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Convergence of the gradient algorithm
for linear regression models
in the continuous and discrete time cases

Laurent Praly*

December 26, 2016

Abstract

We establish convergence to zero of the solutions of

0(t) = —o(t)e()T0(t) or 0(t) = 0(t—1) — ¢(t)o(t) "0t — 1)

under a possibly “vanishing persistent” excitation condition.

1 Continuous time case

Given a continuous vector function! t € R + ¢(t) € R™, bounded? in norm by ¢, we let T(t, s)
be the transition matrix associated with the non autonomous differential equation

0(t) = —p()o(t)T () (1)

i.e. satisfying

x(t,s) = —o(t)o(t) 'T(t,s) ,  F(s,s) = I (2)

where 0; denotes the partial derivative with respect to the first argument, ¢ here. We are
interested in sufficient conditions implying

lim |F(¢,s)] = lim supM =0.

li
t—+o00 t—+00 o ||

Let x be an arbitrary (constant) vector. We have
o1 1% (t, ) = —206()TE(t, 5)al?
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! About the smoothness of ¢ we need only the differential equation to have solutions; so, since we have
boundedness, measurability is sufficient. We need also to be able to change the order of integration.

2 To obtain a bounded function ¢ a pre-processing from a “raw” function say ® may be required. Often
encountered pre-processsings are

ot) = ()] or ot) = (1)




By defining the function fs as R
fs(8) = o(t)"T(t, s)a

and integrating, we get
Tt ) = [af? —2/)f (3)

On another hand, by integrating (2), we get

ts-[—/¢ ) Z(r, s)d

Incorporating this in the definition o ffs yields

fit) = o) T(t,s)z

)
. (1 - [ oot se s)dr>x

— 607z — [ (60760 (6(r)TE(r, 5)a) dr

— f) - / (6(H)T6(r) fu(r)d (4)

where we have let

It follows that we have

< 2f, To(v)) de/frdr}
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/f(u)duSQ/f(u)du+2/\¢u)] (/ e ]dv)(/f dr)du
< 2 [ fwrau 2 ([ owran) ([owra) ([ forar)
< 2 1+< :ch(u)I?du)Q] Stfs(r)er) (5)

So we get finally



~

T s)l? = |2 — Q/t )| ar

1 t
< o - 7 | flu)du
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In other words we have simply

T(t,s)"Z(t,s) < I — -

Remark 1

1. Up to (4), we have identities. The conservativeness we may have in this last inequality
is only in the majoration obtained in (5).

2. An upperbound for Z(t,s)%(t,s)" can be obtained in a very similar way but starting
from

I(t,r) = T(t,r)o(r)o(r)"

integrating in r backwards from ¢ to s and using

filr) = 2" S(t,7)o(r)
instead of fy(r).

3. The steps used up to (4) for the differential equation (1) can also be used for :

0(t) = —v(t)e(t) 0(t)

as we have for example in the least square algorithm.

2 Discrete time case

Given a sequence of vectors ¢(t) € R” bounded® in norm by ¢ < /2, we let T(t,s) be the
transition matrix associated with the non autonomous discrete time system

0(t) = (I-o(t)o(t)")O(t —1)

3See footnote 2



i.e. satisfying
Tt,s) = (I—odt)op(t)")T(t—1,8) T(s,s) =

Our problem is to find sufficient conditions implying

t
lim |ZT(¢,s)] = lim sup (2, s)e]
t——+o0 t—+oo 4 |[E|

= 0.

Let = be an arbitrary unit vector. We have
T(t,s)z =F(t —1,8)r — o(t)p(t) T(t —1,5)x
With denoting, for ¢t > s+ 1,
folt) = ()Tt = 1,8)z

we get

Tl = (36— 1) = o0f(0) (30— L)~ o(0)fu(1))

= |T(t -1, 8)2f* — 227 F(t - 1, S)%A(?f)fs(75)925(15)T925(15)J"l(?f)2
= [Tt -1 s)zf = (2— (1) 6(1)) fu(t)”

(s +1,8)2]* = |z|* — (2 —p(s+ 1) p(s + 1)) fs(s +1)?
So summation gives
t

[Tt s)2fP = |2 = Y (2 o) () filr)?

