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Abstract

We introduce a one-parameter family of random infinite quadrangulations of the
half-plane, which we call the uniform infinite half-planar quadrangulations with skew-
ness (UIHPQp for short, with p P r0, 1{2s measuring the skewness). They interpolate
between Kesten’s tree corresponding to p “ 0 and the usual UIHPQ with a general
boundary corresponding to p “ 1{2. As we make precise, these models arise as local
limits of uniform quadrangulations with a boundary when their volume and perimeter
grow in a properly fine-tuned way, and they represent all local limits of (sub)critical
Boltzmann quadrangulations whose perimeter tend to infinity. Our main result shows
that the family pUIHPQpqp approximates the Brownian half-planes BHPθ, θ ě 0, re-
cently introduced in [8]. For p ă 1{2, we give a description of the UIHPQp in terms of
a looptree associated to a critical two-type Galton-Watson tree conditioned to survive.

Key words: Uniform infinite half-planar quadrangulation, Brownian half-plane, Kesten’s
tree, multi-type Galton-Watson tree, looptree, Boltzmann map.
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1 Introduction

1.1 Overview

The purpose of this paper is to introduce and study a one-parameter family of random
infinite quadrangulations of the half-plane, which we denote by pUIHPQpq0ďpď1{2 and call the
uniform infinite half-planar quadrangulations with skewness. Two members play a particular
role: The choice p “ 0 corresponds to Kesten’s tree, cf. Proposition 1 below, whereas the
choice p “ 1{2 corresponds to the standard uniform infinite half-planar quadrangulation
UIHPQ with a general boundary.

Kesten’s tree [30] is a random infinite planar tree, which we may view as a degenerate
quadrangulation with an infinite boundary, but no inner faces. It arises as the local limit
of critical Galton-Watson trees conditioned to survive. The standard UIHPQp“ UIHPQ1{2q

forms the half-planar analog of the uniform infinite planar quadrangulation introduced by
Krikun [31], after the seminal work of Angel and Schramm [7] on triangulations of the plane.
Curien and Miermont [25] showed that the UIHPQ arises as a local limit of uniformly chosen
quadrangulations of the two-sphere with n inner faces and a boundary of size 2σ, upon
letting first n Ñ 8 and then σ Ñ 8 (see Angel [3] for the case of triangulations with a
simple boundary).
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We will define each UIHPQp in Section 4 by means of an extension of the Bouttier-Di
Francesco-Guitter mapping to infinite quadrangulations with a boundary. In the first part
of this paper, we will discuss various local limits and scaling limits which involve the fam-
ily pUIHPQpqp. More precisely, in Theorem 1, we will see that each UIHPQp appears as a
local limit as n tends to infinity of uniform quadrangulations Qσn

n with n inner faces and a
boundary of size 2σn, for an appropriate choice of σn “ σnppq Ñ 8. In Proposition 2, we
argue that the family pUIHPQpqp consists precisely of the infinite quadrangulations with a
boundary which are obtained as local limits σ Ñ 8 of subcritical Boltzmann quadrangu-
lations with a boundary of size 2σ. This result will prove helpful in our description of the
UIHPQp given in Theorem 4.

We will then turn to distributional scaling limits of the family pUIHPQpqp in the so-called
local Gromov-Hausdorff topology. In Theorems 2 and 3, we will clarify the connection between
the (discrete) quadrangulations UIHPQp and the family pBHPθqθě0 of Brownian half-spaces
with skewness θ introduced in [8]. More specifically, upon rescaling the graph distance
by a factor a´1

n Ñ 0, we prove that each BHPθ is the distributional limit of the rescaled
spaces a´1

n ¨ UIHPQpn , if pn “ pnpθ, anq is adjusted in the right manner (Theorem 2). In
our setting, convergence in the local Gromov-Hausdorff sense amounts to show convergence
of rescaled metric balls around the roots of a fixed but arbitrarily large radius in the usual
Gromov-Hausdorff topology; see Section 1.2.7.

In [8], a classification of all possible non-compact scaling limits of pointed uniform random
quadrangulations with a boundary pV pQσn

n q, a
´1
n dgr, ρnq has been given, depending on the

asymptotic behavior of the boundary size 2σn and on the choice of the scaling factor an Ñ
8 (in the local Gromov-Hausdorff topology, with the distinguished point ρn lying on the
boundary). In this paper, we address the boundary regime corresponding to the portion
x ě 1 of the y “ 0 axis in Figure 1 (in hashed marks), which was left untouched in [8]. As
we show, it corresponds to a regime of unrescaled local limits, namely the family pUIHPQpqp.

We finally give a branching characterization of the UIHPQp when p ă 1{2. For that
purpose, we will adapt the concept of discrete random looptrees introduced by Curien and
Kortchemski [22]. We will see that the UIHPQp admits a representation in terms of a loop-
tree associated to a two-type version of Kesten’s infinite tree. Informally, we will replace
each vertex u at odd height in Kesten’s tree by a cycle of length degpuq, which connects the
vertices incident to u. Here, degpuq stands for the degree (i.e., the number of neighbors) of u
in the tree. We then fill in the cycles of the looptree with a collection of independent quad-
rangulations with a simple boundary, which are drawn according to a subcritical Boltzmann
law. As we show in Theorem 4, the space constructed in this way has the law of the UIHPQp.
Discrete looptrees and their scaling limits have found various applications in the study of
large-scale properties of random planar maps, for instance in the description of the boundary
of percolation clusters on the uniform infinite planar triangulation; see the work [23], which
served as the main inspiration for our characterization of the UIHPQp. From our description,
we immediately infer that simple random walk is recurrent on the UIHPQp for p ă 1{2.

It is well-known that the standard UIHPQ with a simple boundary satisfies the so-
called spatial Markov property, which allows, in particular, the use of peeling techniques.
In [5], Angel and Ray classified all triangulations (without self-loops) of the half-plane sat-
isfying the spatial Markov property and translation invariance. They form a one-parameter
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Figure 1: In [8], all possible limits for the rescaled spaces pV pQσn
n q, a

´1
n dgr, ρnq are discussed.

The x-axis represents the limit values for the logarithm of the boundary length logpσnq{ logpnq
in units of logpnq, and the y-axis corresponds to the limit of the logarithm of the scaling
factor logpanq{ logpnq in units of logpnq. The focus of this paper lies on the hashed region.

family pHαqα parametrized by α P r0, 1q. The parameter α “ 2{3 corresponds to the stan-
dard UIHPT with a simple boundary, the triangular equivalent of the UIHPQ with a simple
boundary. When α ą 2{3 (the supercritical case), Hα is of hyperbolic nature and exhibits
an exponential volume growth. On the contrary, when α ă 2{3 (the subcritical case), it has
a tree-like structure. We believe that the family pUIHPQpqp is a quadrangular equivalent to
the triangulations in the subcritical phase of [5]. Note that contrary to the UIHPQp, the
spaces Hα for α ă 2{3 have a half-plane topology, due to the conditioning to have a simple
boundary. However, there exists almost surely infinitely many cut-edges connecting the left
and right boundaries; see [37, Proposition 4.11]. This should be seen as an equivalent to the
branching structure formulated in Theorem 4 below. Our methods in this paper are different
from [5, 37] as we do not use peeling techniques.

In [21], Curien studied full-plane analogs of the family pHαqα. With similar (peeling)
techniques, he constructed a (unique) one-parameter family of random infinite planar trian-
gulations indexed by κ P p0, 2{27s, which satisfy a slightly adapted spatial Markov property.
The critical case κ “ 2{27 corresponds to the standard UIPT with a simple boundary of
Angel and Schramm [7]. The regime κ P p0, 2{27q parallels the supercritical (or hyperbolic)
phase α ą 2{3 of [5], whereas it is shown that there is no subcritical phase. Recently, a
near-critical scaling limit of hyperbolic nature called the hyperbolic Brownian half-plane has
been studied by Budzinski [17]. It is obtained from rescaling the triangulations of Curien [21]
and letting κÑ 2{27 at the right speed. Theorem 1 of [17] bears some structural similarities
with our Theorem 2 below, although it concerns a different regime.

Structure of the paper
The rest of this paper is structured as follows. In the following section, we introduce some
(standard) concepts and notation around quadrangulations, which will be used throughout
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this text. Moreover, we recapitulate the local topology and the local Gromov-Hausdorff
topology. In Section 2, we state our main results, which concern local limits, scaling limits,
and structural properties of the family pUIHPQpqp. Section 3 reviews the definition of the
family of Brownian half-planes pBHPθqθ, and of various random trees, which are used both to
describe the distributional limits of the family pUIHPQpqp as well as their branching structure.

In Section 4, we construct the UIHPQp. We first explain the Bouttier-Di Francesco-
Guitter encoding of quadrangulations with a boundary and then define the UIHPQp in terms
of the encoding objects. We are then in position to prove our limit statements; see Section 5.
In the final Section 6, we prove our main result characterizing the tree-like structure of the
UIHPQp when p ă 1{2, as well as recurrence of simple random walk.

1.2 Some standard notation and definitions

1.2.1 Notation

We write
N “ t1, 2, . . .u, N0 “ Zě0 “ NY t0u, Ză0 “ t´1,´2, . . .u.

For two sequences panqn, pbnqn Ă N, we write an ! bn or bn " an if an{bn Ñ 0 as n Ñ 8.
Given two measurable subsets U, V Ă R, we denote by CpU, V q the space of continuous
functions from U to V , equipped with the usual compact-open topology, i.e., uniform con-
vergence on compact subsets. We write }ν}TV for the total variation norm of a probability
measure ν.

As a general notational rule for this paper, if we drop p from the notation, we work
with the case p “ 1{2. For example, we write UIHPQ (and not UIHPQ1{2) for the standard
uniform infinite half-planar quadrangulation.

1.2.2 Planar maps

By a planar map we mean, as usual, an equivalence class of a proper embedding of a finite
connected graph in the two-sphere, where two embeddings are declared to be equivalent
if they differ only by an orientation-preserving homeomorphism of the sphere. Loops and
multiple edges are allowed. Our planar maps will be rooted, meaning that we distinguish an
oriented edge called the root edge. Its origin is the root vertex of the map. The faces of a
planar map are formed by the components of the complement of the union of its edges.

1.2.3 Quadrangulations with a boundary

A quadrangulation with a boundary is a finite planar map q, whose faces are quadrangles
except possibly one face called the outer face, which may an have arbitrary even degree.
The edges incident to the outer face form the boundary Bq of q, and their number #Bq
(counted with multiplicity) is the size or perimeter of the boundary. In general, we do not
assume that the boundary edges form a simple curve. We will root the map by selecting an
oriented edge of the boundary, such that the outer face lies to its right. The size of q is given
by the number of its inner faces, i.e., all the faces different from the outer face.

We write Qσn for the (finite) set of all rooted quadrangulations with n inner faces and a
boundary of size 2σ, σ P N0. By convention, Q0

0 “ t:u consists of the unique vertex map.
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More generally, Qf will denote the set of all finite rooted quadrangulations with a bound-
ary, and Qσf Ă Qf the set of all finite rooted quadrangulations with 2σ boundary edges, for
σ P N0.

Similarly, we let pQf be the set of all finite rooted quadrangulations with a simple bound-
ary, meaning that the edges of their outer face form a cycle without self-intersection. We
denote by pQσf Ă pQf the subset of finite rooted quadrangulations with a simple boundary
of size 2σ. Note that Q1

0 consists of the map having one oriented edge and thus a simple
boundary.

1.2.4 Uniform quadrangulations with a boundary

Throughout this text, we write Qσ
n for a quadrangulation chosen uniformly at random in Qσn.

We denote by ρn the root vertex of Qσ
n, i.e., the origin of the root edge. By equipping the

set of vertices V pQσ
nq with the graph distance dgr, we view the triplet pV pQσ

nq, dgr, ρnq as a
random rooted metric space.

1.2.5 Boltzmann quadrangulations with a boundary

We will also work with various Boltzmann measures. For a finite rooted quadrangulation
q P Qf , we write Fpqq for the set of inner faces of q. Given non-negative weights g per inner
face and

?
z per boundary edge, we let

F pg, zq “
ÿ

qPQf

g#Fpqqz#Bq{2.

When this partition function is finite, we may define the associated Boltzmann distribution

Pg,zpqq “
g#Fpqqz#Bq{2

F pg, zq
, q P Qf .

The statement of Proposition 2 below deals with Boltzmann-distributed quadrangulations
of a fixed boundary size 2σ, for σ P N0. In this case, the associated partition function and
Boltzmann distribution read

Fσpgq “
ÿ

qPQσf

g#Fpqq, Pσg pqq “
g#Fpqq

Fσpgq
, q P Qσf ,

whenever g ě 0 is such that F σpgq is finite. The Boltzmann distribution Pσg is related to Pg,z
by conditioning the latter with respect to the boundary length, i.e., Pσg pqq “ Pg,zpq | Qσf q.

When studying quadrangulations with a simple boundary, the partition functions are

pF pg, zq “
ÿ

qP pQf

g#Fpqqz#Bq{2, pFσpgq “
ÿ

qP pQσf

g#Fpqq,

and the Boltzmann distributions take the form

pPg,zpqq “
g#Fpqq

pFσpg, zq
, q P pQf , pPσg pqq “

g#Fpqq

pFσpgq
, q P pQσf .

Remark 1. In the notation of [15], the generating function F is denoted W0, while pF is
denoted W̃0. The index zero stands for the distance between the origin of the root edge and
the marked vertex, so that these generating functions count unpointed quadrangulations.
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1.2.6 Local topology

Our unrescaled limit results hold with respect to the local topology first studied by Benjamini
and Schramm [10]: For two rooted planar maps m and m1, the local distance between m and
m1 is

dmappm,m
1
q “ p1` suptr ě 0 : Ballrpmq “ Ballrpm

1
quq

´1
,

where Ballrpmq denotes the combinatorial ball of radius r around the root ρ of m, i.e., the
submap of m consisting of all the vertices v of m with dgrpρ, vq ď r and all the edges of m
between such vertices. The set Qf of all finite rooted quadrangulations with a boundary is
not complete for the distance dmap; we have to add infinite quadrangulations. We shall write
Q for the completion of Qf with respect to dmap. The UIHPQp will be defined as a random
element in Q.

1.2.7 Around the Gromov-Hausdorff metric

The pointed Gromov-Hausdorff distance measures the distance between (pointed) compact
metric spaces, where the latter are viewed up to isometries. More specifically, given two
elements E “ pE, d, ρq and E1 “ pE 1, d1, ρ1q in the space K of isometry classes of pointed
compact metric spaces, their Gromov-Hausdorff distance is defined as

dGHpE,E
1
q “ inf tdHpϕpEq, ϕ

1
pEqq _ δpϕpρq, ϕ1pρ1qqu ,

where the infimum is taken over all isometric embeddings ϕ : E Ñ F and ϕ1 : E 1 Ñ F of
E and E 1 into the same metric space pF, δq, and dH is the usual Hausdorff distance between
compacts of F . The space pK, dGHq is complete and separable.

Our results on scaling limits involve non-compact pointed metric spaces and hold in
the so-called local Gromov-Hausdorff sense, which we briefly recall next. Given a pointed
complete and locally compact length space E and a sequence pEnqn of such spaces, pEnqn

converges in the local Gromov-Hausdorff sense to E if for every r ě 0,

dGHpBrpEnq, BrpEqq Ñ 0 as nÑ 8.

Here and in what follows, given a pointed metric space F “ pF, d, ρq, BrpFq “ tx P F :
dpx, ρq ď ru denotes the closed ball of radius r around ρ, viewed as a subspace of F equipped
with the metric structure inherited from F. For λ ą 0, λ ¨F stands for the rescaled pointed
metric space pF, λd, ρq, so that in particular λ ¨BrpFq “ Bλrpλ ¨ Fq.

As a discrete map, the UIHPQp is not a length space in the sense of [18]. However, by
identifying each edge with a copy of the unit interval r0, 1s (and by extending the metric
isometrically), one obtains a complete locally compact length space (pointed at the root
vertex). By construction, balls of the same radius and around the same points in the UIHPQp

and in the approximating length space are at Gromov-Hausdorff distance at most 1 from
each other. Therefore, local Gromov-Hausdorff convergence for the (rescaled) UIHPQp, see
Theorems 2 and 3 below, follows indeed from the convergence of balls as stated above.
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2 Statements of the main results

2.1 Local limits

Our first result states that each member of the family pUIHPQpq0ďpď1{2 can be seen as a local
limit nÑ 8 of uniform quadrangulations of with n inner faces and a boundary of size 2σn,
provided σn “ σnppq is chosen in the right manner.

Theorem 1. Fix 0 ď p ď 1{2, and let pσn, n P Nq be a sequence of positive integers satisfying

σn “
1´ 2p

p
n` opnq if 0 ă p ď 1{2, and σn " n if p “ 0.

For every n P N, let Qσn
n be uniformly distributed in Qσnn . Then we have the local convergence

for the metric dmap as nÑ 8,

Qσn
n

pdq
ÝÑ UIHPQp.

In fact, we will prove a stronger result than mere local convergence: We will establish
an isometry of balls of growing radii around the roots, where the maximal growth rate
of the radii is given by ξn “ mintn1{4,

a

n{γnu, for γn “ maxtσn ´
1´2p
p
n, 1u. We defer

to Proposition 4 for the exact statement. The case p “ 1{2 corresponding to the regime
σn “ opnq is already covered by [8, Proposition 3.11] and is only included for completeness.

