exactly with u = —“_52_21{, v = “76“272[( and u +v =20. O

5.3 Local expression for the inverse of the Kasteleyn operator K

We now state Theorem proving an explicit, local formula for an inverse X~! of the
Kasteleyn matrix X, constructed from the function f defined in .

Theorem 37. Define the infinite matriz X=! whose coefficients are given for any (b,w) €
BQ x WQ by:
1
-1
Ko = i . Fowy(u)du, (57)
where Ty, is a vertical contour directed upwards on T(k), crossing the real axis outside of
the sector of size 2K containing all the poles of f(,w)-

Then K1 is an inverse operator of K. For k # 0, it is the only inverse with bounded
coefficients.

The quantity (Kgi} in (b7) can alternatively be expressed as

L1

b,w

- H
dim . f(b,w) (u) (u)dua (58)

where H is related to Jacobi’s zeta function and is defined in Lemma Cow 15 a trivial
contour on the torus, not crossing L'y, and containing in its interior all the poles of [
and the pole of H.

Proof. To show that the two expressions and indeed coincide, we use the same
argument as in the proof of Theorem

The structure of the proof of Theorem [37] is analogous to that of [10, Theorem 1]. Instead
of using the form as in the proof of Theorem we use the alternative expression

o4



of be_llu Indeed, from the computations done below to prove that (.’KfK‘l)w,w =1, one can
extract as a by-product the explicit probability of a given edge to be present in the random
dimer configuration in the corresponding dimer model.

Let w be a white vertex of GR and by, by, b be its three black neighbors, as in Figure Let
w’ be another white vertex, different from w. The contours Cp, y, Cpy .y and Cp, v entering
into the definition of X, lw,, 1Kb_2 o and fK;;w, can be deformed into a common contour ©
without crossing any pole. Therefore, the entry (.‘KiK_l)w,w/ can be written as:

3
( w!' = Z in b; jcb w’ 4Z7T j{H (z; i]Cw,bl.f(bhw,)(u)) du = O,

by Proposition [36]

We now need to compute the entry (JCIK_I)WU,. This is done explicitly, via the residue
theorem. In addition to the simple pole at u = 2iK’ coming from the function H (with
residue 2K’ /m, see Lemma , there are other (simple) poles located at the zeros of the
functions in the denominator of f, i.e., when the argument of the functions cd and cn is
equal to K.

b1,w? :Kb_z w
in Example First, :Kbl,w is obtained from (the minus signs in the numerators in the
right-hand side below come from the expansion of c¢d around K, see [I, Table 16.7])

We shall successively compute K; ! and be_Slw, using the different values of f listed

) 1
Zlﬂ{ReSu:2K+a + Resu:ZKJrB + Resu:QiK’} (.H(u)f(b1,w) (U)) =

dim
~H(2K +a) -HQ2K+p) K’ 1
cd(K — 0) cd(K + ) + 7 cd(iK' — a/2) cd(iK — B/2)

Similarly, for the computation of 5<b_21w we have:

1

2im{Resy—2K +a + Resy—g + Res,—2ix7 } <42,7TH(u)f(b2,w) (u)> =

H(2K + a)(—ik) N H(B)(—ik') K’ (—ik")

—k'en(2K — 0) —k'cn @ m en(iK’' — a/2)en(K + iK' — 3/2)

Finally, we obtain for Kg;w:
1
2im{Resy,— ok +8 + Resy—arx 45+ Res,— %K'} <4z H(u )f(b& (u )> =
—ie H2K + B) N —ie H(4K + B) iet
cd0 cd(2K) T cd iK'= (/2)cd(—K + iK' — 3/2)

Multiplying these equations by the corresponding entries of the Kasteleyn matrix (namely,

snf, icn@ and —ie™®, see (@8])) and summing them, one can group together terms having
similar values of H.
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Terms with a H(2K + «) give:

H2K + ) (_Cd‘?}l{@_ T Cn(;;e_ 9)> — H2K + ) ( sn 6 +Cn0> ~0.

Similarly, those with a H (2K + ) give:

sn 0 —ie™0(—jeif)

H(2K + B) (_Cd(K+9) + 0 ) — H(2K + B) <:Zig —1) ~0.

