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Abstract

We establish convergence to zero of the solutions of

˙̃
θ(t) = −φ(t)φ(t)>θ̃(t) or θ̃(t) = θ̃(t− 1) − φ(t)φ(t)>θ̃(t− 1)

under a possibly “vanishing persistent” excitation condition.

1 Continuous time case

Given a continuous vector function1 t ∈ R 7→ φ(t) ∈ Rn, we let T(t, s) be the transition matrix
associated with the non autonomous differential equation2

˙̃θ(t) = −φ(t)φ(t)>θ̃(t) (1)

i.e. satisfying
∂1T(t, s) = −φ(t)φ(t)>T(t, s) , T(s, s) = I (2)

where ∂1 denotes the partial derivative with respect to the first argument, t here. We are
interested in sufficient conditions implying

lim
t→+∞

|T(t, s)| = lim
t→+∞

sup
x

|T(t, s)x|
|x|

= 0 .

∗MINES ParisTech, PSL Research University, CAS - Centre automatique et systèmes, 35 rue St Honoré
77300 Fontainebleau, France

1About the smoothness of φ we need only the differential equation to have solutions; so, since we have
boundedness, measurability is sufficient. We need also to be able to change the order of integration.

2 The function function φ is often obtained from a pre-processing from a “raw” function say Φ. It may be

φ(t) = γ(t)
Φ(t)√

1 + |Φ(t)|2
or φ(t) = γ(t)

Φ(t)√
r(t)

, ṙ(t) = −λr(t) + |Φ(t)|2.
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Let x be an arbitrary (constant) vector. We have

∂1 |T(t, s)x|2 = −2|φ(t)>T(t, s)x|2

By defining the function f̂s as

f̂s(t) = φ(t)>T(t, s)x , f̂s(s) = φ(s)>x

and integrating, we get

|T(t, s)x|2 = |x|2 − 2

∫ t

s

∣∣∣f̂s(r)∣∣∣2 dr (3)

On another hand, by integrating (2), we get

T(t, s) = I −
∫ t

s

φ(r)φ(r)>T(r, s)dr

Incorporating this in the definition of f̂s yields

f̂s(t) = φ(t)>T(t, s)x

= φ(t)>
(
I −

∫ t

s

φ(r)φ(r)>T(r, s)dr

)
x

= φ(t)>x −
∫ t

s

(
φ(t)>φ(r)

) (
φ(r)>T(r, s)x

)
dr

= f(t) −
∫ t

s

(
φ(t)>φ(r)

)
f̂s(r)dr (4)

where we have let
f(t) = φ(t)>x .

It follows that we have

f(u)2 ≤ 2f̂s(u)2 + 2

(∫ u

s

φ(u)>φ(r)f̂s(r)dr

)2

≤ 2f̂s(u)2 + 2

[∫ u

s

(
φ(u)>φ(v)

)2
dv

] [∫ u

s

f̂s(r)
2dr

]
≤ 2f̂s(u)2 + 2|φ(u)|2

[∫ u

s

|φ(v)|2dv
] [∫ u

s

f̂s(r)
2dr

]
∫ t

s

f(u)2du ≤ 2

∫ t

s

f̂s(u)2du + 2

∫ t

s

|φ(u)|2
(∫ u

s

|φ(v)|2dv
)(∫ u

s

f̂s(r)
2dr

)
du

≤ 2

∫ t

s

f̂s(u)2du + 2

(∫ t

s

|φ(u)|2du
)(∫ t

s

|φ(v)|2dv
)(∫ t

s

f̂s(r)
2dr

)
≤ 2

[
1 +

(∫ t

s

|φ(u)|2du
)2
] (∫ t

s

f̂s(r)
2dr

)
(5)
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So we get finally

|T(t, s)x|2 = |x|2 − 2

∫ t

s

∣∣∣f̂s(r)∣∣∣2 dr
≤ |x|2 − 1

1 +
(∫ t

s
|φ(u)|2du

)2 ∫ t

s

f(u)2du

≤ |x|2 − 1

1 +
(∫ t

s
|φ(u)|2du

)2 ∫ t

s

[φ(u)>x]2du

≤ x>

I − 1

1 +
(∫ t

s
|φ(u)|2du

)2 ∫ t

s

φ(u)φ(u)>du

 x

In other words we have simply

T(t, s)>T(t, s) ≤ I −

∫ t

s

φ(u)φ(u)>du

1 +

(∫ t

s

|φ(u)|2du
)2 (6)

Remark 1

1. Up to (4), we have identities. The conservativeness we may have in this last inequality
is only in the majoration obtained in (5).