The convergence in the case p “ 0 with σn " n is somewhat simpler. However, it is
a priori not obvious that the UIHPQ0 as defined in Section 4 is actually Kesten’s tree (see
Section 3.2.3 for a definition of the latter).

Proposition 1. The space UIHPQ0 has the law of Kesten’s tree T8 associated to the critical
geometric probability distribution pµ1{2pkq, k P N0q given by µ1{2pkq “ 2´pk`1q.

Interestingly, the fact that the UIHPQ0 is Kesten’s tree can also be derived as a special
case from Theorem 4 below; see Remark 5. We prefer, however, to give a direct proof of the
proposition based on our construction of the UIHPQ0.

The UIHPQp for 0 ď p ď 1{2 is also obtained as a local limit of Boltzmann quadrangu-
lations with growing boundary size. This result will be important to describe the tree-like
structure of the UIHPQp when p ă 1{2. More specifically, the family pUIHPQpqp is precisely
given by the collection of all local limits σ Ñ 8 of Boltzmann quadrangulations with a
boundary of size 2σ and weight g ď gc “ 1{12 per inner face. The value gc “ 1{12 is critical
(see [15, Section 4.1]) and corresponds to the choice p “ 1{2.

Proposition 2. Fix 0 ď p ď 1{2, and set gp “ pp1 ´ pq{3. For every σ P N0, let Qσppq be
a random rooted quadrangulation distributed according to the Boltzmann measure Pσgp. Then
we have the local convergence for the metric dmap as σ Ñ 8,

Qσppq
pdq
ÝÑ UIHPQp.

Remark 2. For p “ 1{2, the above proposition states convergence of critical Boltzmann
quadrangulations with a boundary towards the UIHPQ, as it was already proved in [20,
Theorem 7] by means of peeling techniques. In view of the above proposition, it is moreover

8



implicit from the same theorem that an infinite random map with the law of the UIHPQp

does exist. For the case of half-planar triangulations (with a simple boundary), see [3].
When p “ 0, there is no inner quadrangle almost surely and Qσp0q is a uniform tree with σ
edges (i.e., a Galton-Watson tree with geometric offspring law conditioned to have σ edges),
which converges locally towards Kesten’s tree; see, for example, [28, Theorem 7.1].

Remark 3. Let us write MpQq for the set of probability measures on the completion Q,
and equip it with the usual weak topology. Then it is easily seen by our methods that the
mapping r0, 1{2s Q p ÞÑ LawpUIHPQpq PMpQq is continuous.

2.2 Scaling limits

Our next results address scaling limits of the family pUIHPQpqp. In [8], a one-parameter
family of (non-compact) random rooted metric spaces called the Brownian half-planes BHPθ
with skewness θ ě 0 was introduced. See Section 3.1 for a quick reminder. The Brownian
half-plane BHP0 corresponding to the choice θ “ 0 forms the half-planar analog of the
Brownian plane introduced in [24] and arises from zooming-out the UIHPQ around the root
vertex; see [8, Theorem 3.6], and [27, Theorem 1.10]). Here, we will see more generally that
the family pUIHPQpqp approximates the space BHPθ for each θ ě 0 in the local Gromov-
Hausdorff sense, provided p is appropriately fine-tuned (depending on θ).

Theorem 2. Let θ ě 0. Let pan, n P Nq be a sequence of positive reals with an Ñ 8 as
nÑ 8. Let ppn, n P Nq Ă r0, 1{2s be a sequence satisfying

pn “ pnpθ, anq “
1

2

ˆ

1´
2θ

3a2
n

˙

` o
`

a´2
n

˘

.

Then, in the sense of the local Gromov-Hausdorff topology as nÑ 8,

a´1
n ¨ UIHPQpn

pdq
ÝÑ BHPθ.

The space BHPθ satisfies the scaling property λ ¨ BHPθ “d BHPθ{λ2 . It was shown in
Remark 3.19 of [8] that Aldous’ infinite continuum random tree ICRT, whose definition is
reviewed in Section 3.2.1, is the asymptotic cone of the BHPθ around its root, implying
BHPθ Ñ ICRT in law as θ Ñ 8. In particular, formally, we may think of the BHP8 as the
ICRT. In view of Theorem 2, it is therefore natural to expect that the ICRT appears also as
the scaling limit of the UIHPQpn , provided θ in the definition of pn is replaced by a sequence
θn Ñ 8, that is, if a2

np1´ 2pnq Ñ 8 as nÑ 8. This is indeed the case.

Theorem 3. Let pan, n P Nq be a sequence of positive reals with an Ñ 8. Let ppn, n P Nq Ă
r0, 1{2s be a sequence satisfying

a2
np1´ 2pnq Ñ 8 as nÑ 8.

Then, in the sense of the local Gromov-Hausdorff topology as nÑ 8,

a´1
n ¨ UIHPQpn

pdq
ÝÑ ICRT.
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As special cases of the previous two theorems, we mention

Corollary 1. Let p P r0, 1{2s, and let pan, n P Nq be a sequence of positive reals with an Ñ 8.
Then, in the sense of the local Gromov-Hausdorff topology as nÑ 8,

a´1
n ¨ UIHPQp

pdq
ÝÑ

"

ICRT if 0 ď p ă 1{2
BHP if p “ 1{2

.

For the family pHαqα of half-planar triangulations studied in [5, 37], convergence towards
the ICRT in the subcritical regime α ă 2{3 is conjectured in [37, Section 2.1.2].

σn ∼ σ
√
2n/T

Qσn
n

scaling ·a−1n ∼ (8/9)1/4(n/T )1/4

BDT,σ

scaling ·a−1n → 0
BHPθUIHPQp

scaling ·a−1n ∼
√
3σn/4θn

p = pn =
1
2

(
1− 2θ

3a2n

)
+ o(a−2n )

√
n� σn � n

GH (n→∞)

GH-loc. (n→∞)

GH-loc. (n→∞)

σn ∼
(
1−2p
p

)
n

loc. (n→∞)

σ = σ(T ) ∼ θT
GH-loc. (T →∞)

Figure 2: Illustration of various convergences explaining the connections between the spaces
UIHPQp, BHPθ and BDT,σ. For simplicity, the cases θ “ 0 and θ “ 8 are left out. The
top-most horizontal convergence represents [12, Theorem 1] and holds for T, σ ą 0 fixed.
If the volume T of BDT,σ is blown up and the perimeter σ grows linearly in T such that
σpT q „ θT , the space BHPθ appears as the distributional local Gromov-Hausdorff limit
of the disks BDT,σpT q around their roots ([8, Corollary 3.17]). On the other hand, BHPθ
is approximated by uniform quadrangulations Qσn

n ([8, Theorem 3.4]), or by the UIHPQp

when p “ ppan, θq depends in the right way on θ and an (Theorem 2). The UIHPQp for
fixed p P r0, 1{2s in turn arises as the local limit of Qσn

n , provided the boundary lengths are
properly chosen (Theorem 1).

Remark 4. We stress that the spaces BHPθ can also be understood as Gromov-Hausdorff
scaling limits of uniform quadrangulations Qσn

n P Qσnn ; see [8, Theorems 3.3, 3.4, 3.5]. More
specifically, the BHPθ for θ P p0,8q arises when

?
n ! σn ! n and the graph metric is

rescaled by a factor a´1
n satisfying 3σna

2
n{p4nq Ñ θ as n tends to infinity. The Brownian

half-plane BHP0 corresponding to the choice θ “ 0 appears more generally when 1 ! σn ! n
and 1 ! an ! mint

?
σn,

a

n{σnu. Finally, the ICRT corresponding to θ “ 8 appears when

σn "
?
n and maxt1,

a

n{σnu ! an !
?
σn.

We may as well view the spaces BHPθ as local scaling limits around the roots of the
so-called Brownian disks BDT,σ of volume T ą 0 and perimeter σ ą 0 introduced in [12].
More concretely, it was proved in [8, Corollaries 3.17, 3.18] that when both T and σ “ σpT q
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tend to infinity such that σpT q{T Ñ θ P r0,8s, then the BHPθ is the local Gromov-Hausdorff
limit in law of the disk BDT,σpT q around a boundary point chosen according to the boundary
measure of the latter. Figure 2 depicts some convergences involving the families UIHPQp

and BHPθ.

2.3 Tree structure

We will prove that for p ă 1{2, the UIHPQp can be represented as a collection of independent
finite quadrangulations with a simple boundary glued along a tree structure. The tree
structure is encoded by the looptree associated to a two-type version of Kesten’s tree, and
the finite quadrangulations are distributed according to the Boltzmann distribution pPσg on
quadrangulations with a simple boundary of size 2σ. Precise definitions of the encoding
objects are postponed to Section 3.

For 0 ď p ď 1{2, let gp “ pp1 ´ pq{3 and zp “ p1 ´ pq{4. Let F pg, zq be the partition
function of the Boltzmann measure on finite rooted quadrangulations with a boundary, with
weight g per inner face and

?
z per boundary edge. Let moreover pFkpgq be the partition

function of the Boltzmann measure on finite rooted quadrangulations with a simple boundary
of perimeter 2k, with weight g per inner face.

We introduce two probability measures µ˝ and µ‚ on N0 by setting

µ˝pkq “
1

F pgp, zpq

ˆ

1´
1

F pgp, zpq

˙k

, k P N0,

µ‚p2k ` 1q “
1

F pgp, zpq ´ 1

“

zpF
2
pgp, zpq

‰k`1
pFk`1pgpq, k P N0,

with µ‚pkq “ 0 if k even. Exact expressions for F pgp, zpq and pFk`1pgpq are given in (18) and
(19) below. The fact that µ‚ is a probability distribution is a consequence of Identity (2.8)
in [15]. We will prove in Lemma 11 that the pair pµ˝, µ‚q is critical for 0 ď p ă 1{2, in
the sense that the product of their respective means equals one, and subcritical if p “ 1{2,
meaning that the product of their means is strictly less than one. Moreover, both measures
have small exponential moments. Our main result characterizing the structure of the UIHPQp

for 0 ď p ă 1{2 is the following.

Theorem 4. Let 0 ď p ă 1{2, and let LooppT8q be the infinite looptree associated to Kesten’s
two-type tree T8pµ˝, µ‚q. Glue into each inner face of LooppT8q of degree 2σ an independent

Boltzmann quadrangulations with a simple boundary distributed according to pPσgp. Then, the
resulting infinite quadrangulation is distributed as the UIHPQp.

The gluing operation fills in each (rooted) loop a finite-size quadrangulation with a simple
boundary, which has the same perimeter as the loop. The two boundaries are glued together,
such that the root edges of the loop and the quadrangulation get identified; see Remark 8.
Figure 3 depicts the above representation of the UIHPQp in the case 0 ă p ă 1{2, as
well as the borderline cases p “ 0 and p “ 1{2. The branching structure of the standard
UIHPQ “ UIHPQ1{2 has been investigated by Curien and Miermont [25]. They show that
the UIHPQ can be seen as the uniform infinite half-planar quadrangulation with a simple
boundary (represented by the big white semicircle in Figure 3), together with a collection
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p = 0 0 < p < 1/2

p = 1/2

Figure 3: Schematic representation of the UIHPQp for p P r0, 1{2s. On the left: The UIHPQ0,
that is, Kesten’s tree associated to the critical geometric offspring distribution µ1{2. On
the right: The standard uniform infinite half-planar quadrangulation UIHPQ with a general
boundary. The white parts are understood to be filled in with quadrangulations, the big
white semicircle representing the half-plane. In the middle: The UIHPQp with skewness
parameter p. The white parts represent the (finite-size) quadrangulations with a simple
boundary which are glued into the loops of the infinite looptree LooppT8q associated to a
two-type version T8pµ˝, µ‚q of Kesten’s tree.

of finite-size quadrangulations with a general boundary, which are attached to the infinite
simple boundary.

Remark 5. In the case p “ 0, the above theorem can be seen as a restatement of Propo-
sition 1. Indeed, in this case, one finds that µ˝ “ µ1{2 is the critical geometric probability
law, and µ‚ is the Dirac-distribution δ1. By construction, all the inner faces of LooppT8q
have then degree 2, and the gluing of a Boltzmann quadrangulation distributed according to
pP1
g0“0 simply amounts to close the face, by identifying its edges. One finally recovers Kesten’s

(one-type) tree associated to the offspring law µ1{2, as already found in Proposition 1.

Remark 6. In [9], it has been proved that geodesics in the standard UIHPQ intersect both
the left and right part of the boundary infinitely many times (see [9, Section 2.3.3] for the
exact terminology). However, up to removing finite quadrangulations that hang off from the
boundary, the UIHPQ has the topology of a half-plane. Consequently, left and right parts
of the boundary intersect only finitely many times. The branching structure described in
Theorem 4 implies that the left and right parts of the boundary of the UIHPQp for p ă 1{2
have infinitely many intersection points. As a consequence, any infinite self-avoiding path
intersects both boundaries infinitely many times.

Our tree-like description of the UIHPQp for 0 ď p ă 1{2 readily implies that simple
random walk on the UIHPQp is recurrent. For p “ 0, this result is due to Kesten [30].
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Corollary 2. Let 0 ď p ă 1{2. Almost surely, simple random walk on the UIHPQp is
recurrent.

Somewhat informally, the tree structure describing the UIHPQp in the case p ă 1{2
shows that there is an essentially unique way for the random walk to move to infinity. Said
otherwise, the walk reduces essentially to a random walk on the half-line reflected at the
origin, which is, of course, recurrent. We give a precise proof in terms of electric networks
in Section 6.

Remark 7. As far as the standard uniform infinite half-planar quadrangulation UIHPQ
corresponding to p “ 1{2 is concerned, Angel and Ray [6] prove recurrence of the triangular
analog with a simple boundary, the half-plane UIPT. They construct a full-plane extension
of the half-plane UIPT using a decomposition into layers and then adapt the methods of
Gurel-Gurevich and Nachmias [26], and Benjamini and Schramm [10]. It is believed that
the arguments of [6] can be extended to the UIHPQ, too. Ray proves in [37] of recurrence of
the half-plane models Hα when α ă 2{3. In [13], Björnberg and Stefánsson prove that the
(local) limit of bipartite Boltzmann planar maps is recurrent, for every choice of the weight
sequence.

We believe that the mean displacement of a random walker after n steps on the UIHPQp

for p ă 1{2 is of order n1{3, as for Kesten’s tree (case p “ 0). We will not pursue this further
in this paper.

Let us finally mention another consequence of Theorem 4 concerning percolation thresh-
olds. See, e.g., [4] for the terminology of Bernoulli percolation on random lattices.

Corollary 3. Let 0 ď p ă 1{2. The critical thresholds for Bernoulli site, bond and face
percolation on the UIHPQp are almost surely equal to one.

Therefore, percolation on the UIHPQp changes drastically depending on whether the
skewness parameter p (not to be confused the the percolation parameter) is less or equal to
1{2: In the standard UIHPQ “ UIHPQ1{2, the critical thresholds are known to be 5{9 for site
percolation, see [38], and 1{3 for edge percolation and 3{4 for face percolation, see [4]. The
proof of the corollary follows immediately from Theorem 4.

3 Random half-planes and trees

In this section, we begin with a review of the one-parameter family of Brownian half-planes
BHPθ, θ ě 0, introduced in [8] (see also [27] for the case θ “ 0).

We then gather certain concepts around trees, which play an important role throughout
this paper. We properly define the ICRT, two-type Galton-Watson trees and Kesten’s infinite
versions thereof, looptrees and the so-called tree of components.

3.1 The Brownian half-planes BHPθ

We need some preliminary notation. Given a function f “ pft, t P Rq, we set f
t
“ infr0,ts f

for t ě 0 and f
t
“ infp´8,ts f for t ă 0. Moreover, if f “ pft, t ě 0q is a real-valued function
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indexed by the positive reals, its Pitman transform πpfq is defined by

πpfqt “ ft ´ 2f
t
.

In caseB “ pBt, t ě 0q is a standard one-dimensional Brownian motion, its Pitman transform
πpBq “ pπpBqt, t ě 0q is equal in law to a three-dimensional Bessel process, which has in
turn the law of the modulus of a three-dimensional Brownian motion.

Now fix θ P r0,8q. The Brownian half-plane BHPθ with skewness θ is defined in terms
of its contour and label processes Xθ “ pXθ

t , t P Rq and W θ “ pW θ
t , t P Rq. They are

characterized as follows.

• pXθ
t , t ě 0q has the law of a one-dimensional Brownian motion B “ pBt, t ě 0q with

drift ´θ and B0 “ 0, and pXθ
´t, t ě 0q has the law of the Pitman transform of an

independent copy of B.

• Given Xθ, the (label) function W θ has same distribution as pγ´Xθ
t
` Zθ

t , t P Rq, where

– given Xθ, Zθ “ pZθ
t , t P Rq “ ZXθ´Xθ

is a continuous modification of the centered
Gaussian process with covariances given by

E
“

Zθ
sZ

θ
t

‰

“ min
rs^t,s_ts

Xθ
´Xθ,

– pγx, x P Rq is a two-sided Brownian motion with γ0 “ 0 and scaled by the factor?
3, independent of Zθ.