We group the terms in H(f) and H(4K + /), and use the fact that H(4K + 3) = H(B) + 1,
stated in Lemma [42

—ik'icn 6 —ie™0(—jeif)

H(p) (—k’cn@) + H(4K + B) (cd(ZK)) =Hp)(-1+1)+1=1

We are left with computing the sum of residues at 2:K’. It turns out that this boils down
to for w = 2iK’. Thus this sum equals 0. Therefore

3
—1
wavbijcbivw =1,
=1

thereby completing the proof of Theorem O

5.4 Asymptotics of the inverse Kasteleyn operator

We first need to introduce some notation. For any b and w, there exists a path on the quad-
graph G° joining b and w, see Figure[I8 The first and the last edges of the path are half-edges
of G°, the other ones are plain edges. We call b = b; and b, the black vertex adjacent to w.
We further define bo, ..., b,_1 as the successive black vertices in the middle of the edges of
G® joining b to w, see again Figure The n edges are equal to
Feidn o2 . ltn-1 Leitn,

The @; are not well defined (in the sense that any multiple of 27 could be added to @;), but
the e® are. The edges are orientated in such a way that

1. o=
by + 5ezozl + Z e 4 5610471 =b,. (59)
Jj=2
We also define the points a; (j = 1,...,n—1) as the vertices of the quad-graph lying between
b;j and b;;1. The notation of this paragraph is illustrated on Figure

Finally, let h as in (64)) and define

x(u) log{e(a, ,a,_,)(u + 2iK")}. (60)

ar — ap—1|
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Figure 18: Notation for a path on the quad-graph G® joining b and w, see .

Theorem 38. Let G be a quasicrystalline isoradial graph. When the distance |b — w| — oo,
we have

i0 — L (an—a1) K
1 _ ee 2 h(u[) :l: 21’K )elalfanfl‘X(uO) . (1 + 0(1)),

b
W 2¢/27]a1 — an—1|x" (uo)

where 0 is the rhombus-angle of the rhombus to which w belongs, ug is the unique u € (—K, K)
such that x'(u) =0, and x(u) < 0.

Theorem should be compared to its genus 0 counterpart: Theorem 4.3 of [25] states a
polynomial decreasing of the inverse Kasteleyn operator. The proof is the exact same as the
one of Theorem

Remark 39. Contrary to Theorem |13, where we have shown that the constant in front of the
exponential function is always positive (see Remark , we have less control on the constant
in Theorem First, it can have a phase, due to the terms e and e~2(@ =) The main

point is that the quantity h(ug £ 2iK”), which is real, can be positive, negative and even 0.
This follows from .

The starting point of the proof of Theorem [3§ was both the integral contour expression
of JC;}U and the simplified expression of f, that we now establish.

We use the previous notation, and first prove that the function f(, ) looks very much like

the exponential function ey, 4, ,)-
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Lemma 40. The following formula holds:

f(bhbn)(u) = ie_%(an_al)g(u) e(a1,an_1)(u)> (61)
where
sn(“=m )de(“5) if a1 and an—1 are dual,
) osd(¥2m)de(2y) - (—VE) if ar is dual and an—1 primal,
g(u) = sd(*= )nc(“5) - (K) if a1 and an—1 are primal,
sn(Y=22)ne(452) - (—VE')  if a1 is primal and a,—1 dual.

It is important to note that taken independently, the factors e~3@—a1) anq g(u) are not
well defined: if a, (or aq) is replaced by ay + 4K, these terms should be replaced by their
opposite. However, the product e~ z(@n—a) g(u) is well defined, which suffices for our purpose.

Proof. With the previous notation we write fs,)(u) = H;:ll fio;6;41)(w). There are two
cases for the computatlon of f(b;b;41), according to whether a; is a primal or a dual vertex:

the identities and ( . yleld

U—Q; u—a; F2K . . .
_ i@ (aEzR)) ) sd(—=3H)ds(—%5—) if a; is primal, 62
= e — U—0oL; . .
f(b b]+1)( ) { Sn(u 2]+1 )ns( 32:':2K) lf aj 1S dual. ( )

The term £2K in comes from the fact that the orientation of the edges in — and
are reversed the one of the other. The quantity does not depend on the value of
this sign (this is a consequence of the addition formulas by +£K for the sn and sd functions,
see Table [2] 2 in the appendix).

