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Over the last few centuries, many cetacean species have witnessed dramatic

global declines due to industrial overharvesting and other anthropogenic

influences, and thus are key targets for conservation. Whale bones recovered

from archaeological and palaeontological contexts can provide essential

baseline information on the past geographical distribution and abundance

of species required for developing informed conservation policies. Here we

review the challenges with identifying whale bones through traditional ana-

tomical methods, as well as the opportunities provided by new molecular

analyses. Through a case study focused on the North Sea, we demonstrate

how the utility of this (pre)historic data is currently limited by a lack of accu-

rate taxonomic information for the majority of ancient cetacean remains. We

then discuss current opportunities presented by molecular identification

methods such as DNA barcoding and collagen peptide mass fingerprinting

(zooarchaeology by mass spectrometry), and highlight the importance of

molecular identifications in assessing ancient species’ distributions through

a case study focused on the Mediterranean. We conclude by considering

high-throughput molecular approaches such as hybridization capture fol-

lowed by next-generation sequencing as cost-effective approaches for

enhancing the ecological informativeness of these ancient sample sets.

This article is part of the themed issue ‘From DNA barcodes to biomes’.
1. Introduction
Humans have been exploiting cetaceans for thousands of years, first through

the opportunistic use of stranded or drift whale carcasses, and subsequently

by active hunting [1–4]. Their value came from the use of meat and blubber

as food, blubber as fuel in oil-burning lamps, teeth (of odontocetes) as a valu-

able form of ivory, baleen (of mysticetes) as a raw-material source and bones

used for building purposes, tool production, and as solid fuel (given their

high oil content) [1,5–8]. Intensive human exploitation (particularly the indus-

trial hunting practices of the nineteenth and early twentieth centuries), as well
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as other anthropogenic influences (sonar, ship strikes, habitat

degradation, etc.), reduced the size of whale populations

worldwide and even extirpated some local populations

[9,10], including the eastern North Atlantic populations of

right whales (Eubalaena glacialis) [11] and the Atlantic gray

whale populations (Eschrichtius robustus) [12]. The past few

decades have witnessed major efforts in the conservation of

whales, including the 1984 moratorium on commercial whal-

ing instituted by the International Whaling Commission

(IWC), and the Convention on the International Trade of

Endangered Species (CITES). Although many whale species

are now protected and some populations are recovering

[9,13], cetacean conservation is still an ecological priority for

many countries. Developing informed conservation policies

and sustainable management plans requires accurate historic

data on cetacean abundance and distribution at various

stages in their interactions with humans. Archaeological and

palaeontological records are key to the reconstruction of

these ecological baselines [14], but they have been dramatically

underused, largely because of the challenges associated with

the taxonomic identification of ancient whale bones. Molecular

methods have advanced substantially in the past few decades,

and molecular barcoding now provides a new opportunity

to decipher and maximize the information potential of the

archaeological and palaeontological records.

In this article, we review the challenges with identifying

ancient whale bones, as well as the opportunities provided

by new molecular identification methods. We begin by sum-

marizing the limitations inherent to taxonomic identification

based on traditional anatomical methods, illustrated with a

case study from the North Sea on the proportion of unidenti-

fied archaeological cetacean remains housed in museums and

repositories. We then discuss the opportunities for more accu-

rate identifications made possible by molecular analyses, and

demonstrate the need for molecular validation through a case

study comparing anatomical and molecular identifications of

whale bones from Mediterranean archaeological contexts.

Finally, we conclude by presenting future perspectives for

molecular methods, including high-throughput approaches

for the study of ancient cetacean assemblages.
2. Limitations in identifying whale bones using
anatomical methods

