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Abstract. In this paper I present a MAX2SAT algorithm based on the randomized algorithm of 

Papadimitriou from 1991. We also show that this algorithm finds a solution (if it exists) for a 

MAX2SAT  problem equivalent to a 3SAT problem with high probability in polynomial time. 
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1     Introduction 

 
In MAX2SAT, we are given a 2SAT expression involving a  set of clauses, each with 

at most two literals in it, and an integer K. We are asked whether there is a truth 

assignment that satisfied at least K  of  the clauses. We call this the MAX2SAT 

problem. We note that if the 2SAT expression considered has m  clauses, then the 

truth assignment mentioned above must leave at most m − K clauses unsatisfied.  

 

Definition 1. We know that there is (at least) a truth assignment that satisfies a 

maximum number of clauses M  and leaves unsatisfied a minimum number of clauses  

m − M, where m  represents the number of clauses of the 2SAT expression under 

consideration.  The truth assignment satisfying this condition will be called the 

maximal truth assignment (there is at least one). 

 

Proposition 1. (see [Papadimitriou,  94] and  [Hopcroft, 1979]). MAX2SAT is NP- 

complete. 

 

Proof. For the proof, see the references listed above (see [Papadimitriou,  94] , 

theorem 9.2, page 186 ).  

 

 

 

2.     The presentation of the algorithm 
 

We will present first the well known  randomized algorithm for 2SAT. This is the  

Papadimitriou  algorithm from 1991 (see [Papadimitriou, 1991]).  We also note that 

Schoning discussed a similar algorithm for 3SAT in 1991 (see [Schoning, 1991]).  
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Papadimitriou’s  algorithm for 2SAT. 

 

Input: a 2SAT expression in 𝑛  variables. 

 

Guess an initial truth assignment, uniformly at random. 

 

Repeat 𝐶 ·  𝑛2 times: 

 

If the formula is satisfied by the actual assignment, stop and accept. 

 

Let C be some clause not being satisfied by the actual assignment. Pick one 

of the (at most) two literals in the clause at random, and flip its truth value. 

 

Update. 

 

Stop and reject, the expression is not satisfiable. 

 

In the next section, I will prove that this algorithm performs  well even for the 

MAX2SAT problem, so in the Papadimitriou  algorithm, all we need to modify is the 

definition of “satisfies” (related to an assignment), since in the context of  

MAX2SAT, we will not need all the clauses to be satisfied.  

 

The MAX2SAT algorithm. 

 

Input: a 2SAT expression with  m clauses. 

 

Guess an initial truth assignment, uniformly at random. 

 

Repeat 𝐶 ·  𝑚2 times: 

 

If the actual truth assignment satisfies the MAX2SAT condition, stop and 

accept. 

 

Let C be some clause not being satisfied by the actual assignment. Pick one 

of the (at most) two literals in the clause at random, and flip its truth value. 

 

Update. 

 

Stop and reject, the expression is not satisfiable. 

 

In other words, I will prove that if a MAX2SAT satisfying assignment exists, then the 

MAX2SAT algorithm will find it with high probability. Note that running the 

algorithm a quadratic number of times, in the number of clauses is stronger than 

running it a quadratic number of times in the number of variables. A given 2SAT 

expression with m clauses can have at most 2m  variables, and at least a number of 

variables of order of magnitude  √m  (up to a multiplicative constant). 
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3     Analysis of the algorithm 

 
In this section, I will present the main  theorem. We assume that the reader is also 

familiar with the 3SAT to MAX2SAT reduction. For reference, see  [Papadimitriou,  

94] , theorem 9.2, page 186.  A given MAX2SAT problem is called a reduction of a 

3SAT problem if it is equivalent to a given 3SAT problem. Basically, given an 

instance of 3SAT, we construct an instance of MAX2SAT as follows. For each 

variable or literal  x, we write x’ for its negation. For each 3SAT clause (x ˅ y ˅ z) , 

we add to the MAX2SAT expression the following conjunction of  ten clauses: 

 

