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Continuous time case

Given a continuous vector function 1 t ∈ R → φ(t) ∈ R n , we let T(t, s) be the transition matrix associated with the non autonomous differential equation 2 ˙θ(t) = -φ(t)φ(t) θ(t) [START_REF] Aeyels | On the convergence of a time-variant linear differential equation arising in identification[END_REF] i.e. satisfying ∂ 1 T(t, s) = -φ(t)φ(t) T(t, s) , T(s, s) = I

where ∂ 1 denotes the partial derivative with respect to the first argument, t here. Let x be an arbitrary (constant) vector. We have

∂ 1 |T(t, s)x| 2 = -2|φ(t) T(t, s)x| 2
By defining the function fs as fs (t) = φ(t) T(t, s)x , fs (s) = φ(s) x

and integrating, we get

|T(t, s)x| 2 = |x| 2 -2 t s fs (r) 2 dr (4) 
On another hand, by integrating (2), we get T(t, s) = I -t s φ(r)φ(r) T(r, s)dr [START_REF] Ren | Stochastic adaptive prediction and model reference control[END_REF] Incorporating this in the definition of fs yields fs (t) = φ(t) T(t, s)x = φ(t) I - 

2 dr ≤ |x| 2 - 1 1 + t s |φ(u)| 2 du 2 t s f (u) 2 du ≤ |x| 2 - 1 1 + t s |φ(u)| 2 du 2 t s [φ(u) x] 2 du ≤ x    I - 1 1 + t s |φ(u)| 2 du 2 t s φ(u)φ(u) du    x
In other words we have simply

T(t, s) T(t, s) ≤ I - t s φ(u)φ(u) du 1 + t s |φ(u)| 2 du 2 (9)
Remark 1

1. Up to (7), we have identities. The conservativeness we may have in this last inequality is only in the majoration obtained in (8). See footnote 3.

2. The steps used up to (??) for the differential equation (1) can also be used for :

˙θ(t) = -ψ(t)φ(t) θ(t)
as we have for example in the least square algorithm.

3. With adapting the arguments used in the proof of the claim p.369 of Appendix B.2 of [START_REF] Marino | Nonlinear control design, geometric, adaptive and robust[END_REF], it should be possible to extend the above result to the system

η(t) = Aη(t) + Bφ(t) θ(t) , ˙θ(t) = -φ(t)Cη(t)
where the triple (B, A, C) is strictly positive real.

Other relations

We have also

∂ 2 T(t, s) = T(t, s)φ(s)φ(s)
By direct integration, we obtain the following other expression for T(t, s)

T(t, s) = I + s t T(t, u)φ(u)φ(u) du = I - t s T(t, u)φ(u)φ(u) du (10) 
We "merge" the two expression ( 5) and (10) by substituting one inside the integral of the other. This gives where the kernel k is defined as

T(t, s) = I - t s φ(r)φ(r) I -
k(r, u) = φ(r) T(r, u)φ(u)
By inserting the expression (5) of T in this definition of k we get

k(t, s) = φ(t) T(t, s)φ(s) = φ(t) I - t s φ(r)φ(r) T(r, s)dr φ(s) = φ(t) φ(s) - t s φ(t) φ(r)φ(r) T(r, s)φ(s)dr = φ(t) φ(s) - t s φ(t) φ(r)k(r, s)dr (12) 
With using (10), we obtain :

k(t, s) = φ(t) φ(s) - t s k(t, r)φ(r) φ(s)dr
A way to view the identity (12) is that, letting ϕ(t, s) = φ(t) φ(s), the kernel δ + ϕ is the inverse of the kernel δ -k where δ is the Dirac distribution. Precisely, for any C 1 test function f we obtain formally (a rigorous computation is given below)

t s (δ(t -u) + ϕ(t, u)) u s (δ(u -r) -k(u, r)) f (r)dr du = t s (δ(t -u) + ϕ(t, u)) f (u) - u s k(u, r)f (r)dr du = f (t) - t s k(r, s)f (r)dr + t s ϕ(t, u) f (u) - u s k(u, r)f (r)dr du = f (t) - t s k(r, s)f (r)dr + t s ϕ(t, u)f (u)du - t s t r ϕ(t, u)k(u, r)du f (r)dr = f (t) - t s k(r, s)f (r)dr + t s ϕ(t, u)f (u)du - t s (ϕ(t, r) -k(t, r)) f (r)dr = f (t) (13) 
We exploit this remark to reestablish the relation (6) between fs defined in (3) and f defined in (7). With (11) and (12), we obtain :