Despite the millennia of human–cetacean interactions, the

research potentials of palaeontological and archaeozoological

cetaceans have received very little attention, in large part

because of the difficulty in identifying (often fragmentary)

ancient whale bones to the genus or species level using

comparative anatomy methods. Compared with other large

mammals, whale bone is extremely friable; composed primar-

ily of oil-filled cancellous bone, with only a thin external

cortical layer, whale bone easily breaks up into non-diagnostic

fragments. When a whale is exploited through active hunting

or scavenging of drift carcasses, its sheer size limits the viability

for humans to transport complete anatomical elements far

from the beach [15]. Thus, in archaeological contexts, the

larger the animal, the less bone is transported from shore to

settlement, decreasing the likelihood of finding diagnostic

pieces of the skeleton. A single animal can also supply more

than 40 metric tons of bone [16,17], making it difficult to

distinguish the number of species or individuals represented
by fragmentary remains. The use of cetacean bone as raw

material for combustion or tool production further fragments

and modifies the bone [5]. Even when diagnostic elements

are preserved, the range of morphological variation present

among and within (e.g. sexual dimorphism) species can

confound taxonomic identifications [18].

These identification problems are compounded by a lack of

comprehensive or easily accessible skeletal reference collec-

tions, which are usually restricted to a few large national

natural history museums (e.g. National History Museum,

London, UK or Naturalis in Leiden, The Netherlands) [19].

Unlike most other mammalian collections, the range of mor-

phological variation present within each species is not well

represented, and is thus not well characterized in taxonomic

identification atlases for a wide diversity of bones. Indeed,

the challenges with storing such huge specimens mean that

repositories do not typically curate more than one or two indi-

viduals from each species, often only retaining particularly

diagnostic elements, such as the cranium. Collections are par-

ticularly incomplete for populations that were extirpated prior

to the creation of modern museum collections (from the eight-

eenth century), such as the North Atlantic right whale

(functionally extinct in the eastern North Atlantic [11]) or the

Atlantic population of the gray whale (extinct [12]). Even the

most complete collections may not serve as representative

guides for ancient remains, as archaeological specimens may

be considerably larger than museum specimens curated rela-

tively recently, due to the diminution in the overall size of

mature animals following the advent of modern whaling [18].

These difficulties create substantial gaps and biases in the

archaeological record, with ramifications for understanding

past human interactions with these marine mammals. For

example, in a study of whale remains in the Western Isles

(northwest of Scotland), Mulville [5] noted an increase in both

the proportion and taxonomic diversity of whale bones from

the later Bronze Age through to the Norse Age, with an increase

in the proportion of large whale species. However, while pro-

gressively more species were identified through time, an

increasing proportion of remains were not taxonomically ident-

ifiable; only 30 of 568 examined whale bones could be identified

to species, largely due to extensive modification or burning of

the bones [5]. Similarly, in a collection of 50 archaeological speci-

mens from seven North Atlantic archaeological sites, ranging

from the Mesolithic until the Early Modern period, most of

the bone fragments could be morphologically identified only

to ‘marine mammal’ or ‘cetacean’ [20]. Finally, a study in the

Northeast Pacific coast of North America found that although

whale bones were recovered from Nuu-chah-nulth (Nootka)

sites as early as 4000 BP (before present), fewer than 20% of

these could be identified to species [21].

(a) Case study: ancient cetacean assemblages in the
North Sea

A case study from the southern North Sea (figure 1) illustrates

the difficulties with the identification of cetacean species in the

zooarchaeological record. This synthesis of faunal data from

published archaeological reports revealed at least 102 sites

with preserved cetacean remains, the majority of which date

to the Early Medieval period [22]. Of the 616 remains recov-

ered, less than half (n ¼ 306) could be morphologically

identified to the species level through traditional compara-

tive anatomy methods (electronic supplementary table S1).

http://rstb.royalsocietypublishing.org/
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Figure 1. Location of southern North Sea archaeological sites with cetacean remains (including the east coast of England (n ¼ 27), the French region of Nord-Pas-
de-Calais (n ¼ 2), Belgium (n ¼ 4), The Netherlands (n ¼ 56) and the North Sea coast of Germany (n ¼ 13).
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Furthermore, among these taxonomically identified bones

119 originated from a single site, the Early Medieval site of Flix-

borough (represented by 115 common bottlenose dolphin

Tursiops truncatus, three minke whale Balaenoptera acutorostrata
and one killer whale Orcinus orca) [23].

