
HAL Id: hal-01423027
https://hal.science/hal-01423027v1

Preprint submitted on 28 Dec 2016 (v1), last revised 28 Aug 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scaling limits of random bipartite planar maps with a
prescribed degree sequence

Cyril Marzouk

To cite this version:
Cyril Marzouk. Scaling limits of random bipartite planar maps with a prescribed degree sequence.
2016. �hal-01423027v1�

https://hal.science/hal-01423027v1
https://hal.archives-ouvertes.fr


Scaling limits of random bipartite planar maps with a prescribed

degree sequence

CyrilMarzouk
∗

28th December 2016

Abstract

We study the asymptotic behaviour of uniform random maps with a prescribed face-degree
sequence, in the bipartite case, as the number of faces tends to in�nity. Under mild assumptions,
we show that, properly rescaled, such maps converge in distribution towards the Brownian map in
the Gromov–Hausdor� sense. This result encompasses the previous ones of Miermont for uniform
random quadrangulations and Le Gall for uniform random q-angulations with q ∈ {4, 6, 8, . . .}.
It applies also to random maps sampled from a Boltzmann distribution, under a second moment
assumption only, conditioned to be large in either of the sense of the number of edges, vertices, or
faces. The proof relies on the convergence of so-called “discrete snakes” obtained by adding spatial
positions to the nodes of uniform random plane trees with a prescribed child sequence recently
studied by Broutin & Marckert. This paper can alternatively be seen as a contribution to the study
of the geometry of such trees.

1 Introduction

1.1 Random planar maps as metric spaces

The study of scaling limits of large random maps, viewed as metric spaces, towards a universal object

called the Brownian map has seen numerous developments over the last decade. This paper is another

step towards this universality as we show that the Brownian map appears as limit of maps with a

prescribed degree sequence. This particular model is introduced in the next subsection, let us the �rst

discuss the general idea of such studies and recall some previous results.

Recall that a (planar) map is an embedding of a �nite connected graph into the two-dimensional

sphere, viewed up to orientation-preserving homeomorphisms. For technical reasons, the maps we

consider will always be rooted, which means that an oriented edge is distinguished. Maps have been

widely studied in combinatorics and random maps are of interest in theoretical physics, for which they

are natural discretised version of random geometry, in particular in the theory of quantum gravity (see

e.g. [7]). One can view a map as a (�nite) metric space by endowing the set of vertices with the graph

distance: the distance between two vertices is the minimal number of edges of a path going from one

to the other; throughout this paper, if M is a map, we will denote the associated metric space, with a

slight abuse of notation, by (M,dgr). The set of all compact metric spaces, considered up to isometry,

can be equipped with a metric, called the Gromov–Hausdor� distance, which makes it separable and

complete [15, 13]; we can then study the convergence in distribution of random maps viewed as metric

spaces.

A �rst result in this direction has been obtained simultaneously by Le Gall [26] and Miermont [38]

using di�erent approaches. We call faces of a map the connected components of the complement of the
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edges; the degree of a face is then the number of edges incident to it, with the convention that if both

sides of an edge are incident to the same face, then it is counted twice. A quadrangulation is a map

in which all faces have degree 4. In [26] and [38], it is shown that if Qn is a uniform random rooted

quadrangulation with n faces, then the convergence in distribution

(
Qn,

(
9

8n

)1/4

dgr

)
(d)−→

n→∞
(M, D),

holds in the sense of Gromov–Hausdor�, where the limit (M, D), called the Brownian map, is a random

compact metric space, which is almost surely homeomorphic to the 2-sphere (Le Gall & Paulin [29],

Miermont [37]) and has Hausdor� dimension 4 (Le Gall [25]).
Le Gall [26] gives a quite general method to prove such a limit theorem; the main result in [26] is

indeed stated for q-angulations (which are maps in which each face has degree q) with n faces, for any

q ∈ {3, 4, 6, 8, . . . } �xed. The limit is always the Brownianmap as well as the scaling factorn−1/4, only

the multiplicative constant (9/8)1/4 above depends on q (see the precise statement below). Note that

apart from the case q = 3 of triangulations, [26] only deals with maps with even face-degrees, which

corresponds in the planar case to bipartite maps. The non bipartite case is technically more involved

and we henceforth restrict ourselves to bipartite maps as well.

1.2 Main result and notation

We generalise q-angulations by considering maps with possibly faces of di�erent degrees. For every

n ≥ 1, we are given a sequence n = (ni; i ≥ 1) of non-negative integers satisfying

∑

i≥1

ni = n,

and we denote byM(n) the set of rooted planar maps with ni faces of degree 2i for every i ≥ 1. This
is a �nite set, its cardinal was �rst calculated by Tutte [39] (this paper deals with Eulerian maps with

a prescribed vertex-degree sequence, which are the dual of our present maps). Let us introduce the

notation that we will use throughout this paper. Set

Nn :=
∑

i≥1

ini and n0 := 1 +Nn − n. (1)

Note that every map in M(n) contains n faces and Nn edges so, according to Euler formula, it has

2 +Nn − n = n0 + 1 vertices (this shift by one will simplify some statements later). We next de�ne a

probability measure and its variance by

pn(i) :=
ni

Nn + 1
for i ≥ 0 and σ2

n
:=
∑

i≥1

i2pn(i)−
(

Nn

Nn + 1

)2

.

The probability pn is (up to the fact that there are n0 +1 vertices) the empirical half face-degree distri-

bution of a map inM(n) if one sees the vertices as faces of degree 0. Last, let us denote by

∆n := max{i ≥ 0 : ni > 0}

the right edge of the support of pn.
Our main assumption is the following: there exists a probability measure p = (p(i); i ≥ 0) with

mean 1 and variance σ2
p :=

∑
i≥1 i

2p(i)− 1 ∈ (0,∞) such that, as |n| = n → ∞,

pn =⇒ p, σ2
n −→ σ2

p and n−1/2∆n −→ 0, (H)

where “=⇒” denotes theweak convergence of probabilitymeasures, which is here equivalent to pn(i) →
p(i) for every i ≥ 0.
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Theorem 1. Under (H), if Mn is sampled uniformly at random in M(n) for every n ≥ 1, then the

convergence in distribution

(
Mn,

(
9

4

1− p(0)

σ2
p

1

n

)1/4

dgr

)
(d)−→

n→∞
(M, D),

holds in the sense of Gromov–Hausdor�.

Since the graph distance is de�ned in terms of edges, it would be natural to make the rescaling

depend on Nn rather than n. Under (H), we have n/Nn → 1− p(0) as n → ∞ so the convergence in

Theorem 1 is equivalent to

(
Mn,

(
9

4σ2
p

1

Nn

)1/4

dgr

)
(d)−→

n→∞
(M, D),

in the sense of Gromov–Hausdor�, which is what we shall prove.

Remark 1. The probabilities pn and p in (H) are deterministic but one could also �rst sample a random

sequence n and then sampleMn uniformly at random inM(n) and the theorem would still hold.

This result recovers in particular the aforementioned one of Le Gall [26] for q-angulations when
q ≥ 4 is even. Indeed, the latter correspond to M(n) where ni = n if i = q/2 and ni = 0 otherwise.

In this case Nn = nq/2 and (H) is ful�lled with

p(0) = 1− 2

q
and p

(q
2

)
=

2

q
so σ2

p =
q

2
− 1 =

q − 2

2
;

Theorem 1 therefore reads as follows.

Corollary 1 (Le Gall [26]). Fix q ≥ 4 an even integer and for every n ≥ 1, letM
(q)
n be a uniform random

rooted q-angulation with n faces. The convergence in distribution

(
M

(q)
n ,

(
9

q(q − 2)

1

n

)1/4

dgr

)
(d)−→

n→∞
(M, D),

holds in the sense of Gromov–Hausdor�.

1.3 Boltzmann random maps

Theorem 1 also applies to random maps sampled from a Boltzmann distribution. Relying on results of

Marckert & Miermont [32], Le Gall [26] obtained under some integrability assumptions, the conver-

gence of such maps with n vertices towards the Brownian map as n → ∞. Le Gall & Miermont [28]

have also considered maps with n vertices in which the distribution of the degree of a typical face is in

the domain of attraction of a stable distribution with index α ∈ (1, 2) and obtained di�erent objects at
the limit (after extraction of a subsequence). Last, Janson & Stefánsson [20] have studied maps with n
edges which exhibit a condensation phenomenon and converge, after rescaling, towards the Brownian

tree: a unique giant face emerges and its boundary collapses into a tree.

Given a sequence w = (w(k); k ≥ 1) of non-negative real numbers, we de�ne a measure Ωw on

the setM of rooted bipartite maps by the formula

Ωw(M) =
∏

f∈Faces(M)

w(deg(f)/2), M ∈ M,

where Faces(M) is the set of faces of M and deg(f) is the degree of such a face f . One could also add

in the de�nition of Ωw(M) two extra factors, say, aV (M) and bE(M) for some constants a, b > 0, where
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V (M) and E(M) are the number of vertices and edges respectively of M, but this measure would be

nothing but a2Ωw̃(M), where w̃(k) = ak−1bkw(k) for every k ≥ 1.
Set Zw = Ωw(M); whenever it is �nite, the formula

Pw(·) = 1

Zw
Ωw(·)

de�nes a probability measure onM. We consider next such random maps conditioned to have a large

size for several notions of size. For every integer n ≥ 2, let ME=n, MV=n and MF=n be the subsets

ofM of those maps with respectively n−1 edges, n+1 vertices (similarly to the de�nition of n0 in (1),

these shifts by one will simplify some statements later) and n faces; more generally, for every A ⊂ N,

let MF,A=n be the subset of M of those maps with n faces whose degree belongs to 2A (and possibly

other faces, but with a degree in 2N \ 2A). For every S = {E,V, F} ∪⋃A⊂N
{F,A} and every n ≥ 2,

we de�ne

Pw
S=n(M) := Pw(M | M ∈ MS=n), M ∈ MS=n,

the law of a Boltzmann map conditioned to have size n; here and later, we shall always, if necessary,

implicitly restrict ourselves to those values of n for which Ωw(MS=n) 6= 0.
Under mild integrability conditions on w, we show in Section 7 that for every S ∈ {E,V, F} ∪⋃

A⊂N
{F,A} and for every n ≥ 2 such that it makes sense, if Mn is sampled from Pw

S=n, then the

convergence in distribution

(
Mn,

(
Kw

S

n

)1/4

dgr

)
(d)−→

n→∞
(M, D),

holds in the sense of Gromov–Hausdor�, where Kw
S > 0 is a constant which depends only on S and

w. We refer to Theorem 4 in Section 7 for a precise statement.

Observe that if M is sampled from Pw
S=n for any S ∈ {E,V, F} ∪⋃A⊂N

{F,A} then, conditional
on its degree sequence, say, νM = (νM(i); i ≥ 1), it has the uniform distribution inM(νM). Appealing
to Remark 1, the proof of the above convergence consists in showing that νM satis�es (H) for some

deterministic probability pw.
The case S = V was obtained by Le Gall [26, Theorem 9.1] when w is regular critical, meaning

that the distribution pw (which is roughly that of the half-degree of a typical face when we see vertices

as faces of degree 0) admits small exponential moments. Here, we generalise this result (and consider

other conditionings) to all generic critical sequencesw, i.e. those for which pw admits a second moment.

The conditioning S = E by the number of edges is somewhat special since ME=n is �nite for

every n ≥ 2 (its cardinal was expressed by Walsh [40, Equation 7]) so the distribution Pw
E=n(·) =

Ωw(·)/Ωw(ME=n) on ME=n makes sense even if Zw = Ωw(M) is in�nite; we shall see that the

above convergence still holds in this case (Theorem 5). The simplest and most important example is

the constant sequence w(k) = 1 for every k ≥ 1, in which case Pw
E=n corresponds to the uniform

distribution inME=n and we calculateKw
E = 1/2, which recovers a result �rst due to Abraham [1].

Corollary 2 (Abraham [1]). For every n ≥ 1, let Mn be a uniform random rooted bipartite map with n
edges. The convergence in distribution

(
Mn,

(
1

2n

)1/4

dgr

)
(d)−→

n→∞
(M, D),

holds in the sense of Gromov–Hausdor�.

1.4 Approach and organisation of the paper

Our approach to proving Theorem 1 follows closely the robust one of Le Gall [26]. Speci�cally, we code

our map Mn by a certain labelled (or spatial) two-type tree (Tn, ℓn) via a bijection due to Bouttier, Di
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Francesco & Guitter [11]: Tn is a plane tree and ℓn is a function which associates with each vertex of

Tn a label (or a spatial position) in Z. Such a labelled tree is itself encoded by a pair of discrete paths

(C◦
n,L

◦
n); we show that under (H), this pair, suitably rescaled, converges in distribution towards a pair

(e, Z) called in the literature the “head of the Brownian snake” (e.g. [33, 19, 31]). The construction of

the Brownian map from (e, Z) is analogous to the Bouttier–Di Francesco–Guitter bijection; Theorem

1 follows from this functional limit theorem as well as a certain“invariance under re-rooting” of our

maps as was shown by Le Gall [26].

To prove such an invariance principle for (Tn, ℓn), we further rely on a more recent bijection due to

Janson & Stefánsson [20] which maps two-type trees to one-type trees which are easier to control. As

a matter of fact, ifMn is uniformly distributed inM(n) and (Tn, ln) is its corresponding labelled one-
type tree, then the unlabelled tree Tn is a uniform random tree with a prescribed degree (in the sense

of child) sequence as studied by Broutin & Marckert [12]. The labelled tree (Tn, ln) is again encoded

by a pair of functions (Hn, Ln) and the main result of [12] is, under the very same assumption (H),

the convergence of Hn suitably rescaled towards e. Our main contribution consists in strengthening

this result by adding the labels in their limit theorem to show that the pair (Hn, Ln), suitably rescaled,
converges towards (e, Z), and then transporting this invariance principle back to the two-type tree

(Tn, ℓn).
The previous works on the convergence of large random labelled trees focus on the case when the

tree is a size-conditioned (one or multi-type) Galton–Watson tree and a lot of e�ort has been put to

reduce the assumptions of the labels as much as possible, maintaining quite strong assumption on the

tree itself; a common assumption is indeed to consider a Galton–Watson tree whose o�spring distri-

bution admits small exponential moments; in order to reduce the assumption on the labels, Marckert

[31] even supposes the o�springs to be uniformly bounded. In this paper, we take the opposite direc-

tion: we focus only on the labels given by the bijection with planar maps, which satisfy rather strong

assumptions, and work under weak assumptions on the tree (essentially a �rst and second moments

condition). Furthermore, we consider trees with a prescribed degree sequence, which are more general

that Galton–Watson trees and on which the literature is limited, which explains the length of this work.

Let us mention that other convergences towards the Brownian map similar to Theorem 1 have

been obtained using also other bijections with labelled trees: Beltran & Le Gall [8] studied random

quadrangulations without vertices of degree one, Addario-Berry & Albenque [3] considered random

triangulations and quadrangulations without loops or multiple edges and Bettinelli, Jacob & Miermont

[9] uniform random maps with n edges.

This work leaves open two questions that we plan to investigate in the future. First, one can con-

sider non-bipartite maps with a prescribed degree sequence; we restricted ourselves here to bipartite

maps because (except in the notable case of triangulations), in the non-bipartite case, the Bouttier–Di

Francesco–Guitter bijection yields a more complicated labelled three-type tree which is harder to ana-

lyse; moreover, the Janson–Stefánsson bijection does not apply to such trees so the method of proof

should be di�erent.

A second direction of future work would be to relax the assumption (H), in particular to consider

maps with large faces. A �rst step would be to extend the work of Broutin & Marckert [12] on plane

trees; we believe that the family of so-called inhomogeneous continuum random trees introduced in

[6, 14] appear at the limit; onewould then construct a family of randommaps from these trees, replacing

the Brownian excursion e by their “exploration process” studied in [5].

This paper is organised as follows. In Section 2, we �rst introduce the notion of labelled one-

type and two-type trees and their encoding by functions, then we describe the Bouttier–Di Francesco–

Guitter and Janson–Stefánsson bijections. In Section 3, we de�ne the pair (e, Z) and the Brownian map

and we state our main results on the convergence of discrete paths. Section 4 is a technical section in

which we extend a “backbone decomposition” of Broutin & Marckert [12]. We prove the convergence

of the pairs (C◦
n,L

◦
n) and (Hn, Ln), encoding the labelled trees (Tn, ℓn) and (Tn, ln) respectively, in

Section 5. Then we prove Theorem 1 in section 6. Finally, we apply our results to Boltzmann random

maps in Section 7.
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2 Maps and trees

2.1 Plane trees and their encoding with paths

LetN = {1, 2, . . . } be the set of all positive integers, set N0 = {∅} and consider the set of words

U =
⋃

n≥0

Nn.

For every u = (u1, . . . , un) ∈ U, we denote by |u| = n the length of u; if n ≥ 1, we de�ne its pre�x
pr(u) = (u1, . . . , un−1) and for v = (v1, . . . , vm) ∈ U, we let uv = (u1, . . . , un, v1, . . . , vm) ∈ U be

the concatenation of u and v. We endow U with the lexicographical order : given u, v ∈ U, let w ∈ U

be their longest common pre�x, that is u = w(u1, . . . , un), v = w(v1, . . . , vm) and u1 6= v1, then
u < v if u1 < v1.

A plane tree is a non-empty, �nite subset τ ⊂ U such that:

(i) ∅ ∈ τ ;

(ii) if u ∈ τ with |u| ≥ 1, then pr(u) ∈ τ ;

(iii) if u ∈ τ , then there exists an integer ku ≥ 0 such that ui ∈ τ if and only if 1 ≤ i ≤ ku.

We shall denote the set of plane trees byT. We will view each vertex u of a tree τ as an individual

of a population for which τ is the genealogical tree. The vertex ∅ is called the root of the tree and for

every u ∈ τ , ku is the number of children of u (if ku = 0, then u is called a leaf, otherwise, u is called

an internal vertex) and u1, . . . , uku are these children from left to right, |u| is its generation, pr(u) is
its parent and more generally, the vertices u, pr(u), pr ◦ pr(u), . . . , pr|u|(u) = ∅ are its ancestors; the

longest common pre�x of two elements is their last common ancestor. We shall denote by Ju, vK the

unique non-crossing path between u and v.
Fix a tree τ with N edges and let ∅ = u0 < u1 < · · · < uN be its vertices, listed in lexico-

graphical order. We describe three discrete paths which each encode τ . First, its Łukasiewicz path

W = (W (j); 0 ≤ j ≤ N + 1) is de�ned byW (0) = 0 and for every 0 ≤ j ≤ N ,

W (j + 1) = W (j) + kuj − 1.

One easily checks that W (j) ≥ 0 for every 0 ≤ j ≤ N but W (N + 1) = −1. Next, we de�ne the

height process H = (H(j); 0 ≤ j ≤ N) by setting for every 0 ≤ j ≤ N ,

H(j) = |uj |.