Due to the fact that the value of f( ;. ,) depends on the type (primal or dual) of the vertex
aj, there are four cases for the computation of f4,), according to the types of a; and a,—.
We write down the computations in the particular case where both a; and a,_1 are dual, the
other cases would follow in a very similar manner. We have (with all signs + = +):

by () = ¢~ HE@FIN s =3 @ @) B CEN
s sn(——4—) sn(—nol=0
e b WO (SR () sl
Sn(u 2041 —K) sd(u ag K)sn(%*K) Sn(“afnl K)
_ b (@ —m) ) | () sd(g) o sd(Ce)
—cd(*5L) k'~ len(*572) —cd(253) _Cd("o‘inl)
= e3 (1D =5 (@n-m) 77;(;% (—1)*F [I12y ivVk se(“54)

=ie 2 wv&%n(%)dd ) Caran 1) -

The third equality above uses addition formulas of Table 2] In the last line, we have applied
the definition @ of the exponential function. We also implicitly used the fact that n is even
(because both a; and a,—; are dual vertices). The first case of Equation , and thus of
Lemma [0} is proved. O
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We now give a formula for f,,,) for general vertices b and w.

Lemma 41. The following formula holds:

f(b,w)( ) 6296_§(an_a1)h(u) e(ahan_l)(u), (63)

where 0 is the rhombus-angle of the rhombus to which w belongs, and

de(& 2@1 ) dc(u—;m) if a1 and an_1 are dual,

hu) = de(“Z2)ne(v=22) - (VE)  if ay is dual and a,—1 primal, (64)
ne( 452 ne(45n ) . (—k) if a1 and an,_1 are primal,
HC(UEC“ ) dc(u—;n) . (—\/l?) if a1 is primal and an—1 dual.

Proof. We have f ) = f(b1,6,)f (bnw)- The definition of the function f provides

f(bn,w) (u)

it . de(*=) dc(“_a’é_ﬂ() if a,_1 is primal,
dC(“}a”)dC(“*a’é“K) if a,_1 is dual.

(The choice of the sign + above comes from Remark ) Using that cd(%) =
Fsn(“=) together with Lemma {40| achieves the proof of Lemma ]

5.5 Application to the dimer model on the graph G®

In the same way as in Section [3.6 m 6} the inverse Kasteleyn operator X! can be used to obtain
an explicit local expression for a Gibbs measure Pdlmer on dimer configurations of the infinite
graph G arising from two independent Z-invariant Ising models. It can also be used to
obtain an explicit local formula for the free energy of the model. By Dubédat [16] we know
that this free energy is equal, up to an additive constant, to that of the dimer model on GF
(since the characteristic polynomials differ by a multiplicative constant), so that we feel it
presents no real interest to derive the formula, although it can be done using the approach
of Theorem 20|

For the Gibbs measure, everything works out in exactly the same way so that we do not
write out the details. We obtain that the probability of occurrence of a subset of edges
& = {wyby, ..., wiby} in a dimer configuration of G® is:

Pcci)lmer(wlbh . wkbk H:Kwa det fK )5],

where K~! is the inverse Kasteleyn operator whose coefficients are given by or
and (KX~1)¢ is the sub-matrix of X~ whose rows are indexed by by, ..., b; and columns by
Wiy .y, Wk
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A Useful identities involving elliptic functions

In this section we list required identities satisfied by elliptic functions.

A.1 Identities for Jacobi’s elliptic functions

Change of argument.

Jacobi’s elliptic functions satisfy various addition formulas by
quarter-periods and half-periods, among which (cf. [I, Table 16.8]):

—u |uxK |u+2K |u+iK | u+ 2K | u+ K +iK'
sn | —sn | *cd —sn % ns sn % dc
cn | sn | Tk'sd| —ecn —% ds —cn —% nc
dn | dn k' nd dn —ics —dn 1k’ sc
cd | cd Fsn —cd % de cd —% ns
sc | —sc | — % cs sc ind —sc 77 dn

Table 2: Addition formulas by quarter-periods and half-periods, taken from [I], 16.8].

A.2 Jacobi’s epsilon, zeta and related functions

The explicit expressions of the inverse operators of Theorems and involve the func-
tion H. This function, as well as the Laplacian operator @ uses a function A. Properties of
these functions are presented below.