Overall, most of the identified specimens across all 102 sites

represented dolphins or porpoises. The taxonomic identifi-

cation of these small species is significantly easier, as a

greater proportion of entire bones are preserved and more com-

plete reference collections are available. Only 12 specimens (less

than 4% of the identified assemblage) were identified as baleen

whale species. The fact that half of these baleen whales were

identified as North Atlantic right whale demonstrates the sig-

nificance of these ancient sample sets. Indeed, this species

has all but disappeared from the North Sea, but its prevalence

in these archaeological remains (albeit within an extremely

small sample set) hints at its potential historic abundance

within the region. It is highly likely that a significant proportion

of the unidentified cetacean specimens are also from large

(baleen) whales, as they are less likely to be taxonomically

identified if they are in a fragmented state compared with smal-

ler species (see discussion in [20]). Human behaviour may also

preferentially increase fragmentation of large species compared

with their smaller counterparts. Compared with dolphins or

porpoises, baleen whales provide a more abundant supply of

bone, with a thicker cortex, making them better suited as a

raw material for tool production [24,25]. The lipid content of

large whales is also higher than that of dolphins [26] making

them more desirable as sources of biofuels. The deliberate frag-

mentation of these oil-rich elements to liberate the oil or

maximize the surface area for burning decreases the likelihood

of morphological identification [16,27]. In the North Sea, and in

other regions, this lack of taxonomic precision limits our ability

to detect historic changes in cetacean distribution and abun-

dance, and document how these populations have been

impacted by human activities.
3. Opportunities from molecular identification
techniques

(a) DNA barcoding
Over the last two decades, molecular methods have been

increasingly applied to the problem of cetacean identification,

but their primary focus was the study of contemporary popu-

lations. Indeed, given the 1984 moratorium on commercial

whaling by the IWC, their protected status under CITES and

the many national laws protecting particular species and popu-

lations, accurate taxonomic identification of whale products

has become essential to differentiate products obtained from

legal versus illegal exploitation or trade. For example, identifi-

cation to the species or even population level may be key to

assessing whether whale products (skin, blubber, meat) sold

in domestic markets have a legal origin (e.g. if they come

from small odontocetes not covered by the IWC moratorium,

or from populations exploited under aboriginal subsistence

permits) or not. However, such products are often processed

in ways that render morphological identification impossible.

Considering that such processing (cooking, salting, drying,

marinating) may significantly degrade DNA, early molecular

studies targeted mitochondrial DNA (mtDNA), amplifying

relatively short diagnostic fragments (150–500 bp) of the con-

trol region or cytochrome b (cytb) gene to identify taxa and to

estimate geographical provenience [28,29] (figure 2a). By com-

paring the resulting sequences to a databank of known species

and populations, it is possible to evaluate the relationships

between known and unknown samples by parsimony or maxi-

mum-likelihood criteria, with the reliability of phylogenetic

relationships analysed by bootstrapping procedures [30].

Tree-based approaches, however, can be problematic in situ-

ations where relationships among interbreeding organisms

are not hierarchical, or where species are polyphyletic [31].

In these cases, taxonomic identifications may be more robust

http://rstb.royalsocietypublishing.org/
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Figure 2. Two established methods for the molecular identification of ancient cetacean remains: (a) DNA barcoding: DNA is extracted from the sample in a clean
room, and PCR-amplified targeting short fragments of mtDNA. Resulting sequences are compared with a databank of known sequences for taxonomic identification.
(b) ZooMS: samples are (1) demineralized in a weak acid solution; (2) collagen is gelatinized by heating at 658C in an ammonium bicarbonate buffer; the collagen is
then (3) enzymatically cleaved into peptides, which are spotted with a matrix onto a target plate. The masses of the peptides are measured following desorption/
ionization of the sample using laser energy (MALDI) and (4) the peptide masses estimated by time of flight (TOF). The presence of specific peptides (5) is used for
taxonomic identification.
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when sequences are analysed using vector- or distance-

based clustering methods to evaluate distribution of derived

character states [31,32].