Finally, de�ne the contour sequence (c0, c1, . . . , c2N ) of τ as follows: c0 = ∅ and for each i ∈ {0, . . . , 2N−
1}, ci+1 is either the �rst child of ci which does not appear in the sequence (c0, . . . , ci), or the parent
of ci if all its children already appear in this sequence. The lexicographical order on the tree corres-

ponds to the depth-�rst search order, whereas the contour order corresponds to “moving around the

tree in clockwise order”. The contour process C = (C(j); 0 ≤ j ≤ 2N) is de�ned by setting for every

0 ≤ j ≤ 2N ,

C(j) = |cj |.
Without further notice, throughout this work, every discrete path shall also be viewed as a continu-

ous function after interpolating linearly between integer times.
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2.2 Labelled plane trees and label processes

Two-type trees We will use the expression “two-type tree” for a plane tree in which we distinguish

vertices at even and odd generation; call the former white and the latter black, we denote by ◦(T)
and •(T) the sets of white and black vertices of a two-type tree T. We denote by T◦,• the set of

two-type trees. Let N be the number of edges of such a tree T, denote by (c0, . . . , c2N ) its contour
sequence and C = (C(k); 0 ≤ k ≤ 2N) its contour process; for every 0 ≤ k ≤ N , set c◦k = c2k ,
the sequence (c◦0, . . . , c

◦
N ) is called the white contour sequence of T and we de�ne its white contour

process C◦ = (C◦(k); 0 ≤ k ≤ N) by C◦(k) = |c◦k|/2 for every 0 ≤ k ≤ N . One easily sees that

supt∈[0,1] |C(2Nt)− 2C◦(Nt)| = 1 so C◦ encodes the geometry of the tree up to a small error.

A labelling ℓ of a two-type tree T is a function de�ned on the set ◦(T) of its white vertices to Z

such that

• the root of T is labelled 0,

• for every black vertex, the increments of the labels of its white neighbours in clockwise order are

greater than or equal to −1.

We de�ne thewhite label processL◦ = (L◦(k); 0 ≤ k ≤ N) ofT byL◦(k) = ℓ(c◦k) for every 0 ≤ k ≤ N ,

where (c◦0, . . . , c
◦
N ) is the white contour sequence of T. The labelled tree (T, ℓ) is, up to a small error,

encoded by the pair (C◦,L◦).

0

−1 −2 1

0

−1 −2 −1

−1

−2 0
0

1

2

3

2 4 6 8 10 12 14 16

-2

-1

0

1

Figure 1: A two-type labelled tree, its white contour process on top and its white label process below.

One-type trees As opposed to two-type trees, plane trees in which vertices at even and odd genera-

tion play the same role will be called “one-type trees” and not just “trees” to emphasise the di�erence.

Recall that the geometry of a one-type tree T is encoded by its height processH . A labelling l of such
a tree is a function de�ned on the set of vertices to Z such that

• the root of T is labelled 0,

• for every internal vertex, its right-most child carries the same label as itself,

• for every internal vertex, the increments of the labels between itself and its �rst child and then

two consecutive children from left to right are greater than or equal to −1.

De�ne the label process L(k) = l(uk), where (u0, . . . , uN ) is the sequence of vertices of T in lexico-

graphical order; the labelled tree is (exactly) encoded by the pair (H,L).

Remark 2. We use roman letters T , l,H , L for one-type trees and calligraphic letters T, ℓ, C,L for two-

type trees. We stress also that we consider the contour order for two-type trees and the lexicographical

order for one-type trees.
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−1 −2

−1 −2 −1 0

1

−2 0 −1

0

0

1

0

0

0

−1
0

1

2

3

4

2 4 6 8 10 12 14 16

-2

-1

0

1

Figure 2: A one-type labelled tree, its height process on top and its label process below.

For future reference, for every r ≥ 1, let us call a bridge of length r a vector (x0, . . . , xr) satisfying
x0 = xr = 0 and xj − xj−1 ∈ Z for every 1 ≤ j ≤ r. Denote by

B
+
r := {(x0, . . . , xr) : x0 = xr = 0 and xj − xj−1 ∈ {−1, 0, 1, 2, . . . } for 1 ≤ j ≤ r} , (2)

the set of bridges of length r with no negative jump. By de�nition, if (T, l) is a labelled one-type tree

and u is a vertex of T with r ≥ 1 children, then the sequence (0, l(u1)− l(u), . . . , l(ur)− l(u)) belongs
to B+

r . Since the cardinal of B
+
r is

(
2r−1
r−1

)
, it follows that a tree T possesses

∏

u∈T :ku≥1

(
2ku − 1

ku − 1

)
(3)

possible labellings; observe that this quantity depends on T only through (ku;u ∈ T ).

2.3 The Bouttier–Di Francesco–Guitter bijection

A map is said to be pointed if a vertex is distinguished. Given a sequence n of non-negative integers,

we denote by M⋆(n) the set of rooted and pointed planar maps with with ni faces with degree 2i for
every i ≥ 1. LetT◦,•(n) denote the set of two-type trees with ni black vertices with degree i for every
i ≥ 1; note that such a tree has n0 white vertices and Nn edges, which are both de�ned in (1). Let

further LT◦,•(n) be the set of such labelled two-type trees.

0

−1 −2 1

0

−1 −2 −1

−1

−2 0

⋆

0

−1 −2 1

0

−1 −2 −1

−1

−2 0

0

3

2 1 4

3

2 1 2

2

1 3

Figure 3: The Bouttier–Di Francesco–Guitter bijection.

Bouttier, Di Francesco & Guitter [11] show thatM⋆(n) and {−1,+1} ×LT◦,•(n) are in bijection,

we shall refer to it as the BDG bijection. Let us only recall how a map is constructed from a labelled

two-type tree (T, ℓ), as depicted by Figure 3. LetN be the number of edges of T, we write (c◦0, . . . , c
◦
N )
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for its white contour sequence and we adopt the convention that c◦N+i = c◦i for every 0 ≤ i ≤ N . A

white corner is a sector around a white vertex delimited by two consecutive edges; there are N white

corners, corresponding to the vertices c◦0, . . . , c
◦
N−1; for every 0 ≤ i ≤ 2N we denote by ei the corner

corresponding to c◦i . We add an extra vertex ⋆ outside of the treeT and construct amap on the vertex-set

of T and ⋆ by drawing edges as follows: for every 0 ≤ i ≤ N − 1,

• if ℓ(c◦i ) > min0≤k≤N−1 ℓ(c
◦
k), then we draw an edge between ei and ej where j = min{k > i :

ℓ(c◦k) = ℓ(c◦i )− 1},

• if ℓ(c◦i ) = min0≤k≤N−1 ℓ(c
◦
k), then we draw an edge between ei and ⋆.

It is shown in [11] that this procedure indeed produces a planar mapM, pointed at ⋆, and rooted at the
�rst edge that we drew, for i = 0, oriented according to an external choice ǫ ∈ {−1,+1} and, further,

that it is invertible. Observe that M has N edges, as many as T, and that the faces of M correspond

to the black vertices of T; one can check that the degree of a face is twice that of the corresponding

black vertex, we conclude that the above procedure indeed realises a bijection between M⋆(n) and
{−1,+1} × LT◦,•(n). One may be concern with the fact that the vertices of M di�erent from ⋆ are

labelled, which seems at �rst sight to be an extra information; shift these labels by adding to each the

quantity 1−minc◦∈◦(T) ℓ(c
◦) and label 0 the vertex ⋆, then the label of each vertex corresponds to its

graph distance inM to the origin ⋆.

2.4 The Janson–Stefánsson bijection

Let T(n) denote the set of one-type trees possessing ni vertices with i children for every i ≥ 0; note
that such a tree has Nn edges and that pn de�ned in Section 1.2 is its empirical o�spring distribution.

Uniform random trees inT(n) have been studied by Addario-Berry [2] who obtained sub-Gaussian tail
bounds for their height and width for n �xed and Broutin & Marckert [12] who showed that, properly

rescaled, under our assumption (H), they converge in distribution in the sense of Gromov–Hausdor�,

towards the celebrated Brownian tree, see Theorem 2 below.

Janson & Stefánsson [20] show thatT(n) andT◦,•(n) are in bijection, we shall refer to it as the JS

bijection. In this bijection, the white vertices of the tree in T◦,•(n) are mapped onto the leaves of the

tree inT(n) and the black vertices in the former, with degree k ≥ 1, are mapped onto (internal) vertices

of the latter with k children. Let us recall the construction of this bijection in the two directions.

Let us start with a two-type tree T; we construct a one-type tree T with the same vertex-set as

follows. First, if T = {∅} is a singleton, then set T = {∅}; otherwise, for every white vertex u ∈ ◦(T)
with ku ≥ 1 children, do the following: �rst, if u 6= ∅, draw an edge between its parent pr(u) and
its �rst child u1, then draw edges between any two consecutive children u1 and u2, u2 and u3, . . . ,
u(ku − 1) and uku, and �nally draw an edge between uku and u; if u is a leaf of T, then this procedure

reduces to drawing an edge between u and pr(u). We root the new tree T at the �rst child of the root

of T. See Figure 4 for an illustration.

Figure 4: The Janson–Stefánsson bijection from two-type trees to one-type trees.

Conversely, given a one-type tree T , we construct a two-type tree T as follows. Again, set T = {∅}
whenever T = {∅}; otherwise, for every leaf u of T , denote by u⋆ its last ancestor whose last child is
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not an ancestor of u; formally set

u⋆ := sup {w ∈ J∅, uJ: wkw /∈K∅, uK} .

The set on the right may be empty, in which case u⋆ = ∅ by convention. Then draw an edge between

u and every vertex v ∈ Ju⋆, uJ. This yields a tree that we root at the last leaf of T . See Figure 5 for an
illustration. One can check that the two procedures are the inverse of one another.

Figure 5: The Janson–Stefánsson bijection from one-type trees to two-type trees.

Let further LT(n) be the set of labelled one-type trees possessing ni vertices with i children for

every i ≥ 0, the JS bijection extends to a bijection between LT(n) and LT◦,•(n) if every black vertex

of a two-type tree is given the label of its white parent; see Figure 6.

0

−1 −2 1

0

−1 −2 −1

−1

−2 0

0

1

0 0

0

−1

−1 −2

−1 −2 −1 0

1

−2 0 −1

0

0

1

0

0

0

−1

Figure 6: The Janson–Stefánsson bijection with labels.

Let us explain how this bijection translates in terms of the processes encoding the labelled trees.

Fix (T, ℓ) a two-type labelled tree and denote by C◦ its white contour process and L◦ its white label

process (in contour order). Fix also (T, l) a one-type labelled tree and denote by H its height process

and L its label process (in lexicographical order). Finally, introduce a modi�ed version of the height

process: let N be the number of edges of T and (u0, . . . , uN ) be its vertices listed in lexicographical

order; for each integer j ∈ {0, . . . , N}, we let H̃(j) denote the number of strict ancestors of uj whose
last child is not an ancestor of uj , i.e.

H̃(j) := # {w ∈ J∅, ujJ: wkw /∈K∅, ujK} .

Lemma 1. If (T, l) and (T, ℓ) are related by the JS bijection, then

L
◦ = L and C

◦ = H̃.

Proof. Let us �rst prove the equality of the label processes. We use the observation from [22] that the

lexicographical order on the vertices of T corresponds to the contour order of the black corners of T
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which, by a shift, corresponds to the contour order of the white corners of T. Speci�cally, let N be the

number of edges of both trees, �x j ∈ {0, . . . , N} and consider the j-th white corner of T: it is a sector

around a white vertex delimited by two consecutive edges, whose other extremity is therefore black;

consider the previous black corner in contour order, in the construction of the JS bijection, an edge of

T starts from this corner and we claim that the other extremity of this edge is uj the j-th vertex of T
in lexicographical order. We refer to the proof of Proposition 4 and Figure 4 in [22].

It follows that if c◦j ∈ ◦(T) is the white vertex visited at the j-th step in the white contour sequence,
then the image of uj by the JS bijection is

• either c◦j : this is the case when c◦j is a leaf or when the white corner is the one given by the last

child of c◦j and its parent;

• or a child of c◦j : precisely, its �rst child if the white corner is the one given by the parent of c◦j
and its �rst child, and its k-th child if the corner is the one given by the k− 1st and k-th children

of c◦j .

Since a black vertex inherits the label of its white parent, we conclude that in both cases we have

L(j) = l(uj) = ℓ(c◦j ) = L◦(j).
Next, for every u ∈ T , set

H̃(u) := # {w ∈ J∅, uJ: wkw /∈K∅, uK} ;

if H̃(u) 6= 0, recall the de�nition

u⋆ := sup {w ∈ J∅, uJ: wkw /∈K∅, uK} .

Fix v ∈ ◦(T) a white vertex of T and w ∈ •(T) one of its children. Denote by JS(v), JS(w) ∈ T their

image by the JS bijection, we argue that H̃(JS(v)) and H̃(JS(w)) are both equal to half the generation
of v in T. Denote by u = JS(v); from the construction of the JS bijection, if v is di�erent from the root

of T, then its parent in T is mapped onto u⋆ and its children onto Ku⋆, uJ, thus

H̃(JS(w)) = H̃(JS(v)) = H̃(u) = H̃(u⋆) + 1 = H̃(JS(pr(v))) + 1.

If v is the root of T, then u is the right-most leaf of T and v and its children are mapped onto the vertices

of T for which H̃ = 0. We conclude after an induction on the generation of v that indeed, H̃(JS(w))
and H̃(JS(v)) are equal, and their common value is given by half the generation of v in T.

Recall the notation c◦j ∈ ◦(T) for the white vertex of T visited at the j-th step in the white contour

sequence and uj for the j-th vertex of T in lexicographical order. Since the image of uj by the JS

bijection is either c◦j or one of its children, we conclude in both cases that H̃(uj) is half the generation

of c◦j in T, i.e. H̃(j) = C◦(j).

Recall the well-known identity between the height process H and the Łukasiewicz path W of a

one-type tree (see e.g. Le Gall & Le Jan[27]):

H(j) = #

{
i ∈ {0, . . . , j − 1} : W (i) ≤ inf

[i+1,j]
W

}
for each 0 ≤ j ≤ N. (4)

Indeed, for i < j, we have W (i) ≤ inf [i+1,j]W if and only if ui is an ancestor of uj ; moreover, the

inequality is an equality if and only if the last child of ui is also an ancestor of uj . A consequence of

Lemma 1 is therefore the identity

C
◦(j) = #

{
i ∈ {0, . . . , i− 1} : W (i) < inf

[i+1,j]
W

}
for each 0 ≤ j ≤ N. (5)

The latter was already observed by Abraham [1, Equation 5] without the formalism of the JS bijection,

whereW (which corresponds to Y − 1 there) was de�ned directly from the two-type tree.
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2.5 From one-type trees to maps

The previous two subsections show thatM⋆(n) and {−1,+1}×LT(n) are in bijection. Let us describe
a direct construction of the map associated with a labelled one-type tree, depicted in Figure 7; we will

not use it later but we believe it may have some interest. The construction contains two steps, the �rst

one is close to the BDG bijection described earlier.

−1 −2

−1 −2 −1 0

1

−2 0 −1

0

0

1

0

0

0

−1

−1 −2

−1 −2 −1 0

1

−2 0 −1

0

0

1

0

0

0

−1

⋆

−1 −2

−1 −2 −1 0

1

−2 0 −1

0

⋆

2 1

2 1 2 3

4

1 3 2

3

0

Figure 7: The composition of the Bouttier–Di Francesco–Guitter and the Janson–Stefánsson bijections;

the map on the bottom right is that from Figure 3.

Let (T, l) be a labelled one-type tree with N edges and, say, n0 leaves, and let (u0, . . . , uN ) be the
vertices of T listed in lexicographical order. For every 0 ≤ i ≤ N , set uN+1+i = ui. We add an extra

vertex ⋆ outside of the tree T and construct a �rst planar graph G on the vertex-set of T and ⋆ by

drawing edges as follows: for every 0 ≤ i ≤ N − 1,

• if l(ui) > min0≤k≤N l(uk), then we draw an edge between ui and uj where j = min{k > i :
l(uk) = l(ui)− 1},

• if l(ui) = min0≤k≤N l(uk), then we draw an edge between ui and ⋆.

We stress that we exclude the last vertex uN in this construction; it indeed yields a planar graph G
withN edges andN +2 vertices, pointed at ⋆, and rooted at the �rst edge that we drew, for i = 0, the
orientation of this root edge is again given by an external choice ǫ ∈ {−1,+1}. In a second step, we

merge every internal vertex of the tree T with its last child; then G becomes a map M with N edges

and n0 + 1 vertices and we claim that the latter corresponds to the one obtained after the JS and then
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the BDG bijection. Note again that the labels correspond, up to a shift, to the distances to the origin ⋆
in the mapM.

3 The Brownian map

3.1 The Brownian snake and the Brownian map

Denote by e = (et; t ∈ [0, 1]) the standard Brownian excursion. For every s, t ∈ [0, 1], set

me(s, t) = min
r∈[s∧t,s∨t]

er and de(s, t) = es + et − 2me(s, t).

One easily checks that de is a random pseudo-metric on [0, 1], we then de�ne an equivalence relation

on [0, 1] by setting s ∼e t whenever de(s, t) = 0. Consider the quotient space Te = [0, 1]/ ∼e, we let

πe be the canonical projection [0, 1] → Te; de induces a metric on Te that we still denote by de. The
space (Te, de) is a so-called compact real-tree, naturally rooted at πe(0) = πe(1), called the Brownian

tree coded by e, introduced by Aldous [4].

We construct next another process Z = (Zt; t ∈ [0, 1]) on the same probability space as e which,

conditional on e, is a centred Gaussian process satisfying for every s, t ∈ [0, 1],

E
[
|Zs − Zt|2

∣∣ e
]
= de(s, t) or, equivalently, E [ZsZt | e] = me(s, t).

It is known (see, e.g. Le Gall [23, Chapter IV.4] on a more general path-valued process called the

Brownian snake whoseZ is only the “tip”) that the pair (e, Z) admits a continuous version and, without

further notice, we will work throughout this paper with this version. Observe that, almost surely,

Z0 = 0 and Zs = Zt whenever s ∼e t so Z can be seen as a Brownian motion indexed by Te by

setting Zt = Zπe(t) for every t ∈ [0, 1]. We interpret Zx as the label of an element x ∈ Te; the pair

(Te, (Zx;x ∈ Te)) is a continuous analog of labelled plane trees and the construction of the Brownian

map from this pair, that we next recall, is somewhat an analog of the BDG bijection presented above.

For every s, t ∈ [0, 1], de�ne

Ž(s, t) =

{
min{Zr; r ∈ [s, t]} if s ≤ t,

min{Zr; r ∈ [s, 1] ∪ [0, t]} otherwise,

and then

DZ(s, t) = Zs + Zt − 2max{Ž(s, t); Ž(t, s)}.
For every x, y ∈ Te, set

DZ(x, y) = inf {DZ(s, t); s, t ∈ [0, 1], x = πe(s) and y = πe(t)} ,

and �nally

D(x, y) = inf

{
k∑

i=1

DZ(ai−1, ai); k ≥ 1, (x = a0, a1, . . . , ak−1, ak = y) ∈ Te

}
.