Lemma 42. For k> > 0, let

H(ulk) = [:{E(u‘k) LB Klg},

2 K 2
. (65)
1K U Fu
Vil = T-{E(5F) - 73}
and for k? <0, let
H(ulk) = H(K'ulk*),
{ V(ulk) = V(K'u|k*). (66)

The functions H and V' admit jumps in the horizontal and vertical directions, respectively:

{ H(u+4K|k) — H(ulk) = 1, { V(u+4K|k) — V(ulk) =0,

Viut RE) — Vlk) =1. 0D

H(u+ 4iRK'|k) — H(ulk) =0,

In the fundamental rectangle [0, 4K] + [0,4iRK’], the function H (resp. V') has a simple pole,
at 2iRK’, with residue %K/ (resp. %) Moreover,

lim H (ulk) = QE
™

lim V' (ulk) = 0.
k—0 k—0
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The following addition formulas hold:

H(v—ulk) = H(olk)—H (ulk) + su(i5]k) sn (5 k) sn (5 ¥) if k2 >0,
T L eRsa(Gle)sa(gl) sa( k) aw <o,

(68)

Vo~ ulk) = V(elk) — Vi) + EE Sn@‘k) su(5]) s (S5 |¥) if k>0,
T L) () o,

Proof. We first prove the lemma in the case k2 > 0. All properties concerning H are proved
in [I0, Lemmas 44 and 45]. The statements for V follow similarly. A slightly different proof
consists in using

mow =S a(U) e e vam="2(0), @

™

see [I}, 17.4.28 and 17.3.13] and [I], 17.4.28], respectively, as well as the numerous properties
of Jacobi’s Zeta function.

In the case k? < 0, we use the definition of H and V, allowing to transfer all properties
from the case k> > 0. Let us emphasize two difficulties: first we have to consider RK’ in
, as in the case k? < 0 the quarter-period K’ is non-real, see . Second, the product
of the three sn functions become a product of sd functions in the case k? < 0, due to the
transformations of Jacobi functions under the dual transformation, see [I, 16.10]. O

Lemma 43 (Lemma 44 in [I0]). The function A(:|k) is odd and satisfies the following iden-
tities:

o A(v—ulk) = A(v|k) — Aulk) — k" sc(u|k) sc(v]k) sc(v — ulk), (71)
o Alu+ 2K|k) = A(ulk). (72)
B Some explicit integral computations

We gather here computations of some contour integrals appearing in the expression of the
Kasteleyn operator, in the Fisher case of Section

B.1 An important contour integral

The following result has been used when proving Theorem
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Lemma 44. One has
1

f(u+ 2K)f(u)du = —

2im Jr
where T is a vertical contour on T(k) winding once vertically on the torus and crossing the
horizontal axis in the interval o, +2K] = {z: a <z < a + 2K} and f(u) = nc(*59).

On the rectangle, the contour I' is supposed to cross the horizontal axis inside of the interval
[a, 0 + 2K]. If the vertical contour crosses the horizontal axis in the other interval [a +
2K, a(+4K)], the integral is equal to —i—%, as it corresponds to changing « into o + 2K and

DC(M) = —nc(“5%). Note further that Lemma [44fis independent of the choice of the

angle  mod 4K, and the integrand f(u + 2K)f(u) is.

Proof. First, it follows from the change of variable © — u + 2K and the above-mentioned
property of nc that

1 1
— | f 2K)f(u)du = —— f 2K)f(u)du = — [ f 2K)f(u)d

where T is the contour I' — 2K crossed in the opposite direction of I'. Further, using the
41 K'-periodicity of the integrand, we deduce that

1 11
— | f 2K)f(u)du=-—— [ f 2K)f(u)d 73

where € is the closed contour (T —2iK’) | JIT'—2iK")|J S1 | S, S1 and S, being the horizontal
segments joining (I' — 2iK’) and (I" — 2iK"), see Figure

4iK'

S

0 | o o+ 2K AK

So

Figure 19: The contour € in (73]) used in the proof of Lemma
The main point is that the contour integral in the right-hand side of can be computed
with the residue theorem: the only pole (of order 1) is at o and has residue 772, see Table
Lemma, [44] follows. O
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B.2 Inverse Kasteleyn operator at an edge