2. An upperbound for T(t, s)T(t, s)> can be obtained in a very similar way but starting
from

∂2T(t, r) = T(t, r)φ(r)φ(r)> ,

integrating in r backwards from t to s and using

f̂t(r) = x>T(t, r)φ(r) , f̂t(t) = x>φ(t)

instead of f̂s(r).

3. The steps used up to (4) for the differential equation (1) can also be used for :

˙̃θ(t) = −ψ(t)φ(t)>θ̃(t)

as we have for example in the least square algorithm.

4. With adapting the arguments used in an Appendix of the book by Marino and Tomei,
it should be possible to extend the above result to the system

η̇(t) = Aη(t) +Bφ(t)>θ̃(t) , ˙̃θ(t) = −φ(t)Cη(t)

where the triple (B,A,C) is strictly positive real.
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2 Discrete time case

Given a sequence of vectors φ(t) ∈ Rn bounded3 in norm by φ̄ ≤
√

2, we let T(t, s) be the
transition matrix associated with the non autonomous discrete time system

θ̃(t) =
(
I − φ(t)φ(t)>

)
θ̃(t− 1)

i.e. satisfying
T(t, s) =

(
I − φ(t)φ(t)>

)
T(t− 1, s) , T(s, s) = I

Our problem is to find sufficient conditions implying

lim
t→+∞

|T(t, s)| = lim
t→+∞

sup
x

|T(t, s)x|
|x|

= 0 .

Let x be an arbitrary unit vector. We have

T(t, s)x = T(t− 1, s)x − φ(t)φ(t)>T(t− 1, s)x

With denoting, for t ≥ s+ 1,

f̂s(t) = φ(t)>T(t− 1, s)x , f̂s(s+ 1) = φ(s+ 1)>x

we get

|T(t, s)x|2 =
(
T(t− 1, s)x− φ(t)f̂s(t)

)> (
T(t− 1, s)x− φ(t)f̂s(t)

)
= |T(t− 1, s)x|2 − 2x>T(t− 1, s)>φ(t)f̂s(t)φ(t)>φ(t)f̂s(t)

2

= |T(t− 1, s)x|2 −
(
2− φ(t)>φ(t)

)
f̂s(t)

2

...

|T(s+ 1, s)x|2 = |x|2 −
(
2− φ(s+ 1)>φ(s+ 1)

)
f̂s(s+ 1)2

So summation gives

|T(t, s)x|2 = |x|2 −
t∑

r=s+1

(
2− φ(r)>φ(r)

)
f̂s(r)

2 (7)

On another hand, we have

T(t, s) = T(t− 1, s) − φ(t)φ(t)>T(t− 1, s)

T(t− 1, s) = T(t− 2, s) − φ(t− 1)φ(t− 1)>T(t− 2, s)
...

T(s+ 1, s) = I − φ(s+ 1)φ(s+ 1)>T(s, s)

So again summation gives

T(t, s) = I −
t∑

r=s+1

φ(r)φ(r)>T(r − 1, s)

3See footnote 2
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Incorporating this in the expression of f̂s yields, for t ≥ s+ 2,

f̂s(t) = φ(t)>T(t− 1, s)x

= φ(t)>

(
I −

t−1∑
r=s+1

φ(r)φ(r)>T(r − 1, s)

)
x

= φ(t)>x −
t−1∑

r=s+1

(
φ(t)>φ(r)