Both DZ and D are pseudo-distances on Te, we de�ne an equivalence relation by setting x ≈ y
whenever D(x, y) = 0 for x, y ∈ Te. The Brownian map is the quotient space M= Te/ ≈ equipped

with the metric induced by D, that we still denote by D. Note that Dcan be seen as a function on [0, 1]2

by setting D(s, t) = D(πe(s), πe(t)) for every s, t ∈ [0, 1]; in fact, it is the largest pseudo-distance D
on [0, 1] satisfying the following two properties:

D ≤ DZ and de(s, t) = 0 implies D(s, t) = 0.

Thus M can be seen as a quotient space of [0, 1].
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3.2 Functional invariance principles

Let Tn ∈ T(n) be a one-type tree; it has Nn =
∑

i≥1 ini edges, we denote by Wn, Hn and Cn

respectively its Łukasiewicz path, its height process and its contour process. The main result of Broutin

& Marckert [12] is the following.

Theorem 2 (Broutin & Marckert [12]). Under (H), if Tn is sampled uniformly at random in T(n) for
every n ≥ 1, then the convergence in distribution

(
Wn(Nnt)√

Nn

,
Hn(Nnt)√

Nn

,
Cn(2Nnt)√

Nn

)

t∈[0,1]

(d)−→
n→∞

(
σpe,

2

σp
e,

2

σp
e

)

t∈[0,1]

holds in C([0, 1],R3). Consequently, the convergence in distribution

(
Tn, N

−1/2
n dgr

)
(d)−→

n→∞

(
Te,

2

σp
de

)
,

holds in the sense of Gromov–Hausdor�.

Denote by Ln the label process (in lexicographical order) of a labelled tree (Tn, ln) ∈ LT(n). Con-
sider next a labelled two-type tree (Tn, ℓn) ∈ LT◦,•(n); it has Nn edges as well, we denote by C◦

n its

white contour function and by L◦
n its label function (in contour order).

Theorem 3. If (Tn, ln) and (Tn, ℓn) are related by the JS bijection and have the uniform distribution in

LT(n) and LT◦,•(n) respectively for every n ≥ 1, then, under (H), the convergences in distribution


(
σ2
p

4

1

Nn

)1/2

Hn(Nnt),

(
9

4σ2
p

1

Nn

)1/4

Ln(Nnt)




t∈[0,1]

(d)−→
n→∞

(et, Zt)t∈[0,1] (6)

and 

(

σ2
p

4p20

1

Nn

)1/2

C
◦
n(Nnt),

(
9

4σ2
p

1

Nn

)1/4

L
◦
n(Nnt)




t∈[0,1]

(d)−→
n→∞

(et, Zt)t∈[0,1] (7)

hold jointly in C([0, 1],R2).

Remark 3. Denote by Cn the entire contour function of Tn, then (7) is equivalent to the convergence

in distribution in C([0, 1],R2)


(

σ2
p

16p20

1

Nn

)1/2

Cn(2Nnt),

(
9

4σ2
p

1

Nn

)1/4

L
◦
n(Nnt)




t∈[0,1]

(d)−→
n→∞

(et, Zt)t∈[0,1].

Indeed, we have already observed that supt∈[0,1] |Cn(2Nnt) − 2C◦
n(Nnt)| = 1. In particular, we have

the joint convergences

(
Tn, N

−1/2
n dgr

)
(d)−→

n→∞

(
Te,

4p0
σp

de

)
and

(
Tn, N

−1/2
n dgr

)
(d)−→

n→∞

(
Te,

2

σp
de

)
,

in the sense of Gromov–Hausdor�.

Remark 4. Recall from (3) that there are

∏

u∈T :ku≥1

(
2ku − 1

ku − 1

)

possible labellings of a given plane tree T . This quantity is constant on T(n) so a uniform random

unlabelled tree inT(n) which is then labelled uniformly at random (meaning that the bridges with no

negative jumps, as de�ned by (2), at each branch-point are sampled uniformly at random and independ-

ently) has the uniform distribution in LT(n).
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Let us comment on the constants in (6) and (7). The one in front of Hn is taken from Theorem 2.

Next, the label of a vertex u ∈ Tn is the sum of the increments of the labels between two consecutive

ancestors; there are |u| such terms, which are independent and distributed, when the ancestor has i
children and the one on the path to u is the j-th one, as the j-th marginal of a uniform random bridge

of length iwith no negative jump, as de�ned in (2); the latter is a centred random variable with variance

2j(i− j)/(i + 1). As we will see, there is typically a proportion about p(i) of such ancestors so Ln(u)
has variance about

|u|
∑

i≥1

i∑

j=1

p(i)
2j(i − j)

i+ 1
= |u|

∑

i≥1

p(i)
i(i− 1)

3
= |u|

σ2
p

3
.

If u is the vertex visited at time ⌊Nnt⌋ in lexicographical order, then |u| ≈ (4Nn/σ
2
p)

1/2et so we expect

Ln(Nnt), once rescaled by N
1/4
n , to be asymptotically Gaussian with variance

√
4

σ2
p

et
σ2
p

3
=

√
4σ2

p

9
et.

Regarding the two-type tree, the proof of the convergence of C◦
n relies on showing that, as n → ∞,

it is close to p0Hn when Tn and Tn are related by the JS bijection. Finally, according to Lemma 1,

when Tn and Tn are related by the JS bijection, then the processes L◦
n and Ln are equal. Note also

that the previous argument relates the constant in front of C◦
n and that in front of L◦

n: typically, the

proportion of black ancestors of a white vertex u which have i children and among which the j-th one

is an ancestor of u is now about p(i)/p0, the previous calculation yields the above variance.

We next explain how Theorem 3 will follow from several results proved in Section 5.

Proof of Theorem 3. Recall from Lemma 1 that the processes Ln and L◦
n are equal. Appealing to this

lemma, we shall also show in Proposition 1 below the convergence in C([0, 1],R2)



(
σ2
p

4

1

Nn

)1/2

Hn(Nnt),

(
σ2
p

4p20Nn

)1/2

C
◦
n(Nnt)




t∈[0,1]

(d)−→
n→∞

(et, et)t∈[0,1].

In Proposition 4, we shall show that, jointly with this convergence, for every k ≥ 1, if (U1, . . . , Uk) are
i.i.d. uniform random variables in [0, 1] independent of the trees, then the convergence

(
9

4σ2
p

1

Nn

)1/4

(Ln(NnU1), . . . , Ln(NnUk))
(d)−→

n→∞
(ZU1 , . . . , ZUk

) (8)

holds inRk . Finally, in Proposition 7, we shall show that the sequence

(
N

−1/4
n Ln(Nnt); t ∈ [0, 1]

)

n≥1

is tight in C([0, 1],R). This ensures that the sequences on the left-hand side of (6) and (7) are tight in

C([0, 1],R2). Using the equicontinuity given by this tightness, as well as the uniform continuity of the

pair (e, Z), one may transpose (8) to a convergence for deterministic times, by approximating them by

i.i.d. uniform random times, see Addario-Berry & Albenque [3, proof of Proposition 6.1] for a detailed

argument; this characterises the sub-sequential limits of (6) and (7) in C([0, 1],R2) as (e, Z).

We prove the above intermediate results in Section 5: we show the joint convergence of Hn and

C◦
n in Section 5.1, the convergence of random �nite-dimensional marginals of Ln in Section 5.3 and the

tightness of this process in Section 5.5. The proofs shall rely on a precise description of the branches

from the root of Tn to i.i.d. leaves which is obtained in the next section.
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4 Spinal decompositions

For a given vertex u in a plane tree T , we denote byAi(u) its number of strict ancestors with i children:

Ai(u) = # {v ∈ J∅, uJ: kv = i} .

We writeA(u) = (Ai(u); i ≥ 1); note that |u| = |A(u)| =∑i≥1Ai(u). The quantityA(u) is crucial
in order to control the label ln(u) of the vertex u ∈ Tn when (Tn, ln) is chosen uniformly at random

in LT(n). Indeed, one can write

ln(u) =
∑

v∈K∅,uK

ln(v)− ln(pr(v)),

and, conditional on Tn, the random variables ln(v)− ln(pr(v)) are independent and their law depend

on the number of children of pr(v).
Throughout this section, the notation m = (mi; i ≥ 1) will stand for a sequence of non-negative

integers; we set

LR(m) = 1 +
∑

i≥1

(i− 1)mi.

We will write LR(u) for LR(A(u)), the notation comes from the fact that removal of the path J∅, uJ
produces a forest of LR(u) trees, so, in other words, LR(u) is the number of vertices lying directly on

the left or on the right of this path (and the component “above”).

4.1 A one-point decomposition

The following result has been obtained by Broutin & Marckert [12]; it is not written explicitly but the

arguments that we recall below can be found in Sections 3 and 5.2 there.

Lemma 2. For every n ≥ 1, sample Tn uniformly at random inT(n) and then sample a uniform random

vertex un in Tn. Under (H), for every 1 ≤ h ≤ Nn/2 and every sequence m ∈ ZN
+ with |m| = h, we

have

P (A(un) = m) ≤ LR(m)

Nn + 1− h
· eh2/Nn ·P

(
Ξ
(h)
n = m

)
,

where Ξ
(h)
n = (Ξ

(h)
n,i ; i ≥ 1) is a random sequence with the multinomial distribution with parameters h

and (ini/Nn; i ≥ 1).

We need to generalise this decomposition to multiple i.i.d. uniform random vertices. The notation

will be rather complicated so, in order to simplify the exposition, we chose to �rst recall the argument

from [12] to prove this result before stating ours and then only point out the main di�erences.

Proof. Fix a plane tree T and recall that if v is a vertex of T di�erent from its root, we denote by pr(v)
its parent and by kpr(v) the number of children of the latter; denote further by χv the relative position

of v among the children of pr(v): χv ∈ {1, . . . , kpr(v)} satis�es v = pr(v)χv . De�ne next for every

vertex u the content of the branch J∅, uJ as

Cont(u) =
((
kpr(v), χv

)
; v ∈K∅, uK

)
, (9)

where the elements v ∈K∅, uK are sorted in increasing order of their height. For any sequence m,

denote by Γ(m) the set of possible vectors Cont(u) whenA(u) = m and note that

#Γ(m) =

( |m|
(mi; i ≥ 1)

)∏

i≥1

imi .

The removal of the branch J∅, uJ from T produces a plane forest of LR(u) trees and there is a one-

to-one correspondence between the pair (T, u) on the one hand and this forest and Cont(u) on the
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other hand. For any sequence q = (qi; i ≥ 0) of non-negative integers with �nite sum, let F(q) be the
set of plane forests having exactly qi vertices with i children for every i ≥ 0; such a forest possesses

r =
∑

i≥0(1− i)qi roots and it is well-known that

#F(q) =
r

|q|

( |q|
(qi; i ≥ 0)

)
.

Sample Tn uniformly at random in T(n) = F(n) and un uniformly at random in Tn, the previous

bijection readily implies that for any sequencem satisfyingmi ≤ ni for every i ≥ 1 and for any vector
C ∈ Γ(m), settingm0 = 0, we have

P (Cont(un) = C) =
#F(n−m)

(Nn + 1)#F(n)
,

and so

P (A(un) = m) = #Γ(m) · #F(n−m)

(Nn + 1)#F(n)
.

Consequently, for every sequencem satisfyingmi ≤ ni for every i ≥ 1, setting h = |m|, we have

P (A(un) = m) =

(
h

(mi; i ≥ 1)

)∏

i≥1

imi ·
LR(m)
Nn+1−h

(
Nn+1−h

(ni−mi;i≥0)

)

(Nn + 1) 1
Nn+1

( Nn+1
(ni;i≥0)

)

=
LR(m)

Nn + 1− h
· h!∏

i≥1 mi!

∏

i≥1

imi ·
∏

i≥1

ni!

(ni −mi)!
· (Nn + 1− h)!

(Nn + 1)!

=
LR(m)

Nn + 1− h
· h!∏

i≥1 mi!

∏

i≥1

(
ini

Nn

)mi

·
∏

i≥1

ni!

nmi
i (ni −mi)!

· (Nn + 1− h)!Nh
n

(Nn + 1)!
.

Note that

P
(
Ξ
(h)
n = m

)
=

h!∏
i≥1 mi!

∏

i≥1

(
ini

Nn

)mi

.

Next, observe thatni! ≤ nmi
i (ni−mi)! for every i ≥ 1; �nally, using the inequality (1−x)−1 ≤ exp(2x)

for |x| ≤ 1/2, we have as soon as h ≤ Nn/2,

(Nn + 1− h)!Nh
n

(Nn + 1)!
≤

h−1∏

i=0

1

1− i/(Nn + 1)
≤ eh

2/Nn ,

and the proof is complete.

Remark 5. The proof of Lemma 2 shows that, conditional onA(un) = m, the vectorCont(un) has the
uniform distribution in Γ(m). It is then straightforward to check that, for every h ≥ 1, ifm is sampled

from Ξ
(h)
n , then the unconditional law of Cont(un) is given as follows: the entries ((kpr(v), χv); v ∈

K∅, unK) are i.i.d., the marginal kpr(v) is sampled from (ini/Nn; i ≥ 1), and then, conditional on this

value, the marginal χv has the uniform distribution in {1, . . . , kpr(v)}.

Let us next present a corollary of Lemma 2 which shall be used in Section 5.5.

Corollary 3. Recall the notation χw ∈ {1, . . . , kpr(w)} for the relative position of a vertex w ∈ Tn among

the children of its parent. Let C = 2
p0

− 1 and hn = 24
p20

lnNn for every n ≥ 1 and consider the event

En :=

{
#{w ∈Ku, vK : χw = 1}
#{w ∈Ku, vK : χw ≥ 2} ≤ C for every u, v ∈ Tn with u ∈ J∅, vJ and#Ku, vK > hn

}
. (10)

Under (H), we have P(En) → 1 as n → ∞.
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Proof. For every v ∈ Tn, for every 1 ≤ j ≤ |v|, let us denote by aj(v) the unique element of K∅, vK
such that#Jaj(v), vK = j, and then set kj(v) = kaj+1(v) and Xj(v) = 1 if χaj(v) = 1 and Xj(v) = 0
if χaj(v) ≥ 2. We may write the event En as

En =
⋂

v∈Tn

⋂

hn<j≤|v|

{
#{1 ≤ i ≤ j : Xi(v) = 1}
#{1 ≤ i ≤ j : Xi(v) = 0} ≤ C

}
=
⋂

v∈Tn

⋂

hn<j≤|v|

{ j∑

i=1

Xi(v) ≤
C · j
1 + C

}
.

Fix ε > 0, from the convergence ofHn in Theorem 2, there exists x > 0 such that for every n large

enough,

P

(
sup
u∈Tn

|u| > x
√

Nn

)
< ε.

In fact, Addario-Berry [2] proved that the above probability is bounded above by exp(−cx2/σ2
n) for

every n ≥ 1 and x > 0, where c > 0 is a universal constant. Let vn be a uniform random vertex of Tn,

then

P

(
E
c
n ∩

{
sup
u∈Tn

|u| ≤ x
√

Nn

})

≤
∑

v∈Tn

∑

hn<j≤Nn

P

({ j∑

i=1

Xi(v) >
C · j
1 + C

}
∩
{
sup
u∈Tn

|u| ≤ x
√

Nn

})

≤ (Nn + 1)2 sup
j>hn

P

({ j∑

i=1

Xi(vn) >
C · j
1 + C

}
∩
{
sup
u∈Tn

|u| ≤ x
√

Nn

})

≤ (Nn + 1)2 sup
j>hn

∑

|m|≤x
√
Nn

P

(
j∑

i=1

Xi(vn) >
C · j
1 + C

and A(vn) = m

)
,

where in the last line, the sum is taken over all 1 ≤ h ≤ x
√
Nn and all sequences m ∈ ZN

+ with

|m| = h. According to Lemma 2, for any such sequence, we have

P (A(un) = m) ≤ ex
2 ·P

(
Ξ
(h)
n = m

)
(1 + o(1)),

where Ξ
(h)
n has the multinomial distribution with parameters h and (rnr/Nn; r ≥ 1). Here we have

used the trivial bound LR(m) ≤ Nn, which comes from the fact that if mi > ni for some i ≥ 1, then
the left-hand side is zero.

Moreover, appealing to Remark 5, conditional on the o�springs ki(vn)’s of the ancestors ai(vn)’s,
the Xi(vn)’s are independent and have the Bernoulli distribution with parameter 1/ki(vn). We thus

have

P

(
E
c
n ∩

{
sup
u∈Tn

|u| ≤ x
√

Nn

})
≤ xex

2 ·N5/2
n · sup

j>hn

P

(
j∑

i=1

Yn,i >
C · j
1 + C

)
(1 + o(1)),

where the Yn,i’s are independent and have the Bernoulli distribution with parameter

∑

r≥1

1

r
· rnr

Nn

= 1− n0 − 1

Nn

.

Note that C
1+C = 1− p0

2 ; �x n large enough so that, according to (H), n0−1
Nn

> 3p0
4 and so C

1+C − (1−
n0−1
Nn

) = n0−1
Nn

− p0
2 > p0

4 . Applying the Cherno� bound, we obtain

P

(
j∑

i=1

Yn,i >
C · j
1 + C

)
≤ P

(
j∑

i=1

(Yn,i −E [Yn,i]) >
p0
4

· j
)

≤ exp

(
−p20

8
· j
)
,
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so �nally

P

(
E
c
n ∩

{
sup
u∈Tn

|u| ≤ x
√

Nn

})
≤ xex

2 ·N5/2
n · exp

(
−p20

8
· hn

)
· (1 + o(1)),

which converges to zero as n → ∞ from our choice of hn.

4.2 A multi-point decomposition

We next extend the previous decomposition according to several i.i.d. uniform random vertices. Let

us �rst introduce some notation. Fix a plane tree T and k vertices u1, . . . , uk of T and denote by

T (u1, . . . , uk) the tree T reduced to its root and these vertices:

T (u1, . . . , uk) =
⋃

1≤j≤k

J∅, ujK,

which naturally inherits a plane tree structure from T . Denote by k′ ≤ k − 1 the number of branch-

points of T (u1, . . . , uk) and by v1, . . . , vk′ these branch-points. Let F (u1, . . . , uk) be the forest ob-

tained from T (u1, . . . , uk) by removing the edges linking these branch-points to their children; note

that F (u1, . . . , uk) contains k + k′ connected components which are only single paths, i.e. each one

contains one root and only one leaf and the latter is either one of the ui’s or one of the vi’s. Let us rank
these connected components in increasing lexicographical order of their root and denote by∅j and λj

respectively the root and the leaf of the j-th one. For every 1 ≤ j ≤ k + k′ and every i ≥ 1, we set

A
(j)
i (u1, . . . , uk) = # {z ∈ J∅j, λjJ: kz = i} ,

where kz must be understood as the number of children in the original tree T of the vertex z. We set

A(u1, . . . , uk) =
(
A(1)(u1, . . . , uk), . . . ,A

(k+k′)(u1, . . . , uk)
)
.