The process Zθ is usually called the (head of the) random snake driven by Xθ´Xθ, see [32]
for more on this. Next, we define two pseudo-metrics dXθ and dW θ on R,

dXθps, tq “ Xθ
s `X

θ
t ´ 2 min

rs^t,s_ts
Xθ, and dW θps, tq “ W θ

s `W
θ
t ´ 2 min

rs^t,s_ts
W θ.

The pseudo-metric Dθ associated to BHPθ is defined as the maximal pseudo-metric d on R
satisfying d ď dW θ and tdXθ “ 0u Ď tDθ “ 0u. According to Chapter 3 of [18], it admits the
expression (s, t P R)

Dθps, tq “ inf

#

k
ÿ

i“1

dW θpsi, tiq :
k P N, s1, . . . , sk, t1, . . . , tk P R, s1 “ s, tk “ t,
dXθpti, si`1q “ 0 for every i P t1, . . . , k ´ 1u

+

.

Definition 1. The Brownian half-plane BHPθ has the law of the pointed metric space
pR{tDθ “ 0u, Dθ, ρθq, with the distinguished point ρθ is given by the equivalence class of 0.

Note that Dθ stands here also for the induced metric on the quotient space. It follows
from standard scaling properties of Xθ and W θ that for λ ą 0, λ ¨ BHPθ “d BHPθ{λ2 . In
particular, BHP0 is scale-invariant. It was shown in [8] that for every θ ě 0, BHPθ has a.s.
the topology of the closed half-plane H “ Rˆ R`.
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3.2 Random trees and some of their properties

3.2.1 The infinite continuum random tree ICRT

Introduced by Aldous in [2], the ICRT is a random rooted real tree that forms the non-
compact analog of the usual continuum random tree CRT. Consider the stochastic process
pXt, t P Rq such that pXt, t ě 0q and pX´t, t ě 0q are two independent one-dimensional
standard Brownian motions started at zero. Define on R the pseudo-metric

dXps, tq “ Xs `Xt ´ 2 min
rs^t,s_ts

X.

Definition 2. The ICRT is the continuum random real tree TX coded by X, i.e., the ICRT
has the law of the pointed metric space pTX , dX , r0sq, where TX “ R{tdX “ 0u, and the
distinguished point is given by the equivalence class of 0.

The ICRT is scale-invariant, meaning that λ ¨ ICRT “d ICRT for λ ą 0, and invariant
under re-rooting. We remark that the ICRT is often defined in terms of two independent
three-dimensional Bessel processes pXt, t ě 0q and pX´t, t ě 0q. Since the Pitman transform
π turns a Brownian motion into a three-dimension Bessel processes, it is readily seen that
both definitions give rise to the same random tree.

3.2.2 (Sub)critical (two-type) Galton-Watson trees

We recall the formalism of (finite or infinite) plane trees, i.e., rooted ordered trees. The size
|t| P N0 Y t8u of t is given by its number of edges, and we shall write Tf for the set of all
finite plane trees.

We will often use the fact that if GWν denotes the law of a Galton-Watson tree with
critical or subcritical offspring distribution ν, then

GWνptq “
ź

uPV ptq

νpkuptqq, t P Tf , (1)

where for u P V ptq, kuptq is the number of offspring of vertex u. See, for example, [33, Propo-
sition 1.4]). In the case where ν “ µp is the geometric offspring distribution of parameter
p P r0, 1{2s, (1) becomes

GWµpptq “ p|t|p1´ pq|t|`1. (2)

From the last display, the connection to random walks is apparent. Namely, let pSppqpmq,m P

N0q be a random walk on the integers starting from Sppqp0q “ 0 with increments distributed
according to pδ1 ` p1´ pqδ´1. Define the first hitting time of ´1,

T
ppq
´1 “ inftm P N : Sppqpmq “ ´1u.

Then it is readily deduced from (2) that the size |t| of t under GWµp and pT
ppq
´1 ´ 1q{2 are

equal in distribution; see, e.g., [36, Section 6.3].
Given a finite or infinite plane tree, it will be convenient to say that vertices at even

height of t are white, and those at odd height are black. We use the notation t˝ and t‚ for
the associated subset of vertices. We next define two-type Galton-Watson trees associated
to a pair pν˝, ν‚q of probability measures on N0.
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Definition 3. The two-type Galton-Watson tree with a pair of offspring distributions pν˝, ν‚q
is the random plane tree such that vertices at even height have offspring distribution ν˝,
vertices at odd height have offspring distribution ν‚, and the numbers of children of the
different vertices are independent.

More formally, if GWν˝,ν‚ denotes the law of such a tree, then

GWν˝,ν‚ptq “
ź

uPt˝

ν˝pkuptqq
ź

uPt‚

ν‚pkuptqq, t P Tf .

In this context, the pair pν˝, ν‚q is said to be critical if and only if the mean vector pm˝,m‚q

satisfies m˝m‚ “ 1.

3.2.3 Kesten’s tree and its two-type version

We next briefly review critical Galton-Watson trees conditioned to survive; see [30] or [35],
and [39] for the multi-type case.

Proposition 3 (Theorem 3.1 in [39]). Let GW be the law of a critical (either one or two-
type) Galton-Watson tree. For every n P N, assume that GWpt#V ptq “ nuq ą 0, and let Tn
be a tree with law GW conditioned to have n vertices. Then, we have the local convergence
for the metric dmap as nÑ 8 to a random infinite tree T8,

Tn pdq
ÝÑ T8.

In the case GW “ GWν for ν a critical one-type offspring distribution, T8 is often called
Kesten’s tree associated to ν, and simply Kesten’s tree if ν “ µ1{2. We will use the same
terminology if pν˝, ν‚q is a critical pair of offspring distributions and GW “ GWν˝,ν‚ . In this
case, we write T8pν˝, ν‚q for Kesten’s tree associated to pν˝, ν‚q. Note that the condition
GWpt#V ptq “ nuq ą 0 can be relaxed, provided we can find a subsequence along which this
condition is satisfied.

Galton-Watson trees conditioned to survive enjoy an explicit construction, which we
briefly recall for the two-type case. Details can be found in [39]. Let pν˝, ν‚q be a critical pair
of offspring distributions with mean pm˝,m‚q, and recall that the size-biased distributions
ν̄˝ and ν̄‚ are defined by

ν̄˝pkq “
kν˝pkq

m˝

and ν̄‚pkq “
kν‚pkq

m‚

, k P N0.

Kesten’s tree T8 associated to pν˝, ν‚q is an infinite locally finite (two-type) tree that has
a.s. a unique infinite self-avoiding path called the spine. It is constructed as follows. The
root vertex (white) is the first vertex on the spine. It has size-biased offspring distribution
ν̄˝. Among its offspring, a child (black) is chosen uniformly at random to be the second
vertex on the spine. It has size-biased offspring distribution ν̄‚, and a child (white) chosen
uniformly at random among its offspring becomes the third vertex on the spine. The spine
is constructed by iterating this procedure.

The construction of the tree is completed by specifying that vertices at even (resp. odd)
height lying not on the spine have offspring distribution ν˝ (resp. ν‚), and that the numbers
of offspring of the different vertices are independent.
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The construction is similar in the mono-type case. In the particular case when ν “ µ1{2 is
the geometric distribution with parameter 1{2, Kesten’s tree can be represented by an infinite
half-line (isomorphic to N) and a collection of independent Galton-Watson trees with law
GWµ1{2 grafted to the left and to the right of every vertex on the spine; see, for instance, [28,
Example 10.1]. We will exploit this representation in our proof of Proposition 1.

3.2.4 Random looptrees

Our description of the UIHPQp in Theorem 4 makes use of so-called looptrees, which were
introduced in [22]. A looptree can informally be seen as a collection of loops glued along a
tree structure. The following presentation is inspired by [23, Section 2.3]. We use, however,
slightly different definitions which are better suited to our purpose. In particular, given a
plane tree t, we will only replace vertices v P V pt‚q at odd height by loops of length degpuq.
Consequently, several loops may be attached to one and the same vertex (at even height).

Let us now make things more precise. Let t be a finite plane tree, and recall that vertices
at even height are white, and those at odd height are black (with respective subsets of
vertices t˝ and t‚). We associate to t a rooted looptree Loopptq as follows. Around every
(black) vertex in t‚, we connect its incident white vertices in cyclic order, so that they form
a loop. Then Loopptq is the planar map obtained from erasing the black vertices and the
edges of t. We root Loopptq at the edge connecting the origin of t to the last child of its first
sibling in t; see Figure 4.

The reverse application associates to a looptree l a plane tree, which we call the tree of
components Treeplq. In order to obtain Treeplq from l, we add a new vertex in every internal
face of l and connect this vertex to all the vertices of the face. Treeplq is rooted at the corner
adjacent to the target of the root edge of l. The root edge of Treeplq connects the origin of l
to the new vertex added in the face incident to the left side of the root edge of l.

Tree
t

Loop

l

Figure 4: A looptree and the associated tree of components.

The procedures Tree and Loop extend to infinite but locally finite trees, by considering
the consistent sequence of maps tB2kptq : k P N0u. We will be interested in the random
infinite looptree associated to Kesten’s two-type tree.

Definition 4. If pν˝, ν‚q is a critical pair of offspring laws and T8 the corresponding Kesten’s
tree, we call the random infinite looptree LooppT8q Kesten’s looptree associated to T8.
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Note that a formal way to construct LooppT8q is to define it as the local limit of LooppTnq,
where Tn is a two-type Galton-Watson tree with offspring distribution pν˝, ν‚q conditioned
to have n vertices.

Remark 8. In a looptree l, every loop is naturally rooted at the edge whose origin is the
closest vertex to the origin of l, such that the outer face of l lies on the right of that edge.
The gluing of a (rooted) quadrangulation with a simple boundary of perimeter 2σ into a
loop of the same length is then determined by the convention that the root edge of the
quadrangulation is glued on the root edge of the loop.

4 Construction of the UIHPQp

A Schaeffer-type bijection due to Bouttier, Di Francesco and Guitter [14] encodes quadran-
gulations with a boundary in terms of labeled trees that are attached to a bridge. We shall
first describe a bijective encoding of finite-size planar quadrangulations, and then extend it
to infinite quadrangulations with an infinite boundary. This will allow us to construct and
define the UIHPQp for p P r0, 1{2s in terms of the encoding objects, which we define first.

4.1 The encoding objects

We briefly review well-labeled trees, forests, bridges and contour and label functions. Our
notation bears similarities to [25, 19, 8], differs, however, at some places. Each of these
references already contains the construction of the standard UIHPQ.

4.1.1 Forest and bridges

A well-labeled tree pt, `q is a pair consisting of a finite rooted plane tree t and a labeling
p`puqquPV ptq of its vertices V ptq by integers, with the constraints that the root vertex receives
label zero, and |`puq ´ `pvq| ď 1 if u and v are connected by an edge.

A well-labeled forest with σ P N trees is a pair pf, lq, where f “ pt0, . . . , tσ´1q is a sequence
of σ rooted plane trees, and l : V pfq Ñ Z is a labeling of the vertices V pfq “ Y

σ´1
i“0 V ptiq

such that for every 0 ď i ď σ ´ 1, the pair pti, læV ptiqq is a well-labeled tree. Similarly,
a well-labeled infinite forest is a pair pf, lq, where f “ pti, i P Zq is an infinite collection of
rooted plane trees, together with a labeling l : YiPZV ptiq Ñ Z such that for each i P Z, the
restriction of l to V ptiq turns ti into a well-labeled tree.

A bridge of length 2σ for σ P N is a sequence b “ pbp0q, bp1q, . . . , bp2σ´1qq of 2σ integers
with bp0q “ 0 and |bpi` 1q´ bpiq| “ 1 for 0 ď i ď 2σ´ 1, where we agree that bp2σq “ 0. In
a similar manner, an infinite bridge is a two-sided sequence b “ pbpiq : i P Zq with bp0q “ 0
and |bpi` 1q ´ bpiq| “ 1 for all i P Z.

Given a bridge b, an index i for which bpi ` 1q “ bpiq ´ 1 is called a down-step of b.
The set of all down-steps of b is denoted DSpbq. If b is a bridge of length 2σ, DSpbq has σ
elements, and we write dÓbpiq for the ith largest element in DSpbq, for i “ 1, . . . , σ. If b is an
infinite bridge and i P N, dÓbpiq denotes the ith largest element in DSpbq X N0, and dÓbp´iq
denotes the ith largest element in DSpbq X Ză0. If there is no danger of confusion, we write
simply dÓ instead of dÓb.
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The size of a forest f is the number |f| P N0 Y t8u of tree edges. If f “ pt0, . . . , tσ´1q and
u P V ptiq, we write Hfpuq for the height of u in the tree ti, i.e., the graph distance to the root
of ti. Moreover, Ifpuq “ i denotes the index of the tree the vertex u belongs to. Both Hf and
If extend in the obvious way to infinite forests. If it is clear which forest we are referring to,
we drop the subscript f in H and I.

We let Fnσ “ tpf, lq : f has σ trees and size |f| “ nu be the set of all well-labeled forests
of size n with σ trees and write F8 for the set of all well-labeled infinite forests. The
set of all bridges of length 2σ is denoted Bσ. As far as infinite bridges are concerned,
it will be sufficient to consider only those bridges b which satisfy infiPN bpiq “ ´8 and
infiPN bp´iq “ ´8, and we denote the set of them by B8.

4.1.2 Contour and label function

We first consider the case ppf, lq, bq P FnσˆBσ for some n, σ P N. By a slight abuse of notation,
we write fp0q, . . . , fp2n`σ´1q for the contour exploration of f, that is, the sequence of vertices
(with multiplicity) which we obtain from walking around the trees t0, . . . , tσ´1 of f, one after
the other in the contour order. See the left side of Figure 5. We define the contour function
of pf, lq by

Cfpjq “ Hpfpjqq ´ Ipfpjqq, 0 ď j ď 2n` σ ´ 1.

Note that Cfp2n` σ ´ 1q “ σ ´ 1, since the last visited vertex by the contour exploration is
the root of tσ´1. We extend Cf to r0, 2n` σs by first letting Cfp2n` σq “ ´σ, and then by
linear interpolation between integers, so that Cf becomes a continuous real-valued function
on r0, 2n` σs starting at zero and ending at ´σ.

The label function associated to ppf, lq, bq is obtained from shifting the vertex label lpfpjqq
by the value of the bridge b evaluated at its pIpfpjqq ` 1qth down-step. Formally,

Lfpjq “ lpfpjqq ` b
`

dÓ pIpfpjqq ` 1q
˘

, 0 ď j ď 2n` σ ´ 1.

We let Lfp2n ` σq “ 0 and again linearly interpolate between integer values, so that Lf

becomes an element of Cpr0, 2n ` σs,Rq. Contour and label functions are depicted on the
right side of Figure 5.

In the case ppf, lq, bq P F8 ˆB8, we explore the trees of f in the following way: First,
pfp0q, fp1q, . . .q is the sequence of vertices of the contour paths of the trees ti, i P N0, in
the left-to-right order, starting from the root of t0. Then, we let pfp´1q, fp´2q, . . .q be the
sequence of vertices of the contour paths t´1, t´2, . . ., in the counterclockwise or right-to-left
order, starting from the root of t´1; see the left side of Figure 6. Contour and label functions
Cf and Lf are defined similarly to the finite case, namely

Cfpjq “ Hpfpjqq ´ Ipfpjqq, j P Z,
Lfpjq “ lpfpjqq ` b

`

dÓ pIpfpjqq ` 1q
˘

, j P Zě0,

Lfpjq “ lpfpjqq ` b
`

dÓ pIpfpjqqq
˘

, j P Ză0.

Note that the asymmetry in the definition of Lf stems from the numbering of the trees. By
linear interpolation between integer values, we interpret Cf, Lf, and sometimes also l, as
continuous functions (from R to R).
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Figure 5: Contour and label functions Cf and Lf of an element ppf, lq, bq P F7
4 ˆ B4. The

left side depicts the contour exploration of f. The labels on the vertices are given by Lfpjq,
j “ 0, . . . , 18. Note that the values of b at its four down-steps are equal to the values of
Lf at the tree roots: In this example, we have bpdÓp1qq “ 0, bpdÓp2qq “ ´1, and bpdÓp3qq “
bpdÓp4qq “ 1. The red dots on the right indicate the encoding of a new tree.

4.2 The Bouttier-Di Francesco-Guitter mapping

We denote the set of all rooted pointed quadrangulations with n inner faces and 2σ boundary
edges by

Qσ,‚n “ tpq, v‚q : q P Qσn, v‚ P V pqqu ,
where v‚ stands for the distinguished pointed vertex. In the following part, we briefly recall
the definition of the bijection Φn : Fnσ ˆBσ Ñ Qσ,‚n introduced in [14].

4.2.1 The encoding of finite quadrangulations

We represent an element ppf, lq, bq P Fnσ ˆBσ in the plane as follows. Firstly, we view b as
a cycle of length 2σ: We start from a distinguished vertex labeled bp0q “ 0 and label the
remaining 2σ´1 vertices in the counterclockwise order by the values bp1q, bp2q, . . . , bp2σ´1q.
Then we graft the trees pt0, . . . , tσ´1q of f to the σ down-steps 0 ď i0 ă i1 ă ¨ ¨ ¨ ă iσ´1 ď

2σ ´ 1 of b, such that tj is grafted on the vertex corresponding to the value bpijq, in the
interior of the cycle. We do it in such a way that different trees do not intersect. The vertices
of tj are equipped with their labels shifted by bpijq. Figure 7 illustrates this procedure.

