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Abstract

The aim of this paper is to derive an efficient scheme for solving one-dimensional time-
fractional nonlinear Schrödinger equations set in unbounded domains. We first derive some
absorbing boundary conditions for the fractional system by using the unified approach intro-
duced in [57,58] and a linearization procedure. Then, the initial boundary-value problem for
the fractional system with ABCs is discretized and the error estimate O(h2+τ) is stated. To
accelerate the scheme in time, the fractional derivative is approximated through a linearized
L1-scheme. Finally, we end the paper by some numerical simulations to validate the proper-
ties (accuracy and efficiency) of the derived scheme. In addition, we illustrate the behavior
of the solution by reporting a few simulations for various parameter values of the fractional
order 0 < α < 1, nonlinearities and potentials.
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1 Introduction

The classical Schrödinger equation serves as the Feynman propagator for nonrelativistic quan-
tum mechanics using a Gaussian probability distribution in the space of all possible paths. This
provides a useful mechanism that accounts naturally for the non-Gaussian distributions cor-
responding to fractional structures. By extending the Feynman path integral from Gaussian
distribution to Lévy-like quantum mechanical paths, Laskin proposed in [33–36] a space frac-
tional Schrödinger equation, proved that the associated fractional Hamiltonian is hermitian and
that the parity is conserved. Guo and Huo [24] stated the local well-posedness in subcritical
space for the Cauchy problem of the nonlinear fractional Schrödinger equation. Kirkpatrick and
Zhang studied the dynamics and observed the behavior of the decoherence and turbulence of the
Schrödinger equation with a fractional Laplacian operator that can arise in some cases, and pre-
sented the results to be consistent with the long-range interactions. Ionescu et al. [42] considered
the question of the global existence of a fractional semilinear cubic Schrödinger equation. Duo
and Zhang [19] computed the ground and first excited states of fractional Schrödinger equations
in an infinite potential well. In [7], the authors proposed a numerical study of the ground states
and dynamics of space fractional rotating Gross-Pitaevskii equations with nonlocal interactions
through pseudospectral approximation schemes.

Recently, Naber [45] built the Time Fractional Schrödinger Equation (TFSE) in analogy
with the fractional Fokker-Planck equation as well as with the application of Wich rotation of
time. Related works have next been developed [12,18,41,46,53], including the generalization of
the TFSE to a full space and time fractional quantum dynamics version and some new results on
the correct continuity equation for the probability density. The fractional nonlinear Schrödinger
equation is used to describe the nonlocal quantum phenomena in quantum physics and explore
the quantum behaviors of either long-range interactions or time-dependent processes with many
scales. There are many applications to consider this new and fast developing part in quantum
physics [31, 33–36, 41, 45, 46, 52, 55, 56]. Some analytical and approximate solutions have been
considered for the TFSE [29, 48]. The complexity of the TFSE with different potentials and
nonlinearities precludes detailed analytical studies of its non standard properties. Therefore,
efficient and accurate numerical simulations [13,22,26,44,54] are urgently needed to understand
them.

In this paper, we develop some efficient numerical methods for computing the solution to
general 1D Time-Fractional Nonlinear Schrödinger Equations (TFNSE) given by

iC0Dαt ψ(x, t) = −ψxx + V (x)ψ + f(|ψ|2)ψ, (x, t) ∈ R× (0, T ],
ψ(x, 0) = ψ0(x), x ∈ R,
ψ(x, t)→ 0 when |x| → +∞, t ∈ (0, T ],

(1.1)

where i =
√
−1 and V (x) is the external potential function. The function f allows to include

general nonlinear effects with respect to ψ, e.g. for the case of the cubic nonlinearity f(|ψ|2)ψ =
g|ψ|2ψ that arises in nonlinear optics. If g = +1, one gets the well-known defocusing nonlinearity
while g = −1 corresponds to the focusing situation. The operator C

0D
α
t denotes the Caputo

fractional derivative of order α (0 < α < 1) with respect to t [59] and given by

C
0Dαt ψ(x, t) =

1

Γ(1− α)

∫ t

0

1

(t− s)α
∂ψ(x, s)

∂s
ds, 0 < α < 1, (1.2)
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where Γ is the Gamma special function.
To numerically solve problem (1.1), there are three essential difficulties

(1) the unboundedness of the spatial domain,

(2) the nonlinearity f ,

(3) and the huge storage and computational cost of the (nonlocal) Caputo derivative.