Fix n, k ≥ 1, sample Tn uniformly at random in T(n) and then sample i.i.d. uniform random

vertices un,1, . . . , un,k in Tn; denote by En(k) the following event: the reduced tree Tn(un,1, . . . , un,k)
is binary, has k leaves and its root has only one child. It is easy to see that, under (H), the probability

of this event tends to 1 as n → ∞. This can be seen as a consequence of Theorem 2 and the fact that

such a property holds almost surely for the Brownian tree.

Lemma 3. For every n ≥ 1, sample Tn uniformly at random in T(n) and then sample i.i.d. uniform

random vertices un,1, . . . , un,k in Tn. Under (H), uniformly for every 1 ≤ h1, . . . , h2k−1 ≤ Nn/2 and

every sequences m(1), . . . ,m(2k−1) ∈ ZN
+ with |m(j)| = hj for each 1 ≤ j ≤ 2k − 1, the quantity

P
(
A(un,1, . . . , un,k) = (m(1), . . . ,m(2k−1))

∣∣∣ En(k)
)

is bounded above by

(
σ2
p

2

)k−1
(k − 1)∆n +

∑2k−1
j=1 LR(m(j))

Nn(Nn − h)
exp

(
h2 + 2h(k − 2)

Nn

)
·
2k−1∏

j=1

P
(
Ξ
(j)
n = m(j)

)
(1+o(1)),

where h = h1 + · · · + h2k−1 and Ξ
(hj)
n = (Ξ

(hj)
n,i ; i ≥ 1) is a random sequence with the multinomial

distribution with parameters hj and (ini/Nn; i ≥ 1).

Proof of Lemma 3. We treat in detail the case k = 2 and comment on the general case at the end. Fix

r ≥ 2 and three sequences of non-negative integers m(1), m(2), m(3) with m
(1)
0 = m

(2)
0 = m

(3)
0 = 0

and set |m(j)
i | = hj for each j ∈ {1, 2, 3}. For every i ≥ 0, set

mi = m
(1)
i +m

(2)
i +m

(3)
i and mi = mi + 1{i=r}.
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Considerun and vn independent uniform randomvertices ofTn and letwn be theirmost recent common

ancestor. Assume that un is smaller in lexicographical order that vn (otherwise exchange their names),

let ûn be the child of wn which is an ancestor of un and de�ne similarly v̂n so

Fn(un, vn) = (J∅, wnK, Jûn, unK, Jv̂n, vnK).

Let Cont(un, vn) be the triplet of contents of these branches, de�ned in a similar way as in (9). Let

Γ(m(1),m(2),m(3)) be the set of possible such triplets whenA(un, vn) = (m(1),m(2),m(3)); as pre-
viously,

#Γ(m(1),m(2),m(3)) =

3∏

j=1

(
hj

(m
(j)
i ; i ≥ 1)

)∏

i≥1

im
(j)
i

=
Nh1+h2+h3

n∏
i≥1 n

mi
i

·
3∏

j=1

(
hj

(m
(j)
i ; i ≥ 1)

)∏

i≥1

(
ini

Nn

)m
(j)
i

= nr ·
Nh1+h2+h3

n∏
i≥1 n

mi
i

·
3∏

j=1

(
hj

(m
(j)
i ; i ≥ 1)

)∏

i≥1

(
ini

Nn

)m
(j)
i

.

Observe that LR(m) = 1 +
∑

i≥1(i− 1)mi = 2 + (r − 2) +
∑

i≥1(i− 1)mi denotes the number

of trees in the forest obtained from Tn by removing the reduced tree Tn(un, vn) when A(un, vn) =
(m(1),m(2),m(3)) and kwn = r: there are i−1 components for each of themi elements with i children
in J∅, wnJ∪Jûn, unJ∪Jv̂n, vnJ, aswell as r−2 components corresponding to the children ofwn di�erent

from un and vn, and the two components above un and vn. As previously, the triplet (Tn, un, vn) is
characterised by the forest obtained by removing the reduced tree Tn(un, vn) and the content of the

latter, which isCont(un, vn) plus the information (kwn , χûn , χv̂n) about the branch-point. We therefore

have for every C ∈ Γ(m(1),m(2),m(3)) and every B ∈ {(r, i, j); 1 ≤ i < j ≤ r},

P (Cont(un, vn) = C and (kwn , χûn , χv̂n) = B) =
#F(n−m)

(Nn + 1)2#F(n)

=

LR(m)
|n−m|

( |n−m|
(ni−mi;i≥1)

)

(Nn + 1)2 1
Nn+1

( Nn+1
(ni;i≥1)

)

=
LR(m)

(Nn + 1)|n −m|
(|n−m|)!
(Nn + 1)!

∏

i≥1

ni!

(ni −mi)!
.

Since |n| = Nn + 1 and |m| = h1 + h2 + h3 + 1, it follows that

P
(
A(un, vn) = (m(1),m(2),m(3)) and kwn = r

)

=
r(r − 1)

2
·#Γ(m(1),m(2),m(3)) · LR(m)

(Nn + 1)|n−m|
(|n−m|)!
(Nn + 1)!

∏

i≥1

ni!

(ni −mi)!

=
r(r − 1)nr

2(Nn + 1)
· LR(m)

Nn − (h1 + h2 + h3)
· (Nn − (h1 + h2 + h3))!N

h1+h2+h3
n

(Nn + 1)!

×
∏

i≥1

ni!

nmi
i (ni −mi)!

·
3∏

j=1

(
hj

(m
(j)
i ; i ≥ 1)

)∏

i≥1

(
ini

Nn

)m
(j)
i

.

As previously, we have

3∏

j=1

(
hj

(m
(j)
i ; i ≥ 1)

)∏

i≥1

(
ini

Nn

)m
(j)
i

=

3∏

j=1

P
(
Ξ
(hj)
n = m(j)

)
,

20



and ∏

i≥1

ni!

nmi
i (ni −mi)!

≤ 1,

as well as

(Nn − (h1 + h2 + h3))!N
h1+h2+h3
n

(Nn + 1)!
=

1

Nn + 1

h1+h2+h3−1∏

i=0

1

1− i/Nn

≤ exp
(
(h1 + h2 + h3)

2/Nn

)

Nn + 1
,

as soon as h1 + h2 + h3 ≤ Nn/2. Note that we must have r ≤ ∆n and so

LR(m) = r +
∑

i≥1

(i− 1)mi = (r − 3) +
3∑

j=1

LR(m(j)) ≤ ∆n +
3∑

j=1

LR(m(j)),

Finally, under (H),
∑

r≥2

r(r − 1)nr

2(Nn + 1)
−→
n→∞

σ2
p

2
,

this concludes the case k = 2.
In the general case, the same argument applies: we may still decompose the tree according to its

reduced subtree Tn(un,1, . . . , un,k) to obtain an explicit expression of the joint law ofA(un,1, . . . , un,k)
and the number of children of all the branch-points of Tn(un,1, . . . , un,k). Speci�cally, denote by

vn,1, . . . , vn,k−1 these branch-points, �x m(1), . . . ,m(2k−1) and r1, . . . , rk−1 ≤ ∆n, set hj = |m(j)|
for 1 ≤ j ≤ 2k − 1 and h = h1 + · · ·+ h2k−1, as well asmi =

∑2k−1
j=1 m

(j)
i +

∑k−1
j=1 1{i=rj} for i ≥ 1.

We have then

P
(
A(un,1, . . . , un,k) = (m(1), . . . ,m(2k−1)) and kvn,j = rj for every 1 ≤ j ≤ k − 1

∣∣∣ En(k)
)

=
k−1∏

j=1

rj(rj − 1)nrj

2(Nn + 1)
· LR(m)

Nn + 1− (h+ k − 1)
· (Nn + 1− (h+ k − 1))!Nh

n

(Nn + 1)!

×
∏

i≥1

ni!

nmi
i (ni −mi)!

·
2k−1∏

j=1

(
hj

(m
(j)
i ; i ≥ 1)

)∏

i≥1

(
ini

Nn

)m
(j)
i

.

We have

∑

r1,...,rk−1≥2

k−1∏

j=1

rj(rj − 1)nrj

2(Nn + 1)
=



∑

r≥2

r(r − 1)nr

2(Nn + 1)




k−1

−→
n→∞

(
σ2
p

2

)k−1

,

as well as, for h ≤ Nn/2,

(Nn + 1− (h+ k − 1))!Nh
n

(Nn + 1)!
=

k−2∏

i=0

1

Nn + 1− i
·
h−1∏

i=0

1

1− (i+ k − 2)/Nn

≤ 1 + o(1)

Nk−1
n

· exp
(
h2 + 2h(k − 2)

Nn

)
.

The rest of the proof is adapted verbatim.

5 Functional invariance principles

We state and prove in this section the intermediate results used in the proof of Theorem 3. Let (Tn, ln)
be a uniform random labelled tree in LT(n) and let Hn and Ln denote its height and label processes.
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Let also Tn be its associated two-type tree, which has the uniform distribution in T◦,•(n), with white

contour process C◦
n. Our aim is to show that, under (H), the convergences


(

σ2
p

4p20Nn

)1/2

C
◦
n(Nnt); t ∈ [0, 1]


 (d)−→

n→∞
(et; t ∈ [0, 1]) (11)

as well as 

(
σ2
p

4

1

Nn

)1/2

Hn(Nnt); t ∈ [0, 1]


 (d)−→

n→∞
(et; t ∈ [0, 1]) (12)

and ((
9

4σ2
p

1

Nn

)1/4

Ln(Nnt); t ∈ [0, 1]

)
(d)−→

n→∞
(Zt; t ∈ [0, 1]), (13)

hold jointly in C([0, 1],R). We prove (11) in the next subsection. Then we prove the convergence of

random �nite-dimensional marginals of (N
−1/4
n Ln(Nn·))n≥1 in Section 5.3 and the tightness of this

sequence in Section 5.5.

5.1 Convergence of the contour

Let Tn have the uniform distribution inT(n) and let Tn be its associated two-type tree, which has the

uniform distribution inT◦,•(n).

Proposition 1. Under (H), we have the convergence in distribution in C([0, 1],R2)


(
σ2
p

4

1

Nn

)1/2

Hn(Nnt),

(
σ2
p

4p20Nn

)1/2

C
◦
n(Nnt)




t∈[0,1]

(d)−→
n→∞

(et, et)t∈[0,1].

The key observation is the identity from Lemma 1:

C
◦
n = H̃n,

where H̃n(j) is the number of strict ancestors ofuj , the j-th vertex ofTn in lexicographical order, whose

last child is not an ancestor of uj . We have seen in the previous section that for a “typical” vertex u
of Tn, at generation |u|, the number of ancestors having i children for i ≥ 1 forms approximately a

multinomial sequence with parameters |u| and (ini/Nn; i ≥ 1); further, for each such ancestor, there

is a probability 1− 1/i that its last child is not an ancestor of u and therefore contributes to C◦
n. Since∑

i≥1(1− 1/i)(ini/Nn) → 1− (1− p0) = p0, we conclude that, at a “typical” time, C◦
n ≈ p0Hn.

Proof. The convergence of the �rst marginal comes from Theorem 2; since, under (H), we have p0 =
limn→∞(n0 − 1)/Nn it su�ces then to prove that

N
−1/2
n sup

0≤t≤1

∣∣∣∣H̃n(Nnt)−
n0 − 1

Nn

Hn(Nnt)

∣∣∣∣
P−→

n→∞
0.

Note that we may restrict ourselves to times t of the form i/Nn with 1 ≤ i ≤ Nn. We proceed as in

the proof of Corollary 3. Fix δ, ε > 0 and choose x > 0 such that for every n large enough,

P

(
sup
u∈Tn

|u| > x
√

Nn

)
< ε.

We aim at showing

lim sup
n→∞

P

(
sup

1≤i≤Nn

∣∣∣∣H̃n(i)−
n0 − 1

Nn

Hn(i)

∣∣∣∣ > δ
√

Nn and sup
u∈Tn

|u| ≤ x
√

Nn

)
= 0.
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Let in be a uniform random integer in {1, . . . , Nn} and un the in-th vertex of Tn in lexicographical

order, then the previous probability is bounded above by

NnP

(∣∣∣∣H̃n(in)−
n0 − 1

Nn

Hn(in)

∣∣∣∣ > δ
√

Nn and sup
u∈Tn

|u| ≤ x
√

Nn

)

≤ xN
3/2
n sup

1≤h≤x
√
Nn

∑

|m|=h

P (A(un) = m)P

(∣∣∣∣H̃n(in)−
n0 − 1

Nn

h

∣∣∣∣ > δ
√

Nn

∣∣∣∣ A(un) = m

)
.

According to Lemma 2, for every n large enough, for every 1 ≤ h ≤ x
√
Nn and every sequence

m ∈ ZN
+ with |m| = h,

P (A(un) = m) ≤ ex
2 ·P

(
Ξ
(h)
n = m

)
· (1 + o(1)),

whereΞ
(h)
n is a random sequencewith themultinomial distributionwith parametersh and (ini/Nn; i ≥

1). Moreover, conditional on the vector (kv ; v ∈ J∅, unJ), H̃n(in) is a sum of independent Bernoulli

random variables, with respective parameter (1− k−1
v ; v ∈ J∅, unJ). Since

∑

i≥1

(
1− 1

i

)
· ini

Nn

=
n0 − 1

Nn

,

we have for every n large enough, for every 1 ≤ h ≤ x
√
Nn,

∑

|m|=h

P (A(un) = m)P

(∣∣∣∣H̃n(in)−
n0 − 1

Nn

h

∣∣∣∣ > δ
√

Nn

∣∣∣∣ A(un) = m

)

≤ ex
2 ·P

(∣∣∣∣∣

h∑

i=1

Yn,i −
n0 − 1

Nn

h

∣∣∣∣∣ > δ
√

Nn

)
· (1 + o(1)),

where (Yn,i; 1 ≤ i ≤ h) are independent Bernoulli random variables with parameter (n0 − 1)/Nn.

Applying the Cherno� bound, we obtain

P

(∣∣∣∣∣

h∑

i=1

Yn,i −
n0 − 1

Nn

h

∣∣∣∣∣ > δ
√

Nn

)
≤ 2e−2δ2Nn/h ≤ 2e−2δ2

√
Nn/x.

We conclude that for every δ, ε > 0, there exists x > 0 (depending only on ε) such that for every n
large enough,

P

(
sup

1≤i≤Nn

∣∣∣∣H̃n(i) −
n0 − 1

Nn

Hn(i)

∣∣∣∣ > δ
√

Nn

)
≤ ε+ 2xex

2 ·N3/2
n · e−2δ2

√
Nn/x · (1 + o(1)),

which converges to ε as n → ∞.

5.2 Maximal displacement at a branch-point

Recall that for every vertex u, we denote by ku its number of children and these children by u1, . . . , uku.

Proposition 2. For every n ≥ 1, sample (Tn, ln) uniformly at random in LT(n). Under (H), we have

the convergence in probability

N
−1/4
n max

u∈Tn

∣∣∣∣ max
1≤j≤ku

ln(uj)− min
1≤j≤ku

ln(uj)

∣∣∣∣
P−→

n→∞
0.
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To prove this result, we shall need a sub-Gaussian tail bound for the maximal gap in a random

walk bridge. Recall that for r ≥ 1, a discrete bridge of length r is a vector (B0, . . . , Br) satisfying
B0 = Br = 0 andBk+1−Bk ∈ Z for every 0 ≤ k ≤ r−1. A random bridge is said to be exchangeable

if the law of its increments (B1, B2 −B1, . . . , Br −Br−1) is invariant under permutation.

Lemma 4. Fix r ≥ 1 and let B = (B0, . . . , Br) be a discrete bridge. For every x ≥ 0 �xed, if

max
0≤k≤r

Bk − min
0≤k≤r

Bk ≥ 3x,

then at least one of the following quantities must be smaller than or equal to −x:

min
0≤k≤⌈r/2⌉

Bk, min
0≤k≤⌈r/2⌉

(
B⌈r/2⌉ −B⌈r/2⌉−k

)
,

min
0≤k≤⌈r/2⌉

(
B⌈r/2⌉+k −B⌈r/2⌉

)
, min

0≤k≤⌈r/2⌉
(Br −Br−k) .

Consequently, if B is a random exchangeable bridge, then for every x ≥ 0, we have

P

(
max
0≤k≤r

Bk − min
0≤k≤r

Bk ≥ 3x

)
≤ 4 ·P

(
min

0≤k≤⌈r/2⌉
Bk ≤ −x

)
.

Proof. Let us write r/2 instead of ⌈r/2⌉. Denote by

M1 = max
0≤k≤r/2

Bk, m1 = min
0≤k≤r/2

Bk, M2 = max
r/2≤k≤r

Bk, m2 = min
r/2≤k≤r

Bk.

Suppose that the four minima in the statement are (strictly) larger than −x, then, since Br = 0,

m1 > −x, Br/2 −M1 > −x, m2 −Br/2 > −x, −M2 > −x.

It follows that

M1 −m1 < (Br/2 + x) + x < m2 + 3x ≤ 3x,

M1 −m2 < (Br/2 + x)− (Br/2 − x) = 2x,

M2 −m1 < 2x,

M2 −m2 < x− (Br/2 − x) ≤ 2x−m1 < 3x,

We conclude thatmax0≤k≤r Bk −min0≤k≤r Bk = sup{M1,M2} − inf{m1,m2} < 3x.
The last claim follows after observing that if B is exchangeable, then the three processes

(
Br/2 −Br/2−k; 0 ≤ k ≤ r/2

)
,
(
Br/2+k −Br/2; 0 ≤ k ≤ r/2

)
, (Br −Br−k; 0 ≤ k ≤ r/2)

are distributed as (Bk; 0 ≤ k ≤ r/2).

Lemma 5. Let (Sk; k ≥ 0) be a random walk such that S0 = 0 and (Sk+1−Sk; k ≥ 0) are i.i.d. random
variables, taking values in Z ∩ [−b,∞) for some b ≥ 0, centred and with variance σ2 ∈ (0,∞). There
exists two constants c, C > 0 which only depend on b and σ such that for every r ≥ 1 and x ≥ 0, we have

P

(
max
0≤k≤r

Sk − min
0≤k≤r

Sk ≥ x

∣∣∣∣ Sr = 0

)
≤ Ce−cx2/r.