We now build a rooted and pointed quadrangulation pq, v‚q out of ppf, lq, bq. First, we put
an extra vertex v‚ in the interior of the cycle representing b. The set of vertices of q is given
by the tree vertices V pfq Y tv‚u. As for the edges of q, we define for 0 ď i ď 2n` σ ´ 1 the
successor succpiq P r0, 2n`σ´1sYt8u of i to be the first element k in the list pi`1, . . . , 2n`
σ ´ 1, 0, . . . , i´ 1q (from left to right) which has label Lfpkq “ Lfpiq ´ 1. If there is no such
element, we put succpiq “ 8. We extend the contour exploration fp0q, . . . , fp2n` σ ´ 1q of f
by setting fp8q “ v‚. We follow the exploration starting from the vertex fp0q (which is the
root of t0) and draw for each 0 ď i ď 2n ` σ ´ 1 an arc between fpiq and fpsuccpiqq, such
that arcs do not cross. Except for the leaves, a vertex of f is visited at least twice in the
contour exploration, so that there are in general several arcs connecting the vertices fpiq and
fpsuccpiqq. The edges of q are given by all these arcs between the vertices V pfq Y tv‚u.
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Figure 6: Contour and label functions Cf and Lf of an element ppf, lq, bq P F8 ˆB8. The
left side depicts the two-sided contour exploration of f. The labels are given by Lfpjq, where
now j P Z. The values of the infinite bridge b at its first three down-steps to the right of
0 read here bpdÓp1qq “ 2, bpdÓp2qq “ 1 and bpdÓp3qq “ 3, while the first down-step to the
left of zero has value bpdÓp´1qq “ 0. The arrows below the contour function indicate the
direction of the encoding, and the red dots mark again the encoding of a new tree.

It only remains to root the quadrangulation. To that aim, we observe from Figure 7
that the 2σ boundary edges of q are in a order-preserving correspondence with the 2σ cycle
edges. We root q at the edge corresponding to the first edge of the cycle (starting from the
distinguished edge, in the clockwise order), oriented in such a way that the face of degree 2σ
becomes the outer face (i.e., lies to the right of the root edge). Upon erasing the tree and
cycle edges of the representation of ppf, lq, bq, and the vertices of b corresponding to up-steps,
we obtain a rooted pointed quadrangulation pq, v‚q. A description of the reverse mapping
Φ´1
n : Qσ,‚n Ñ Fnσ ˆBσ can be found in [14] or [11].

4.2.2 The encoding of infinite quadrangulations

Recall that Q is the completion of the set of finite rooted quadrangulations with a boundary
with respect to dmap. The aim of this section is to extend Φn to a mapping

Φ : pYn,σPNF
n
σ ˆBσq Y pF8 ˆB8q ÝÑ Q.

We proceed as follows. If ppf, lq, bq P FnσˆBσ, we put Φppf, lq, bq “ Φnppf, lq, bq. (We forget the
distinguished vertex of Φnppf, lq, bq and view the quadrangulation as an element in Qσn Ă Q.)

Now assume ppf, lq, bq P F8ˆB8. We consider the following representation of ppf, lq, bq in
the upper half-plane: First, we identify b with the bi-infinite line obtained from connecting
i P Z to i ` 1 by an edge. Vertex i is labeled bpiq. We attach the trees tp0q, tp1q, . . . of f to
the down-steps of b to the right of 0, and the trees tp´1q, tp´2q, . . . to the down-steps of b
to the left of ´1, everything in the upper half-plane. Again, the labels in a tree are shifted
by the underlying bridge label.

Similarly to the finite case, the vertex set of q “ Φppf, lq, bq is given by V pfq; here, we add
no additional vertex. For specifying the edges, we let the successor succ8piq of i P Z be the
smallest number k ą i such that Lfpkq “ Lfpiq ´ 1. Since by assumption infiPN bpiq “ ´8,
succ8piq is a finite number. We next connect the vertices fpiq and fpsucc8piqq by an arc for
any i P Z, such that the resulting map is planar. The arcs form the edges of the infinite
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Figure 7: A representation of an element ppf, lq, bq P F6
6ˆB6 in the plane and the associated

rooted pointed quadrangulation pq, v‚q “ Φnppf, lq, bq. The distinguished vertex of the cycle
is the down-most vertex labeled 0. The trees are grafted to the 6 down-steps of b (here,
dÓp1q “ 0, dÓp2q “ 1, dÓp3q “ 8, dÓp4q “ 10, dÓp5q “ 11, and dÓp6q “ 12). The tree edges
are indicated by the dashed lines in the interior of the cycle. Note that three trees (those
above the first, fourth and sixth down-step) consist of a single vertex. The labels in a tree
are shifted by the bridge value of the down-step above which the tree is attached. Note that
the 12 boundary edges of the cycle are in a order-preserving correspondence with the 12
boundary edges of q. (The two edges of q which lie entirely in the outer face are counted
twice.)

rooted quadrangulation q we are about to construct. In order to root the map, we observe
that the bi-infinite line Z is in correspondence with the boundary edges of q, and we choose
the edge corresponding to t0, 1u as the root edge of q (oriented such that the outer face lies
to its right). A representation of ppf, lq, bq and of the resulting quadrangulation Φppf, lq, bq is
depicted in Figure 8.

4.3 Definition of the UIHPQp

We are now in position to construct the UIHPQp by means of the above mapping Φ applied
to a (random) element in F8 ˆB8, which we introduce first.

Let t be a finite random plane tree. Conditionally on t, we assign to t a random uniform
labeling ` of its vertices, so that the pair pt, `q becomes a well-labeled tree. Namely, given t,
we first equip each edge of t with an independent random variable uniformly distributed in
t´1, 0, 1u. Then we define the label `puq of a vertex u P V ptq to be the sum over all labels
along the unique (non-backtracking) path from the tree root to u.

We consider Galton-Watson trees with a (sub-)critical geometric offspring law µp of
parameter p, p P r0, 1{2s, that is, µppkq “ pkp1 ´ pq, k P N0. If t is such a tree, we call it a
p-Galton-Watson tree. Equipped with a random uniform labeling ` as described before, we
say that the pair pt, p`puqquPV ptqq is a uniformly labeled p-Galton-Watson tree.

A uniformly labeled infinite p-forest is a random element pfppq8 , lppq8 q taking values in F8,
such that pti, l

ppq
8 æV ptiqq, i P Z, are independent uniformly labeled p-Galton-Watson trees.
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Figure 8: The Bouttier-Di Francesco-Guitter mapping applied to an element ppf, lq, bq P
F8 ˆB8. On the right hand side, the arcs connect the vertices fpiq with fpsucc8piqq, for
i P Z. The other vertices and edges of the representation of ppf, lq, bq on the left hand side
do not appear in the quadrangulation. The oriented arc on the right indicated by an arrow
represents the root edge of the map.

A uniform infinite bridge is a random element b8 “ pb8piq, i P Zq in B8 such that b8
has the law of a two-sided simple symmetric random walk starting from b8p0q “ 0. We
stress that our wording differs from [8], where a uniform infinite bridge refers to a two-sided
random walk with a geometric offspring law of parameter 1{2. See also Lemma 2 below.

Definition 5. Fix p P r0, 1{2s. Let pfppq8 , lppq8 q be a uniformly labeled infinite p-forest, and
independently of pfppq8 , lppq8 q, let b8 be a uniform infinite bridge. Then the UIHPQp with
skewness parameter p is given by the (rooted) random infinite quadrangulation Q88ppq “
pV pQ88ppqq, dgr, ρq with an infinite boundary, which is obtained from applying the Bouttier-Di
Francesco-Guitter mapping Φ to ppfppq8 , lppq8 q, b8q. In case p “ 1{2, we simply write Q88, which
denotes then the (standard) uniform infinite half-planar quadrangulation with a general
boundary.

Remark 9. Let fppq8 be the encoding forest of the UIHPQp. Instead of working with metric
balls around the root vertex in the UIHPQp, it will – due to the specific construction of the
latter – often be more practical to consider metric balls around the vertex corresponding to
the tree root fppq8 p0q in the UIHPQp. Similarly, if Qσ

n P Qσn is a uniform quadrangulation and
fn its encoding forest, it will be more natural to consider balls around fnp0q in Qσ

n. Since the
distance between fppq8 p0q or fnp0q and the root of the map is stochastically bounded (it may
also be zero), this makes no difference in terms of scaling limits whatsoever; see [8, Lemma

5.6]. We shall use the notation B
p0q
r pQ88ppqq for the metric ball of radius r around fppq8 p0q in

the UIHPQp. Analogously, we define B
p0q
r pQσ

nq.
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5 Proofs of the limit results

5.1 The UIHPQp as a local limit of uniform quadrangulations

In this part, we prove Theorem 1 and Proposition 1. We begin with the former. The case
p “ 1{2 has already been treated in [8], and the case p “ 0 will be considered afterwards,
so we first fix 0 ă p ă 1{2 and let pσn, n P Nq be a sequence of positive integers satisfying
σn “

1´2p
p
n ` opnq. Recall that rooted pointed quadrangulations in Q‚n,σn are in one-to-one

correspondence with elements in Fnσn ˆ Bσn . For proving Theorem 1, the key step is to
control the law of the first k trees in a forest fn chosen uniformly at random in Fnσn , for k
arbitrarily large but fixed. We will see in Lemma 1 below that their law is close to the law of k
independent p-Galton-Watson trees when n is sufficiently large. Together with a convergence
result of bridges (Lemma 2), this allows us to couple contour and label functions of Qσn

n and
the UIHPQp, such that with high probability, we have equality of balls of a constant radius
around the roots in Qσn

n and the UIHPQp, respectively. This readily implies the theorem.
We begin with the necessary control over the trees. Since the result on the tree conver-

gence is of some interest on its own, we formulate an optimal version, which is stronger than
we what need for mere local convergence as stated in Theorem 1. The exact formulation
depends on the error term in the expression for σn. Let us put

γn “ max

"

σn ´
1´ 2p

p
n, 1

*

. (3)

Lemma 1. Fix 0 ă p ă 1{2, and let pσn, n P Nq be a sequence of positive integers satisfying
σn “

1´2p
p
n ` opnq. Define γn in terms of σn and p. Let ptiq1ďiďσn be a family of σn

independent 1{2-Galton-Watson trees, and let pt
ppq
i q1ďiďσn be a family of σn independent p-

Galton-Watson trees. Then, if pkn, n P Nq is a sequence of positive integers satisfying kn ď σn
and kn “ o

`

mintn1{2, n{γnu
˘

as nÑ 8, we have

lim
nÑ8

›

›

›

›

›

Law
´

ptiq1ďiďkn

ˇ

ˇ

ˇ

σn
ÿ

i“1

|ti| “ n
¯

´ Law
´

pt
ppq
i q1ďiďkn

¯

›

›

›

›

›

TV

“ 0.

Remark 10. We stress that if we only know γn “ opnq as assumed in the statement of
Theorem 1, we can at least choose kn equals an (arbitrary) large constant k P N. This
suffices in any case to show local convergence towards the UIHPQp; see Proposition 4 below.
Lemma 1 may be seen as a complement to the results on coupling of trees in [8]; it treats a
regime not considered in that work.

Proof. We write Pn for the conditional law of ptiq1ďiďkn given
řσn
i“1 |ti| “ n, and Qn for the

(unconditioned) law of pt
ppq
i q1ďiďkn . Given a family f of kn trees, we write vpfq for the sum

of their sizes, i.e., the total number of edges. Note that

supppPnq “ supppQnq X tf : vpfq ď nu.

We now proceed in two steps. First, we show that for each ε ą 0, there exists a constant
K ą 0 such that

Qn ptf : vpfq ą Kknuq ď ε, Pn ptf : vpfq ą Kknuq ď ε. (4)
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We then show that for large enough n, we have for any f P supppPnq of total size vpfq ď Kkn,

1´ ε ď

ˇ

ˇ

ˇ

ˇ

Pnpfq
Qnpfq

ˇ

ˇ

ˇ

ˇ

ď 1` ε. (5)

Clearly, (4) and (5) imply the claim of the lemma. We first prove (4). Let pSppqpmq,m P N0q

be a random walk on the integers starting from Sppqp0q “ 0 with increments distributed
according to pδ1 ` p1´ pqδ´1. Set, for ` P Z,

T
ppq
` “ inf

 

m P N : Sppqpmq “ `
(

.

Note that Sppqpmq`p1´2pqm, m P N0, is a martingale. We now use that the total size of kn
trees under Qn and pT

ppq
´kn
´knq{2 are equal in distribution; see the discussion in Section 3.2.2.

Applying Markov’s inequality in the second and the optional stopping theorem in the third
step, we obtain for K large enough

Qn pv ą Kknq “ P
´

T
ppq
´kn

ą p2K ` 1qkn

¯

ď
ErT ppq´kns

p2K ` 1qkn
“

1

p1´ 2pqp2K ` 1q
ď ε.

For bounding the second probability in (4), we let pSpmq,m P N0q be a simple symmetric
random walk started from Sp0q “ 0 and write T` for its first hitting time of ` P Z. Then

Pn pv ą Kknq “ P pT´kn ą Kkn |T´σn “ 2n` σnq .

Let us abbreviate N “ 2n` σn, and Kn “ rKkns. We recall Kemperman’s formula; see [36,
Section 6.1]. Applying first the Markov property at time Kn and then Kemperman’s formula
to both the nominator and denominator gives, for large n,

P pT´kn ą Kn |T´σn “ Nq “ E
„

1tT´knąKnu
P pT´σn “ N |SpKnqq

P pT´σn “ Nq



“ E
„

1tT´knąKnu
σnpσn ` SpKnqq

NpN ´Knq

P pSpNq “ ´σn |SpKnqq

P pSpNq “ ´σnq



ď 2P pSpKnq ą ´kn |SpNq “ ´σnq .

Let pS̃pmq,m P N0q be the random walk starting from S̃p0q “ 0 with steps

1`
σn
N

with probability
1´ σn{N

2
, ´1`

σn
N

with probability
1` σn{N

2
.

Clearly, pS̃pmq,m P N0q is a martingale, and we find the relation

P
`

SpKnq ě ´kn
ˇ

ˇSpNq “ ´σn
˘

“ P
´

S̃pKnq ě Kn
σn
N
´ kn

ˇ

ˇ S̃pNq “ 0
¯

.

We now estimate

P
´

S̃pKnq ě Kn
σn
N
´ kn

ˇ

ˇ S̃pNq “ 0
¯

ď P
´

S̃pNq ě 0
¯´1

P
´

S̃pKnq ě Kn
σn
N
´ kn

¯

ď 3
E
”

S̃pKnq
2
ı

pKn
σn
N
´ knq2

ď
12Kn

pKn
σn
N
´ knq2

.
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Here, in the next to last inequality, we have used Doob’s inequality, as well as the bound
PpS̃pNq ě 0q ě 1{3 for large n, which is a direct consequence of the martingale central
limit theorem. Since σn{N remains bounded away from zero (recall that p ă 1{2), the last
expression on the right hand side can be made arbitrarily small, upon choosing K large.
This proves Pn pv ą Kknq ď ε for K large enough, and hence (4) holds.

We turn to (5). First, observe that for a fixed f in the support of Pn, Pnpfq is the
probability to see kn particular trees of total size vpfq in a forest consisting of σn trees with
total size n. An application of Kemperman’s formula gives

Pnpfq “
σn´kn

2pn´vpfqq`σn´kn
22pn´vpfqq`σn´knP pSp2pn´ vpfqq ` σn ´ knq “ σn ´ knq

σn
2n`σn

22n`σnP pSp2n` σnq “ σnq
.

Since kn ! n, we have for large n P N and all families f of kn trees with vpfq ď Kkn,

1´ ε ď

ˇ

ˇ

ˇ

ˇ

ˇ

σn´kn
2pn´vpfqq`σn´kn

22pn´vpfqq`σn´kn

σn
2n`σn

22n`σn
22vpfq`kn

ˇ

ˇ

ˇ

ˇ

ˇ

ď 1` ε.

On the other hand, we know from (2) that Qnpfq “ pvpfqp1 ´ pqvpfq`kn . Display (5) will
therefore follow if we show that for large n and all f with vpfq ď Kkn,

1´ ε ď

ˇ

ˇ

ˇ

ˇ

P pSp2pn´ vpfqq ` σn ´ knq “ σn ´ knq

P pSp2n` σnq “ σnq
pp2pq´vpfqp2p1´ pqq´pvpfq`knq

ˇ

ˇ

ˇ

ˇ

ď 1` ε. (6)

For a given f with vpfq ď Kkn, let us abbreviate yn “ 2pn ´ vpfqq ` σn ´ kn, xn “ σn ´ kn,
and vn “ vpfq. Clearly,

P pSp2pn´ vnq ` σn ´ knq “ σn ´ knq

P pSp2n` σnq “ σnq
“

` yn
yn´xn

2

˘

`

2n`σn
n

˘22vn`kn .

Combining the last two displays, it remains to show that

1´ ε ď

ˇ

ˇ

ˇ

ˇ

yn!pn` σnq!n!
yn´xn

2
!yn`xn

2
!p2n` σnq!

p´vnp1´ pq´pvn`knq
ˇ

ˇ

ˇ

ˇ

ď 1` ε.