In the 1990s, genetic databases were limited in the number

of type species and populations represented, and thus taxo-

nomic identifications and/or phylogeographic analyses were

often tentative [29]. Over the last two decades, follow-on

studies in cetacean systematics and phylogeography [33,34],

the development of comprehensive wildlife DNA registers

[35] and validated reference sequence databanks (e.g. DNA

surveillance [36]) have significantly enhanced the ability to

‘barcode’ morphologically ambiguous cetacean remains, not

only in markets but also animals caught as fisheries bycatch
or derived from strandings. Beyond species identification,

mtDNA and nuclear DNA (short tandem repeats (STRs),

actin sequences) are being applied to quantify the minimum

number of individuals entering trade [37], estimate the total

catches resulting from market meat [38] or even to track the

life history of an individual whale [39].

Studies have also explored the potential for applying these

molecular methods to palaeontological or archaeological

remains. As with modern whale product identification, studies

of ancient specimens primarily concentrated on recovering

short diagnostic fragments of mtDNA control region [40,41],

cytb gene [42] or both [43,44] for accurate taxonomic identifi-

cation. In addition to archaeological bone, DNA analysis has

http://rstb.royalsocietypublishing.org/
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been applied to other whale products, such as museum

samples of baleen [45,46], whale ivory or scrimshaw [40],

with relative success. Although there has been the occasional

large-scale study identifying hundreds of samples [47],

DNA-based studies have been primarily applied to demon-

strate the feasibility of these molecular techniques, or at the

site level, to identify the range of species exploited within a

geographically restricted region. Among the aforementioned

specimens in the North Sea case study, only two have been ident-

ified through ancient DNA analysis (two fin whale specimens, at

Barreau Saint Georges, France) [48]. There is thus much

unexploited potential for the application of these methods to

the analysis of ancient specimens. However, the relatively high

cost of these analyses and the fact that they need to be done

in specialized laboratories (to prevent DNA contamination)

remains a limiting factor to their large-scale application.

(b) Zooarchaeology by mass spectrometry: collagen
peptide mass fingerprinting

Peptide mass fingerprinting (PMF) has been widely used as a

rapid and cost-effective protein identification method based

upon the pattern of mass-to-charge (m/z) ratios [49]. Most

recently, it has been developed for the most abundant protein

in archaeological bone: collagen (figure 2b). In mammals, col-

lagen is composed of two alpha 1 chains, and a third, more

rapidly evolving alpha 2 chain. In collagen PMF approaches,

collagen is extracted from archaeological bone, followed by

enzymatic digestion, which cleaves proteins at specific

amino acid sites producing a characteristic mixture of peptides.

The peptides are analysed through matrix-assisted laser

desorption/ionization mass spectrometry (MALDI-MS), pro-

ducing a ‘peptide mass fingerprint’ based on their respective

m/z ratios. Species identification of archaeological bones can

thus be accomplished by comparing collagen peptide finger-

prints with the fingerprints from known samples—i.e.

zooarchaeology by mass spectrometry (ZooMS) [50,51].

Collagen’s relatively slow rate of evolution means that it is vari-

able enough to discriminate between mammal genera, but is

sufficiently similar to map differences across broad taxonomic

groups, such as cetaceans [52,53]. The ZooMS approach has

been developed and tested on North Atlantic cetacean species,

providing a rapid and cost-effective identification screening

approach often to the genus or species level [20,54].

The advantages of a collagen versus DNA-based approach

for identifying ancient samples are numerous. First, collagen is

a remarkably robust protein, and recent evidence suggests that

collagen survives at least 10 times longer than DNA, preser-

ving even in tropical climates where DNA preservation is

poor [53,55]. Unlike PCR-based approaches, which can be lim-

ited by primer specificity, ZooMS can be applied to highly

fragmented non-diagnostic bone without any prior taxonomic

knowledge [56]. As ZooMS does not require the amplifica-

tion of degraded ancient molecules, the risk of false positives

from contaminating modern template or previously amplified

PCR products is also reduced. Moreover, collagen can be

recovered and analysed using a non-destructive ammonium

bicarbonate buffer, which enables bone samples or artefacts

to be analysed without destructive sampling [57]. ZooMS,

however, does have its limitations: due to the relatively slow

mutation rate of collagen, taxonomic precision is often limited

to the genus level. For example, although most baleen whale

species can be distinguished, ZooMS cannot currently
differentiate between bowhead and right whale, or among