Here we compute the probability that a given edge e = xy of the isoradial graph G with
rhombus half-angle 0. appears in the high temperature contour expansion of the Ising model.
In terms of dimers, it corresponds to the probability that the corresponding edge e =
v;(x)ve(y) = vjv¢ belongs to a dimer configuration of G¥. By Theorem this probabil-
ity is given by Paimer(e) = Ky, v, K\,*;Vj.
Lemma 45. One has

K k-1 :1_1—2H(206)'

YT g 2cn b,

Proof. Instead of Ky, v, KV_Z}V], we compute Ky, y; K\TJ}VZ. Both quantities are obviously equal,

but the second one happens to be more convenient when applying the results of Section
We start from the expression of K~! given in of Theorem |11] (note that by , Cyjv, =
0):

1 ik ik’

KVj Ve 8(v;,ve) (U)H(u)du =

o fu; (u+ 2K)fy, (u) e(x,y) (v) H (u)du.

Gy, v 87 Jeu,

Using the harmonicity property of g(L.)(u) enables us to rewrite

KVj,Vere (u) €(x,y) (u) = _[va,ijWj (’U,) =+ KVj1Wj+1ij+l(u)]‘
By definition of the function f,,, see , we thus have

va ,vefv]' (u + 2I(v)f\,Z (u) €(x,y) (u) =
- [KVj,ijWj (u + 2K) + KWj+1,ijWj+1 (’LL + 2K)] [va,W]‘ij (u) + KVj7Wj+1ij+1 (u)]

Recalling that the orientation of the triangle (wj,v;,w;1) is admissible, we moreover have

Ky, w; Kv; w1 = —Kw;w,,q, and since Ky, v, = =Ky, v,, we have

Ky, fy, (0 + 2K)fy, (1) e y) (1) =

fw; (u+2K)ij (u)—fwj+1 (u—l—QK)f\,\,j+1 (U)+ij,wj+l (fwj+1 (u—|—2K)ij (u)—fwj (u—i—QK)f\,\,j+1 (u)).
(74)

With the quantity Ky, y, KL, is a sum of four terms. The first two ones are computed

Vj,Ve

thanks to Lemma with the choice of contour Cy, ,, we have

iglj; [fw]- (u+ 2K)fwj (u) —f (u+ 2K)f, (w)|H (u)du = 2& —27i _ 1

W W
Jj+1 j+1 87 k! 2

evj,vl
To compute the last two terms in ([74]), namely
ik!

87 KWj7Wj+1 [ij+1
evj Vg

(u + 2K )fu, (1) — fu, (u+ 2K)f

Wi+1

(w)]H (u)du, (75)
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recall that by

u—a2j+1 ) _ u—a;—20, )7

ne( 5

W41 (U) - HC( Wj,Wj+1

so that

—a;—20, s
KWj,Wj+1ij+1(u + 2‘Kv)fw] (U) = nc(“+2K Za] : )nc(u 2(1] )

We therefore focus on the term

u+2K—aj—206> <u—aj> du

Hu)—

/ew nc( 2 T Obwrt
o

in which we set, without loss of generality, a; = 0. This is equivalent to replace the function
H(u) by H(u—«; ), which is possible because both functions satisfy the same jump conditions
stated in Lemma [42] There are three residues, at 26,, 2K and 2iRK’. We thus have

[ e w5 g

Ve
_“2HQ0) 2 HQK) | 2RK’
k' cné, k' en(2K — 6.) T
2 H(2K) — H(26,)
T cn .

nc(iRK' + K — ) nc(iRK')

; (76)

since nc(iRK’) = 0. The same reasoning as above gives

u — 20, u+2K du
/QVM nc( 2 ) nC( 2 )H(“)%
_ 2 H(20. —2K) ~ H(0) 2R’
K cn .

which may be slightly simplified, using that H(0) = 0. Thanks to (76, and Table |2, we
obtain that equals

nc(iRK' + K)nc(iRK' — 0,), (77)

_ 1 H(20.) — H2K) + H(20. — 2K) RK'k?
K K 1 _ = e €
VeNiTVive T 9 * 2cnf, + om

The addition formula results in

dé..