The constants in the following error terms are uniform in the choice of f satisfying vn “
vpfq ď Kkn. By Stirling’s formula and a rearrangement of the terms, we obtain

yn!pn` σnq!n!
yn´xn

2
!yn`xn

2
!p2n` σnq!

“ p1` op1qq

ˆ

ˆ

yn
2n` σn

˙2n`σn ˆ n

n´ vn

˙nˆ
n` σn

pyn ` xnq{2

˙n`σn

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

“I

ˆ

n´ vn
yn

˙vn ˆ
pyn ` xnq{2

yn

˙vn`kn

looooooooooooooooooooomooooooooooooooooooooon

“II

.

Recall that kn “ o
`

mintn1{2, n{γnu
˘

and vn ď Kkn. We replace xn and yn by their values
and obtain for the product I of the first three factors

I “ exp p´p2vn ` knqq exp ppvn ` knqq exp pvnq
`

1`Opk2
n{nq

˘

“ 1` op1q.

26



Recalling the particular form of σn for the product II of the last two factors, we arrive at

II “ pvnp1´ pqvn`kn p1`Opγn{nqq
2vn`kn “ pvnp1´ pqvn`kn p1` op1qq .

This proves (6) and hence the lemma.

We continue with a convergence result for uniform bridges bn P Bσn towards b8.

Lemma 2. Let pσn, n P Nq be a sequence of positive integers satisfying σn Ñ 8 as n Ñ 8.
Let bn be uniformly distributed in Bσn, and let b8 be a uniform infinite bridge as specified
in Section 4. Then, if kn is a sequence of positive integers with kn ď σn and kn “ opσnq as
nÑ 8,

lim
nÑ8

}Lawppbnp2σn ´ knq, . . . , bnp2σn ´ 1q, bnp0q, bnp1q, . . . , bnpknqqq

´Lawppb8p´knq, . . . , b8p´1q, b8p0q, b8p1q, . . . , b8pknqqq}TV “ 0.

The proof follows from a small adaption of [8, Proof of Lemma 5.5] and is left to the
reader. We stress, however, that in [8], bn and b8 were defined in a slightly different manner,
by grouping the `1-steps between two subsequent down-steps together to one “big” jump.
Clearly, this does change the argument only in a minor way.

We are now in position to formulate an appropriate coupling of balls.

Proposition 4. Fix 0 ă p ă 1{2, and let pσn, n P Nq be a sequence of positive integers satisfy-
ing σn “

1´2p
p
n`opnq. Define γn in terms of σn as under (3), and put ξn “ mintn1{4,

a

n{γnu.
Then, given any ε ą 0, there exist δ ą 0 and n0 P N such that for every n ě n0, we can con-
struct on the same probability space copies of Qσn

n and the UIHPQp such that with probability
at least 1 ´ ε, the metric balls BδξnpQ

σn
n q and BδξnpUIHPQpq of radius δξn around the roots

in the corresponding spaces are isometric.

The local convergence of Qσn
n towards UIHPQppq is a weaker statement, hence Theorem 1

in the case 0 ă p ă 1{2 will follow from the proposition.

Proof. The proof is in spirit of [8, Proof of Proposition 3.11], requires, however, some mod-
ifications. We will indicate at which place we may simply adopt the reasoning. We consider
a random uniform element ppfn, lnq, bnq P Fnσn , and a triplet ppfppq8 , lppq8 q, b8q consisting of a
uniformly labeled infinite p-forest together with an (independent) uniform infinite bridge
b8. We let pQσn

n , v
‚q “ Φnppfn, lnq, bnq and Q88ppq “ Φppfppq8 , lppq8 q, b8q be the quadrangu-

lations obtained from applying the Bouttier-Di Francesco-Guitter mapping to ppfn, lnq, bnq
and ppfppq8 , lppq8 q, b8q, respectively. Recall that fn “ pt0, . . . , tσn´1q consists of σn trees. For
0 ď k ď σn ´ 1, we let tpfn, kq “ tk, i.e., tpfn, kq is the tree of fn with index k, and we put
tpfn, σnq “ tpfn, 0q. In a similar manner, tpfppq8 , kq denotes the tree of fppq8 indexed by k P Z.

By Lemma 1, we find δ1 ą 0 and n10 P N such that for n ě n10, we can construct ppfn, lnq, bnq
and ppfppq8 , lppq8 q, b8q on the same probability space such that with An “ tδ1ξ2

nu, the event

E1
pn, δ1q “

!

tpfn, iq “ tpfppq8 , iq, tpfn, σn ´ iq “ tpfppq8 ,´iq for all 0 ď i ď An

)

X

!

ln|tpfn,iq “ lppq8 |tpfppq8 ,iq
, ln|tpfn,σn´iq “ lppq8 |tpfppq8 ,´iq

for all 0 ď i ď An

)
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has probability at least 1´ε{8. We now fix such a δ1 for the rest of the proof. Recall that by
our construction of the Bouttier-Di Francesco-Guitter bijection, the trees of fn are attached
to the down-steps dÓnpiq “ dÓbnpiq of bn, 1 ď i ď σn, and similarly, the trees of fppq8 are attached

to the down-steps dÓ8piq “ dÓb8piq of b8, where now i P Z. In view of the above event, this
incites us to consider additionally the event

E2
pn, δ1q “

 

bnpiq “ b8piq for all 1 ď i ď dÓ8pAn ` 1q
(

X
 

bnp2σn ´ iq “ b8piq for all dÓ8p´Anq ď i ď ´1
(

.

Note that on E2pn, δ1q, we automatically have dÓnpiq “ dÓ8piq for 1 ď i ď An ` 1, and
dÓnpσn ´ i ` 1q “ dÓ8p´iq for 1 ď i ď An. Trivially, we have that dÓ8pAn ` 1q ě An ` 1
and dÓ8p´Anq ď ´An, but also, with probability tending to 1, dÓ8pAn ` 1q ď 3An and
dÓ8p´Anq ě ´3An. Since, in any case, An “ opσnq, we can ensure by Lemma 2 that the
event E2pn, δ1q has probability at least 1´ ε{8 for large n.

Now for δ ą 0, n P N, define the events

E3
pn, δq “

#

min
r0, dÓ8pAn`1qs

b8 ă ´5δξn, min
rdÓ8p´Anq,´1s

b8 ă ´5δξn

+

,

E4
pn, δq “

#

min
rdÓ8pAn`1q`1,dÓ8p´Anq´1s

bn ă ´5δξn

+

.

By invoking Donsker’s invariance principle together with Lemma 2 for the event E3 (and
again the fact that An ` 1 ď dÓ8pAn ` 1q ď 3An and ´3An ď dÓ8p´Anq ď ´An with high
probability), we deduce that for small δ ą 0, provided n is large enough,

P
`

E3
pn, δq

˘

ě 1´ ε{8, and P
`

E4
pn, δq

˘

ě 1´ ε{8.

We will now assume that n0 ě n10 and δ ą 0 are such that for all n ě n0, the above bounds
hold true, and work on the event E1pn, δ1q X E2pn, δ1q X E3pn, δq X E4pn, δq of probability at
least 1´ ε{2. We consider the forest obtained from restricting fn to the first An ` 1 and the
last An trees,

f1n “ ptpfn, 0q, . . . , tpfn, Anq, tpfn, σn ´ Anq, . . . , tpfn, σn ´ 1qq .

Similarly, we define f
1ppq
8 . We recall the cactus bounds in the version stated in [8, (4.4) of

Section 4.5]. Applied to Qσn
n , it shows that for vertices v P V pfnqzV pf

1
nq, with dn denoting

the graph distance,

dnpfnp0q, vq ě ´max

#

min
r0,dÓ8pAn`1qs

bn, min
rdÓ8p´Anq ,2σns

bn

+

ě 5δξn.

Applying now the analogous cactus bound [8, (4.6) of Section 4.5] to the infinite quad-
rangulation Q88ppq, we obtain the same lower bound for vertices v P V pfppq8 qzV pf

1ppq
8 q, with

dn replaced by the graph distance d
ppq
8 in Q88ppq, and fnp0q replaced by the vertex fppq8 p0q of

Q88ppq. We recall the definition of the metric balls B
p0q
r pQσn

n q and B
p0q
r pQ88ppqq; see Remark 9.
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With the same arguments as in [8, Proof of Proposition 3.11], we then deduce that vertices
at a distance at most 5δξn ´ 1 from fnp0q in Qσn

n agree with those at a distance at most
5δξn ´ 1 from fppq8 p0q in Q88ppq. Moreover,

dnpu, vq “ dppq8 pu, vq whenever u, v P B
p0q
2δξn
pQσn

n q.

This proves that the balls B
p0q
2δξn
pQσn

n q and B
p0q
2δξn
pQ88ppqq are isometric on an event of prob-

ability at least 1 ´ ε{2. In order to conclude, it suffices to observe that the distances from
fnp0q resp. fppq8 p0q to the root vertex in Qσn

n resp. Q88ppq are stochastically bounded; see
again Remark 9. Clearly, this implies that with probability tending to 1 as n increases, we
have the inclusions BδξnpQ

σn
n q Ă B

p0q
2δξn
pQσn

n q and BδξnpQ
8
8ppqq Ă B

p0q
2δξn
pQ88ppqq.

As mentioned at the beginning, the case p “ 1{2 has already been treated in [8, Proof of
Proposition 3.11]: It is proved there that for δ small, balls of radius δmint

?
σn,

a

n{σnu in
Qσn
n and in the standard UIHPQ “ UIHPQ1{2 can be coupled with high probability, implying

of course again local convergence of Qσn
n towards the UIHPQ.

Finally, it remains to consider the case p “ 0 corresponding to σn " n. This case is easy.
We have the following coupling lemma.

Lemma 3. Let pσn, n P Nq be a sequence of positive integers satisfying σn " n. Put ξn “
σn{n. Then, given any ε ą 0, there exist δ ą 0 and n0 P N such that for every n ě n0, we
can construct on the same probability space copies of Qσn

n and the UIHPQ0 such that with
probability at least 1´ ε, the metric balls BδξnpQ

σn
n q and BδξnpUIHPQ0q of radius δξn around

the roots in the corresponding spaces are isometric.

Proof. Let ppfn, lnq, bnq P Fnσn ˆ Bσn be uniformly distributed. By exchangeability of the
trees, it follows that if kn “ opσn{nq, then the first and last kn trees of fn are all singletons
with a probability tending to one. Applying Lemma 2, we can ensure that the event

tbnpiq “ b8piq, bnp2σn ´ iq “ b8p´iq, 1 ď i ď knu

has a probability as large as we wish, provided n is large enough. Given ε ą 0, the same argu-
ments as in the proof of Proposition 4 yield an equality of balls BδξnpQ

σn
n q and BδξnpUIHPQ0q

for δ small and n large enough, on an event of probability at least 1´ ε.

Let us now show that the space UIHPQ0 defined in terms of the Bouttier-Di Francesco-
Guitter mapping in Section 4.3 is nothing else than Kesten’s tree associated to the critical
geometric offspring law µ1{2.

Proof of Proposition 1. Let b8 “ pb8piq, i P Zq be a uniform infinite bridge, and let pfp0q8 , lp0q8 q
be the infinite forest where all trees are just singletons (with label 0); see Section 4.3. The
UIHPQ0 is distributed as the infinite map Q88p0q “ Φppfp0q8 , lp0q8 q, b8q. Since every vertex in fp0q8
defines a single corner, properties of the Bouttier-Di Francesco-Guitter mapping (Section 4.2)
imply that Q88p0q is a tree almost surely. Moreover, the set of vertices of Q88p0q is identified
with the set of down-steps DSpb8q of the bridge. Following [9, Section 2.2.3], conditionally
on b8, we introduce a function ϕ : ZÑ DSpb8q that associates to i P Z the next down-step
ě i with label b8piq (and i is mapped to itself if i P DSpb8q). According to our rooting
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convention, the root edge of Q88p0q connects ϕp0q to ϕp1q. Note that ϕ is not injective almost
surely.

We recall that Kesten’s tree can be represented by a half-line of vertices s0, s1, . . . , to-
gether with a collection of independent Galton-Watson trees with offspring law µ1{2 grafted
to the left and right side of each vertex si, i P N0. We will now argue that the UIHPQ0 Q

8
8p0q

has the same structure. In this regard, let us introduce the stopping times

Si “ inftk P N0 : b8pkq “ ´iu, i P N0,

and denote by si the vertex of Q88p0q given by ϕpSiq. Together with their connecting edges,
the collection psi, i P N0q forms a spine (i.e., an infinite self-avoiding path) in Q88p0q.

The subtree rooted at si on the left side of the spine is encoded by the excursion tb8pkq :
Si ď k ď Si`1u, in a way we describe next; see Figure 9 for an illustration. First note that by
the Markov property, these subtrees for i P Z are i.i.d.. In order to determine their law, let
us consider the subtree encoded by the excursion tb8pkq : 0 ď k ď S1u of b8. This subtree
is rooted at s0 “ H, and the number of offspring of s0 is the number of down-steps with
label 1 between 0 and S1. Otherwise said, this is the number #t0 ă k ă S1 : b8pkq “ 0u of
excursions of b8 above 0 between 0 and S1. By the Markov property, this quantity follows
the geometric distribution µ1{2 of parameter 1{2. One can now repeat the argument for each
child of s0, by considering the corresponding excursion above 0 encoding its progeny tree,
inside the mother excursion. We obtain that the subtree stemming from s0 on the left of the
spine has indeed the law of a Galton-Watson tree with offspring distribution µ1{2.

The subtrees attached to the vertices si, i P N0, on the right of the spine can be treated
by a symmetry argument. Namely, letting

S 1i “ inftk P N0 : b8p´kq “ ´iu, i P N0,

we observe that the subtree rooted at si to the right of the spine is coded by the (reversed)
excursion tb8pkq : ´S 1i`1 ď k ď ´S 1iu. With the same argument as above, we see that it has
the law of an (independent) µ1{2-Galton Watson tree. This concludes the proof.

0

1

b∞

s0 = ∅

s1

s2

UIHPQ0

Figure 9: The construction of the UIHPQ0 from a uniform infinite bridge b8. The spine is
shown in bold red arcs. The trees on the left of the spine are drawn in blue and enclosed by
dotted blue half-circles, which indicate the corresponding excursions of b8 encoding these
trees. The trees on the right of the spine are drawn in red, as the spine itself.
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5.2 The UIHPQp as a local limit of Boltzmann quadrangulations

This section is devoted to the proof of Proposition 2. It is convenient to first prove the
analogous result for pointed maps. For that purpose, we first extend the definitions of Boltz-
mann measures from Section 1.2.5 to pointed maps and then use a “de-pointing” argument.
We use the notation Q‚f for the set of finite rooted pointed quadrangulations, and we write
Q‚,σf for the set of finite pointed rooted quadrangulations with 2σ boundary edges. The
corresponding partition functions read

F ‚pg, zq “
ÿ

qPQ‚f

g#Fpqqz#Bq{2, F ‚σ pgq “
ÿ

qPQ‚,σf

g#Fpqq,

and the associated pointed Boltzmann distributions are defined by

P‚g,zpqq “
g#Fpqqz#Bq{2

F ‚pg, zq
, q P Q‚f , P‚,σg pqq “

g#Fpqq

F ‚σ pgq
, q P Q‚,σf .

We will need the following enumeration result for pointed rooted maps. From [16, (23)]
and [15, Section 3.3], we have for every 0 ď p ď 1{2

F ‚σ pgpq “

ˆ

2σ

σ

˙ˆ

1

1´ p

˙σ

, σ P N0. (7)

Note that the result (3.29) in [15] cannot be used directly, due to a difference in the rooting
convention (there, the root vertex has to be chosen among the vertices of the boundary that
are closest to the marked point).

Recall that gp “ pp1 ´ pq{3 for 0 ď p ď 1{2. The first step towards the proof of
Proposition 2 is the following convergence result for pointed Boltzmann quadrangulations.

Proposition 5. Let 0 ď p ď 1{2. For every σ P N0, let Q‚σppq be a random rooted pointed
quadrangulation distributed according to P‚,σgp . Then, we have the local convergence for the
metric dmap as σ Ñ 8

Q‚σppq
pdq
ÝÑ UIHPQp,

Proof. Let q P Qσf , and ppf, lq, bq P Yně0F
n
σ ˆ Bσ such that q “ Φppf, lq, bq. Moreover, let

pfppqσ , lppqσ q be a uniformly labeled p-forest with σ trees, i.e., a collection of σ independent
uniformly labeled p-Galton-Watson trees, and let bσ be uniformly distributed in Bσ and
independent of pfppqσ , lppqσ q. We have

P
´

Φ
`

pfppqσ , lppqσ q, bσ
˘

“ q
¯

“ P
´

`

pfppqσ , lppqσ q, bσ
˘

“ ppf, lq , bq
¯

“

ˆ

pp1´ pq

3

˙|f|
p1´ pqσ
`

2σ
σ

˘ “
g

#Fpqq
p

F ‚σ pgpq
,

Here, for the first equality in the second line, we have used (2), the fact that the label
differences are i.i.d. uniform in t´1, 0, 1u, and |Bσ| “

`

2σ
σ

˘

. The last equality follows from
the enumeration result (7) and the fact that the number of edges of f equals the number of
faces of q. Thus, Q‚σppq is distributed as Φppfppqσ , lppqσ q, bσq.
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Now observe that fppqσ is already a collection of σ independent p-Galton-Watson trees, and
Lemma 2 allows us to couple the first and last opσq steps of bσ with those of a uniform infinite
bridge b8. With exactly the same reasoning as in Proposition 4, we therefore obtain with
high probability an isometry of balls Bδ

?
σpQ

‚
σppqq and Bδ

?
σpUIHPQpq for all σ sufficiently

large, provided δ is small enough. The stated local convergence follows.