fs (t) = φ(t) x - t s φ(t) φ(r)φ(r) xdr + t s φ(t) φ(r) r s k(r, u)φ(u) xdu dr = [φ(t) x] - t s φ(t) φ(u)[φ(u) x]du + t s t u φ(t) φ(r)k(r, u)dr [φ(u) x]du = [φ(t) x] - t s φ(t) φ(u) - t u φ(t) φ(r)k(r, u)dr [φ(u) x]du = [φ(t) x] - t s k(t, u)[φ(u) x]du
With the definition of f this yields :

fs (r) = f (r) - r s k(r, u)f (u)du or equivalently fs (u) = u s (δ(u -r) -k(u, r)) f (r)dr
So, in view of (13), we suspect that we have

f (t) = t s (δ(t -u) + ϕ(t, u)) fs (u)du .
This is indeed the case since, with (12), we obtain

fs (t) + t s φ(t) φ(r) fs (r)dr = f (t) - t s k(t, r)f (r)dr + t s φ(t) φ(r) f (r) - r s k(r, u)f (u)du dr = f (t) + t s (φ(t) φ(r) -k(t, r))f (r)dr - t s φ(t) φ(r) r s k(r, u)f (u)du dr = f (t) + t s t r φ(t) φ(u)k(u, r)du f (r)dr - t s t u φ(t) φ(r)k(r, u)dr f (u)du = f (t)
This proves that the transformation f → fs is invertible and resestablishes (6). Similarly, to any arbitrary C 1 test function f , its transform ft defined as

ft (s) = f (s) - t s f (r)k(r, s)dr It satisfies ft (s) + t s φ(u) φ(s) ft (u)du = f (s)
And, when f is given by (10), we have

ft (s) = x φ(s) - t s
x φ(r)φ(r) T(r, s)φ(s)dr ,

= x I - t s φ(r)φ(r) T(r, s)dr φ(s) , = x T(t, s)φ(s) ,
where we have used [START_REF] Ren | Stochastic adaptive prediction and model reference control[END_REF] to obtain the last identity.

From this, we can for instance obtain an upperbound for T(t, s)T(t, s) .

Discrete time case

Given a sequence of vectors φ(t) ∈ R n bounded4 in norm by φ ≤ √ 2, we let T(t, s) be the transition matrix associated with the non autonomous discrete time system

θ(t) = I -φ(t)φ(t) θ(t -1) i.e. satisfying T(t, s) = I -φ(t)φ(t) T(t -1, s) , T(s, s) = I Our problem is to find sufficient conditions implying lim t→+∞ |T(t, s)| = lim t→+∞ sup x |T(t, s)x| |x| = 0 .
Let x be an arbitrary unit vector. We have

T(t, s)x = T(t -1, s)x -φ(t)φ(t) T(t -1, s)x
With denoting, for t ≥ s + 1,

fs (t) = φ(t) T(t -1, s)x , fs (s + 1) = φ(s + 1) x we get |T(t, s)x| 2 = T(t -1, s)x -φ(t) fs (t) T(t -1, s)x -φ(t) fs (t) = |T(t -1, s)x| 2 -2x T(t -1, s) φ(t) fs (t)φ(t) φ(t) fs (t) 2 = |T(t -1, s)x| 2 -2 -φ(t) φ(t) fs (t) 2 . . . |T(s + 1, s)x| 2 = |x| 2 -2 -φ(s + 1) φ(s + 1) fs (s + 1) 2
So summation gives

|T(t, s)x| 2 = |x| 2 - t r=s+1 2 -φ(r) φ(r) fs (r) 2 (14) 
On another hand, we have

T(t, s) = T(t -1, s) -φ(t)φ(t) T(t -1, s) T(t -1, s) = T(t -2, s) -φ(t -1)φ(t -1) T(t -2, s)
. . .