some dolphin species [20]. Additionally, robust identifications

often require the successful recovery of multiple diagnostic

peptides. Thus, mass spectra from poorly preserved samples

may only allow identification to higher taxonomic levels

(family, order) if diagnostic peptide markers are absent. Gen-

etic methods may be required to clarify species identity and

are certainly required for identification to the subspecies or

population levels. However, applying ZooMS as an initial

screening method can provide a cost-effective preliminary

identification, as well as insight into overall biomolecular pres-

ervation and the likely success for subsequent DNA analysis

[58] or radiocarbon dating [59].

Biomolecular identification approaches such as DNA bar-

coding and ZooMS can offer robust taxonomic identifications

of ancient cetaceans, however, they can be limited by tapho-

nomic histories and biomolecular preservation. Some studies,

for example, have noted a high presence of inhibitorysubstances

in ancient whale bones, compromising the success of PCR

amplifications [60–62]. Also, archaeological whale bone has

often been burned, limiting the quantity and quality of DNA

and collagen that can be obtained from the samples [63,64].

Likewise, biomolecular degradation can be extensive in samples

recovered from tropical or sub-tropical environments [65,66].

Despite these challenges, biomolecular identifications of archae-

ological cetaceans can be applied to many specimens that

remain currently unidentified, and thus make a decisive contri-

bution to reconstructing the ecology and population history of

cetacean species.
(c) Importance of molecular identifications: a case study
validating ancient cetacean specimens in the
Mediterranean Sea

In order to illustrate the necessity of validating osteological

identifications of cetaceans, we present a case study of 17

pre-industrial cetacean specimens from six sites around the

Mediterranean Sea (table 1, figure 3; electronic supplemen-

tary material, table S2). This collection is particularly

meaningful as it includes five specimens previously ident-

ified through comparative anatomy methods as Atlantic

gray whale (E. robustus) [67]. The gray whale is currently

found only in the North Pacific, and the circumstances of

its disappearance from the North Atlantic remain a mystery

[12] as this population left very few historical, archaeological

or palaeontological traces. Fewer than 60 remains are known

from both sides of the Atlantic, and the 34 records in the east-

ern North Atlantic (dated from the Late Pleistocene to the

eighteenth century), are nearly all from the North Sea [68]

(figure 3). The restricted spatial distribution of these bones

is probably a poor reflection of their actual past range;

indeed, habitat modelling predicts gray whales would have

also occurred further south, including the Bay of Biscay,

and to a lesser extent, the Mediterranean Sea [68]. Owing to

this paucity of remains, the reliability of each new gray

whale identification outside the currently known distribution

is potentially crucial to our understanding of the distribution

and ecology of this population. Twelve additional Mediterra-

nean samples (identified only to the level of cetacea) were

also included in this study to further increase the possibility

of detecting gray-whale remains.

http://rstb.royalsocietypublishing.org/


Table 1. mtDNA taxonomic identifications of Mediterranean archaeological cetacean bones. Samples listed in bold indicate those previously identified as gray
whale remains through anatomical methods [67]; additional detail provided in electronic supplementary material, table S2. The identified species are right
whale (Eubalaena glacialis), fin whale (Balaenoptera physalus), sperm whale (Physeter catodon) and Cuvier’s beaked whale (Ziphius cavirostris).

laboratory code archaeological site chronology DNA species ID collagen PMF (ZooMS) ID

WH501 Saint Martin, s. France Late Antiquity right whale right/bowhead whale

WH502 Cougourlude, s. France Roman no amplification no ID

WH503 Cougourlude, s. France Roman fin whale no ID

WH504 Cougourlude, s. France Roman no amplification no ID

WH505 Saint Sauveur, s. France Roman fin whale fin whale

WH506 Saint Sauveur, s. France Iron Age fin whale fin whale

WH507 Saint Sauveur, s. France Iron Age fin whale fin whale

WH508 Saint Sauveur, s. France Iron Age sperm whale sperm whale

WH509 Saint Sauveur, s. France Iron Age no amplification baleen whale (Mysticeti)