Proposition 2 is a consequence of the foregoing result and the following de-pointing
argument inspired by [1, Proposition 14]. According to Remark 2, it suffices to consider the
case p P r0, 1{2q.

In the following, by a small abuse of notation, we interpret P‚,σgp as a probability measure
on Qf by simply forgetting the marked point.

Lemma 4. Let 0 ď p ă 1{2. Then,

lim
σÑ8

›

›

›
Pσgp ´ P‚,σgp

›

›

›

TV
“ 0.

Proof. Let #V be the mapping q ÞÑ #V pqq, which assigns to a finite quadrangulation q its
number of vertices. We have the absolute continuity relation [12, (5)]

dPσgppqq “
Kσ

#V pqq
dP‚,σgp pqq,

where Kσ “ pE‚,σgp r1{#V qsq
´1. Then,

›

›

›
Pσgp ´ P‚,σgp

›

›

›

TV
“

1

2
sup

F :QσfÑr´1,1s

ˇ

ˇ

ˇ
EσgprF s ´ E‚,σgp rF s

ˇ

ˇ

ˇ
ď E‚,σgp

„
ˇ

ˇ

ˇ

ˇ

1´
Kσ

#V

ˇ

ˇ

ˇ

ˇ



. (8)

Let pt
ppq
0 , . . . , t

ppq
σ´1q be a collection of independent p-Galton-Watson trees. The proof of Propo-

sition 5 shows that under P‚,σgp , #V has the same law as

1`
σ´1
ÿ

i“0

#V pt
ppq
i q.

Note that the summand `1 accounts for the pointed vertex, which is added to the tree
vertices in the Bouttier-Di Francesco-Guitter mapping. Using the fact that #V pt

ppq
0 q has the

same law as pT
ppq
´1 ` 1q{2, where T

ppq
´1 is the first hitting time of ´1 of a random walk with

step distribution pδ1 ` p1´ pqδ´1, an application of the optional stopping theorem gives

E‚,σgp r#V s “ 1` σE
”

#V pt
ppq
0 q

ı

“ 1` σ

ˆ

1´ p

1´ 2p

˙

.

Moreover, using p ă 1{2 and the description in terms of T
ppq
´1 , it is readily checked that the

random variable #V pt
ppq
0 q has small exponential moments. Cramer’s theorem thus ensures

that for every δ ą 0, there exists a constant Cδ ą 0 such that

P‚,σgp
´ˇ

ˇ

ˇ
#V ´ E‚,σgp r#V s

ˇ

ˇ

ˇ
ą δσ

¯

ď expp´Cδσq.
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We now proceed similarly to [1, Lemma 16]. Let Xσ be distributed as #V {E‚,σgp r#V s under

P‚,σgp . Note that X´1
σ ď E‚,σgp r#V s P

‚,σ
gp -a.s. since #V ě 1. Moreover, it is seen that t|X´1

σ ´

1| ą δu Ă t|Xσ| ă 1{2u Y t|Xσ ´ 1| ą δ{2u. From these observations, we obtain

E
“
ˇ

ˇX´1
σ ´ 1

ˇ

ˇ

‰

ď δ ` E
”

ˇ

ˇX´1
σ ´ 1

ˇ

ˇ1t|X´1
σ ´1|ąδu

ı

ď δ `
´

E‚,σgp r#V s ` 1
¯

P
ˆ

|Xσ ´ 1| ą
δ

2
^

1

2

˙

.

The preceding two displays show that the expected number of vertices grows linearly in σ,
and the probability on the right decays exponentially fast in σ. Since δ ą 0 was arbitrary,
we deduce that X´1

σ ÝÑ 1 as σ Ñ 8 in L1. Finally,

E‚,σgp

„
ˇ

ˇ

ˇ

ˇ

1´
Kσ

#V

ˇ

ˇ

ˇ

ˇ



“ E
„
ˇ

ˇ

ˇ

ˇ

1´
X´1
σ

ErX´1
σ s

ˇ

ˇ

ˇ

ˇ



ď
1

ErX´1
σ s

`ˇ

ˇErX´1
σ s ´ 1

ˇ

ˇ` Er|X´1
σ ´ 1|s

˘

ÝÑ 0

as σ Ñ 8, which concludes the proof by (8).

5.3 The BHPθ as a local scaling limit of the UIHPQp’s

In this section, we prove Theorem 2. For the reminder, we fix a sequence pan, n P Nq of
positive reals tending to infinity and let r ą 0 be given. Similarly to [8, Proof of Theorem
3.4], the main step is to establish an absolute continuity relation of balls around the roots
of radius ran between the UIHPQp for p P p0, 1{2s and the UIHPQ “ UIHPQ1{2. To this
aim, we compute the Radon-Nikodym derivative of the encoding contour function of the
UIHPQp with respect to that of the UIHPQ on an interval of the form r´sa2

n, sa
2
ns for s ą 0.

From Theorem 3.8 of [8] we know that a´1
n ¨ UIHPQ Ñ BHP0 in distribution in the local

Gromov-Hausdorff topology, jointly with a uniform convergence on compacts of (rescaled)
contour and label functions. An application of Girsanov’s theorem shows that the limiting
Radon-Nikodym derivative turns the contour function of BHP0 into the contour function of
BHPθ, which allows us to conclude.

In order to make these steps rigorous, we begin with some notation specific to this section.
Let f P CpR,Rq and x P R. We define the last (first) visit to x to the left (right) of 0,

Uxpfq “ inftt ď 0 : fptq “ xu P r´8, 0s, Txpfq “ inftt ě 0 : fptq “ xu P r0,8s.

We agree that Uxpfq “ ´8 if the set over which the infimum is taken is empty, and, similarly,
Txpfq “ 8 if the second set is empty. We will also apply Ux to functions in Cpp´8, 0s,Rq,
and Tx to functions in Cpr0,8q,Rq.

If f P CpR,Rq is the contour function of an infinite p-forest for some p P p0, 1{2s (or part
of it defined on some interval), and if x P N, we use the notation

vpf, xq “
1

2
pT´xpfq ´ Uxpfq ´ 2xq

for the total number of edges of the 2x trees encoded by f along the interval rUxpfq, T´xpfqs.
We set vpf, xq “ 8 if Uxpfq or T´xpfq is unbounded.
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Given s ą 0, we put for n P N

sn “ tp3{2qsa2
nu.

Now let p P p0, 1{2s. Throughout this section and as usual, we assume that ppfppq8 , lppq8 q, b8q
and ppf8, l8q, b8q encode the UIHPQp Q

8
8ppq and the standard UIHPQ Q88, respectively (see

Definition 5). We stress that since the skewness parameter p does not affect the law of the
infinite bridge b8, we can and will use the same bridge in the construction of both Q88ppq

and Q88. We denote by pC
ppq
8 ,Lppq8 q and pC8,L8q the associated contour and label functions,

viewed as elements in CpR,Rq.
For understanding how the balls of radius ran for some r ą 0 around the roots in Q88ppq

and Q88 are related to each other, we need to control the contour functions C
ppq
8 and C8 on

rUsn , T´sns for a suitable choice of s “ sprq. In this regard, we first formulate an absolute

continuity relation between the probability laws Pppqs,n and Ps,n on CpR,Rq defined as follows:

Pppqn,s “ Law
``

Cppq8 pt_ UsnpC
ppq
8 q ^ T´snpC

ppq
8 qq, t P R

˘˘

,

Pn,s “ Law ppC8pt_ UsnpC8q ^ T´snpC8qq, t P Rqq .

Lemma 5. Let p P p0, 1q and s ą 0. The laws Pppqn,s and Pn,s are absolutely continuous with

respect to each other: For any f P supppPppqn,sqp“ supppPn,sqq, with sn as above,

Pppqn,spfq “ p4pp1´ pqq
vpf,snq p2p1´ pqq2sn Pn,spfq.

Proof. By definition of C
ppq
8 and C8, each element f P CpR,Rq in the support of Pppqn,s lies

also in the support of Pn,s and vice versa (note that p R t0, 1u).

More specifically, for such an f supported by these laws, Pppqn,spfq resp. Pn,spfq is the
probability of a particular realization of 2sn independent p-Galton-Watson trees resp. p1{2q-
Galton-Watson trees with vpf, snq tree edges in total. Therefore, by (2),

Pppqn,spfq “ pvpf,snqp1´ pqvpf,snqp1´ pq2sn , and Pn,spfq “ 2´2pvpf,snq`snq.

This proves the lemma.

We turn to the proof of Theorem 2. To that aim, we will work with rescaled and
stopped versions of pC

ppq
8 ,Lppq8 q and pC8,L8q, which encode the information of the first

sn “ tp3{2qsa2
nu trees to the right of zero, and of the first sn trees to the left zero. Specifically,

we let

C8,pn,s “
`

C8,pn,s ptq, t P R
˘

“

ˆ

1

p3{2qa2
n

Cppq8
`

p9{4qa4
nt_ UsnpC

ppq
8 q ^ T´snpC

ppq
8 q

˘

, t P R
˙

,

L8,pn,s “
`

L8,pn,s ptq, t P R
˘

“

ˆ

1

an
Lppq8

`

p9{4qa4
nt_ UsnpC

ppq
8 q ^ T´snpC

ppq
8 q

˘

, t P R
˙

,

C8n,s “
`

C8n,sptq, t P R
˘

“

ˆ

1

p3{2qa2
n

C8
`

p9{4qa4
nt_ UsnpC8q ^ T´snpC8q

˘

, t P R
˙

,

L8n,s “
`

L8n,sptq, t P R
˘

“

ˆ

1

an
L8

`

p9{4qa4
nt_ UsnpC8q ^ T´snpC8q

˘

, t P R
˙

.
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Following our notation from Section 3.1, we denote by Xθ “ pXθptq, t P Rq and W θ “

pW θptq, t P Rq the contour and label functions of the limit space BHPθ. We also put

Xθ,s
“
`

Xθ,s
ptq, t P R

˘

“
`

Xθ
`

t_ UspX
θ
q ^ T´spX

θ
q
˘

, t P R
˘

,

W θ,s
“
`

W θ,s
ptq, t P R

˘

“
`

W θ
`

t_ UspX
θ
q ^ T´spX

θ
q
˘

, t P R
˘

.

Accordingly, we write X0,W 0 and X0,s,W 0,s for the corresponding functions associated to
BHP0. We will make use of the following joint convergence.

Lemma 6. Let r, s ą 0. Then, in the notation from above, we have the joint convergence
in law in CpR,Rq ˆ CpR,Rq ˆK,

`

C8n,s,L
8
n,s, B

p0q
r

`

a´1
n ¨Q88

˘˘ pdq
ÝÑ

`

X0,s,W 0,s, BrpBHP0q
˘

.

Moreover, for nÑ 8

vpC8, snq

p9{4qa4
n

pdq
ÝÑ

1

2
pT´s ´ Usq pX

0
q.

Proof. Both statements are proved in [8]; to give a quick reminder, first note by stan-
dard random walk estimates that for each δ ą 0, there exists a constant cδ ą 0 such that
PpvpC8, snq ą cδa

4
nq ď δ; see [8, Proof of Lemma 6.18] for details. Together with the joint

convergence in law in CpR,Rq2 ˆK obtained in [8, (6.30) of Remark 6.17], which reads
ˆ

C8pp9{4qa
4
n¨q

p3{2qa2
n

,
L8pp9{4qa

4
n¨q

an
, Bp0qr

`

a´1
n ¨Q88

˘

˙

pdq
ÝÑ

`

X0,W 0, BrpBHP0q
˘

,

the first claim of the statement follows, and the second is then a consequence of this.

We turn now to the Proof of Theorem 2.

Proof of Theorem 2. We fix a sequence ppn, n P Nq Ă p0, 1{2s of the form

pn “
1

2

ˆ

1´
2θ

3a2
n

˙

` o
`

a´2
n

˘

.

By Remark 9 and the observations in Section 1.2.7, the claim follows if we show that for all
r ą 0, as nÑ 8,

Bp0qr
`

a´1
n ¨Q88ppnq

˘ pdq
ÝÑ BrpBHPθq

in distribution in K. At this point, recall that B
p0q
r pa´1

n ¨Q88ppnqq “ a´1
n ¨B

p0q
ranpQ

8
8ppnqq is the

(rescaled) ball of radius ran around the vertex fppnq8 p0q in Q88ppnq. We consider the event

E1
pn, sq “

"

min
r0, sns

b8 ă ´ 3ran, min
r´sn, 0s

b8 ă ´3ran

*

.

We define a similar event in terms of the two-sided Brownian motion γ “ pγptq, t P Rq
scaled by the factor

?
3, which forms part of the construction of the space BHPθ given in

Section 3.1,

E2
psq “

"

min
r0,ss

γ ă ´3r, min
r´s,0s

γ ă ´3r

*

.
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Using the cactus bound, it was argued in [8, Proof of Theorem 3.4] that on the event E1pn, sq,

for any p P p0, 1{2s, the ball B
p0q
ranpQ

8
8ppqq viewed as a submap of Q88ppq is a measurable

function of pC8,pn,s ,L
8,p
n,s q. (In [8], only the case p “ 1{2 was considered, but the argument

remains exactly the same for all p, since the encoding bridge b8 does not depend on the
choice of p.) Similarly, on E2psq, the ball BrpBHPθq for any θ ě 0 is a measurable function
of pXθ,s,W θ,sq.

Now let ε ą 0 be given. By the (functional) central limit theorem, we find that for s ą 0
and n0 P N sufficiently large, it holds that for all n ě n0, PpE1pn, sqq ě 1´ ε. By choosing s
possibly larger, we can moreover ensure that PpE2psqq ě 1´ ε. We fix such s ą 0 and n0 P N
such that for all n ě n0, both events E1pn, sq and E2psq have probability at least 1´ ε.

Next, consider the laws Pppnqn,s and Pn,s defined just above Lemma 5, and put for f P CpR,Rq
λn,spfq “ p4pnp1´ pnqq

vpf,snq p2p1´ pnqq
2sn . (9)

Then, with F : CpR,Rq2 ˆKÑ R measurable and bounded, Lemma 5 shows

E
“

F
`

C8,pnn,s ,L8,pnn,s , Bp0qr
`

a´1
n ¨Q88ppnq

˘˘

1E1pn,sq

‰

“ E
“

λn,spC8qF
`

C8n,s,L
8
n,s, B

p0q
r

`

a´1
n ¨Q88

˘˘

1E1pn,sq

‰

. (10)

Note that on the left side, we consider the closed ball of radius ran around the vertex f8p0q
in the UIHPQpn Q

8
8ppnq, whereas on the right side, we look at the corresponding ball in the

standard UIHPQ Q88 with contour and label functions C8 and L8. Plugging in the value of
pn in (9), we get

λn,spfq “

ˆ

1`
2θ

3a2
n

` opa´2
n q

˙2sn ˆ

1´
4θ2

9a4
n

` opa´4
n q

˙vpf,snq

. (11)

Applying both statements of Lemma 6, and using (11), it follows that for large n ě n1pεq
ˇ

ˇ

ˇ
E
“

λn,spC8qF
`

C8n,s,L
8
n,s, B

p0q
r

`

a´1
n ¨Q88

˘˘‰

´

E
“

exp
`

2sθ ´ pT´s ´ UsqpX
0
qθ2
{2
˘

F
`

X0,s,W 0,s, Br pBHP0q
˘‰

ˇ

ˇ

ˇ
ď ε. (12)

The rest of the proof is now similar to [8, Proof of Theorem 3.4]. Applying Pitman’s
transform and Girsanov’s theorem, we have for continuous and bounded G : CpR,Rq2 Ñ R

E
“

exp
`

2sθ ´ pT´s ´ UsqpX
0
qθ2
{2
˘

G
`

X0,s,W 0,s
˘‰

“ E
“

G
`

Xθ,s,W θ,s
˘‰

.

On E2psq, BrpBHP0q is a measurable function of pX0,s,W 0,sq, and BrpBHPθq is given by the
same measurable function of pXθ,s,W θ,sq. Consequently,

E
“

exp
`

2sθ ´ pT´s ´ UsqpX
0
qθ2
{2
˘

F
`

X0,s,W 0,s, Br pBHP0q
˘

1E2psq

‰

“ E
“

F
`

Xθ,s,W θ,s, Br pBHPθq
˘

1E2psq

‰

. (13)

Recall that the events E1pn, sq and E2psq have probability at least 1 ´ ε. Using this fact
together with (10), (12), (13) and the triangle inequality, we find a constant C “ CpF, s, θq
such that for sufficiently large n,

ˇ

ˇE
“

F
`

C8,pnn,s ,L8,pnn,s , Bp0qr
`

a´1
n ¨Q88ppnq

˘˘‰

´ E
“

F
`

Xθ,s,W θ,s, Br pBHPθq
˘‰
ˇ

ˇ ď Cε.