Proof. First note that on the event {Sr = 0},max0≤k≤r Sk−min0≤k≤r Sk cannot exceed br. Moreover,

on the event {Sr = 0}, the path (S0, . . . , Sr) is an exchangeable bridge so, according to Lemma 4, it

su�ces to show that there exists two constants c, C > 0 which only depend on b and σ such that for

every r ≥ 1 and 0 ≤ x ≤ br,

P

(
min

0≤k≤⌈r/2⌉
Sk ≤ −x

∣∣∣∣ Sr = 0

)
≤ Ce−cx2/r.
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For every k ≥ 1 and every x ∈ Z, let us set θk(x) = P (Sk = −x). According to the local limit theorem,

for every k ≥ 1 and x ∈ Z, √
kθk(x) = g(x/

√
k) + εk(x),

where g(x) = (2πσ2)−1/2e−x2/(2σ2) and limk→∞ supx∈Z |εk(x)| = 0. It follows that

C :− sup
r≥1,x∈Z

θr−⌈r/2⌉(x)

θr(0)
= sup

r≥1,x∈Z

√
r

r − ⌈r/2⌉
g(−x/

√
r − ⌈r/2⌉) + εr−⌈r/2⌉(x)

g(0) + εr(0)
< ∞.

Using the Markov property at time ⌈r/2⌉, we have thereby

P

(
min

0≤k≤⌈r/2⌉
Sk ≤ −x

∣∣∣∣ Sr = 0

)
=

P
(
min0≤k≤⌈r/2⌉ Sk ≤ −x and Sr = 0

)

P (Sr = 0)

= E

[
1{min0≤k≤⌈r/2⌉ Sk≤−x}

θr−⌈r/2⌉(S⌈r/2⌉)

θr(0)

]

≤ C ·P
(

min
0≤k≤⌈r/2⌉

Sk ≤ −x

)
.

Finally, since−S is a randomwalkwith step distribution bounded above by b, centred andwith variance
σ2, we have the following concentration inequality (see e.g. Mc Diarmid [34], Theorem 2.7 and the

remark at the end of Section 2 there): for every n ≥ 1 and every x ≥ 0,

P

(
max
0≤k≤n

−Sk ≥ x

)
≤ exp

(
− x2

2σ2n+ 2bx/3

)
.

We conclude that for every r ≥ 1 and every 0 ≤ x ≤ br, we have

P

(
min

0≤k≤⌈r/2⌉
Sk ≤ −x

∣∣∣∣ Sr = 0

)
≤ C exp

(
− x2

2σ2⌈r/2⌉ + 2bx/3

)
≤ C exp

(
− x2

(2σ2 + 2b2/3)r

)
,

and the proof is complete.

Consider the random walk (Si; i ≥ 0) such that S0 = 0 and (Si+1 − Si; i ≥ 0) are i.i.d. random
variables, distributed as a shifted geometric law: P (S1 = k) = 2−(k+2) for every k ≥ −1. Then it

is easy to check that for every r ≥ 1, on the event {Sr = 0}, the path (S0, . . . , Sr) has the uniform
distribution in the �nite set B+

r of discrete bridges of length r with no negative jump de�ned in (2).

Therefore, ifX(r) = (X
(r)
0 , . . . ,X

(r)
r ) is a uniform random element of B+

r , then we may apply Lemma

5 which reads: for every x ≥ 0,

P
(
maxX(r) −minX(r) ≥ x

)
≤ Ce−cx2/r, (14)

where c, C > 0 are universal constants (which depend neither on x nor r).

Proof of Proposition 2. Recall that conditional on Tn, the sequences (0, ln(u1) − ln(u), . . . , ln(uku) −
ln(u))u∈Tn are independent and distributed respectively as a uniform random element of B+

r when

ku = r and that there are nr such vertices in Tn. According to (14), with the same notation, for every
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ε > 0, for every n large enough,

P

(
max
u∈Tn

∣∣∣∣ max
1≤i≤ku

ln(ui)− min
1≤i≤ku

ln(ui)

∣∣∣∣ ≤ εN
1/4
n

)

=

∆n∏

r=1

P
(
maxX(r) −minX(r) ≤ εN

1/4
n

)nr

≥
∆n∏

r=1

(
1−C exp

(
−cε2N

1/2
n /r

))nr

≥ exp


−

∆n∑

r=1

nr

C exp
(
−cε2N

1/2
n /r

)

1− C exp
(
−cε2N

1/2
n /r

)




≥ exp

(
−C

∆n∑

r=1

nr exp
(
−cε2N

1/2
n /r

)
(1 + o(1))

)
,

where we have used the bound ln(1−x) ≥ − x
1−x for x < 1, together with the fact that, under (H), we

have sup1≤r≤∆n

exp(−cε2N
1/2
n /r) → 0 since ∆n = o(N

1/2
n ). Recall furthermore that under (H), we

have
∑∆n

r=1 r
2nr/Nn → σ2

p + 1 < ∞, we conclude that for every n large enough, since x 7→ x2e−x is

decreasing on [2,∞),

∆n∑

r=1

nr exp

(
−cε2

N
1/2
n

r

)
≤

∆n∑

r=1

r2nr

Nn

× Nn

∆2
n

exp

(
−cε2

N
1/2
n

∆n

)
−→
n→∞

0,

and the claim follows.

5.3 Random �nite-dimensional convergence

As in Section 4, in order to make the notation easier to follow, we �rst treat the one-dimensional case.

Proposition 3. For every n ≥ 1, sample independently (Tn, ln) uniformly at random in LT(n) and U
uniformly at random in [0, 1]. Under (H), the convergence in distribution

(
9

4σ2
p

1

Nn

)1/4

Ln(NnU)
(d)−→

n→∞
ZU

holds jointly with (12).

The approach of the proof was described in Section 3.2 when explaining the constant (9/(4σ2
p))

1/4

and relies on Lemma 2.

Proof. Note that the vertex un visited at the time ⌊NnU⌋ in lexicographical order has the uniform

distribution in Tn; denote by ln(un) = Ln(⌊NnU⌋) its label and by |un| = Hn(⌊NnU⌋) its height and
observe that

(
9

4σ2
p

1

Nn

)1/4

ln(un) =

√√√√
√

σ2
p

4

1

Nn

|un|
√

3

σ2
p

1√
|un|

ln(un).

Since, according to (12), √
σ2
p

4

1

Nn

|un|
(d)−→

n→∞
eU ,
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it is equivalent to show that, jointly with (12), we have

1√
|un|

ln(un) =⇒
n→∞

N

(
0,

σ2
p

3

)
, (15)

where N(0, σ2
p/3) denotes the centred Gaussian distribution with variance σ2

p/3 and “⇒” is a slight

abuse of notation to refer to the weak convergence of the law of the random variable.

Recall that we denote by Ai(un) the number of strict ancestors of un with i children:

Ai(un) = # {v ∈ J∅, unJ: kv = i} ;

denote further by Ai,j(un) the number of strict ancestors of un with i children, among which the j-th
one is again an ancestor of un:

Ai,j(un) = # {v ∈ J∅, unJ: kv = i and vj ∈K∅, unK} .

Wehave seen in Section 4 thatwhen Tn is uniformly distributed inT(n) and un is uniformly distributed

in Tn, then A(un) = (Ai(un); i ≥ 1) can be compared to a multinomial sequence with parameters

|un| and (ini/Nn; i ≥ 1). Observe further that given the sequence A(un), the vectors (Ai,j(un); 1 ≤
j ≤ i)i≥1 are independent and distributed respectively according to the multinomial distribution with

parametersAi(un) and (1i , . . . ,
1
i ).

We write

ln(un) =

∆n∑

i=1

i∑

j=1

Ai,j(un)∑

k=1

Xi,j,k,

where the random variablesXi,j,k’s are all independent (and independent ofA(un)) and have respect-
ively the law of the j-th marginal of a uniform random bridge in B

+
i . Each variable Xi,j,k is centred

and has �nite variance, say, σ2
i,j . We shall use also the notation

lKn (un) =

K∑

i=1

i∑

j=1

Ai,j(un)∑

k=1

Xi,j,k,

for every K ≥ 1. The proof of (15) is divided into two steps: we �rst show that for every K ≥ 1,
lKn (un)/

√
|un| converges towards a limit which depends on K and which in turn converges towards

N(0, σ2
p/3) asK → ∞, and then we show that |ln(un)− lKn (un)|/

√
|un| can be made arbitrarily small

uniformly for n large enough by choosingK large enough.

Let us �rst prove the convergence of lKn (un) as n → ∞. For every h ≥ 1, let Ξ
(h)
n = (Ξ

(h)
n,i ; i ≥ 1)

denote a random sequence with the multinomial distribution with parameters h and (ini/Nn; i ≥ 1).
Fix ε > 0 arbitrary, according to Theorem 2, we may choose x > 0, such that for n large enough,

P
(
|un|/

√
Nn /∈ [1/x, x]

)
≤ 2 ·P (σpeU/2 /∈ [1/x, x]) < ε,

where U is uniformly distribution in [0, 1] and independent of e. Furthermore, Broutin & Marckert [12,

Equation 16] have shown that

P
(
LR(un) > x

√
Nn

)
≤ 16 · 9 · σ

2
n

x2
< ε,

for n and x large enough. Finally, uniformly for 1 ≤ h ≤ x
√
Nn, for every sequence m ∈ ZN

+ with

|m| = h and LR(m) ≤ x
√
Nn, we have from Lemma 2,

P (A(un) = m) ≤ xex
2 ·N−1/2

n ·P
(
Ξh
n = m

)
· (1 + o(1)).
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Fix i ≥ 1 such that p(i) 6= 0. Since Ξ
(h)
n,i has the binomial distribution with parameters h and

ini/Nn, Markov inequality yields for every δ > 0 and every n large enough,

P

(∣∣∣∣
Nn

|un|ini
Ai(un)− 1

∣∣∣∣ > δ

)
≤ 2ε+ 2x2ex

2
sup√

Nn/x≤h≤x
√
Nn

P

(∣∣∣∣
Nn

hini
Ξ
(h)
n,i − 1

∣∣∣∣ > δ

)

≤ 2ε+ 2x2ex
2

sup√
Nn/x≤h≤x

√
Nn

h−1δ−2

(
Nn

ini
− 1

)
,

which converges to 2ε as n → ∞ since ini/Nn → ip(i) ∈ (0, 1). Recall that given Ai(un), the vector
(Ai,j(un); 1 ≤ j ≤ i) has the multinomial distribution with parameters Ai(un) and (1i , . . . ,

1
i ) so for

every 1 ≤ j ≤ i, we further have

Nn

|un|ni
Ai,j(un)

P−→
n→∞

1.

Since the random variables Xi,j,k are independent, centred and have variance σ2
i,j , the central limit

theorem then reads, when p(i) 6= 0,

1√
|un|

Ai,j(un)∑

k=1

Xi,j,k =⇒
n→∞

N
(
0, p(i)σ2

i,j

)
. (16)

In the case p(i) = 0, we claim that

1√
|un|

i∑

j=1

Ai,j(un)∑

k=1

Xi,j,k
P−→

n→∞
0. (17)

Indeed, with the same argument as above, it su�ces to show that for every δ > 0, we have

lim
n→∞

sup√
Nn/x≤h≤x

√
Nn

∑

|m|=h

P
(
Ξ
(h)
n = m

)
P




∣∣∣∣∣∣

i∑

j=1

Mi,j∑

k=1

Xi,j,k

∣∣∣∣∣∣
≥ δ

√
h


 = 0,

where the vector (Mi,j ; 1 ≤ j ≤ i) has the multinomial distributionwith parametersmi and (
1
i , . . . ,

1
i )

and is independent of theXi,j,k’s. For every sequencem, we have

P




∣∣∣∣∣∣

i∑

j=1

Mi,j∑

k=1

Xi,j,k

∣∣∣∣∣∣
≥ δ

√
h


 ≤ 1

δ2h

i∑

j=1

E [Mi,j] σ
2
i,j =

1

δ2h

mi

i

i∑

j=1

σ2
i,j,

whence

∑

|m|=h

P
(
Ξ
(h)
n = m

)
P




∣∣∣∣∣∣

i∑

j=1

Mi,j∑

k=1

Xi,j,k

∣∣∣∣∣∣
≥ δ

√
h


 ≤

∑

|m|=h

P
(
Ξ
(h)
n = m

) 1

δ2h

mi

i

i∑

j=1

σ2
i,j

≤ E
[
Ξ
(h)
n,i

] 1

δ2h

1

i

i∑

j=1

σ2
i,j

≤ ni

Nn

1

δ2

i∑

j=1

σ2
i,j.

Since, under (H), we have ni/Nn → p(i) = 0 as n → ∞ and (17) follows.
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We conclude using (16), (17) and the independence of the Xi,j,k’s as i and j vary that for every

K ≥ 1, the convergence

1√
|un|

lKn (un) =⇒
n→∞

N


0,

K∑

i=1

p(i)
i∑

j=1

σ2
i,j




holds. Marckert & Miermont [32, page 1664] have calculated the variance of the random variables

Xi,j,k:

σ2
i,j =

2j(i − j)

i+ 1
so

i∑

j=1

σ2
i,j =

i(i− 1)

3
.

As a consequence,
K∑

i=1

p(i)
i∑

j=1

σ2
i,j −→

K→∞

∞∑

i=1

p(i)
i(i − 1)

3
=

σ2
p

3
,

which implies

N


0,

K∑

i=1

p(i)
i∑

j=1

σ2
i,j


 =⇒

K→∞
N

(
0,

σ2
p

3

)
.

It only remains to show that for every δ > 0, we have

lim
K→∞

lim sup
n→∞

P
(∣∣ln(un)− lKn (un)

∣∣ ≥ δ
√

|un|
)
= 0. (18)

Again, with the same notation as above, it is enough to show that for every x > 0 and every δ > 0, we
have

lim
K→∞

lim sup
n→∞

sup√
Nn/x≤h≤x

√
Nn

∑

|m|=h

P
(
Ξ
(h)
n = m

)
P




∣∣∣∣∣∣

∆n∑

i=K

i∑

j=1

Mi,j∑

k=1

Xi,j,k

∣∣∣∣∣∣
≥ δ

√
h


 = 0.

By the same calculation as above,

∑

|m|=h

P
(
Ξ
(h)
n = m

)
P




∣∣∣∣∣∣

∆n∑

i=K

i∑

j=1

Mi,j∑

k=1

Xi,j,k

∣∣∣∣∣∣
≥ δ

√
h


 ≤

∑

|m|=h

P
(
Ξ
(h)
n = m

) 1

δ2h

∆n∑

i=K

mi

i

i∑

j=1

σ2
i,j

=
1

δ2h

∆n∑

i=K

1

i
E
[
Ξ
(h)
n,i

] i∑

j=1

σ2
i,j

=
1

δ2

∆n∑

i=K

ni

Nn

i(i− 1)

3
,

Under (H),
∆n∑

i=K

ni

Nn

i(i− 1) −→
n→∞

∑

i≥K

p(i)i(i − 1),

and, in turn, the right-hand side converges 0 asK → ∞. This concludes the proof of (18).

We next give a multi-dimensional extension of Proposition 3. The proof of the latter relied on

Lemma 2, the proof of its extension appeals to Lemma 3.
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Proposition 4. For every n ≥ 1, sample independently (Tn, ln) uniformly at random in LT(n) and
U1, . . . , Uk uniformly at random in [0, 1]. Under (H), the convergence in distribution

(
9

4σ2
p

1

Nn

)1/4

(Ln(NnU1), . . . , Ln(NnUk))
(d)−→

n→∞
(ZU1 , . . . , ZUk

)

holds jointly with (12).

Proof. As for Lemma 3, we focus on the case k = 2 and comment on the general case at the end. Let un
and vn be independent uniform random vertices of Tn and wn be their most recent common ancestor,

let further ûn and v̂n be the children of wn which are respectively an ancestor of un and vn. We write:

ln(un) = ln(wn) + (ln(ûn)− ln(wn)) + (ln(un)− ln(ûn)),

and we have a similar decomposition for vn. The point is that, conditional on Tn, un and vn, the
random variables ln(wn), ln(un) − ln(ûn) and ln(vn) − ln(v̂n) are independent. Moreover, according

to Proposition 2, with high probability, ln(ûn)− ln(wn) and ln(v̂n)− ln(wn) are both small compared

to N
1/4
n .

According to (12), we have

(
σ2
p

4

1

Nn

)1/2

(|wn|, |un| − |ûn|, |vn| − |v̂n|)
(d)−→

n→∞
(me(U, V ), eU −me(U, V ), eV −me(U, V )) ,

where U and V are i.i.d uniform random variables on [0, 1] independent of e. We shall prove that,

jointly with (12),

√
3

σ2
p

(
ln(wn)√

|wn|
,
ln(un)− ln(ûn)√

|un| − |ûn|
,
ln(vn)− ln(v̂n)√

|vn| − |v̂n|

)
(d)−→

n→∞
(G1, G2, G3) , (19)

whereG1,G2,G3 are i.i.d. standard Gaussian random variables. Proposition 2 and (19) then imply that,

jointly with (12), the sequence

((
9

4σ2
p

1

Nn

)1/4

(ln(un), ln(vn))

)

n≥1

converges in distribution towards

√
me(U, V )G1 +

(√
eU −me(U, V )G2,

√
eV −me(U, V )G3

)
.

This corresponds to the claim of the proposition for k = 2. The proof of (19) is mutatis mutandis

the same as that of Proposition 3: consider the three branches J∅, wnK, Jûn, unK and Jv̂n, vnK, we use
Lemma 3 to compare the number of elements in each branch which have i children and among which

the j-th one belongs to the branch to independent multinomial distributions; then we may use the

arguments of the proof of Proposition 3 to each branch independently which yields (19).

The general case k ≥ 2 hides no di�culty. Sample i.i.d. uniform random vertices un,1, . . . , un,k
of Tn; appealing to Proposition 2, we neglect the contribution of the branch-points of the reduced tree

Tn(un,1, . . . , un,k) (recall the notation from Section 4) and we decompose the labels of each vertex un,i
as the sum of the increments of labels over all the branches of the forest Fn(un,1, . . . , un,k); as for
k = 2, Lemma 3 yields the generalisation of (19).
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5.4 Concentration results for discrete excursions

In this subsection, we prove two concentration inequalities for the Łukasiewicz path of Tn. The �rst

one shall be used to derive the tightness of the label process in the next subsection, the second one shall

be used in Section 6 in the proof of Theorem 1.

Proposition 5. Assume that (H) holds and letWn be the Łukasiewicz path of a tree sampled uniformly at

random inT(n). There exists a constant C > 0 such that, uniformly for n ∈ N and 0 ≤ j < k ≤ Nn+1
with k − j ≤ Nn/2,

P

(
Wn(j) − min

j≤i≤k
Wn(i) > t

)
≤ exp

(
− t2

C · (k − j)

)
,

for every t ≥ 0. As a consequence, for every r > 0, the bound

E

[(
Wn(j)− min

j≤i≤k
Wn(i)

)r]
≤ C(r) · (k − j)r/2,

holds uniformly for n ∈ N and 0 ≤ j < k ≤ Nn + 1 such that k − j ≤ Nn/2, where C(r) =
Γ(1 + r

2) · Cr/2.