(x)˄ (y)˄ (z)˄ (w) ˄ (x′˅ y′) ˄ (y′˅ z′) ˄ (z′˅ x′) ˄ (x ˅ w′) ˄ (y ˅ w′) ˄ (z ˅ w′)  

 

Here, the variable w  is particular  to the chosen 3SAT clause. If the 3SAT expression 

has  m  clauses, then the MAX2SAT expression thus constructed has  10 · m  

clauses. We set the MAX2SAT threshold at  7 · m . Then, there is a MAX2SAT 

maximal truth assignment that satisfies  7 · m  clauses if and only if the original 3SAT 

expression is satisfiable. 

 

Theorem. Given a MAX2SAT problem, that is a reduction of a given 3SAT problem 

with m clauses,  then with high probability, after  C ·  m2  steps, the MAX2SAT 

algorithm will find a MAX2SAT satisfying assignment (where C is a constant and  m  

is the  number of  clauses  in the original 3SAT expression).  

 

Proof. For the proof, we will use the principle of  induction, following the number of 

clauses in the MAX2SAT expression (actually the number of clauses of the original 

3SAT expression).  We will consider the Markov chain approach  considered in 

[Schoning, 1991] and [Papadimitriou, 1991].  We will also consider the expected 

travelled distance (by the Markov chain associated to the algorithm) towards the 

absorbing barrier 0 (note that the direction of travel is important).  

 

We are given a 3SAT problem with m  clauses. We construct the equivalent 

MAX2SAT problem. The MAX2SAT problem will have 10 · m clauses, each 3SAT 

clause will be replaced by a group of 10 clauses. The 3SAT problem is satisfiable if 

and only if its MAX2SAT reduction has a maximal truth assignment with  7 · m  

satisfied clauses.  

 

We write P(N)  for the statement : after  C ·  N2 steps (where 10 · N  is the number of  

clauses in the MAX2SAT expression that is equivalent to a 3SAT expression with N 

clauses ), the Markov chain associated to the MAX2SAT algorithm  will have an 

expected travel distance (towards the absorbing state with Hamming distance 0) given 

by the square root of the number of flips performed by the algorithm (up to a 

multiplicative constant), on any MAX2SAT expression that is equivalent to a 3SAT 

expression with N clauses (or else the chain will hit the absorbing state).  So if the 

algorithm performs  C ·  N2 steps, then the expected travel distance is C1  ·  √𝐶 ·  N  

(where C1  is a constant greater than 1).  

 

We start with N = 2. For N = 2 , the original 3SAT expression has only two clauses. 
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We can consider all possible combinations , it is a simple case by case analysis. By 

suitably choosing the constant C, it is clear that the statement P(2) is true, . 

 

We want to prove that if we assume that P(α) is true for all  integers  α < N , then 

P(N) is also true.  

 

Let’s consider a 2SAT expression  φ  with  10 · N   clauses (the MAX2SAT 

equivalent to a 3SAT expression with N clauses).  We consider the expression ψ , by 

eliminating a group of  10  clauses (associated to one of the clauses of the original 

3SAT expression). We call this group, the special group of  10 clauses. The 

expression  ψ  will have  10 · (N − 1)  clauses.  When working on the expression  φ ,  

we assume that the algorithm will touch this special group of clauses  a number of 

times  K. That means that if the algorithm takes  C ·  N2 steps (where N  is the number 

of clauses in the expression  φ ), then C ·  N2 − K steps will be taken within the 

expression  ψ , and  K steps will involve the special group of clauses considered 

above.  

 

We assume that the associated Markov chain will take n1 steps within the expression 

ψ, then it will touch the special group of clauses considered above, then it will take n2 

steps within the expression ψ, then it will touch the special group of clauses 

considered above again, and so on, until it will take n𝐾  steps within the expression ψ, 

then it will touch the special group of clauses considered above for the last time, and 

then  it will take the last n𝐾+1 steps within the expression ψ.  

 

We are only interested in studying what happens if the original 3SAT expression is 

satisfiable. 