This implies the theorem.
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5.4 The ICRT as a local scaling limit of the UIHPQp’s

Theorem 3 states that the ICRT appears as the distributional limit of a´1
n ¨ UIHPQpn when

an Ñ 8 and pn P r0, 1{2s satisfies a2
n p1´ 2pnq Ñ 8 as n Ñ 8. In essence, the idea

behind the proof is the following. Fix r ą 0, and sequences panqn and ppnqn with the above
properties. It turns out that in the UIHPQpn , vertices at a distance less than ran from
the root are to be found at a distance of order opanq from the boundary. Therefore, upon
rescaling the graph distance by a factor a´1

n , the scaling limit of the UIHPQpn in the local
Gromov-Hausdorff sense will agree with the scaling limit of its boundary. Upon a rescaling
by a2

n in time and a´1
n in space, the encoding bridge b8 converges to a two-sided Brownian

motion, which in turn encodes the ICRT.
The above observations are most naturally turned into a proof using the description of

the Gromov-Hausdorff metric in terms of correspondences between metric spaces; see [18,
Theorem 7.3.25]. Lemma 10 below captures the kind of correspondence we need to construct.
Our strategy of showing convergence of quadrangulations with a boundary towards a tree
has already been successfully implemented before; see, for instance, [11, Proof of Theorem
5].

For the reminder of this section, we write ppfpnq8 , lpnq8 q, b8q for a uniformly labeled infinite
pn-forest together with an (independent) uniform infinite bridge b8, and we assume that the
UIHPQpn is given in terms of ppfpnq8 , lpnq8 q, b8q, via the Bouttier-Di Francesco-Guitter mapping.

We interpret the associated contour function C
pnq
8 , the bridge b8 and the (unshifted) labels

lpnq8 as elements in CpR,Rq (by linear interpolation); see Section 4.1.2.
The core of the argument lies in the following lemma, which gives the necessary control

over distances to the boundary, via a control of the labels lpnq8 . We will use it at the very end
of the proof of Theorem 3, which follows afterwards.

Lemma 7. Let pan, n P Nq be a sequence of positive reals tending to infinity, and ppn, n P
Nq Ă r0, 1{2q be a sequence satisfying a2

np1 ´ 2pnq Ñ 8 as n Ñ 8. Then, in the notation
from above, we have the distributional convergence in CpR,R2q as nÑ 8,

ˆ

´ 1

a2
n

Cpnq8

´ a2
n

1´ 2pn
s
¯

,
1

an
lpnq8

´ a2
n

1´ 2pn
s
¯

, s P R
˙

pdq
ÝÑ pp´s, 0q, s P Rq .

Proof. We have to show joint convergence of C
pnq
8 and lpnq8 on any interval of the form r´K,Ks,

for K ą 0. Due to an obvious symmetry in the definition of the contour function, we may
restrict ourselves to intervals of the form r0, Ks. Fix K ą 0, and put θn “ p1 ´ 2pnq

´1a2
n.

We first show that a´2
n C

pnq
8 pθnsq, s P R, converges on r0, Ks to gpsq “ ´s in probability. For

that purpose, recall that C
pnq
8 on r0,8q has the law of an linearly interpolated random walk

started from 0 with step distribution pnδ1` p1´ pnqδ´1. Set Kn “ rKθns, and let δ ą 0. By
using Doob’s inequality in the second line,

P
´

sup
sPr0,Ks

ˇ

ˇa´2
n Cpnq8 pθnsq ` s

ˇ

ˇ ą δ
¯

ď P
´

sup
0ďiďKn

ˇ

ˇCpnq8 piq ` p1´ 2pnqi
ˇ

ˇ ą δa2
n

¯

ď
1

δ2a4
n

E
”

ˇ

ˇCpnq8 pKnq ` p1´ 2pnqKn

ˇ

ˇ

2
ı

ď
4Kn

δ2a4
n

ď
4K

δ2a2
np1´ 2pnq

. (14)
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Thanks to our assumption on pn, the right hand side converges to zero, and the convergence of
the contour function is established. Showing joint convergence together with the (rescaled)
labels lpnq8 is now rather standard: First, we may assume by Skorokhod’s theorem that

a´2
n C

pnq
8 pθnsq converges on r0, Ks almost surely. Now fix 0 ď s ď K. Conditionally given

C
pnq
8 on r0, Kθns, we have by construction, for pηi, i P Nq a sequence of i.i.d. uniform random

variables on t´1, 0, 1u, and with Cpnq8 ptθnsuq “ minr0,tθnsusC
pnq
8 ,

lpnq8 ptθnsuq “d

C
pnq
8 ptθnsuq´C

pnq
8 ptθnsuq

ÿ

i“1

ηi. (15)

Conditionally given C
pnq
8 on r0, Kθns, for δ ą 0, Chebycheff’s inequality gives

P
´

lpnq8 ptθnsuq ą δan |C
pnq
8 ær0, θnss

¯

ď
1

δ2a2
n

´

Cpnq8 ptθnsuq ´ C
pnq
8 ptθnsuq

¯

.

By our assumption, a´2
n pC

pnq
8 ptθnsuq ´ Cpnq8 ptθnsuqq converges to zero almost surely, and we

conclude
´

a´2
n Cpnq8 ptθnsuq, a

´1
n lpnq8 ptθnsuq

¯

pdq
ÝÑ p´s, 0q as nÑ 8.

Since both C
pnq
8 and lpnq8 are Lipschitz almost surely, the claim follows with tθnsu replaced

by θns. Joint finite-dimensional convergence can now be shown inductively: As for two-
dimensional convergence on r0, Ks, we simply note that when 0 ď s1 ă s2 ď K are such that

C
pnq
8 ptθns1uq and C

pnq
8 ptθns2uq encode vertices of different trees of fpnq8 , then, conditionally on

C
pnq
8 ær0, tθns2us, lpnq8 ptθns1uq and lpnq8 ptθns2uq are independent sums of i.i.d. uniform variables

on t´1, 0, 1u, and we have a representation similar to (15). If C
pnq
8 ptθns1uq and C

pnq
8 ptθns2uq

encode vertices of one and the same tree of fpnq8 , then, with the abbreviation

Čpnq8 ps1, s2q “ min
rtθns1u,tθns2us

Cpnq8 ´ Cpnq8 ptθns1uq,

it holds that

lpnq8 ptθns1uq “d

Č
pnq
8 ps1,s2q
ÿ

i“1

ηi `

C
pnq
8 ptθns1uq
ÿ

i“Č
pnq
8 ps1,s2q`1

η1i,

lpnq8 ptθns2uq “d

Č
pnq
8 ps1,s2q
ÿ

i“1

ηi `

C
pnq
8 ptθns2uq
ÿ

i“Č
pnq
8 ps1,s2q`1

η1i,

where pη1i, i P Nq is an i.i.d. copy of pηi, i P Nq. Using almost sure convergence of a´2
n C

pnq
8 pθnsq

on r0, Ks and an argument similar to that in the one-dimensional convergence consid-

ered above, we get two-dimensional convergence of pa´2
n C

pnq
8 pθnsq, a

´1
n lpnq8 pθnsqq on r0, Ks, as

wanted. Some more details can be found in [34, Proof of Theorem 4.3]. Higher-dimensional
convergence is now shown inductively and is left to the reader. It remains to show tightness
of the rescaled labels. We begin with the following lemma.
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Lemma 8. Let K ą 0, pan, n P Nq and ppn, n P Nq be as above. Then, for any q ě 2, there
exists a constant Cq ą 0 such that for any n P N and any 0 ď s1, s2 ď K, we have (with
θn “ p1´ 2pnq

´1a2
n, as before)

a´2q
n E

”

ˇ

ˇCpnq8 pθns1q ´ C
pnq
8 pθns2q

ˇ

ˇ

q
ı

ď Cq|s1 ´ s2|
q{2.

Proof. If |s1 ´ s2| ď θ´1
n , then, using linearity of C

pnq
8 ,

a´2q
n E

”

ˇ

ˇCpnq8 pθns1q ´ C
pnq
8 pθns2q

ˇ

ˇ

q
ı

ď a´2q
n θqn|s1 ´ s2|

q
ď a´2q

n θq{2n |s1 ´ s2|
q{2.

Since a´2q
n θ

q{2
n ď a´qn p1´ 2pnq

´q{2 Ñ 0 by assumption on pn, the claim of the lemma follows
in this case. Now let |s1 ´ s2| ą θ´1

n . We may assume s2 ě s1. Using the triangle inequality
and again the assumption on pn, we see that it suffices to establish the claim in the case
where θns1 and θns2 are integers. In this case, by definition of C

pnq
8 ,

Cpnq8 pθns2q ´ C
pnq
8 pθns1q “d

´

θnps2´s1q
ÿ

i“1

ϑi

¯

´ θnps2 ´ s1qp1´ 2pnq,

where pϑi, i P Nq are (centered) i.i.d. random variables with distribution pnδ2p1´pnq ` p1 ´
pnqδ´2pn . Using that |a` b|q ď 2q´1p|a|q ` |b|qq for reals a, b, we get

E
”

ˇ

ˇCpnq8 pθns2q ´ C
pnq
8 pθns1q

ˇ

ˇ

q
ı

ď 2q´1
´

E
”
ˇ

ˇ

ˇ

θnps2´s1q
ÿ

i“1

ϑi

ˇ

ˇ

ˇ

qı

` θqnp1´ 2pnq
q
ps2 ´ s1q

q
¯

.

The second term within the parenthesis is equal to a2q
n |s2´ s1|

q ď Kq{2a2q
n |s2´ s1|

q{2. As for
the sum, we apply Rosenthal’s inequality and obtain for some constant C 1q ą 0,

E
”
ˇ

ˇ

ˇ

θnps2´s1q
ÿ

i“1

ϑi

ˇ

ˇ

ˇ

qı

ď C 1qθ
q{2
n |s2 ´ s1|

q{2.

Using once more that a´2q
n θ

q{2
n Ñ 0 by assumption on pn, the lemma is proved.

Let κ ą 0. By the theorem of Kolmogorov-Čentsov (see [29, Theorem 2.8]), it follows
from the above lemma that there exists M “Mpκq ą 0 such that for all n P N, the event

En “
#

sup
0ďsătďK

|C
pnq
8 pθnsq ´ C

pnq
8 pθntq|

a2
n|s´ t|

2{5
ďM

+

has probability at least 1´ κ. We will now work conditionally given En.

Lemma 9. In the setting from above, there exists a constant C 1 ą 0 such that for all n P N
and all 0 ď s1, s2 ď K,

E
”

a´6
n |l

pnq
8 pθns1q ´ lpnq8 pθns2q|

6
ˇ

ˇ

ˇ
En
ı

ď C 1|s1 ´ s2|
6{5.
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Tightness of the conditional laws of a´1
n lpnq8 pθnsq, 0 ď s ď K, given En is a standard

consequence of this lemma; see [29, Problem 4.11]). Since κ in the definition of En can be
chosen arbitrarily small, tightness of the unconditioned laws of the rescaled labels follows,
and so does Lemma 7.

It therefore only remains to prove Lemma 9.

Proof of Lemma 9. With arguments similar to those in the proof of Lemma 8, we see that
it suffices to prove the claim in the case where θns1 and θns2 are integers (and s1 ď s2). Let

∆Cpnq8 ps1, s2q “ Cpnq8 pθns1q ` C
pnq
8 pθns2q ´ 2 min

rθns1,θns2s
Cpnq8 .

By definition of pC
pnq
8 , lpnq8 q, conditionally given C

pnq
8 on r0, Ks, the difference |lpnq8 pθns2q ´

lpnq8 pθns1q| is distributed as a sum of i.i.d. variables ηi with the uniform law on t´1, 0, 1u. By

construction, the sum involves at most ∆C
pnq
8 ps1, s2q summands: Indeed, it involves exactly

∆C
pnq
8 ps1, s2q many summands if C

pnq
8 pθns1q and C

pnq
8 pθns2q encode vertices of the same tree,

and less than ∆C
pnq
8 ps1, s2q many summands if they encode vertices of different trees. Again

with Rosenthal’s inequality, we thus obtain for some C̃ ą 0,

E
”

a´6
n |l

pnq
8 pθns2q ´ lpnq8 pθns1q|

6
ˇ

ˇ

ˇ
En
ı

ď a´6
n E

»

–

ˇ

ˇ

ˇ

∆C
pnq
8 ps1,s2q
ÿ

i“1

ηi

ˇ

ˇ

ˇ

6 ˇ
ˇ

ˇ
En

fi

fl

ď C̃a´6
n E

”

|∆Cn
8ps1, s2q|

3
ˇ

ˇ

ˇ
En
ı

.

On En, we have the bound

a´2
n |∆C

n
8ps1, s2q| ď 2 sup

0ďsătďK

|Cn
8pθnsq ´ C

n
8pθntq|

a2
n|s´ t|

2{5
|s1 ´ s2|

2{5
ďM |s1 ´ s2|

2{5,

and the claim of the lemma follows.

Finally, for proving Theorem 3, we will make use of the following lemma.

Lemma 10 (Lemma 5.7 of [8]). Let r ě 0. Let E “ pE, d, ρq and E1 “ pE 1, d1, ρ1q be two
pointed complete and locally compact length spaces. Consider a subset R Ă E ˆ E 1 which
has the following properties:

• pρ, ρ1q P R,

• for all x P BrpEq, there exists x1 P E 1 such that px, x1q P R,

• for all y1 P BrpE
1q, there exists y P E such that py, y1q P R.

Then, dGHpBrpEq, BrpE
1qq ď p3{2q sup t|dpx, yq ´ d1px1, y1q| : px, x1q, py, y1q P Ru .

A proof is given in [8]. Although R is not necessarily a correspondence in the sense
of [18], we might call the supremum on the right side of the inequality the distortion of R.
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Proof of Theorem 3. We let pan, n P Nq and ppn, n P Nq Ă r0, 1{2s be two sequences as in the
statement, and, as mentioned at the beginning of this section, we assume that the UIHPQpn

Q88ppnq with skewness parameter pn is encoded in terms of ppfpnq8 , lpnq8 q, b8q. Local Gromov-
Hausdorff convergence in law of a´1

n ¨Q88ppnq towards the ICRT follows if we prove that for
each r ě 0,

Bp0qr
`

a´1
n ¨Q88ppnq

˘ pdq
ÝÑ BrpICRTq (16)

in distribution in K, where we recall again that B
p0q
r pa´1

n ¨Q88ppnqq denotes the ball of radius
r around the vertex fpnq8 p0q in the rescaled UIHPQpn .

We will show the claim for r “ 1. The proof follows essentially the line of argumentation
in [8, Proof of Theorem 3.5]; since the argument is short, we repeat the main steps for
completeness. We will apply Lemma 10 in the following way. The ICRT takes the role of
the space E1, with the equivalence class r0s of zero being the distinguished point. Then, we
consider for each n P N the space a´1

n ¨Q88ppnq pointed at fpnq8 p0q, which takes the role of E in
the lemma. We construct a subset Rn Ă EˆE 1 with the properties of Lemma 10, such that
its distortion, that is, the quantity sup t|dpx, yq ´ d1px1, y1q| : px, x1q, py, y1q P Rnu, is of order
op1q for n tending to infinity. By Lemma 10, this will prove (16). We remark that Q88ppnq
is not a length space, hence Lemma 10 seems not applicable at first sight. However, as
explained in Section 1.2.7, by identifying each edge with a copy of r0, 1s and upon extending
the graph metric isometrically, we may identify Q88ppnq with the (associated) length space,
which we denote by Q8

8ppnq “ pV pQ8
8ppnqq, dgr, ρq. Here and in what follows, dgr is the

graph metric isometrically extended to Q8
8ppnq. Note that the vertex set V pfpnq8 q may be

viewed as a subset of Q8
8ppnq, and between points of V pfpnq8 q, the distances dgr and dgr agree.

Moreover, as a matter of fact, every point in Q8
8ppnq is at distance at most 1{2 away from

a vertex of fpnq8 .
Recall that pb8ptq, t P Rq has the law of a (linearly interpolated) two-sided symmetric

simple random walk with b8p0q “ 0. Let X “ pXt, t P Rq be a two-sided Brownian motion
with X0 “ 0. By Donsker’s invariance principle, we deduce that as n tends to infinity,

`

a´1
n b8pa

2
ntq, t P R

˘ pdq
ÝÑ pXt, t P Rq . (17)

Using Skorokhod’s representation theorem, we can assume that the above convergence holds
almost surely on a common probability space, uniformly over compacts. Now let δ ą 0, and
fix α ą 0 and n0 P N such that the event

Epn, αq “
"

max
!

min
r0,αs

X, min
r´α,0s

X
)

ă ´1

*

č

"

max
!

min
r0,αa2ns

b8, min
r´αa2n,0s

b8

)

ă ´an

*

has probability at least 1 ´ δ for n ě n0. From now on, we argue on the event Epn, αq.
We moreover assume that the ICRT pTX , dX , r0sq is defined in terms of X, and we write
pX : RÑ TX for the canonical projection.