WH510 Saint Sauveur, s. France Late Antiquity fin whale fin whale

WH511 Saint Sauveur, s. France Iron Age fin whale fin whale

WH512 Saint Sauveur, s. France Iron Age fin whale fin whale

WH513 Saint Sauveur, s. France Iron Age fin whale fin whale

WH801 Nuraghe Lu Brandali, Sardinia Bronze Age Cuvier’s beaked whale beaked whale

WH802 Porto Torres, Sardinia Roman no amplification fin whale

WH803 Villa Sant’Imbenia, Sardinia Early Middle Age fin whale fin whale

WH804 San Rocchino, Tuscany, Italy Iron Age no amplification fin whale

North
Sea

N
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Figure 3. Map displaying locations of confirmed [68] palaeontological gray whale finds in the northeast Atlantic ( filled squares, and shaded area representing
southern bight of the North Sea) and the locations of the Mediterranean archaeological sites tested here (circled numbers: (1) Saint Sauveur; (2) Cougourlude
and Saint Martin; (3) Villa Sant’Imbenia; (4) Porto Torres; (5) Nuraghe Lu Brandali and (6) San Rocchino.
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We analysed the 17 ancient bones using DNA barcoding

(cytb mtDNA analysis) and ZooMS (methods described in the

electronic supplementary material), identifying 11 fin whale
(Balaenoptera physalus), one sperm whale (Physeter catodon),

one right whale (E. glacialis) and one Cuvier’s beaked whale

(Ziphius cavirostris). The relative merits of both techniques in

http://rstb.royalsocietypublishing.org/
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terms of their precision and robusticity are exemplified here. For

example, although ZooMS identified two samples only

as ‘beaked whale’ and ‘bowhead/right whale’, respectively,

DNA provided the resolution to confirm these as Cuvier’s

beaked whale and right whale. Although ZooMS may be less

precise, it may be more successful with poorly preserved

samples: three samples that failed DNA analysis were identified

through ZooMS as two fin whales and one baleen whale

(Mysticeti), respectively. For the latter sample, a higher taxo-

nomic resolution was not possible due to a lack of high

molecular–weight diagnostic peptide markers in the mass

spectra (electronic supplementary material, figure S1). Despite

the advantages of applying both techniques to the same assem-

blage, two samples failed to produce identification using either

molecular method, illustrating the limitations of working with

degraded archaeological materials.

Of the five samples previously believed to correspond to

gray whale, three were identified as fin whale and one as

sperm whale, with the fifth identified only as a ‘baleen

whale’. Thus, none of the samples could be confirmed as gray

whale using molecular approaches. These results illustrate the

necessity of validating anatomical identifications using molecu-

lar techniques, even more so as this is not the first study to

reveal previously misidentified whale remains. For example, a

mtDNA-based analysis of seventeenth century Basque whaling

remains determined that morphological identifications pre-

viously assigned to right whale were in fact bowhead whale

[69]. Likewise, molecular analyses of archaeological cetacean

fragments from Tierra del Fuego believed to correspond to

the remains of a single animal within a hunter–gatherer

midden revealed the presence of multiple whale species as

well as non-cetaceans (e.g. human, pinniped) [42]. This latter

study also demonstrated that available museum reference

specimens may themselves have been incorrectly identified

using anatomical methods. These and other studies (e.g.

[47,70]) collectively highlight the crucial need for the molecular

screening of existing and future zooarchaeological collections

containing whale bones.