 

Any group of 10 clauses (as described above) will have at most 6 unsatisfied clauses, 

and at least 3 unsatisfied clauses . The whole expression  φ  will have at least  3 · N  

unsatisfied clauses in the maximal truth assignment. As long as the algorithm does not 

find a maximal truth assignment, the probability of choosing an unsatisfied clause 

from the special group (at every step of the algorithm) is at most  p =  
6

3N
=  

2

N
 . That 

means that if the algorithm makes  C ·  N2 steps, then the expected number of  hits of 

an unsatisfied clause from the special group is at most  2 · C · N . In other words, the 

inequality K < 2 ·  C · N  will be satisfied with high probability.  

 

From the inductive hypothesis, when the algorithm works within ψ , it will drift 

towards zero with an expected  speed, and when it touches an unsatisfied clause in the 

special group of clauses, the worst it can do is to backtrack one unit (away from the 

absorbing state 0).  

 

That means that we have the following equation  (this counts the number of steps 

within ψ , and when it touches the unsatisfied clause considered above). 

 

n1 +  n2 + n3 + ⋯ … … … + nK+1 = C · N2 − K    (1)  

 

The overall, expected  travel  distance of the associated Markov chain  (when the 
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algorithm works on φ), will be at least: 

 

D =  C1  · ((n1)
1

2  +  (n2)
1

2  + ⋯ … … . + (nK+1)
1

2 ) − K   (2)  

 

We also work under the conditions ni  ≥  1, for all i ∊  {1, 2, 3, … . K + 1} , and we 

assume that  K < 2 ·  C · N  , as we discussed before.  

 

We want to find the minimum value that D can take, under the constraint given by 

equation  (1). We can apply the method of Lagrange multipliers, more precisely the  

Karush-Kuhn-Tucker minimization conditions, and we find that the minimum of  D 

has the form  C2  ·  √𝐶 ·  N , where the constant C2 is greater than 1 (for a suitably 

chosen constant C ).  

 

There is also a geometrical way to see this, but this is only an approximation. We 

consider the variables zi =  ni

1

2  , for all i ∊  {1, 2, 3, … . K + 1} . We have to study the 

intersection of a hyperplane and a hypersphere (a K - sphere), in the region where all 

the coordinates are greater or equal to 1. The hyperplane is given by the equation  

 C1  · (z1 +  z2 + ⋯ … + zK+1) = constant , and the hypersphere is given by the 

equation  z1
2 + z2

2 + z3
2 + ⋯ … . . zK+1

2 =   C · N2 − K .   
 

Let’s study the KKT conditions (see [KKT, 2012]). We define the following 

functions: 

 

In the following, we have 𝑥 = (𝑥1 , 𝑥2 , 𝑥3 , … … . . 𝑥𝐾+1 )  and                                

λ = (λ1 , λ2 , λ3 , … … . . λK+1 ) 

 

f(x) =  C1  · (z1 +  z2 + ⋯ … +  zK+1) − K  

 

h(x) =  z1
2 +  z2

2 +  z3
2 + ⋯ … . . zK+1

2 −   C · N2 + K   
 

gi(x) = 1 −  xi  , for i = 1,2,3 … … . K + 1  

 

L(x, µ, λ ) = f(x) +  µ · h(x) +  ∑ λi  ·  gi(x) K+1
i=1   

 

L(x, λ ) = f(x) +  ∑ λi  ·  gi(x) K+1
i=1   

 

Then, the KKT result states that 𝑥∗  is a local minimum if and only if there is a unique 

𝜆∗ , such that the following conditions are satisfied: 

 

∇x L(𝑥∗, µ∗, λ∗ ) = 0        (3) 

 

λi
∗  ≥ 0  , for i = 1,2,3…..,K+1      (4)  

 

λi
∗  ·   gi(𝑥∗) = 0  , for i = 1,2,3,…..,K+1     (5) 

 

gi(𝑥∗)  ≤ 0  , for i = 1,2,3,……., K+1     (6) 
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h(𝑥∗) = 0           (7) 

 

The matrix ∇xx L(𝑥∗, λ∗ )  is positive semi-definite.    (8) 

 

We consider the general case, in which we can assume that  

 λ1 =  λ2 = ⋯ … =  λm = 0   with 1 ≤ m ≤ K, and also   

xm+1 =  xm+2 = ⋯ … =  xK+1 =  1  . This is the most general case for which 

relations (5) will be satisfied. We also emphasize that  m   must be greater or equal  to 

1, otherwise all 𝑥𝑖  will be 1 and relation (7) will not be satisfied. We also note that 

condition (8) is automatically satisfied.  