Recall that the vertices of fpnq8 “ pti, i P Zq are identified with the vertices of Q88ppnq.
The mapping Ipvq P Z gives back the index of the tree a vertex v P V pfpnq8 q belongs to. We
extend I to the elements of the length space Q8

8ppnq as follows. By viewing V pfpnq8 q as a
subset of Q8

8ppnq as explained above, we associate to every point u of Q8
8ppnq its closest

vertex v P V pfpnq8 q satisfying dgrpf
pnq
8 p0q, vq ě dgrpf

pnq
8 p0q, uq. Note again dgrpv, uq ď 1{2. Put

An “ tu P Q8
8ppnq : Ipuq P r´αa2

n, αa
2
nsu.
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A direct application of the cactus bound [8, (4.6) of Section 4.5] shows that on Epn, αq,

dgrpf
pnq
8 p0q, uq ą an whenever Ipuq R An,

implying that the set An contains the ball B
p0q
1 pQ

8
8ppnqq of radius 1 around the vertex fpnq8 p0q.

Moreover, still on Epn, αq,

dXpr0s, tq ą 1 whenever |t| ą α.

We now define Rn Ă Q8
8ppnq ˆ TX by

Rn “
 

pu, pXptqq : u P An, t P r´α, αs with Ipuq “ tta2
nu
(

.

Letting E “ pQ8
8ppnq, a

´1
n dgr, f

pnq
8 p0qq, E1 “ pTX , dX , r0sq, r “ 1, we find that given the event

Epn, αq, the set Rn satisfies the requirements of Lemma 10. We are now in the setting of [8,
Proof of Theorem 3.5]: All what is left to show is that on Epn, αq, the distortion of Rn

converges to 0 in probability. However, with the same arguments as in the cited proof and
using the convergence (17), we obtain

lim sup
nÑ8

sup t|dgrpx, yq ´ dXpx
1, y1q| : px, x1q, py, y1q P Rnu ď lim sup

nÑ8

5
´

supAn l
pnq
8 ´ infAn l

pnq
8

¯

an
.

An appeal to Lemma 7 shows that the right hand side is equal to zero, and the proof of the
theorem is completed.

6 Proofs of the structural properties

6.1 The branching structure behind the UIHPQp

In this section, we describe the branching structure of the UIHPQp and prove Theorem 4. We
will first study a similar mechanism behind Boltzmann quadrangulations Q and Qσ drawn
according to Pgp,zp and Pσgp , respectively (Proposition 6 and Corollary 4), and then pass to
the limit σ Ñ 8 using Proposition 2.

To begin with, we follow an idea of [23]: We associate to a (finite) rooted map a tree
that describes the branching structure of the boundary of the map. Precisely, for every finite
rooted quadrangulation q with a boundary, we define the so-called scooped-out quadrangula-
tion Scooppqq as follows. We keep only the boundary edges of q and duplicate those edges
which lie entirely in the outer face (i.e., whose both sides belong to the outer face). The
resulting object is a rooted looptree; see Figure 10.

To a scooped-out quadrangulation we associate its tree of components TreepScooppqqq as
defined in Section 3.2.4. Following [23], we call this tree, by a slight abuse of terminology,
the tree of components of q and use the notation t “ Treepqq. It is seen that vertices in t‚
have even degree in t, due to the bipartite nature of q.

By gluing the appropriate rooted quadrangulation with a simple boundary into each cycle
of Scooppqq, we recover the quadrangulation q. This provides a bijection

Ψ : q ÞÑ pTreepqq, ppqu : u P V pTreepqq‚qq
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q ∂q Scoop(q)

Figure 10: A rooted quadrangulation, its boundary and the associated scooped-out quad-
rangulation.

between, on the one hand, the set Qf of finite rooted quadrangulations with a boundary
and, on the other hand, the set of plane trees t with vertices at odd height having even
degree, together with a collection ppqu : u P V pt‚qq of rooted quadrangulations with a simple
boundary and respective perimeter degpuq, for degpuq the degree of u in t. We remark that
the inverse mapping Ψ´1 can be extended to an infinite but locally finite tree together with
a collection of quadrangulations with a simple boundary attached to vertices at odd height,
yielding in this case an infinite rooted quadrangulation q.

We recall from Section 1.2.5 the definitions of the Boltzmann laws Pg,z and Pσg , and

their analogs with support on quadrangulations with a simple boundary, pPg,z and pPσg . Their

corresponding partition functions are F , Fσ and pF , pFσ. We are now interested in the law
of the tree of components under Pg,z. To begin with, we adapt some enumeration results
from [15] to our setting. For every 0 ď p ď 1{2, recall that gp “ pp1´pq{3 and zp “ p1´pq{4.
Then, (3.15), (3.27) and (5.16) of [15] all together provide the identities

F pgp, zpq “
2

3

3´ 4p

1´ p
, Fσpgpq “

p2σq!

σ!pσ ` 2q!

ˆ

2` σ
1´ 2p

1´ p

˙ˆ

1

1´ p

˙σ

, (18)

for 0 ď p ď 1{2 and σ P N0. Moreover, for σ P N and 0 ă p ď 1{2,

pFσpgpq “

ˆ

p

3p1´ pq2

˙σ
p3σ ´ 2q!

σ!p2σ ´ 1q!

ˆ

3σp1´ pq

p
` 2´ 3σ

˙

, (19)

while pF0pgpq “ 1. If p “ 0 and hence gp “ 0, then pFkp0q “ δ0pkq ` δ1pkq for all k P N0.
(Indeed, under the maps with no inner faces, the vertex map and the map consisting of one
oriented edge are the only maps with a simple boundary.)

We already introduced in Section 2.3 two probability measures µ˝ and µ‚ on N0 given by

µ˝pkq “
1

F pgp, zpq

ˆ

1´
1

F pgp, zpq

˙k

, k P N0, (20)

µ‚p2k ` 1q “
1

F pgp, zpq ´ 1

“

zpF
2
pgp, zpq

‰k`1
pFk`1pgpq, k P N0, (21)

with µ‚pkq “ 0 if k even. The tree of components of the scooped-out quadrangulation
ScooppQq when Q is drawn according to Pgp,zp may now be characterized as follows.
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Proposition 6. Let 0 ď p ď 1{2, and let Q be distributed according to Pgp,zp. Then the tree
of components TreepQq is a two-type Galton-Watson tree with offspring distribution pµ˝, µ‚q
as given above. Moreover, conditionally on TreepQq, the quadrangulations with a simple
boundary associated to Q via the bijection Ψ are independent with respective Boltzmann
distribution pPdegpuq

gp for u P V pTreepQq‚q, where degpuq denotes the degree of u in TreepQq.

Proof. Note that vertices at even height of TreepQq have an odd number of offspring almost
surely. Let t be a finite plane tree satisfying this property. Let also ppqu : u P V pt‚qq be
a collection of rooted quadrangulations with a simple boundary and respective perimeters
degpuq, and set q “ Ψ´1pt, ppqu : u P V pt‚qqq. Then, writing Ψ˚P for the push-forward
measure of P by Ψ,

Ψ˚Pgp,zp pt, ppqu : u P V pt‚qqq “
z

#Bq{2
p g

#Fpqq
p

F pgp, zpq
“

1

F pgp, zpq

ź

uPt‚

zdegpuq{2
p g#Fppquq

p .

For every c ą 0, we have

1 “
ź

uPt˝

cku
ˆ

1

c

˙#t‚

and
1

c
“

ź

uPt‚

cku
ˆ

1

c

˙#t˝

.

Applying the first equality with c “ 1 ´ 1{F pgp, zpq and the second one with c “ F pgp, zpq
gives

Ψ˚Pgp,zp pt, ppqu : u P tqq “
ź

uPt˝

1

F pgp, zpq

ˆ

1´
1

F pgp, zpq

˙degpuq´1

ˆ
ź

uPt‚

1

F pgp, zpq ´ 1

`

zpF
2
pgp, zpq

˘degpuq{2
pFdegpuq{2pgpq

ź

uPt‚

g
#Fppquq
p

pFdegpuq{2pgpq
,

where we agree that 0{0 “ 0. Therefore,

Ψ˚Pgp,zp pt, ppqu : u P tqq “
ź

uPt˝

µ˝pkuq
ź

uPt‚

µ‚pkuq
ź

uPt‚

pPdegpuq
gp ppquq,

which is the expected result.

Corollary 4. Let 0 ď p ď 1{2, σ P N, and let Q be distributed according to Pσgp. Then the tree
of components TreepQq is a two-type Galton-Watson tree with offspring distribution pµ˝, µ‚q
conditioned to have 2σ`1 vertices. Moreover, conditionally on TreepQq, the quadrangulations
with a simple boundary associated to Q via the bijection Ψ are independent with respective
Boltzmann distribution pPdegpuq

gp , for u P V pTreepQq‚q.

Proof. Observing that #V pTreepqqq “ #Bq`1 for every rooted quadrangulation q, we obtain

Pgp,zppQσf q “ Ψ˚Pgp,zp ptt P Tf : #V ptq “ 2σ ` 1uq “ GWµ˝,µ‚ptt P Tf : #V ptq “ 2σ ` 1uq.

Now let t be a finite plane tree with an odd number of offspring at even height, and let
ppqu : u P V pt‚qq and q be as in the proof of Proposition 6. Then,

Ψ˚Pσgp pt, ppqu : u P tqq “
1t#Bq“2σu

Pgp,zppQσf q
ź

uPt˝

µ˝pkuq
ź

uPt‚

µ‚pkuq
ź

uPt‚

pPdegpuq
gp ppquq,

which concludes the proof.
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Lemma 11. For 0 ď p ă 1{2, the pair pµ˝, µ‚q is critical and both µ˝ and µ‚ have small
exponential moments. For p “ 1{2, the pair pµ˝, µ‚q is subcritical (and µ‚ has no exponential
moment).

Proof. Recall that pµ˝, µ‚q is critical if and only if the product of their respective means m˝

and m‚ equals one. Since by (20), µ˝ is the geometric law with parameter 1 ´ 1{F pgp, zpq,
we have

m˝ “ F pgp, zpq ´ 1.

For m‚, we let Gµ‚ denote the generating function of µ‚. By (21), it follows that

Gµ‚psq “
1

F pgp, zpq ´ 1

1

s

´

pF
“

gp, zpF
2
pgp, zpqs

2
‰

´ 1
¯

, s ą 0.

Then, Identity (2.8) of [15] ensures that pF pg, zF 2pg, zqq “ F pg, zq for all non-negative weights
g and z. When differentiating this relation with respect to the variable z, we obtain

Bz pF pg, zF
2
pg, zqq “

BzF pg, zq

F 2pg, zq ` 2zF pg, zqBzF pg, zq
. (22)

Writing
BzF pgp, zpq “

ÿ

σě0

σFσpgpqz
σ´1
p ,

and using the exact expression for Fσpgpq from (18), we see by means of Stirling’s formula
that BzF pgp, zpq “ 8 for p P r0, 1{2q, and BzF pgp, zpq ă 8 for p “ 1{2. Thus, for p P r0, 1{2q,

Bz pF pgp, zpF
2
pgp, zpqq “

1

2zpF pgp, zpq
,

whereas if p “ 1{2, the derivative on the left-hand side in (22) is strictly smaller than the
right-hand side for g “ gp, z “ zp. Finally, applying Identity (2.8) of [15] once again, we get

m‚ “G
1
µ‚p1q

“
1

F pgp, zpq ´ 1

´

´

´

pF
“

gp, zpF
2
pgp, zpq

‰

´ 1
¯

` 2zpF
2
pgp, zpqBz pF

“

gp, zpF
2
pgp, zpq

‰

¯

.

As a consequence, m˝m‚ “ 1 if p ă 1{2, and m˝m‚ ă 1 if p “ 1{2. The fact that µ˝ has
exponential moments is clear. For µ‚, one sees from (19) that the power series

ÿ

kě0

xk pFkpgpq

has radius of convergence prp “ 4p1´ pq2{p9pq, while (18) ensures that

zpF
2
pgp, zpq “

p1´ 4pq2

9p1´ pq
.

Again, for p P r0, 1{2q, prp ą zpF
2pgp, zpq, and these quantities are equal for p “ 1{2. Thus,

there exists s ą 1 such that Gµ‚psq ă 8 if and only if p ă 1{2, which concludes the proof.

45



We are now ready to prove Theorem 4.

Proof of Theorem 4. Fix 0 ď p ă 1{2. Let us denote by Q8 the random quadrangulation
with an infinite boundary as constructed in the statement of Theorem 4, and let Qσ be
distributed according to Pσgp . In view of Proposition 2, it is sufficient to prove that in the
local sense, as σ Ñ 8,

Qσ
pdq
ÝÑ Q8. (23)

For every real r ě 1 and every (finite or infinite) plane tree t, we define Cutrptq as the finite
plane tree obtained from pruning all the vertices at a height larger than 2r in t. If q P Q is
a quadrangulation with a boundary such that Ψpqq “ pt, ppqu : u P t‚qq, we define Cutrpqq to
be the quadrangulation obtained from gluing the maps ppqu : u P Cutrptq‚q in the associated
loops of LooppCutrptqq. With this definition, we have Brpqq Ă Cutrpqq for every r ě 1,
where we recall that Brpqq stands for the closed ball of radius r around the root in q.

Let r ě 1 and q P Qf such that Ψpqq “ pt, ppqu : u P t‚qq. Using Proposition 6 and
Corollary 4, we get

P pCutr pQσq “ qq “ GWp2σ`1q
µ˝,µ‚ pCutr “ tq

ź

uPt‚

pPdegpuq
gp ppquq ,

where we use the notation GWp2σ`1q
µ˝,µ‚ for the pµ˝, µ‚q-Galton-Watson tree conditioned to

have 2σ ` 1 vertices and interpret Cutr as the random variable t ÞÑ Cutrptq. Applying
Proposition 3, we get as σ Ñ 8

P pCutr pQσq “ qq ÝÑ GWp8q
µ˝,µ‚ pCutr “ tq

ź

uPt‚

pPdegpuq
gp ppquq “ P pCutr pQ8q “ qq .

We proved that for every r ě 1, as σ Ñ 8,

Cutr pQσq
pdq
ÝÑ Cutr pQ8q .

Since Brpqq Ă Cutrpqq for every r ě 1 and q P Q, (23) holds and the theorem follows.

6.2 Recurrence of simple random walk

In this final part, we prove Corollary 2, stating that simple random walk on the UIHPQp for
0 ď p ă 1{2 is almost surely recurrent. We will use a criterion from the theory of electrical
networks; see, e.g., [35, Chapter 2] for an introduction into these techniques.

Proof of Corollary 2. Fix 0 ď p ă 1{2. We interpret the UIHPQp as an electrical network,
by equipping each edge with a resistance of strength one. A cutset C between the root vertex
and infinity is a set of edges that separates the root from infinity, in the sense that every
infinite self-avoiding path starting from the root has to pass through at least one edge of C.
By the criterion of Nash-Williams, cf. [35, (2.13)], it suffices to show that there is a collection
pCn, n P Nq of disjoint cutsets such that

ř8

n“1p1{#Cnq “ 8 almost surely, i.e., for almost
every realization of the UIHPQp.

We recall the construction of the UIHPQp in terms of the looptree associated to Kesten’s
two-type tree T8 “ T8pµ˝, µ‚q. Note that the white vertices in T8, i.e., the vertices at even
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height, represent vertices in the UIHPQp. More precisely, by construction, they form the
boundary vertices of the latter. In particular, the white vertices on the spine of T8 are to
be found in the UIHPQp, and we enumerate them by v1, v2, v3, . . ., such that v1 is the root
vertex, and dgrpvj, v1q ě dgrpvi, v1q for j ě i. Now observe that for i P N, vi and vi`1 lie on
the boundary of one common finite-size quadrangulation with a simple boundary, which we
denote by pqvi , in accordance with notation in the proof of Theorem 4.

We define Ci to be the set of all the edges of pqvi . Clearly, for each i P N, Ci is a cutset
between the root vertex and infinity, and for i ‰ j, Ci and Cj are disjoint. The sizes #Ci,
i P N, are i.i.d. random variables. More specifically, using the construction of the UIHPQp

in terms of Kesten’s looptree, the law of #C1 can be described as follows: First, draw a
random variable Y according to the size-biased offspring distribution µ̄‚, and then, condi-
tionally on Y , #C1 is distributed as the number of edges of a Boltzmann quadrangulation
with law pPpY`1q{2

gp , where gp “ pp1 ´ pq{3. Obviously, #C1 is finite almost surely, implying
ř8

n“1p1{#Cnq “ 8 almost surely, and recurrence of the simple symmetric random walk on
the UIHPQp follows.

Remark 11. Let us end with a remark concerning the structure of the UIHPQp for p ă 1{2.
Note that with probability µ̄‚p1q ą 0, a cutset Ci as constructed in the above proof consists
exactly of one edge. By independence and Borel-Cantelli, we thus find with probability one
an infinite sequence of such cutsets Ci1 , Ci2 , . . . consisting of one edge only. In particular, this
proves that the UIHPQp for p ă 1{2 admits a decomposition into a sequence of almost surely
finite i.i.d. quadrangulations Qippq with a non-simple boundary (whose laws can explicitly
be derived from Theorem 4), such that Qippq and Qjppq get connected by a single edge if
and only if |i´ j| “ 1. This parallels the decomposition of the spaces Hα for α ă 2{3 found
in [37, Display (2.3)].

Acknowledgments. We warmly thank Grégory Miermont for stimulating discussions and
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