T(s + 1, s) = I -φ(s + 1)φ(s + 1) T(s, s)
So again summation gives

T(t, s) = I - t r=s+1 φ(r)φ(r) T(r -1, s) (15) 
Incorporating this in the expression of fs yields, for t ≥ s + 2,

fs (t) = φ(t) T(t -1, s)x = φ(t) I - t-1 r=s+1 φ(r)φ(r) T(r -1, s) x = φ(t) x - t-1 r=s+1 φ(t) φ(r) φ(r) T(r -1, s)x = f (t) - t-1 r=s+1 φ(t) φ(r) fs (r) ∀t ≥ s + 2 ,
where we have let

f (t) = φ(t) x (16) 
We have also fs (s + 1) = f (s + 1)

With the Cauchy-Schwarz inequality we obtain

f (u) 2 ≤ 1 + u-1 r=s+1 [φ(u) φ(r)] 2 u r=s+1 fs (r) 2 ≤ 1 + |φ(u)| 2 u-1 v=s+1 |φ(v)| 2 u r=s+1 fs (r) 2 ∀u ≥ s + 2 f (s + 1) 2 = fs (s + 1) 2
and therefore

t u=s+1 f (u) 2 ≤ fs (s + 1) 2 + t u=s+2 1 + |φ(u)| 2 u-1 v=s+1 |φ(v)| 2 u r=s+1 fs (r) 2 ≤ 1 + t u=s+2 1 + |φ(u)| 2 u-1 v=s+1 |φ(v)| 2 fs (s + 1) 2 + t r=s+2 t u=r 1 + |φ(u)| 2 u-1 v=s+1 |φ(v)| 2 fs (r) 2 ≤ (t -s) + t u=s+2 |φ(u)| 2 t-1 v=s+1 |φ(v)| 2 fs (s + 1) 2 + t r=s+2 (t -r + 1) + t u=r |φ(u)| 2 t-1 v=s+1 |φ(v)| 2 fs (r) 2 ≤ (t -s) + t u=s+2 |φ(u)| 2 t-1 v=s+1 |φ(v)| 2 t r=s+1 fs (r) 2 ≤   (t -s) + t u=s+1 |φ(u)| 2 2   t r=s+1 fs (r) 2 (17) 
With the definition (16) of f (u) this inequality is 

x t u=s+1 φ(u)φ(u) x ≤   (t -s) + t u=s+1 |φ(u)|
2 -φ(r) φ(r)   (t -s) + t u=s+1 |φ(u)| 2 2   x t u=s+1 φ(u)φ(u) x
In other words we have

T(t, s) T(t, s) ≤ I - min r∈{s+1,...,t} 2 -|φ(r)| 2   (t -s) + t u=s+1 |φ(u)| 2 2   t u=s+1 φ(u)φ(u) . ( 18 
)
Remark 2 The same final remarks as for the continuous time case can be done here. In particular about the majoration (17), a less conservative bound is obtained in the proof of [2, Theorem 4.5] (or of [5, Theorem 2.2, 1st column, p. 2052], for the case where the preprocessing mentioned at the beginning of this section is

φ(t) = Φ(t) r(t) , r(t) = r(t -1) + |Φ(t)| 2
and the analysis in carried out exploiting the assumption that the sequence r goes to infinity in some specific way.

Other relations

We have also

T(t, s) = T(t, s + 1) I -φ(s + 1)φ(s + 1)
and therefore

T(t, s) = T(t, s + 1) -T(t, s + 1)φ(s + 1)φ(s + 1) T(t, s + 1) = T(t, s + 2) -T(t, s + 2)φ(s + 2)φ(s + 2)
. . .