On another hand, we have )
T(t,s) = T(t—1,5) — o(t)o(t) Tt — 1, 5)
T(t—1,8) = T(t—2,8) — d(t— D)ot —1)'T(t—2,5)

T(s+1,8) = I — ¢p(s+1)p(s+1)"%(s, s)

So again summation gives
t

Tt,s) = 1 — > ¢(r)e(r) T(r —1,5)

r=s+1

Incorporating this in the expression of fs yields, for t > s + 2,

fot) = o(t)T3(t -1 8)
= (]— qu TTT—IS))
r=s+1
= o)z — Y (e(t)To(r) (6(r)TT(r — 1, 5)x)

— ) - S 60T Vezst2,

r=s+1



where we have let

We have also

f(s+1) = ¢(s + 1) (s,8) = f(s+1)
With the Cauchy-Schwarz inequality we obtain

fwp < <1+ 3 ms(um(r)]?) (Z fs(r)z)

=s+1 r=s+1
< <1+|¢ |QZ|¢ )(Zfs ) Vu> s+ 2
v=s+1 r=s+1

fls+1? = fis+1)

and therefore
> fw)?
u=s+1
< fls+1)2 4+ ) <1+|¢> ) Z |6(v) )(Z fi(r )

u=s+2 v=s+1 r=s+1
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With the definition (7) of f(u) this inequality is
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With (6), it allows us to obtain the following upperbound for |Z(¢, s)z|?

[Tt )2 < Jof =  min {2-¢(r) 6(r)} (Z fs(r)2>

r=s+1

min {2 ¢(r) o(r)} ;
< 2P - ’ o ( > ¢><u>¢<u>T) x
a—@+<§jwww> -

In other words we have

min {2 — QS(T)TQS(T)} ¢
T(t, ) T(t,s) < I — , 5 (Z ¢(U)¢(U)T>
@—s%%(}j!d@ﬁ) o

Remark 2 The same final remarks as for the continuous time case can be done here. In
particular about the majoration (8), a less conservative bound is obtained in the proof of [1,
Theorem 4.5] (or of [2, Theorem 2.2, 1st column, p. 2052], for the case where the preprocessing
mentioned at the beginning of this section is

o(t)
r(t)

and the above analysis in carried out exploiting the assumption that the sequence r goes to
infinity in some specific way.

¢(t) = , () = rt=1) o)
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3 Convergence for the discrete and continuous time case

Let T and t; be strictly positive real numbers satisfying
tigi—t; < T

and let ¢y = 0. For any ¢, there exists 7(t) such that ¢ is between ¢,y and ti;,4). We have
seen that both in the discrete and continuous time case, there exist a real number 7; in [0, 1]
satisfying

[Tt ti)] < 1—m

Specifically, assuming ¢ — |¢(t)| is bounded by ¢, and since /1 —a <1 —§



— in the continuous time case, we have

m = g e ( / ¢<u>¢<umu)

— in the discrete time case, with ¢? smaller than 2, we have

2 ¢” -
Ty = = Amin P(u)p(u)"
2T (1 + T¢*) h;l (w)o(u)
So we have
(1)
T(L,0)| = |T(ttaw) [ T(tir i)
i=1
(®)
< [Tt tw)| []1E tim)]
i=1
(1)
i=1
7(t)
<

exp —5 ;
i=1

where to obtain the last inequality we have used the property
(1—z) < exp(—x) VeeR.

We conclude that |Z(t,0)| tends to 0 if we can find 7" and the ¢;’s such that we get

00
E T = +00 .
=1