This result follows from Section 3 of Addario-Berry [2]. Fix m = (m0,m1,m2, . . . ) a sequence of
non-negative integers with �nite sum satisfying

M =
∑

i≥0

mi,
∑

i≥0

(i− 1)mi = −1 and ς2 =
∑

i≥0

(i− 1)2mi,

and de�ne

B(m) := {x = (x1, . . . , xM ) : #{j : xj = i− 1} = mi for every i ≥ 0} .

Given x ∈ B(m), we consider the walk Sx de�ned by Sx(0) = 0 and Sx(k) = x1 + · · · + xk for

1 ≤ k ≤ M .

Lemma 6 (Addario-Berry [2]). If x is sampled uniformly at random in B(m), then

P

(
− min

0≤i≤k
Sx(i) ≥ t

)
≤ exp

(
− t2

(16 ς2

M + 8
3 (1− 1

M ))k

)

for every 1 ≤ k ≤ ⌊M/2⌋ and every t ≥ 0.

Observe that Sx(M) = −1 for every x ∈ B(m); we de�ne further

E(m) := {x ∈ B(m) : Sx(k) ≥ 0 for every 1 ≤ k ≤ M − 1} .

The sets E(m) and T(m) are in one-to-one correspondence: each path Sx with x in E(m) is the
Łukasiewicz path of a tree in T(m).

For x ∈ B(m) and j ∈ {1, . . . ,M}, denote by x(j) ∈ B(m) the j-th cyclic shift of x de�ned by

x
(j)
k = xk+j mod M , 1 ≤ k ≤ M.

It is well-known that, given x ∈ B(m), we have x(j) ∈ E(m) if and only if j is the least time at which

the walk Sx achieves its minimum overall value:

j = inf

{
1 ≤ k ≤ M : Sx(k) = inf

1≤l≤M
Sx(l)

}
. (20)

Given x ∈ B(m), we let x∗ be the unique cyclic shift of x in E(m). It is a standard fact that if x
has the uniform distribution in B(m), then the time j satisfying (20) has the uniform distribution on

{1, . . . ,M} and then that x∗ = x(j) is uniformly distributed in E(m) and independent of j.
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Proof of Proposition 5. According to the previous remark, we know thatWn is distributed as Sx∗ where

x has the uniform distribution in B(n). With the previous notation,M = Nn + 1 and

ς2 = (Nn + 1)σ2
n +

N2
n

Nn + 1
−Nn + 1 = (Nn + 1)σ2

n +
1

Nn + 1
.

Observe that, by shift-invariance, Lemma 6 applies toSx∗ as well: for every t ≥ 1, for every 1 ≤ k−j ≤
⌊Nn/2⌋,

P

(
Sx∗(j) − min

j≤i≤k
Sx∗(i) ≥ t

)
= P

(
− min

0≤i≤k−j
Sx(i) ≥ t

)

≤ exp

(
− t2

(16(σ2
n + 1

Nn+1) +
8
3(1− 1

Nn+1)(k − j)

)
,

which corresponds to the �rst claim, with C := supn≥1{16(σ2
n + 1

Nn+1) +
8
3 (1 − 1

Nn+1)} < ∞; the

second claim follows by integrating this tail bound applied to t1/r .

We next show that the vertices of Tn of a given type are in some sense uniformly distributed for

large n. For a tree T ∈ T, a set A ⊂ Z+ and an integer i ≥ 1, let ΛT,i(A) be the number of vertices

which have a number of children in A among the �rst i vertices of T in lexicographical order.

Proposition 6. Assume that (H) holds and sample Tn uniformly at random in T(n) for every n ≥ 1.
Then for every A ⊂ Z+,

P

(
max

1≤i≤Nn+1
|ΛTn,i(A)− pn(A)i| > N

3/4
n

)
−→
n→∞

0.

Proof. For every y ∈ B(n), every A ⊂ Z+ and every 1 ≤ i ≤ Nn + 1, set

λy,i(A) := #{1 ≤ k ≤ i : yk ∈ A− 1}.

Note that λy,Nn+1(A) = (Nn + 1)pn(A). As previously discussed, the Łukasiewicz path of Tn has the

law of Sx where x is uniformly distributed in E(n), so

P

(
max

1≤i≤Nn+1
|ΛTn,i(A)− pn(A)i| > N

3/4
n

)
= P

(
max

1≤i≤Nn

|λx,i(A)− pn(A)i| > N
3/4
n

)
.

Let us �rst consider y uniformly distributed in B(n). For each 1 ≤ i ≤ Nn + 1 �xed, λy,i(A) =∑i
k=1 1{yk∈A−1} is the sum of i dependent Bernoulli random variables, which arise from a sampling

without replacement in an urn with initial con�guration of
∑

i∈A ni “good” balls andNn+1−∑i∈A ni

“bad” balls. It is well-known that the expected value of any continuous convex function of λy,i(A) is
bounded above by the corresponding quantity for the sum of i i.i.d. Bernoulli random variables with

parameter pn(A), which arise from sampling with replacement, see e.g. Hoe�ding’s seminal paper [17,

Theorem 4]. In particular, the Cherno� bound for binomial random variables yields

P

(
max

1≤i≤Nn

|λy,i(A)− pn(A)i| > N
3/4
n

)
≤ Nn max

1≤i≤Nn

P
(
|λy,i(A)− pn(A)i| > N

3/4
n

)

≤ 2Nn max
1≤i≤Nn

exp
(
−2N

3/2
n /i

)

= 2Nn exp
(
−2N

1/2
n

)
.

Next, let j be as in (20) and recall that j is uniformly distributed in {1, . . . , Nn + 1} and that

x := y∗ = y(j) is uniformly distributed in E(n) and independent of j. If j = Nn + 1, then x = y
and our claim follows from the above bound. We then implicitly condition j to be less than Nn + 1,
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in which case it has the uniform distribution in {1, . . . , Nn} and it is independent of x. Observe that
Nn + 1− j also has the uniform distribution in {1, . . . , Nn} and is independent of x, so

P

(
max

1≤i≤Nn

|λx,i(A)− pn(A)i| > N
3/4
n

)
≤ NnP

(
|λx,Nn+1−j(A) − pn(A)(Nn + 1− j)| > N

3/4
n

)
.

Furthermore, in our coupling, λx,Nn+1−j(A) = #{1 ≤ k ≤ Nn + 1− j : xk ∈ A− 1} is also equal to

#{1 ≤ k ≤ Nn + 1− j : yNn+2−k ∈ A− 1}. By time-reversal, we have the identity

((yNn+2−k; 1 ≤ k ≤ Nn + 1);Nn + 1− j)
(d)
=

(
(yk; 1 ≤ k ≤ Nn + 1); j′

)
,

where j′ = sup{0 ≤ k ≤ Nn : Sy(k) = max1≤l≤Nn+1 Sx(l)}. We conclude that

P

(
max

1≤i≤Nn+1
|ΛTn,i(A)− pn(A)i| > N

3/4
n

)
≤ NnP

(∣∣λy,j′(A)− pn(A)j
′∣∣ > N

3/4
n

)
+ o(1)

≤ 2N2
n exp

(
−2N

1/2
n

)
+ o(1),

which converges to 0.

5.5 Tightness of the label process

Let us prove the tightness of the label process; together with Proposition 4, this will end the proof of

Theorem 3 and so Theorem 1.

Proposition 7. For every n ≥ 1, sample (Tn, ln) uniformly at random inLT(n). Under (H), the sequence
(
N

−1/4
n Ln(Nnt); t ∈ [0, 1]

)
n≥1

is tight in C([0, 1],R).

In the remainder of this section, we shall use the notation C(q) for a positive constant which de-

pends only on a real number q and, implicitly, on the sequences n, and which will often di�er from a

line to another.

We shall prove that, for some sequence of events En satisfying P(En) → 1 as n → ∞ (those

from Corollary 3), for every q > 4, for every β ∈ (0, q/4 − 1), for every n large enough, for every

i, j ∈ {0, . . . , Nn},

E [|Ln(i)− Ln(j)|q | En] ≤ C(q) ·N q/4
n ·

∣∣∣∣
i− j

Nn

∣∣∣∣
1+β

. (21)

Set L(n)(t) = N
−1/4
n Ln(Nnt) for n ∈ N and t ∈ [0, 1], then the previous display reads

E
[∣∣L(n)(s)− L(n)(t)

∣∣q ∣∣ En

]
≤ C(q) · |s− t|1+β ,

whenever s, t ∈ [0, 1] are such that Nns and Nnt are both integers. Since L(n) is de�ned by linear

interpolation between such times, this bound then holds for every s, t ∈ [0, 1] (possibly with a di�erent
constant C(q)). The standard Kolmogorov criterion then implies the following bound for the Hölder

norm of L(n): for every α ∈ (0, 1/4),

lim
K→∞

lim sup
n→∞

P

(
sup

0≤s 6=t≤1

|L(n)(s)− L(n)(t)|
|s− t|α > K

∣∣∣∣∣ En

)
= 0;

since P(En) → 1 as n → ∞, we obtain

lim
K→∞

lim sup
n→∞

P

(
sup

0≤s 6=t≤1

|L(n)(s)− L(n)(t)|
|s− t|α > K

)
= 0,
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and the sequence (L(n);n ≥ 1) is tight in C([0, 1],R).
The proof of (21) relies on the coding of Tn by its Łukasiewicz path. The next lemma, whose proof

is left as an exercise, gathers some deterministic results that we shall need (we refer to e.g. Le Gall

[24] for a thorough discussion of such results). In order to simplify the notation, we identify for the

remainder of this section the vertices of a one-type tree with their index in the lexicographic order: if

u and v are the i-th and j-th vertices of Tn, we write u ≤ K if i ≤ K ,Wn(u) forWn(i) and |u− v| for
|i− j|, the lexicographic distance between u and v.

Lemma 7. Let T be a one-type plane tree andW be its Łukasiewicz path. Fix a vertex u ∈ T , then

W (uku) = W (u), W (uj′) = inf
[uj,uj′]

W and j′ − j = W (uj)−W (uj′)

for every 1 ≤ j ≤ j′ ≤ ku.

In the course of the proof of (21), we shall need the following two ingredients. First, a consequence

of the so-called Marcinkiewicz–Zygmund inequality, see e.g. Gut [16, Theorem 8.1]: �x q ≥ 2 and

consider independent and centred random variables Y1, . . . , Ym which admit a �nite q-th moment,

then there exists C(q) ∈ (0,∞) such that

1

C(q)
· E



(

m∑

i=1

|Yi|2
)q/2


 ≤ E

[∣∣∣∣∣

m∑

i=1

Yi

∣∣∣∣∣

q]
≤ C(q) ·E



(

m∑

i=1

|Yi|2
)q/2


 .

Consider the right-most term, and raise it temporarily to the power 2/q in order to apply the triangle

inequality for the Lq/2, the second inequality thus yields the following bound:

E

[∣∣∣∣∣

m∑

i=1

Yi

∣∣∣∣∣

q]
≤ C(q) ·

(
m∑

i=1

E [|Yi|q]2/q
)q/2

. (22)

Second, for every r ≥ 1, consider X(r) a uniform random bridge in B+
r , de�ned in (2); Le Gall &

Miermont [28, Lemma 1] have shown that for every q ≥ 2 and every i, j ∈ {0, . . . , r},

E
[∣∣∣X(r)

i −X
(r)
j

∣∣∣
q]

≤ C(q) · |i− j|q/2. (23)

Proof of Proposition 7. Recall that we identify the vertices of Tn with their index in the lexicographic

order. Fix q > 4, β ∈ (0, q/4−1), n large enough so that En de�ned by (10) has probability larger than

1/2, and two integers 0 ≤ u < v ≤ Nn + 1 with v − u ≤ ⌊Nn/2⌋; we aim at showing

E [|ln(u)− ln(v)|q | En] ≤ C(q) ·N q/4
n ·

∣∣∣∣
u− v

Nn

∣∣∣∣
1+β

.

Let u ∧ v, be the most recent common ancestor of u and v in Tn and further û and v̂ be the children

of u ∧ v which are respectively ancestor of u and v. We stress that u and v are deterministic times,

whereas u ∧ v, û and v̂ are random and measurable with respect to Tn. We write:

ln(u)− ln(v) =



∑

w∈Kû,uK

ln(w) − ln(pr(w))


 + (ln(û)− ln(v̂)) +



∑

w∈Kv̂,vK

ln(pr(w))− ln(w)


 .

Recall the notation 1 ≤ χû ≤ χv̂ ≤ ku∧v for the relative position of û and v̂ among the children of

u ∧ v. By construction of the labels on Tn, the bound (23) reads in our context:

E [|ln(û)− ln(v̂)|q | Tn] ≤ C(q) · (χv̂ − χû)
q/2.
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Next, �x w ∈Kû, uK, since ln(pr(w)) = ln(pr(w)kpr(w)), as previously, the bound (23) gives:

E [|ln(w) − ln(pr(w))|q | Tn] ≤ C(q) · (kpr(w) − χw)
q/2.

Similarly, for every w ∈Kv̂, vK, we have

E [|ln(pr(w))− ln(w)|q | Tn] ≤ C(q) · χq/2
w .

According to the Marcinkiewicz–Zygmund inequality (22), we thus have

E [|ln(u)− ln(v)|q | Tn] ≤ C(q) ·



∑

w∈Kû,uK

(kpr(w) − χw) + (χv̂ − χû) +
∑

w∈Kv̂,vK

χw




q/2

≤ C(q) ·






∑

w∈Kû,uK

(kpr(w) − χw) + (χv̂ − χû)




q/2

+



∑

w∈Kv̂,vK

χw




q/2

 .

Appealing to Lemma 7, we have

χv̂ − χû = Wn(û)−Wn(v̂),

and similarly, for every w ∈Kû, uK,

kpr(w) − χw = Wn(w)−Wn(pr(w)kpr(w)) = Wn(wkw)−Wn(pr(w)kpr(w)),

so ∑

w∈Kû,uK

(kpr(w) − χw) + (χv̂ − χû) = Wn(u)−Wn(v̂) = Wn(u)− inf
[u,v]

Wn.

We know from Proposition 5 that

E

[(
Wn(u)− inf

[u,v]
Wn

)q/2
]
≤ C(q) · |u− v|q/4;

since P(En) ≥ 1/2, we conclude that

E






∑

w∈Kû,uK

(kpr(w) − χw) + (χv̂ − χû)




q/2
∣∣∣∣∣∣∣
En


 ≤ 2C(q) · |u−v|q/4 ≤ 2C(q) ·N q/4

n ·
∣∣∣∣
u− v

Nn

∣∣∣∣
1+β

.

Consider next the branch Kv̂, vK. Let T−
n be the “mirror image” of Tn, i.e. the tree obtained from Tn

by �ipping the order of the children of every vertex; let us write w− ∈ T−
n for the mirror image of a

vertex w ∈ Tn; make the following observations:

• T−
n has the same law as Tn, so in particular, its Łukasiewicz path has the same law as that of Tn;

• for every w ∈Kv̂, vK, the quantity χw−1 in Tn corresponds to the quantity kpr(w−)−χw− in T−
n ;

• the lexicographical distance between the last descendant in T−
n of respectively v̂− and v− is

smaller than the lexicographical distance between v̂ and v inTn (the elements of Kv̂, vK =Kv̂−, v−K
are missing).
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With theses observations, the previous argument used to control the branch Kû, uK shows that

E






∑

w∈Kv̂,vK

(χw − 1)




q/2

 ≤ C(q) · |u− v|q/4,

and so

E






∑

w∈Kv̂,vK

(χw − 1)




q/2
∣∣∣∣∣∣∣
En


 ≤ C(q) ·N q/4

n ·
∣∣∣∣
u− v

Nn

∣∣∣∣
1+β

.

Since χw ≤ 2(χw − 1) whenever χw ≥ 2, it only remains to show that

E
[
#{w ∈Kv̂, vK : χw = 1}q/2

∣∣∣ En

]
≤ C(q) ·N q/4

n ·
∣∣∣∣
u− v

Nn

∣∣∣∣
1+β

.

Let C and hn be as in Corollary 3. On the one hand, since hn is small compared to any positive

power of Nn, we have for n large enough,

E
[
#{w ∈Kv̂, vK : χw = 1}q/21{#Kv̂,vK≤hn}

]
≤ hq/2n ≤ N

q/4
n ·

∣∣∣∣
u− v

Nn

∣∣∣∣
1+β

.

On the other hand, if #Kv̂, vK > hn, then on the event En, we know that

#{w ∈Kv̂, vK : χw = 1} ≤ C ·#{w ∈Kv̂, vK : χw ≥ 2} ≤ C
∑

w∈Kv̂,vK

(χw − 1).

We then conclude from the previous bound.

Remark 6. With the previous notation, if one could prove

E
[
#{w ∈Kv̂, vK : χw = 1 and kpr(w) ≥ 2}q/2

]
≤ C(q) · |u− v|q/4, (24)

uniformly for |u− v| ≤ Nn/2, then it would lead to the stronger bound

E [|Ln(u)− Ln(v)|q] ≤ C(q) · |u− v|q/4,

for every q > 4 and every 0 ≤ u < v ≤ Nn + 1. Observe that

#{w ∈Kv̂, vK : χw = 1 and kpr(w) ≥ 2} ≤ #

{
w ∈ [u, v[: Wn(w) < inf

]w,v]
Wn

}
,

which has the same distribution as the number of strict records of a uniform random bridge in B(n)
(de�ned in Section 5.4) after |u− v| steps.

Under the stronger assumption than ∆n is uniformly bounded (which is the case for e.g. uniform

random κ-angulations with any κ ≥ 4 even �xed), the argument used to prove Proposition 5 shows

that for every r > 0,

E

[(
max

u≤w≤v
Wn(w)−Wn(u)

)r]
≤ C(r) · |u− v|r/2,

uniformly for n ∈ N and 0 ≤ u < v ≤ Nn + 1 such that |u− v| ≤ ⌊Nn/2⌋, which yields (24).

On another model, Miermont [36, Proof of Proposition 8], obtained such a bound for the number

of records of a centred random walk with �nite variance. The argument used in the proof of Lemma 5

enables us to extend it to such a walk conditioned to be at −1 at time Nn + 1. This case corresponds
to Boltzmann random maps introduced in Section 7.
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6 Convergence of random maps

In this short section we deduce Theorem 1 from Theorem 3, following the argument of Le Gall [26,

Section 8.3] and [25, Section 3]. First, observe that every map in M(n) has n0 + 1 vertices so, if Mn

has the uniform distribution inM(n) and M⋆
n is a pointed map obtained by distinguishing a vertex of

Mn uniformly at random, thenM⋆
n has the uniform distribution inM⋆(n). It is therefore su�cient to

prove Theorem 1 withMn replaced byM⋆
n.