To overcome the first problem, the method of Artificial/Absorbing Boundary Conditions
(ABCs) is a powerful way to reformulate the initial problem in the unbounded domain as another
problem appropriately set in a bounded domain [1, 6, 25]. The basic idea is to build a suitable
ABC to eliminate the waves striking a fictitious boundary introduced to bound the computa-
tional domain. In the literature, much attention has been received to study the construction of
ABCs for time-fractional linear PDEs [8, 14,17,23] and Schrödinger-type equations [1, 3–6,25].

For the second difficulty, the Laplace transform, usually used for the construction of ABCs,
cannot be applied directly due to the nonlinear term. To handle the nonlinearity in the ABCs,
a unified approach has been proposed in [57, 58] to construct accurate ABCs for the standard
nonlinear Schrödinger equation (α = 1). In this paper, we extend the unified approach to
derive some nonlinear ABCs for the TFNSE involved in system (1.1). By using these ABCs, the
original problem set in the unbounded domain is reduced to an initial boundary-value problem
(IBVP), and a priori estimates for the reduced problem are stated. It is well-known that using
an implicit numerical scheme for the nonlinear problem leads to an extra computational cost
since the nonlinearity needs to be resolved through iterations, at each time step [2]. To avoid
this problem, we construct a linearized finite-difference scheme by linearizing the nonlinear
term. The convergence and stability analysis of the linearized scheme is established and the
corresponding optimal convergence rate O(h2 + τ) is also obtained, where h and τ represent the
spatial meshsize and time step, respectively.

The third difficulty concerns the huge storage and computational cost of the direct discretiza-
tion of the Caputo derivative. For instances, the L1-approximation [32,38,40,51] and high-order
discretization schemes [15,21,37,47] require the storage of all past values of the unknown func-
tion ψ, i.e. ψ(0), ψ(∆t), · · · , ψ(n∆t), and O(n) flops at the n-th time step and each spatial
grid point. Thus, the average storage is O(NJ) and the total computational cost is O(N2J),
where N and J are the total numbers of time steps and spatial grid points, respectively. As a
consequence, this is a severe limitation for the long time simulations of time-fractional PDEs,
that would be even worst for higher-dimensional problems. To reduce both the storage and
computational cost, we use the fast evaluation of the Caputo derivative developed in [27]. The
main idea of this method is to split the convolution integral in (1.2) into two parts: 1) a local
part containing the integral from t− τ to t (τ > 0), and 2) a history part for the integral from
0 to t − τ . The standard L1-approximation is next used to discretize the local part. For the
history part, we integrate by part to get a convolution integral of ψ with the kernel t−1−α.
Thus, we can apply the sum-of-exponentials technique to approximate the kernel t−1−α (with
0 < α < 1) on the interval [τ, T ] with a uniform absolute error ε and for a number of exponentials
Nexp = O

(
log 1

ε

(
log log 1

ε + log T
τ

)
+ log 1

τ

(
log log 1

ε + log 1
τ

))
. For a fixed accuracy ε, we have

Nexp = O(logN) for T � 1 or Nexp = O(log2N) for T ≈ 1 assuming that N = T
τ . The resulting

algorithm has a nearly optimal complexity with O(NJNexp) operations and a O(JNexp) storage
for solving the TFNSE. Indeed, the approximation can be used to accelerate the evaluation of
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the convolution via the standard recurrence relation. Numerical examples show that the fast
evaluation is both efficient and stable during the simulation.