 

Under these conditions, it is easily verified that:  

 

min f(x) =  f(x∗) =  C1  · (√m  ·   √C ·  N2 − 2K + m − 1  + K + 1 − m) − K (9) 

 

We are only interested in what is happening for large values of  N, because these are 

the interesting problems for us (we can always take care of the few other cases by 

direct algorithm testing).  

 

We assumed that  C1 > 1  , and 1 ≤ m ≤ K  , and we also know that  

 K < 2 ·  C · N  .  It can be easily verified that for any value of  m (for any local 

minimum), the expression  min f(x) will take the form  C2  ·  √𝐶 ·  N , where the 

constant C2 is greater than 1.  

 

As a result of the standard KKT calculations, we reach the conclusion  that  P(N) is 

true, and the inductive step is proved. QED.  

 

The MAX2SAT algorithm always finds a maximal truth assignment, not only when 

the maximal truth assignment satisfies all the clauses  

 

When a literal is flipped in an unsatisfied clause that will be satisfied in the maximal 

truth assignment, the Hamming distance to a solution decreases by 1 with probability 

at least 
1

2
 . When a literal is flipped in an unsatisfied clause that will remain unsatisfied 

in the maximal  truth assignment, the Hamming distance indeed increases by 1, but 

enough clauses will become unsatisfied at this step, with this flip (and these clauses 

will be satisfied in the maximal truth assignment) , such that the deviation will be 

corrected al later stages of the algorithm. In general, the closer we get to a solution (in 

terms of the Hamming distance), the more likely it is that  the next chosen clause will 

remain unsatisfied in the maximal truth assignment.  That is not always true though, 

especially if we have many long range variables  (variables that appear in many 

clauses), that do not have the right truth assignment at this moment.  A direct proof of 

the theorem above  (without induction) would not be a simple matter.  

 

The general procedure will look like this. We consider a 3SAT problem. We find the 

equivalent MAX2SAT problem, and we run the MAX2SAT algorithm in this 
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problem.  

 

 

 

4     Discussion and conclusions 

 
For general implications, related to efficiently solving NP – complete problems, see 

[Fortnow, 2013]. An interesting application is related to the problem of automated 

theorem proving using an efficient algorithm for NP – complete problems (see [A1]). 

The impact of this type of algorithm in mathematics, cryptography, science in general 

is hard to estimate.  
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Appendices 
 

A1. Godel’s letter to John von Neumann. In his letter, Godel writes: 

“One can obviously easily construct a Turing machine, which for every formula F in 

first order predicate logic and every natural number n, allows one to decide if there is 

a proof of F of length n (length = number of symbols). Let 𝜓(𝐹, 𝑛) be the number of 

steps the machine requires for this and let 𝜑(𝑛) =  𝑚𝑎𝑥𝐹𝜓(𝐹, 𝑛). The question is 

how fast  𝜑(𝑛) grows for any optimal machine” (see [Godel, 1956]. 

 

Now we consider this. In [Hopcroft,  1979], we have theorem 13.1, at page 325, 

where it is proved that for each Turing machine (deterministic or nondeterministic) M 

that is time bounded by a polynomial  𝑝(𝑛), a log-space algorithm exists, that takes as 

input a string x and produces a Boolean expression 𝐸𝑥 that is satisfiable if and only if 

M accepts  x.  

 

This means that the process of seeking a proof  (of reasonable length) of a 

mathematical statement can be completely automatized. With the algorithm presented 

in this paper, Godel’s vision can be made reality. 
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