LetM⋆
n be a (deterministic) pointed and rooted planar map inM⋆(n) and denote by ⋆ its origin; let

(Tn, ℓn) be its associated two-type labelled tree via theBDG bijection and let (c◦0, . . . , c
◦
Nn

) be the white
contour sequence of the latter. Recall that the vertices c◦i are identi�ed to the vertices of Mn di�erent

from ⋆. For every i, j ∈ {0, . . . , Nn}, we set

dn(i, j) = dgr(c
◦
i , c

◦
j ),

where dgr is the graph distance of Mn. We then extend dn to a continuous function on [0, Nn]
2 by

“bilinear interpolation” on each square of the form [i, i + 1] × [j, j + 1] as in [26, Section 2.5]. Recall

the convention c◦Nn+i = c◦i for every 0 ≤ i ≤ Nn and the interpretation, at the very end of Section 2.3,

of the labels as distances from ⋆ inMn: for every 0 ≤ i ≤ Nn,

dgr(⋆, c
◦
i ) = L

◦
n(i)− min

0≤j≤Nn

L
◦
n(j) + 1. (25)

Then, using the triangle inequality at a point where a geodesic from c◦i to ⋆ and a geodesic from c◦j to
⋆ merge, Le Gall [26, Equation 4] obtains the bound

dn(i, j) ≤ L
◦
n(i) + L

◦
n(j)− 2max

{
min
i≤k≤j

L
◦
n(k); min

j≤k≤Nn+i
L
◦
n(k)

}
+ 2. (26)

See also Lemma 3.1 in [25] for a detailed proof in a slightly di�erent context.

De�ne for every s, t ∈ [0, 1]:

C(n)(t) =

(
σ2
p

16p20

1

Nn

)1/2

Cn(2Nnt),

L
◦
(n)(t) =

(
9

4σ2
p

1

Nn

)1/4

L
◦
n(Nnt),

d(n)(s, t) =

(
9

4σ2
p

1

Nn

)1/4

dn(Nns,Nnt),

DL◦
(n)

(s, t) = L
◦
(n)(s) + L

◦
(n)(t)− 2max

{
Ľ
◦
(n)(s); Ľ

◦
(n)(t)

}
,

where Ľ◦
(n) is de�ned in a similar way as Ž in Section 3.1.

Proposition 8. Let (Tn, ℓn) have the uniform distribution in LT◦,•(n) for every n ≥ 1. Under (H), the

convergence in distribution of continuous paths

(
C(n)(t),L

◦
(n)(t), d(n)(s, t)

)
s,t∈[0,1]

(d)−→
n→∞

(et, Zt, D(s, t))s,t∈[0,1],

holds, where D is de�ned in Section 3.1.

Proof. The convergence (7), together with Remark 3 yields the convergence in distribution

(
C(n)(t),L

◦
(n)(t),DL◦

(n)
(s, t)

)

s,t∈[0,1]
(d)−→

n→∞
(et, Zt,DZ(s, t))s,t∈[0,1].
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The bound (26) implies further the tightness of (d(n);n ≥ 1), see Proposition 3.2 in [25] for a proof

in a similar context. Therefore, from every sequence of integers converging to ∞, we can extract a

subsequence along which we have

(
C(n)(t),L

◦
(n)(t), d(n)(s, t)

)
s,t∈[0,1]

(d)−→
n→∞

(et, Zt,D(s, t))s,t∈[0,1], (27)

where (D(s, t); 0 ≤ s, t ≤ 1) depends a priori on the subsequence. We claim that

D = D almost surely.

From the bound (26), D satis�es D ≤ DZ , also (see Proposition 3.3 in [25]), one can check that D
is a pseudo-metric on [0, 1] which satis�es D(s, t) = 0 as soon as de(s, t) = 0. It thus follows from
the maximality property discussed in section 3.1 that D ≤ D almost surely. Our aim is to show the

following: letX,Y be i.i.d. uniform random variables on [0, 1] such that the pair (X,Y ) is independent
of everything else, then

D(X,Y )
(d)
= D(s⋆, Y ) = ZY − Zs⋆ , (28)

where s⋆ is the (a.s. unique [30]) point at which Z attains its minimum. The second equality is a

continuous analog of (25) which can be obtained from the latter by letting n → ∞ along the same

subsequence as in (27). Le Gall [26, Corollary 7.3] has proved that (28) holds true when D is replaced

by D. In particular, D(X,Y ) is distributed as D(X,Y ). Since we know that D ≤ D almost surely,

this impliesD(X,Y ) = D(X,Y ) almost surely which, by a density argument, impliesD = D almost

surely.

Let us prove (28). We adapt the argument of Bettinelli & Miermont [10, Lemma 32]. Recall that the

white contour sequence of Tn is denoted by (c◦0, . . . , c
◦
Nn

) and let v1, . . . , vn0 be its white vertices listed

in the order of their last visit in the contour sequence; for example the root is vn0 . For 1 ≤ i ≤ n0, let

g(i) ∈ {1, . . . , Nn} be the index such that c◦g(i) is the last visit of vi. Observe that (c
◦
g(1), . . . , c

◦
g(n0)

) =

(v1, . . . , vn0) is an enumeration of the white vertices of Tn without redundancies. We then set g(0) = 0
and extend g linearly to a continuous function on [0, n0]. Let us prove that

(
g(n0t)

Nn

; t ∈ [0, 1]

)
P−→

n→∞
(t; t ∈ [0, 1]). (29)

It is equivalent to prove
(
Λ(Nnt)

n0
; t ∈ [0, 1]

)
P−→

n→∞
(t; t ∈ [0, 1]),

where Λ(0) = 0 and for every 1 ≤ j ≤ Nn,

Λ(j) := #
{
1 ≤ i ≤ n0 : vi ∈ {c◦0, . . . , c◦j} and vi /∈ {c◦j+1, . . . , c

◦
Nn

}
}
,

denotes the number of vertices fully explored at time i in the white contour exploration. Let Tn be the

image of Tn by the JS bijection; it can be checked along the same line as the proof of Lemma 1 that

for every 1 ≤ j ≤ Nn, Λ(j) denotes the number ΛTn,j(0) of leaves among the �rst j vertices of Tn in

lexicographical order. The above convergence of Λ thus follows from Proposition 6.

Fix X,Y i.i.d. uniform random variables on [0, 1] such that the pair (X,Y ) is independent of

everything else, and set x = c◦g(⌈n0X⌉) and y = c◦g(⌈n0Y ⌉). Note that x and y are uniform random

white vertices of Tn, they can therefore be coupled with two independent uniform random vertices x′

and y′ of M⋆
n in such a way that the conditional probability given M⋆

n that (x, y) 6= (x′, y′) is at most

2(n0 + 1)−1 → 0 as n → ∞; we implicitly assume in the sequel that (x, y) = (x′, y′). Since ⋆ is also a

uniform random vertex of M⋆
n, we obtain that

dgr(x, y)
(d)
= dgr(⋆, y). (30)
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By de�nition,

dgr(x, y) = dn(g(⌈n0X⌉), g(⌈n0Y ⌉)),
and, according to (25),

dgr(⋆, y) = L
◦
n(g(⌈n0Y ⌉)) − min

0≤j≤Nn

L
◦
n(j) + 1.

We obtain (28) by letting n → ∞ in (30) along the same subsequence as in (27), appealing also to

(29).

The proof of Theorem 1 is then routine.

Proof of Theorem 1. We aim at showing the convergence of metric spaces

(
M

⋆
n,

(
9

4σ2
p

1

Nn

)1/4

dgr

)
(d)−→

n→∞
(M, D), (31)

for the Gromov–Hausdor� topology. Recall (see e.g. [13, Chapter 7.3]) that a correspondence between

two metric spaces (X, dX ) and (Y, dY ) is a set R ⊂ X × Y such that for every x ∈ X , there exists

y ∈ Y such that (x, y) ∈ R and vice-versa. The distortion of R is de�ned as

dis(R) = sup
{∣∣dX(x, x′)− dY (y, y

′)
∣∣ ; (x, y), (x′, y′) ∈ R

}
.

Finally, the Gromov–Hausdor� distance between (X, dX ) and (Y, dY ) is given by ([13, Theorem 7.3.25])

1

2
· inf

R
dis(R),

where the in�mum is taken over all correspondences R between (X, dX ) and (Y, dY ).
The proof is deterministic: we show that the convergence (31) holds whenever that in Proposition

8 does. Indeed, let (M⋆
n \{⋆}, dgr) be the metric space given by the vertices ofM⋆

n di�erent from ⋆ and
their graph distance in M⋆

n and observe that the Gromov–Hausdor� distance between (M⋆
n, dgr) and

(M⋆
n \ {⋆}, dgr) is bounded by one. Let Π be the canonical projection Te → M= Te/ ≈, then the set

Rn =
{(

v⌊Nnt⌋,Π(πe(t))
)
; t ∈ [0, 1]

}
.

is a correspondence between (M⋆
n \ {⋆}, ( 9

4σ2
p

1
Nn

)1/4dgr) and (M, D) and its distortion is given by

sup
s,t∈[0,1]

∣∣d(n)(⌊Nns⌋/Nn, ⌊Nnt⌋/Nn)− D(s, t)
∣∣ ,

which tends to 0 as n → ∞ whenever the convergence in Proposition 8 holds. This concludes the

proof.

7 Boltzmann random maps

In this last section, we state and prove the results alluded in Section 1.3 on Boltzmann random maps.

Let us make two preliminary remarks. First, we shall divide by real numbers which depend on an

integer n, and consider conditional probabilities with respect to events which depend on n; we shall
therefore, if necessary, implicitly restrict ourselves to those values of n for which such quantities are

well-de�ned and statements such as “as n → ∞” should be understood along the appropriate sequence

of integers. Second, in order to avoid trivialities, any sequence of non-negative real numbers, say,

w = (w(i); i ≥ 0), shall implicitly satisfy w(i) > 0 for at least one i ≥ 2.
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7.1 Rooted and pointed Boltzmann maps

Fix a sequence w = (w(k); k ≥ 1) of non-negative real numbers. Let M⋆ be the set of all rooted and

pointed bipartite maps, that we shall view as pairs (M, ⋆), where M ∈ M is a rooted bipartite map,

and ⋆ is a vertex of M. We adapt the distributions described in Section 1.3 to such maps by setting

Ωw,⋆((M, ⋆)) = Ωw(M) =
∏

f∈Faces(M)

w(deg(f)/2), (M, ⋆) ∈ M⋆,

where Faces(M) is the set of faces of M and deg(f) is the degree of such a face f . We set Z⋆
w =

Ωw,⋆(M⋆).

De�nition 1. A sequence w is called admissible when Z⋆
w is �nite.

If w is admissible, we set

Pw,⋆(·) = 1

Z⋆
w

Ωw,⋆(·).

For every integer n ≥ 2, let M⋆
E=n, M

⋆
V=n and M⋆

F=n be the subsets of M⋆ of those maps with

respectively n− 1 edges, n+ 1 vertices and n faces; more generally, for every A ⊂ N, letM⋆
F,A=n be

the subset of M⋆ of those maps with n faces whose degree belongs to 2A. For every S = {E,V, F} ∪⋃
A⊂N

{F,A} and every n ≥ 2, we de�ne

P
w,⋆
S=n((M, ⋆)) := Pw,⋆((M, ⋆) | (M, ⋆) ∈ M⋆

S=n), (M, ⋆) ∈ M⋆
S=n,

the law of a rooted and pointed Boltzmann map conditioned to have size n.
Given a sequence w, set

w̄(0) = 1 and w̄(k) =

(
2k − 1

k − 1

)
w(k) for k ≥ 1, (32)

and de�ne the power series

gw(x) =
∑

k≥0

xkw̄(k), x ≥ 0. (33)

Denote by Rw its radius of convergence, note that gw is convex, strictly increasing and continuous on

[0, Rw] and gw(0) = 1. In particular, it has at most two �xed points, necessarily in (1, Rw]; in fact, we

have the following exclusive four cases:

• There are no �xed points.

• There are two �xed points 1 < x1 < x2 ≤ Rw , moreover g′w(x1) < 1 and g′w(x2) > 1.

• There is a unique �xed point 1 < x ≤ Rw , with g′w(x) < 1.

• There is a unique �xed point 1 < x ≤ Rw , with g′w(x) = 1.

Marckert & Miermont [32] have de�ned another power series fw, such that gw(x) = 1 + xfw(x)
for every x ≥ 0. Proposition 1 in [32] reads as follows with our notation.

Proposition 9 (Marckert & Miermont [32]). A sequence w is admissible if and only if gw has at least

one �xed point. In this case, Z⋆
w is the �xed point satisfying g′w(Z

⋆
w) ≤ 1.

The proof in [32] is based on the BDG bijection, we shall give a short proof using the composition

of the BDG and the JS bijections. Following [32] let us introduce some terminology.

De�nition 2. An admissible sequence w is called critical when Z⋆
w is the unique �xed point of gw

and satis�es moreover g′w(Z
⋆
w) = 1. It is called generic critical when it is admissible, critical, and

g′′w(Z
⋆
w) < ∞, and regular critical when moreover Z⋆

w < Rw .
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Note that an admissible sequence w induces a probability measure on Z+ with mean smaller than

or equal to one:

pw(k) = (Z⋆
w)

k−1w̄(k), k ≥ 0, (34)

where w̄ is given by (32); indeed,

∑

k≥0

pw(k) =
gw(Z

⋆
w)

Z⋆
w

= 1, and
∑

k≥0

kpw(k) = g′w(Z
⋆
w) ≤ 1.

This distribution has mean 1 if and only if w is critical, and in this case, its variance is

Kw :=



∑

k≥0

k2pw(k)


 − 1 =

(
d

dx
xg′w(x)

)∣∣∣∣
x=Z⋆

w

− 1 = Z⋆
wg

′′
w(Z

⋆
w), (35)

which is �nite if and only if w is generic critical. In terms of the function fw from [32], we have

Kw = (2 + (Z⋆
w)

3f ′′
w(Z

⋆
w))/Z

⋆
w . The argument of [32, Proposition 7] show that if w is regular critical,

then pw admits small exponential moments.

Theorem 4. Suppose w is generic critical, de�ne pw by (34) andKw by (35) and set

Cw
E := 1, Cw

V := pw(0) =
1

Z⋆
w

, Cw
F := 1− pw(0) = 1− 1

Z⋆
w

,

and more generally, for every subset A ⊂ N,

Cw
F,A := pw(A) =

∑

k∈A
(Z⋆

w)
k−1

(
2k − 1

k − 1

)
w(k).

Fix S ∈ {E,V, F} ∪⋃A⊂N
{F,A} and for every n ≥ 2, sampleMn fromPw

S=n, then the convergence in

distribution (
Mn,

(
9

4

Cw
S

Kw

1

n

)1/4

dgr

)
(d)−→

n→∞
(M, D),

holds in the sense of Gromov–Hausdor�.

Note that the Boltzmann laws in the statements are not the pointed versions: the maps Mn are

rooted but not pointed. We shall prove �rst that it holds under the pointed version P
w,⋆
S=n, relying on

the composition of theBDG and JS bijections to check that (H) is ful�lled with the probability pw given

by (34). Then we will show thatPw,⋆
S=n andPw

S=n are close as n → ∞; the argument will closely follow

that of Bettinelli & Miermont [10, Section 7.2], see also Abraham [1, Section 6], and Bettinelli, Jacob &

Miermont [9, Section 3].

Remark 7. Le Gall [26, Theorem 9.1] obtained this result in the case S = V , when w is supposed

to be regular critical, not only generic critical. Bettinelli & Miermont [10, Theorem 5] also obtained

similar convergences in the three cases S = E,V, F for Boltzmann maps with a boundary, associated

with regular critical weights. Theorem 4 completes (and improve since we only assume w to be generic

critical) their Remark 2.

Note thatME=n is �nite for every n ≥ 2 so the Boltzmann distributionPw
E=n makes sense even if

Zw = ∞. The proof of Theorem 4 shows that we do not need w to be admissible in this case.

Theorem 5. Suppose there exists x > 0 (necessarily unique) such that

gw(x) < ∞, xg′w(x) = gw(x), and xg′′w(x) < ∞.

Then if Mn is sampled from Pw
E=n for every n ≥ 2, the convergence in distribution

(
Mn,

(
9

4

gw(x)

x2g′′w(x)
1

n

)1/4

dgr

)
(d)−→

n→∞
(M, D),

holds in the sense of Gromov–Hausdor�.
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Note that ifw is generic critical, then the assumptions are ful�lledwith x = Z⋆
w: we have gw(Z

⋆
w) =

Z⋆
w so xg′w(x) = gw(x) is equivalent to g

′
w(Z

⋆
w) = 1 and then

gw(x)

x2g′′w(x)
=

1

Z⋆
wg

′′
w(Z

⋆
w)

=
1

Kw
=

Cw
E

Kw
,

which is coherent with Theorem 4.

As an application, consider the case w(k) = 1 for every k ≥ 1: Pw
E=n is the uniform distribution in

ME=n studied by Abraham [1]. In this case, gw has a radius of convergence equal to 1/4 and is given

by

gw(x) = 1 +
∑

k≥1

xk
(
2k − 1

k − 1

)
=

1 +
√
1− 4x

2
√
1− 4x

, 0 < x < 1/4.

Furthermore,

xg′w(x) = gw(x) if and only if x =
3

16
, and

gw(3/16)

(3/16)2g′′w(3/16)
=

9

2
,

so Theorem 5 yields Corollary 2.

The proof of Theorem 4 uses the notion of simply generated trees that we next introduce.

7.2 Simply generated trees

Given a sequence w = (w(k); k ≥ 0) of non-negative real numbers, we de�ne a measure on the set of

�nite one-type treeT by

Πw(T ) =
∏

u∈T
w(ku), T ∈ T.

Let Υw = Πw(T), if the latter is �nite, we de�ne a probability measure onT by

SGw(·) = 1

Υw
Πw(·).

A random tree sampled according to SGw is called a simply generated tree. Such distributions have been

introduced by Meir & Moon [35] and studied in great detail by Janson [18] on the set of trees with a

given number of vertices. A particular case is when the weight sequence w is a probability measure on

Z+ with mean less than or equal to one: in this case,Υw = 1 and SGw = Πw is the law of a subcritical

Galton–Watson tree with o�spring distribution w; we denote it byGWw . When the expectation of w is

exactly equal to one, we say that w (as well as any random tree sampled from GWw) is critical.

Note that we may de�ne simply generated trees with n vertices even if Υw is in�nite by rescaling

the measure Πw restricted to this �nite set by its total mass.

Lemma 8. Let w = (w(k); k ≥ 0) be a sequence of non-negative real numbers. Let us denote by#T the

number of vertices of a tree T ∈ T.

(i) Fix c > 0 and set w̃(k) = ck−1w(k) for every k ≥ 0. Then Υw̃ < ∞ if and only if Υw < ∞ and

in this case, the laws SGw̃ and SGw coincide.

(ii) Fix a, b > 0 and set ŵ(k) = abkw(k) for every k ≥ 0. Then the conditional laws SGŵ( · | #T = n)
and SGw( · | #T = n) coincide.