) (
φ(r)>T(r − 1, s)x

)
= f(t) −

t−1∑
r=s+1

φ(t)>φ(r)f̂s(r) ∀t ≥ s+ 2 ,

where we have let
f(t) = φ(t)>x (8)

We have also
f̂s(s+ 1) = f(s+ 1)

With the Cauchy-Schwarz inequality we obtain

f(u)2 ≤

(
1 +

u−1∑
r=s+1

[φ(u)>φ(r)]2

)(
u∑

r=s+1

f̂s(r)
2

)

≤

(
1 + |φ(u)|2

u−1∑
v=s+1

|φ(v)|2
)(

u∑
r=s+1

f̂s(r)
2

)
∀u ≥ s+ 2

f(s+ 1)2 = f̂s(s+ 1)2

and therefore
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t∑
u=s+1

f(u)2

≤ f̂s(s+ 1)2 +
t∑

u=s+2

(
1 + |φ(u)|2

u−1∑
v=s+1

|φ(v)|2
)(

u∑
r=s+1

f̂s(r)
2

)

≤

(
1 +

t∑
u=s+2

(
1 + |φ(u)|2

u−1∑
v=s+1

|φ(v)|2
))

f̂s(s+ 1)2

+
t∑

r=s+2

(
t∑

u=r

(
1 + |φ(u)|2

u−1∑
v=s+1

|φ(v)|2
))

f̂s(r)
2

≤

(
(t− s) +

(
t∑

u=s+2

|φ(u)|2
)(

t−1∑
v=s+1

|φ(v)|2
))

f̂s(s+ 1)2

+
t∑

r=s+2

(
(t− r + 1) +

(
t∑

u=r

|φ(u)|2
)(

t−1∑
v=s+1

|φ(v)|2
))

f̂s(r)
2

≤

(
(t− s) +

(
t∑

u=s+2

|φ(u)|2
)(

t−1∑
v=s+1

|φ(v)|2
))(

t∑
r=s+1

f̂s(r)
2

)

≤

(t− s) +

(
t∑

u=s+1

|φ(u)|2
)2
( t∑

r=s+1

f̂s(r)
2

)
(9)

With the definition (8) of f(u) this inequality is

x>

(
t∑

u=s+1

φ(u)φ(u)>

)
x ≤

(t− s) +

(
t∑

u=s+1

|φ(u)|2
)2
( t∑

r=s+1

f̂s(r)
2

)

With (7), it allows us to obtain the following upperbound for |T(t, s)x|2

|T(t, s)x|2 ≤ |x|2 − min
r∈{s+1,...,t}

{
2− φ(r)>φ(r)

}( t∑
r=s+1

f̂s(r)
2

)

≤ |x|2 −
min

r∈{s+1,...,t}

{
2− φ(r)>φ(r)

}
(t− s) +

(
t∑

u=s+1

|φ(u)|2
)2
 x>

(
t∑

u=s+1

φ(u)φ(u)>

)
x

In other words we have

T(t, s)>T(t, s) ≤ I −
min

r∈{s+1,...,t}

{
2− |φ(r)|2

}
(t− s) +

(
t∑

u=s+1

|φ(u)|2
)2

(

t∑
u=s+1

φ(u)φ(u)>

)
. (10)
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Remark 2 The same final remarks as for the continuous time case can be done here. In
particular about the majoration (9), a less conservative bound is obtained in the proof of [1,
Theorem 4.5] (or of [2, Theorem 2.2, 1st column, p. 2052], for the case where the preprocessing
mentioned at the beginning of this section is

φ(t) =
Φ(t)√
r(t)

, r(t) = r(t− 1) + |Φ(t)|2

and the above analysis in carried out exploiting the assumption that the sequence r goes to
infinity in some specific way.
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3 Convergence for the discrete and continuous time case