The paper is organized as follows. In Section 2, we propose the construction of ABCs
for the TFNSE based on the unified approach. In Section 3, we derive some a priori error
estimates for the resulting truncated IBVP. Section 4 is devoted to the discretization scheme
and its numerical analysis. Some numerical examples in Section 5 confirm the efficiency of the
scheme and validate the error estimates. In addition, we provide some examples to illustrate
the behavior of the solution of TFNSE. Finally, Section 6 concludes the paper.

2 Construction of nonlinear ABCs for the TFNSE

Let us introduce a computational bounded domain Ωint := {x` < x < xr}, with left and right
finite fictitious boundaries Γ` := {x`} and Γr := {xr}. The two points x` and xr are chosen
such that the initial data ψ0(x) is compactly supported in Ωint. We define the left and right
half-spaces by Ω` := {−∞ < x < x`} and Ωr := {xr < x < +∞}, respectively, and the exterior
domain by Ωext = Ω` ∪ Ωr. Let us apply now the basic ideas of the unified approach proposed
in [57,58] to construct some ABCs for the TFNSE

(1) Firstly, the TFNSE arising in (1.1) is rewritten in operator form in the exterior domain
Ωext as

iC0Dαt ψ(x, t) = Lψ(x, t) +Nψ(x, t), x ∈ Ωext, (2.1)

where the linear and nonlinear operators are respectively given by

Lψ = −ψxx and Nψ = V ψ + f(|ψ|2)ψ.

Based on the operator splitting method [2, 11, 16], for a small time step, the original
equation is considered as taking first a linear effect and next a nonlinear effect.

(2) On Ωext, we approximate the linear operator L by an approximate one-way operator Lapp

(by distinguishing between the right- and left-traveling waves) which can absorb the wave
striking the artificial boundaries. The one-directional operators Lapp are then used to
replace the original linear operator L.

(3) Taking an infinitesimal time step, we obtain an approximate one-directional equation by
coupling the approximate operator Lapp with the nonlinear operator N

iC0Dαt ψ(x, t) = Lappψ(x, t) +Nψ(x, t). (2.2)

Finally, applying the approximate equation (2.2) at the fictitious boundaries, one gets some
ABCs. Therefore, the main point now is to construct the one-directional operators Lapp.

To derive an operator Lapp approximating L, we first consider the following time-fractional
linear Schrödinger equation (TFLSE) in the exterior domain

iC0Dαt ψ(x, t) = Lψ(x, t) = −ψxx(x, t), x ∈ Ωext, (2.3)

ψ0(x) = 0, x ∈ Ωext, (2.4)

ψ(x, t)→ 0, when |x| → +∞. (2.5)
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Let us recall that the Laplace transform of the Caputo fractional derivative [59] is

̂C
0Dαt [ψ(t)](s) = sαψ̂(s)− sα−1ψ(0), (2.6)

where the Laplace transform is defined by

ψ̂(s) =

∫ +∞

0
e−stψ(t)dt, <(s) > 0.

Thus Eq. (2.3) can be written in the Laplace domain as

isαψ̂(x, s) = −ψ̂xx(x, s), <(s) > 0. (2.7)

Setting
√
−i = e−

πi
4 , the general form of the solution to Eq. (2.7) is

ψ̂(x, s) = A−(s)e−
πi
4 e−

√
sαx +A+(s)e−

πi
4 e
√
sαx,

where the coefficients A±(s) are two arbitrary analytic functions. From (2.5), we deduce that

ψ̂(x, s) =

{
A+(s)e−

πi
4 e
√
sαx, x ∈ Ω`,

A−(s)e−
πi
4 e−

√
sαx, x ∈ Ωr.

(2.8)

Differentiating ψ̂(x, s) with respect to x, one gets the two following relations

∂xψ̂(x := x`, s) = e−
πi
4 s

α
2 ψ̂(x := x`, s), (2.9)

∂xψ̂(x := xr, s) = −e−
πi
4 s

α
2 ψ̂(x := xr, s), (2.10)

which correspond to the Dirichlet-to-Neumann (DtN) maps at the interfaces for the TFLSE
written in the Laplace domain.