Proof. Note that for every tree T ∈ T, one has
∑

u∈T ku = #T − 1 and so
∑

u∈T (ku − 1) = −1; it
follows that

Πw̃(T ) =
∏

u∈T
cku−1w(ku) = c−1Πw(T ),

so Υw̃ = c−1Υw and the �rst claim follows. Similarly,

Πŵ(T ) =
∏

u∈T
abkuw(ku) = a#T b#T−1Πw(T ),

so Πŵ({T ∈ T : #T = n}) = anbn−1Πw({T ∈ T : #T = n}) and the second claim follows.
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We shall use Lemma 8 with sequences w̃ or ŵ which are probability measures with mean 1 so,

in the �rst case, SGw̃ = GWw̃ is the law of a critical Galton–Watson tree, and in the second case,

SGŵ( · | #T = n) = GWŵ( · | #T = n) is the law of such a tree conditioned to have n vertices.

We next show that the empirical degree sequence of large critical Galton–Watson trees satis�es (H).

For a plane tree T and an integer i ≥ 0, let us denote by nT (i) = #{u ∈ T : ku = i} the number

of vertices of T with i children. For any subset A ⊂ Z+, set nT (A) =
∑

i∈A ni(T ); note that nT (Z+)
is the total number of vertices of T , nT (0) is its number of leaves and nT (N) its number of internal

vertices. Consider the empirical o�spring distribution of T and its variance, given by

pT (i) :=
nT (i)

nT (Z+)
for i ≥ 0 and σ2

T :=
∑

i≥0

i2pT (i)−
(
nT (Z+)− 1

nT (Z+)

)2

,

and �nally set ∆T := max{i ≥ 0 : nT (i) > 0}.

Proposition 10. Let µ be a critical distribution in Z+ with variance σ2 ∈ (0,∞) and �xA ⊂ Z+; under

GWµ( · | nT (A) = n), the convergence

(
pT , σ

2
T , nT (Z+)

−1/2∆T

)
P−→

n→∞
(µ, σ2, 0),

holds in probability.

This result was obtained by Broutin & Marckert [12, Lemma 11] in the case A = Z+. Their proof

extends to the general case using arguments due to Kortchemski [21] (see in particular sections 6 and

7 there), written explicitly for A = {0} but which hold true in general, mutatis mutandis, as explained

in Section 8 there.

Proof. Fix ε > 0 and consider the event

E(ε) :=



d




 nT (·)
nT (Z+)

,
∑

i≥0

(i− 1)2
nT (i)

nT (Z+)
,

∆T

nT (Z+)1/2


 ,
(
µ, σ2, 0

)

 > ε



 ,

where d is a metric on the product space of probability measures on Z+ and R2, compatible with the

product topology. We aim at showing

GWµ(E(ε) | nT (A) = n) −→
n→∞

0.

Let us denote by (Xk; k ≥ 1) a sequence of i.i.d. random variables with distribution (µ(i+ 1); i ≥
−1) andKn(i) = #{1 ≤ k ≤ n : Xk = i− 1} for every n ≥ 1 and i ≥ 0. Consider the event

F (n, ε) :=



d




Kn(·)

n
,
∑

i≥0

(i− 1)2
Kn(i)

n
,
max{i ≥ 0 : Kn(i) > 0}

n1/2


 ,
(
µ, σ2, 0

)

 > ε



 ,

Broutin & Marckert [12] have shown that

P(F (n, ε)) −→
n→∞

0.

Recall from Section 5.4 that, given a path x = (x1, . . . , xn) ∈ Zn such that x1+ · · ·+xn = −1, we
denote bySx(k) = x1+· · ·+xk for every 1 ≤ k ≤ n and by x∗ = (x∗1, . . . , x

∗
n) the unique cyclic shift of

x satisfying furthermore Sx∗(k) ≥ 0 for every 1 ≤ k ≤ n−1. Let ζr(A) = inf{k ≥ 1 : Kk(A) = ⌊r⌋}
for every r ≥ 1. Kortchemski [21, Proposition 6.5] shows that for every integer n ≥ 1, the law of

the vector (X∗
1 , . . . ,X

∗
ζn(A)) under P( · | SX(ζn(A)) = −1) coincides with the law of the vector
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(WT (1),WT (2)−WT (1), . . . ,WT (nT (Z+))−WT (nT (Z+)−1)) underGWµ( · | nT (A) = n), where
WT is the Łukasiewicz path of a tree T . Since F (n, ε) is invariant under cyclic shift, it follows that

GWµ(E(ε) | nT (A) = n) = P(F (ζn(A), ε) | SX(ζn(A)) = −1).

Using a time-reversibility property of (X∗
1 , . . . ,X

∗
ζn(A)) under P( · | SX(ζn(A)) = −1), see [21, Pro-

position 6.8], it su�ces to show that

P
(
F (ζn/2(A), ε)

∣∣ SX(ζn(A)) = −1
)

−→
n→∞

0.

As in the proof of [21, Theorem 7.1], for any α > 0, we decompose the event F (ζn/2(A), ε) as

F (ζn/2(A), ε) ∩
{∣∣SX(ζn/2(A))

∣∣ ≤ α
√

σ2n/(2µ(A))
}
∩
{∣∣∣∣ζn/2(A)−

n

µ(A)

∣∣∣∣ ≤ n3/4

}

∪
{∣∣SX(ζn/2(A))

∣∣ > α
√

σ2n/(2µ(A))
}
∪
{∣∣∣∣ζn/2(A)−

n

µ(A)

∣∣∣∣ > n3/4

}
.

By [21, Lemmas 6.10 & 6.11] (argument similar to the one we use in the proof of Lemma 5, based on

a local limit theorem), there exists a constant C > 0 independent of α such that for every n large

enough, the conditional probabilityP( · | SX(ζn(A)) = −1) of the event written at the �rst line of the
last display is bounded above by

C ·P
(
F (ζn/2(A), ε) and

∣∣∣∣ζn/2(A)−
n

µ(A)

∣∣∣∣ ≤ n3/4

)
.

Next, according to [21, Equation 44],

lim
α→∞

lim
n→∞

P
(∣∣SX(ζn/2(A))

∣∣ > α
√

σ2n/(2µ(A))
∣∣∣ SX(ζn(A)) = −1

)
= 0,

and, by [21, Lemma 6.2(i)],

lim
n→∞

P

(∣∣∣∣ζn/2(A)−
n

µ(A)

∣∣∣∣ > n3/4

∣∣∣∣ SX(ζn(A)) = −1

)
= 0.

We conclude that there exists a constant C > 0 such that

lim sup
n→∞

P
(
F (ζn/2(A), ε)

∣∣ SX(ζn(A)) = −1
)

≤ C lim sup
n→∞

P

(
F (ζn/2(A), ε) and

∣∣∣∣ζn/2(A)−
n

µ(A)

∣∣∣∣ ≤ n3/4

)
.

On the event |ζn/2(A)− n
µ(A) | ≤ n3/4, we have for every i ≥ 0,

Kn/µ(A)−n3/4(i)

n/µ(A) + n3/4
≤

Kζn/2(A)(i)

ζn/2(A)
≤

Kn/µ(A)+n3/4(i)

n/µ(A)− n3/4
,

and the claim from the fact that P(F (n, ε)) → 0 as n → ∞.

We shall also need the following concentration result. For a sequence (xn;n ≥ 1) of non-negative
real numbers and δ > 0, we write xn = oeδ(n) if there exists c1, c2 > 0 such that for every n ≥ 1,
xn ≤ c1 exp(−c2n

δ).

Lemma 9. Let µ be a critical distribution in Z+ with variance σ2 ∈ (0,∞) and �x A ⊂ Z+; there exists

δ > 0 such that

GWµ

(∣∣∣∣
nT (0)

n
− µ(0)

µ(A)

∣∣∣∣ > ε

∣∣∣∣ nT (A) = n

)
= oeδ(n).
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Proof. We bound

GWµ

(∣∣∣∣
nT (0)

n
− µ(0)

µ(A)

∣∣∣∣ > ε

∣∣∣∣ nT (A) = n

)
≤

GWµ
(∣∣∣nT (0)µ(A)

nT (A)µ(0) − 1
∣∣∣ > µ(A)

µ(0) ε
∣∣∣ nT (Z+) ≥ n

)

GWµ(nT (A) = n)
.

According to [21, Theorem 8.1],

GWµ(nT (A) = n) ∼
n→∞

C · n−3/2,

for some explicit constant C > 0 which depends only on µ and A (see [21, Theorem 3.1]). Moreover,

from [21, Corollary 2.6],

GWµ

(∣∣∣∣
nT (0)

µ(0)nT (Z+)
− 1

∣∣∣∣ > n−1/4

∣∣∣∣ nT (Z+) ≥ n

)
= oe1/2(n).

This holds also when 0 is replaced by A; it follows that

GWµ

(∣∣∣∣
nT (0)µ(A)

nT (A)µ(0)
− 1

∣∣∣∣ >
µ(A)

µ(0)
ε

∣∣∣∣ nT (Z+) ≥ n

)
= oe1/2(n),

and the proof is complete.

As a corollary, we obtain that, in a large critical Galton–Watson tree, the inverse of the number of

leaves, normalised to have expectation 1, converges to 1 in L1.

Corollary 4. Let µ be a critical distribution in Z+ with variance σ2 ∈ (0,∞). For every A ⊂ Z+, we

have

lim
n→∞

GWµ
[∣∣nT (0)

−1GWµ[nT (0)
−1 | nT (A) = n]−1 − 1

∣∣ ∣∣ nT (A) = n
]
= 0.

Proof. Fix ε ∈ (0, 1) and observe that, since nT (0)
−1 ≤ 1,

GWµ

[∣∣∣∣
µ(0)n

µ(A)nT (0)
− 1

∣∣∣∣
∣∣∣∣ nT (A) = n

]

≤ ε+

(
µ(0)n

µ(A)
+ 1

)
GWµ

(∣∣∣∣
µ(0)n

µ(A)nT (0)
− 1

∣∣∣∣ > ε

∣∣∣∣ nT (A) = n

)
.

Next, the probability in the right-hand side is bounded above by

GWµ

(
nT (0)

n
<

1

2

µ(0)

µ(A)

∣∣∣∣ nT (A) = n

)
+GWµ

(∣∣∣∣
µ(0)

µ(A)
− nT (0)

n

∣∣∣∣ >
ε

2

µ(0)

µ(A)

∣∣∣∣ nT (A) = n

)
,

which is oeδ(n) for some δ > 0 according to Lemma 9. This yields

lim
n→∞

GWµ

[∣∣∣∣
µ(0)n

µ(A)nT (0)
− 1

∣∣∣∣
∣∣∣∣ nT (A) = n

]
= 0.

In particular,

lim
n→∞

µ(0)n

µ(A)
GWµ

[
nT (0)

−1
∣∣ nT (A) = n

]
= 1,

and the claim follows from these two limits.
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7.3 Convergence of Boltzmann random maps

We �rst prove the convergence of rooted and pointed Boltzmann maps, using the BDG and the JS

bijections, and next compare the pointed and non pointed Boltzmann laws to deduce Theorems 4 and

5.

Proposition 11. Theorems 4 and 5 hold under their respective assumptions when the measures Pw
S=n are

replaced by their pointed version P
w,⋆
S=n.

The main idea is to observe that for every n ≥ 2 and S ∈ {E,V, F} ∪ ⋃A⊂N
{F,A}, the com-

position of the BDG and the JS bijections maps the set M⋆
S=n onto the subset of T of those trees T

satisfying nT (Bs) = n, where for every A ⊂ N,

BE = Z+, BV = {0}, BF = N and BF,A = A. (36)

Proof. Fix a rooted and pointed map (M, ⋆) ∈ M⋆ and let (T, l) be its associated labelled one-type

tree after the BDG and then the JS bijections. Recall that the faces of M are in bijection with the

internal vertices of T , whereas the vertices of M di�erent from ⋆ are in bijection with the leaves of T ;
in particular, with the notation of the previous subsection, for every i ≥ 1, the number of faces of M

of degree 2i is given by nT (i), and V (M)− 1 = nT (0). Thereby,

Ωw,⋆((M, ⋆)) =
∏

f∈Faces(M)

w(deg(f)/2) =
∏

u∈T :ku≥1

w(ku).

Recall also from (3) the number of possible labellings of a given plane tree. The measure Ωw,⋆ on M⋆

thus induces a measure on T, where each T ∈ T is given the weight

∏

u∈T :ku≥1

(
2ku − 1

ku − 1

)
w(ku) = Πw̄(T ),

where w̄ is given by (32). This shows that if (M, ⋆) has the law Pw,⋆, then its associated labelled one-

type tree (T, l) after the BDG and then the JS bijections is as follows: T has the law SGw̄ and then,

conditional on the tree T , the labelling l is uniformly distributed amongst all possibilities. Similarly,

for every n ≥ 2 and S ∈ {E,V, F} ∪⋃A⊂N
{F,A}, if (M, ⋆) has the law P

w,⋆
S=n, then T has the law

SGw̄( · | nT (BS) = n), whereBS is given by (36); furthermore, conditional on the tree T , the labelling
l is uniformly distributed amongst all possibilities.

Let us now prove that Theorem 5 holds for the pointed maps sampled from P
w,⋆
E=n. Let us suppose

that x > 0 is such that

gw(x) < ∞, xg′w(x) = gw(x), and xg′′w(x) < ∞.

De�ne a probability measure on Z+ similar to (34) where Z⋆
w is replaced by x:

µw(k) =
xkw̄(k)

gw(x)
, k ≥ 0. (37)

Note that

∑

k≥0

kxkw̄(k) = xg′w(x), and
∑

k≥0

k2xkw̄(k) = xg′w(x) + x2g′′w(x),

the distribution µw has thus expectation

∑

k≥0

kµw(k) =
xg′w(x)
gw(x)

= 1,

46



and variance ∑

k≥0

k2µw(k)− 1 =
xg′w(x) + x2g′′w(x)

gw(x)
− 1 =

x2g′′w(x)
gw(x)

∈ (0,∞).

According to Lemma 8(ii), the tree T has the lawGWµw( · | nT (Z+) = n), Proposition 10 ensures then
that (H) is ful�lled with p = µw and we conclude from Theorem 1.

The proof of the fact that Theorem 4 holds for the pointed maps sampled from P
w,⋆
S=n is similar. If

w is generic critical, then Z⋆
w satis�es the above assumptions on x and furthermore gw(Z

⋆
w) = Z⋆

w so

µw is the probability pw given by (34):

µw(k) = pw(k) = (Z⋆
w)

k−1w̄(k), k ≥ 0.

According to Lemma 8(i), the tree T has the law GWpw( · | nT (BS) = n). Again, Proposition 10

ensures then that (H) is ful�lled with p = pw and we conclude from Theorem 1.

We have seen all the ingredients to prove Proposition 9. The proof is inspired from [32].

Proof of Proposition 9. According to the previous proof, we have

Z⋆
w =

∑

(M,⋆)∈M⋆

Ωw,⋆((M, ⋆)) =
∑

T∈T
Πw̄(T ) = Υw̄,

where w̄ is given by (32). Suppose that this quantity is �nite, we next decompose the last term according

to the degree of the root of T . If the latter is k ≥ 1, then T is made of k trees, say T1, . . . , Tk , attached

to a root; this leads to the following equation:

∑

T∈T
Πw̄(T ) =

∑

k≥0

w̄(k)
∑

T1,...,Tk∈T

k∏

i=1

Πw̄(Ti) =
∑

k≥0

w̄(k)

(
∑

T∈T
Πw̄(T )

)k

,

in other words Z⋆
w = gw(Z

⋆
w). Let us prove furthermore that g′w(Z

⋆
w) ≤ 1. Since, Z⋆

w = gw(Z
⋆
w), the

sequence pw de�ned by pw(k) = (Z⋆
w)

k−1w̄(k) for every k ≥ 0 is a probability and g′w(Z
⋆
w) is its mean.

According to Lemma 8(i), the law SGw̄ coincides with SGpw so

∑

T∈T
SGpw(T ) =

1

Υw̄

∑

T∈T
Πw̄(T ) = 1.

We conclude that SGpw = GWpw is the law of a sub-critical Galton–Watson tree with o�spring distri-

bution pw, which has therefore mean g′w(Z
⋆
w) ≤ 1.

Conversely, suppose that gw has at least one �xed point and let us prove thatZ⋆
w is �nite. Recall that

one of the �xed points, say, x > 0, must satisfy g′w(x) ≤ 1; we set µw(k) = xk−1w̄(k) for every k ≥ 0,
the previous calculations show that µw is a probability measure with mean g′w(x) ≤ 1. According to

(the proof of) Lemma 8(i), we have

1

x
Z⋆
w =

1

x

∑

(M,⋆)∈M⋆

Ωw,⋆((M, ⋆)) =
1

x

∑

T∈T
Πw̄(T ) =

∑

T∈T
Πµw(T ) = 1.

We conclude that Z⋆
w = x is indeed �nite.

Finally, we show that the pointed and non pointed Boltzmann laws are close to each other. Theor-

ems 4 and 5 follow from Propositions 11 and 12.

Proposition 12. Fix S ∈ {E,V, F}∪⋃A⊂N
{F,A} and let w ∈ ZN

+ satisfy the assumptions of Theorem

4 or Theorem 5 if S = E. Let φ : M⋆ → M : (M,⋆) 7→ M , then

∥∥Pw
S=n − φ∗P

w,⋆
S=n

∥∥
TV

−→
n→∞

0,

where ‖ · ‖TV refers to the total variation norm.
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Proof. Notice that Pw,⋆
S=n is absolutely continuous with respect to Pw

S=n: for every measurable and

bounded function f : M → R,

Ew
S=n [f(M)] = E

w,⋆
S=n

[
V (M)−1

]−1
E

w,⋆
S=n

[
V (M)−1f(M)

]
,

where in the right-hand side, f(M), and similarly V (M), is a slight abuse of notation for f ◦φ((M, ⋆)).
Thus

∥∥Pw
S=n − φ∗P

w,⋆
S=n

∥∥
TV

=
1

2
sup

−1≤f≤1

∣∣Ew
S=n [f(M)]−E

w,⋆
S=n [f(M)]

∣∣

≤ 1

2
sup

−1≤f≤1
E

w,⋆
S=n

[∣∣∣f(M)
(
E

w,⋆
S=n

[
V (M)−1

]−1
V (M)−1 − 1

)∣∣∣
]

≤ E
w,⋆
S=n

[∣∣∣Ew,⋆
S=n

[
V (M)−1

]−1
V (M)−1 − 1

∣∣∣
]

= GWpw
[∣∣GWpw [(nT (0)− 1)−1 | nT (Bs) = n]−1(nT (0)− 1)−1 − 1

∣∣ ∣∣ nT (Bs) = n
]
,

where pw is given by (34) or (37) in the case S = E and BS is given by (36). Corollary 4 states that the

last quantity above tends to zero as n → ∞, which concludes the proof.
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