Let ti be strictly positive real numbers going to +∞ with t0 = 0. For any t, there exists τ(t)
such that t is between tτ(t) and t1+τ(t). We have seen that both in the discrete and continuous
time case, there exist a real number πi in [0, 1] satisfying

|T(ti, ti−1)| ≤ 1− πi

Specifically, since
√

1− a ≤ 1− a
2

– in the continuous time case, (6) gives

πi ≥
1

2

λmin

(∫ ti

ti−1

φ(u)φ(u)>du

)
1 +

(∫ ti

ti−1

|φ(u)|2du
)2 (11)

With denoting φ̄i = esssupt∈[ti−1,ti]
|φ(t)|, a more conservative lowerbound for πi is

πi ≥
1

2

λmin

(∫ ti

ti−1

φ(u)φ(u)>du

)
1 + (ti − ti−1)2φ̄4

i

(12)

– in the discrete time case, with φ̄2 smaller than 2, (10) gives

πi ≥
min

r∈{1+ti−1,...,ti}

{
2− |φ(r)|2

}
2

(ti − ti−1 − 1) +

 ti∑
u=1+ti−1

|φ(u)|2
2

λmin

 ti∑
1+ti−1

φ(u)φ(u)>

 (13)
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or the more conservative lower bound

πi =
2− φ̄2

2(ti − ti−1 − 1)(1 + (ti − ti−1 − 1)φ̄4)
λmin

 ti∑
1+ti−1

φ(u)φ(u)>


So we have

|T(t, 0)| =

∣∣∣∣∣∣T(t, tτ(t))

τ(t)∏
i=1

T(ti, ti−1)

∣∣∣∣∣∣
≤

∣∣T(t, tτ(t))
∣∣ τ(t)∏
i=1

|T(ti, ti−1)|

≤
τ(t)∏
i=1

(1− πi)

≤ exp

− τ(t)∑
i=1

πi


where to obtain the last inequality we have used the property

(1− x) ≤ exp(−x) ∀x ∈ R .

We conclude that |T(t, 0)| tends to 0 if we can find T and the ti’s such that we get

∞∑
i=1

πi = +∞ .

Discussion : To show the interest of this result, we compare it with the persistent excitation
(spanning) condition. We do this here for the continuous time case only, but the same holds
for the discrete time case.

The vector function φ is said persistently exciting or spanning if there exist two strictly

positive real numbers ε and T such that, for any t, the Gram matrix

∫ t+T

t

φ(s)φ(s)>ds on a

time window with width T is above the level ε, i.e.

λmin

(∫ t+T

t

φ(s)φ(s)>ds

)
≥ ε ∀t ≥ 0 .

The condition of non summability of πi, says that the above property can be relaxed in
two ways: the level ε may decrease with t, the width T of the time window may increase with
t.

Specifically, let T be fixed and let εi be the level reached by the Gram matrix on the ith
time window [(i− 1)T, iT ], i.e.

εi = λmin

(∫ iT

(i−1)T
φ(s)φ(s)>ds

)

8



then, with (12), πi is not summable if εi is not, i.e.

∞∑
i=1

λmin

(∫ iT

(i−1)T
φ(s)φ(s)>ds

)
= +∞ .

Now, let ε be fixed and, with t0 = 0, let ti be the smallest time such that the Gram matrix
on the time window [ti−1, t] is larger than the level ε, i.e.

ti = min

t : λmin

(∫ t
ti−1

φ(s)φ(s)>ds
)
≥ ε

t

then, with (12), πi is not summable if

∞∑
i=1

1

1 + (ti − ti−1)2
= +∞ .

4 History of the versions

Modifications on January 15, 2017
Addition of the discussion on the relation between non summability of πi and the per-
sistent excitation (spanning) condition.

Modifications on January 13, 2017
The lower bounds (11) and (13) have been changed to follow a suggestion of Romeo
Ortega of giving less conservative lower bound for πi. Before they were, with ti+1−ti ≤ T ,

– for the continuous time case,

πi =
1

2(1 + T 2φ̄4)
λmin

(∫ ti

ti−1

φ(u)φ(u)>du

)
– for the discrete time case

πi =
2− φ̄2

2T (1 + T φ̄4)
λmin

 ti∑
1+ti−1

φ(u)φ(u)>


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