H (20, — 2K)—H(2K)

K'k2 [ sn Ksn(f, — K)sn(f, — 2K if k2>0
:H(2«96—4K)—§R k ( ) sn( )
m (—k"?)sd K sd(0, — K)sd(f, —2K) if k2 <0
K/ 2
=H(20.)—1-— REk cnf,sdo,.
T
The proof is complete. ]
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Using that limg_,0 H(u) = 5=, see Lemma we find that

257

1 7—26
lim Ky, KL, =2 — — .
Jso Vavevens T 9 T 9o 0,

This is in accordance with the computation of [8, Appendix A] for the case k& = 0. In-
deed, the dimer model considered in the latter paper corresponds to complementary polygon

configurations meaning that the probability is 1 minus the probability of the paper [§].

C Proof of Lemma

This section consists in the proof of Lemma [7| stating that the angles (@;(x))xev, je(1,...d(x)}
defined in Equations and are indeed well defined mod 4.

Proof. We first need to check that angles around a rhombus corresponding to two neighboring
decorations are well defined, see Figure 20]

Figure 20: Compatibility around a rhombus.
We want to prove that the following is equal to 0 mod 4m:
(@1 —ap) — (@1 — @) + (@ — @) — (Vg1 — Wjp1).-
By definition of the angles within a decoration we have, mod 4,

_ _ _ _ 0 if co(wg, wyy1) + co(wj, wjtq) is even,
(@1 — @) = (1 —05) = . .

21 if co(wy, Wey1) + co(wj, wjit) is odd.
By definition of the angles in neighboring decorations we have, mod 4,

L . . 0 if co(w;iyq,vi,w;) + co(wpyq, Ve, Wy) is even
(@ — ;) = (g1 — 1) = . (w1, 5, wg) + colWer, ve. ), ’
21 if co(Wjt1, vy, W) + co(wpyr, Ve, we) is odd.

65



This implies that, mod 4w, we have:

(@1 — ap) — (@1 — @) + (@ — @) — (g1 — @jt1)
)0 if co(wjy1, Vi, Wi, Wit) 4 co(Weg 1, Ve, We, wey) is even,
21 if co(Wjt1, vy, Wi, Wjigq) + co(Weg, Ve, Wy, Weqp) s odd.
But since the orientation of the graph is admissible, we have that co(w;t1,v;j,wj, wji1) and

co(Wpi1, Ve, Wg, Wpi1) are odd, implying that the sum is even, thus concluding the proof for
angles around a rhombus.

We now need to prove that when doing the inductive procedure around a cycle of GF, we
recover the same angle mod 4w. There are two types of cycles to consider: inner cycles of
decorations and cycles arising from boundary of faces of G.

Consider a cycle of a decoration corresponding to a vertex x of G of degree d, and let n be
the number of edges of the inner cycle oriented cw. By definition of the angles, we have:

d

d
Gy — 1= Y (@541 — ;) = »_20; +2mn = 27(n + 1).
=1 i=1

Since the orientation of the edges is admissible, n is odd, thus proving that @41 —a; = 0 [47].

Now consider a cycle C' arising from the boundary xi,...,x,, of a face of G, with vertices
labeled in cw order, see also Figure Up to a relabeling of vertices of the decorations, this
cycle can be written as

C = (W2(X1),V2(X1),V1(X2),W2(X2), e ,Vl(Xl)).

Figure 21: Notation for a cycle C arising from the boundary of a face of G.

Using the definition of the angles within a decoration and in neighboring ones we deduce
that, mod 4m, we have:

— N = e N _ )T 201 (x;) if co(wa(x;),va(%5), vi(Xj+1), Wa(x;j41)) is odd,
qa(xj) — az(xj11) =

T —201(x;)  if co(wa(x;), va(x;),vi(Xj41),wa(x;j41)) is even.
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Let n(C') denote the number of portions of the cycle C' where

co(wa(x;), va(x;), v1(Xj+1), Wa(Xj+1))

is odd. Then, writing x,,+1 = X1, we have:

m
ag(x1) — a2 (Xm+1) Zag X;j) — 2(Xj41) Z T —261(x;)) — 2mn(C).
7j=1 7j=1

Since 70, (m —261(x;)) is the sum of angles at the center of the cycle, it is equal to 27. The

orientation of the cycle being admissible, n(C') is odd, thus concluding the proof. O
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