The hypothesis that gray whales previously migrated to

calving grounds in the Mediterranean Sea was largely sup-

ported by the presence of these five ‘putative’ gray whale

bones [66]—identifications which failed to be confirmed by

molecular methods in this study. However, records for fin,

sperm and beaked whales are in agreement with the compo-

sition of the extant Mediterranean whale assemblage: fin

whales are the most common species in the Mediterranean,

with highest abundance in the Corso-Ligurian basin and

Gulf of Lyon; and sperm and Cuvier’s beaked whales are

also regular species in the Mediterranean Sea, although less

common than fin whale [71]. By contrast, the right whale

specimen indicates a possible change in the regional whale

composition. Indeed, not only is this species currently

absent from the Mediterranean, it is also extremely rare in

the historical record, with only three known sightings (Italy

1877, Alger 1888 and Sardinia 1991) [72]. In the archaeologi-

cal record, there is indirect proof of its prior presence at the

entrance of Gibraltar: several plates of two barnacle species

specific to right whales found in the Upper Magdalenian

layers of a cave in Málaga, Southern Spain [73]. The bone

specimen identified in this study is thus the first direct

archaeological evidence of right whale in the Mediterranean

Sea. Given that the likelihood of vagrant individuals ending

up in the archaeological record is small, this result (combined
with the Málaga study) suggests that this species may have

been regularly present in the Mediterranean before its

near-extirpation from the eastern North Atlantic. Our results

illustrate the importance of the zooarchaeological record for

understanding the past distribution, abundance and ecology

of whales.
4. Future perspectives: high-throughput
methods

The need for accurate molecular identifications, coupled with

the large proportion of unidentified archaeological and

palaeontological remains, emphasizes the importance of

high-throughput methods in future cetacean barcoding pro-

jects. Traditional mtDNA barcoding approaches are well

established, and typically provide robust species identifi-

cations (with the exception of cross-species hybrids [39]) for

modern, degraded and ancient samples. However, the need

for careful sample preparation, clean-room extraction and

replicability when working with ancient remains can signifi-

cantly increase the laboratory time and associated costs when

working with many hundreds of remains. ZooMS, on the

other hand, can more easily be scaled up for large datasets:

using a plate approach, up to 96 samples can be processed at

one time [74], potentially allowing for up to 1000 samples to

be analysed per week [75]. Although ZooMS is a cost-effective,

high-throughput screening method for large sample sets, it often

lacks the taxonomic precision offered by genetic analysis. Given

the importance of accurate molecular identifications for ancient

whale bones and the large proportion of unidentified archaeolo-

gical and palaeontological remains, the future will probably rely

on next-generation sequencing (NGS) approaches, which can

offer both taxonomic precision and bulk processing. Here, we

review the advantages and limitations of NGS methods, includ-

ing hybridization capture approaches, and their application to

modern and ancient ecological studies.

(a) Next-generation sequencing methods
The advent of high-throughput or NGS methods has revolu-

tionized the application of ancient genetics, massively

enhancing the ability to recover ancient DNA templates

from degraded remains. Although whole-genome ‘shotgun’

approaches have been attempted for species identification

(most notably to refine the systematics of ancient hominids

[76,77]), this approach is limited by the generally low percen-

tage of endogenous DNA in ancient remains and the lack of

nuclear reference genomes in public databases like GenBank

or Ensembl [78]. Until comprehensive genome databases are

available, mitochondrial genes and genomes and informative

nuclear genes will primarily be the markers of choice for

ancient cetacean identification, with DNA target enrichment

followed by NGS as the most feasible high-throughput

method for data acquisition [79]. Enrichment (or capture)

methodologies immobilize the target DNA regions through

hybridization to single-stranded DNA or RNA probes with

high sequence homology (figure 4). Following DNA extrac-

tion and library preparation, custom probes are used to

immobilize the target DNA either on a solid phase (e.g. sur-

face of a microarray) or in-solution using biotinylated baits.

Non-homologous DNA templates are then washed away,

the target DNA is eluted off the probes and sequenced

http://rstb.royalsocietypublishing.org/
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using NGS methods. Hybridization capture of entire mito-

chondrial genomes (mitogenomes) has become increasingly

common for ancient or degraded DNA studies [80–82], as

it allows targeting of DNA even from highly degraded

samples, and can be scaled up for population-level analyses.

Enrichment approaches are particularly useful for increas-

ingly old samples, or those from tropical climates where

preserved DNA templates may be degraded beyond the frag-

ment length feasible for traditional PCR amplicons [83,84].