T(t, t -1) = I -T(t, t)φ(t)φ(t)
So again by summation, we get an indentity similar to ( 15)

T(t, s) = I - t u=s+1 T(t, u)φ(u)φ(u) (19) 
Let us mix the two expressions (15) and ( 19) of T we have found :

T(t, s) = I - t r=s+1 φ(r)φ(r) T(r -1, s) = I -φ(s + 1)φ(s + 1) - t r=s+2 φ(r)φ(r) I - r-1 u=s+1 T(r -1, u)φ(u)φ(u) = I - t r=s+1 φ(r)φ(r) + t r=s+2 φ(r) r-1 u=s+1 k(r, u)φ(u) = I - t u=s+1 φ(u)φ(u) + t-1 u=s+1 t r=u+1 φ(r)k(r, u) φ(u) = I + t u=s+1 t r=u φ(r)k(r, u) φ(u)
with denoting k(r, u) = φ(r) T(r -1, u)φ(u) ∀r ≥ u + 1 .

Note that we have k(r, r -1) = φ(r) φ(r -1) .

(20) Also, with the expression (15) of T, we see that k satisfies, for t ≥ s + 1,

k(t, s) = φ(t) T(t -1, s)φ(s) = φ(t) I - t-1 r=s+1 φ(r)φ(r) T(r -1, s) φ(s) = φ(t) φ(s) - t-1 r=s+1 φ(t) φ(r)φ(r) T(r -1, s)φ(s) = φ(t) φ(s) - t-1 r=s+1 φ(t) φ(r)k(r, s) (21) 
Note that we have also

k(t, s) = φ(t) φ(s) - t-1 r=s+1 k(t, u)φ(u) φ(s) (22) 
The identities ( 21) and ( 22) are is very meaningful. A closer look shows that by denoting :

-K(t, s) be the lower triangular matrix with 1 on the diagonal and k(u, v) as element of raw u and column v, -L(t, s) be the lower triangular matrix with 1 on the diagonal and φ(u) φ(v) as element of raw u and column v, we have L(t, s)K(t, s) = K(t, s)L(t, s) = I Precisely, let f (t) be arbitrary. We obtain, with (20) and (21),

f (t) - t-1 u=s+1 k(t, u) f (u) + t-1 r=s+1 φ(t) φ(r) f (r) - r-1 u=s+1 k(r, u) f (u) = f (t) - t-1 u=s+2 k(t, u)f (u) -k(t, s + 1)f (s + 1) + t-1 r=s+2 φ(t) φ(r) f (r) - r-1 u=s+1 k(r, u)f (u) + φ(t) φ(s + 1)f (s + 1) = f (t) + t-1 u=s+1 φ(t) φ(u) -k(t, u) f (u) - t-2 u=s+1 t-1 r=u+1 φ(t) φ(r)k(r, u) f (u) = f (t) + t-1 u=s+1 φ(t) φ(u) -k(t, u) f (u) - t-2 u=s+1 k(t, u) -φ(t) φ(u) f (u) = f (t) + φ(t) φ(t -1) -k(t, t -1) f (t -1) = f (t) (23) 
A similar result can be obtained from (22).

Convergence for the discrete and continuous time case

Let t i be strictly positive real numbers going to +∞ with t 0 = 0. For any t, there exists τ (t) such that t is between t τ (t) and t 1+τ (t) . We have seen that both in the discrete and continuous time case, there exist a real number π i in [0, 1] satisfying

|T(t i , t i-1 )| ≤ 1 -π i Specifically, since √ 1 -a ≤ 1 -a 2
in the continuous time case, (9) gives

π i ≥ 1 2 λ min t i t i-1 φ(u)φ(u) du 1 + t i t i-1 |φ(u)| 2 du 2 (24) 
With denoting φi = esssup t∈[t i-1 ,t i ] |φ(t)|, a more conservative lowerbound for π i is

π i ≥ 1 2 λ min t i t i-1 ≤ φ(u)φ(u) du 1 + (t i -t i-1 ) 2 φ4 i (25) 
Also, in [START_REF] Aeyels | On the convergence of a time-variant linear differential equation arising in identification[END_REF], the following assumption is introduced: There exist α and β such that there exists a function T such that we have, for all t ≥ 0 α I ≤ T (t) t φ(r)φ(r) dr ≤ β I .

Since we have

T (t) t |φ(r)| 2 dr = trace T (t) t φ(r)φ(r) dr ≤ nλ max T (t) t φ(r)φ(r) du
The above assumption implies that,by letting

t i = T i (0) ,
we have, for all i α ≤ λ min

t i t i-1
φ(r)φ(r) dr ,

t i t i-1 |φ(r)| 2 dr ≤ n β
and therefore

π i = α 1 + n 2 β 2
in the discrete time case, with φ2 smaller than 2, (18) gives

π i ≥ min r∈{1+t i-1 ,...,t i } 2 -|φ(r)| 2 2   (t i -t i-1 -1) +   t i u=1+t i-1 |φ(u)| 2   2   λ min   t i 1+t i-1 φ(u)φ(u)   (26)
or the more conservative lower bound

π i = 2 -φ2 2(t i -t i-1 -1)(1 + (t i -t i-1 -1) φ4 ) λ min   t i 1+t i-1 φ(u)φ(u)   So we have |T(t, 0)| = T(t, t τ (t) ) τ (t) i=1 T(t i , t i-1 ) ≤ T(t, t τ (t) ) τ (t) i=1 |T(t i , t i-1 )| ≤ τ (t) i=1 (1 -π i ) ≤ exp   - τ (t) i=1 π i  
where to obtain the last inequality we have used the property

(1 -x) ≤ exp(-x) ∀x ∈ R .
We conclude that |T(t, 0)| tends to 0 if we can find T and the t i 's such that we get

∞ i=1 π i = +∞ .
Discussion : To show the interest of this result, we compare it with the persistent excitation (spanning) condition. We do this here for the continuous time case only, but the same holds for the discrete time case. The vector function φ is said persistently exciting or spanning if there exist two strictly positive real numbers ε and T such that, for any t, the Gram matrix It is established inn [START_REF] Morgan | On the uniform asymptotic stability of certain linear nonautonomous differential equations[END_REF] that this condition is necessary and sufficient to have the uniform asymptotic stability of the origin for (1)

The condition of non summability of π i above implies attractiveness but not uniform attractiveness. It can be seen weaker than the persistent excitation or spanning condition in two ways: the level ε may decrease with t, the width T of the time window may increase with t.

Specifically, let T be fixed and let ε i be the level reached by the Gram matrix on the ith time window [(i -1)T, iT ], i.e.

ε i = λ min iT (i-1)T
φ(s)φ(s) ds then, with (25), π i is not summable if ε i is not, i.e. Now, let ε be fixed and, with t 0 = 0, let t i be the smallest time such that the Gram matrix on the time window [t i-1 , t] is larger than the level ε, i.e. Addition of the reference [START_REF] Aeyels | On the convergence of a time-variant linear differential equation arising in identification[END_REF] suggested by Romeo Ortega and of the comment on how π i can be chosen constant when the assumption proposed in that paper holds.

Modifications on January 15, 2017 Addition of the discussion on the relation between non summability of π i and the persistent excitation (spanning) condition.

Modifications on January 13, 2017

The lower bounds (24) and ( 26) have been changed to follow a suggestion of Romeo Ortega of giving less conservative lower bound for π i . Before they were, with t i+1 -t i ≤ T , -for the continuous time case,

π i = 1 2(1 + T 2 φ4 ) λ min t i t i-1
φ(u)φ(u) du -for the discrete time case

π i = 2 -φ2 2T (1 + T φ4 ) λ min   t i 1+t i-1 φ(u)φ(u)  

Modifications on may 18, 2018

The paragraphs "Other relations" have been added. They are actually extracted from a previous note.

  )φ(r) T(r, s)dr x = φ(t) x -t s φ(t) φ(r) φ(r) T(r, s)x dr = f (t) -t s φ(t) φ(r) fs (r)dr(6)where we have letf (t) = φ(t) x .(7)It follows that we have 3 |f (u) -fs (u)| 2 = φ(u)

  , u)φ(u) du dr (11)

  φ(s) ds on a time window with width T is above the level ε, i.e. λ min t+T t φ(s)φ(s) ds ≥ ε ∀t ≥ 0 .

  )φ(s) ds = +∞ .

1 1 +

 1 t i = min t : λ min t t i-1 φ(s)φ(s) ds ≥ ε t then, with (25), π i is not summable if ∞ i=1 (t i -t i-1 ) 2 = +∞ .4 History of the versionsModifications on January 20, 2017

See footnote 2