Moreover, complete mitogenomes have been shown to pro-

vide more robust topologies and estimates of divergence

times than shorter mitochondrial sequences [85,86]. While

NGS approaches are still considerably more expensive than

capillary sequencing when dealing with small numbers of

samples, they can be far more cost-effective if designed in a

way that minimizes unusable sequences (e.g. environmental

contamination, non-target DNA) and captures information

for the maximal number of samples [87]. Hybridization

probes can be designed to capture and simultaneously

sequence up to 100 specimens on a single lane of NGS instru-

mentation significantly reducing the per-sample costs, and

providing mitogenome data for both initial species identifi-

cation and subsequent phylogenetic analyses. Although the

hybridization probes can be specifically designed to capture

mitogenomes from single or multiple cetacean species,

recent studies have demonstrated that ‘generic’ probes are

capable of recovering mitogenomes from even phylogeneti-

cally distinct taxa [88–90]. Furthermore, palaeontological

studies have already demonstrated the advantages of pairing
ZooMS with NGS methods, by first screening thousands of

bone fragments using ZooMS, followed by mitogenome

capture of particular species of interest [75].

(b) Potential contributions of next-generation
sequencing to cetacean ecology

NGS approaches are beginning to be applied more routinely to

modern cetacean populations, recovering full mitogenomes

[91–95], genomic single nucleotide polymorphisms (SNPs)

[96,97] or even complete nuclear genomes [98] to develop

more nuanced models of evolutionary systematics and popu-

lation histories for various cetacean species. To date,

hybridization capture has not yet been extensively applied to

ancient marine species. The capture of ancient Steller’s sea

cow nuclear genes [99], and ancient killer whale mitogenomes

[100], however, demonstrate the utility of this approach for

revealing both broad interordinal evolutionary systematics as

well as more recent radiations. Molecular analyses targeting

only fragments of mtDNA in palaeontological and archaeologi-

cal remains have already shed light on the past distribution and

abundance of cetaceans over thousands of years, and the extent

to which these populations have been impacted by humans

[101]. Examples include recent studies on the gray whale

(E. robustus) [102], bowhead whale (Balaena mysticetus)
[103,104], North Atlantic right whale (E. glacialis) [46] and

Hector’s dolphin (Cephalorhynchus hectori) [105], which have pro-

vided more accurate estimates of cetacean genetic diversity and

population sizes prior to their overexploitation. These data

http://rstb.royalsocietypublishing.org/
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provide crucial baselines for conservation and management

efforts, for example, as part of IWC’s mandate to allow whale

populations to recover to sustainable levels. Integrated with

long-term climatic data and predictive habitat modelling, they

can shed light onto how populations will respond to future

anthropogenic change [68,70].
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5. Conclusion
Molecular methods are already proving crucial to our under-

standing of the past distribution and abundance of whale

species and much scope remains to expand their application

to existing zooarchaeological collections. With further refine-

ment of these methods and the augmentation of cetacean

genomic reference datasets, we will be able to obtain increas-

ingly fine-grained identifications to the subspecies, ecotype

and population levels. The systematic integration of well-

dated archaeological and palaeontological remains with

high-throughput molecular analysis methods will reveal

changes in habitat, genetic diversity and population abun-

dance associated with climatic and anthropogenic factors

through millennial timescales [101,106].
Data accessibility. DNA sequences: GenBank accessions KT923090–
KT923101.

Authors’ contributions. C.S., K.M., K.R., L.S. carried out the molecular
laboratory work and participated in data analysis along with
Y.v.d.H.; M.C., M.H. conceived of the study; C.S., A.C., A.R., A.G.,
B.W. participated in the design of the study and collected
samples for analysis; C.S. and Y.v.d.H. drafted the manuscript; all
authors contributed to the manuscript and gave final approval for
publication.

Competing interests. We have no competing interests.

Funding. This work was supported by European Research Council
grant ORCA FP7-PEOPLE-2011-IIF 299075 to M.H. and M.C. (PIs)
and Labex Archimede programme IA- ANR-11-LABX-0032-01 at
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