Exact ABCs for the TFLSE. Appling the inverse Laplace transform to (2.9)-(2.10), one
naturally gets the exact ABCs (DtN maps) for the TFLSE

∂nψ(x, t) = − e−
πi
4

Γ(1− α
2 )

∫ t

0

∂sψ(x, s)

(t− s)
α
2

ds = −e−
πi
4
C
0D

α
2
t ψ(x, t), on Γ`,r. (2.11)

In the above relation, we introduced ∂n as the outwardly directed unit normal vector to Γ`,r.

Approximate ABCs for the TFLSE. The exact ABCs (2.11) cannot be directly combined
with the nonlinear termNψ. In addition, the above boundary condition is nonlocal and therefore
computationally costly. To localize this boundary condition, we proceed as in the standard
approach originally introduced by Engquist and Majda [20] for wave-like equations to obtain
some local ABCs. To this aim, we first introduce the diagonal (P, P )-Padé approximation of the
function

√
sα used in [3–5,9, 10,28]

√
sα = s

α
2
0

[
1−

P∑
p=1

Ap(s
α
0 − sα)

sα0 − (sα0 − sα)Bp

]
+ EP (sα), (2.12)

5



where the coefficients {Ap}1≤p≤P and {Bp}1≤p≤P are given by

Ap =
2

2P + 1
sin2

(
pπ

2P + 1

)
, Bp = cos2

(
pπ

2P + 1

)
,

and the constant s0 is the Padé expansion point. The error estimate of the Padé approximation
is established in [43], for all sα > 0,

EP (sα) = 2
√
sα
(

γ2P+1(sα)

1 + γ2P+1(sα)

)
, with γ(sα) =

√
sα − 1√
sα + 1

. (2.13)

Here, we only consider the simplest case, i.e. P = 1, and obtain the third-order diagonal Padé
approximation

√
sα ≈ s

α
2
0

sα0 + 3sα

3sα0 + sα
. (2.14)

Replacing
√
sα in (2.9) and (2.10) by the approximation (2.14), one gets

(3sα0 + sα) ∂xψ̂(x, s)± e−
πi
4 s

α
2
0 (sα0 + 3sα) ψ̂(x, s) = 0, (2.15)

where the plus (minus, respectively) sign in ± represents the right(left, respectively)-hand side
boundary condition. After some simple algebraic calculations with (2.15), we deduce the relation

sαψ̂(x, s) = −(∂x ± 3e−
πi
4 s

α
2
0 )−1(3sα0∂x ± e−

πi
4 s

α
2
0 s

α
0 )ψ̂(x, s). (2.16)

Applying the inverse Laplace transform to (2.16) and multiplying by i, one gets

iC0Dαt ψ(x, t) = −i(∂x ± 3e−
πi
4 s

α
2
0 )−1(3sα0∂x ± e−

πi
4 s

α
2
0 s

α
0 )ψ(x, t). (2.17)

Comparing (2.17) with (2.3), we can derive the approximate operator

Lapp = −i(∂x ± 3e−
πi
4 s

α
2
0 )−1(3sα0∂x ± e−

πi
4 s

α
2
0 s

α
0 )ψ(x, t). (2.18)

Nonlinear approximate ABCs for the TFNSE. Substituting (2.18) into (2.2), the nonlinear
ABCs for the TFNSE are

(∂x ± 3e−
πi
4 s

α
2
0 )C0Dαt ψ + (3sα0∂x ± e−

πi
4 s

α
2
0 s

α
0 )ψ = −i(∂x ± 3e−

πi
4 s

α
2
0 )(V ψ + f(|ψ|2)ψ). (2.19)

By using an approach similar to the one by Kuska [30], we linearize the nonlinear term f(|ψ|2)
to obtain a variety of boundary conditions:

(∂x ± 3e−
πi
4 s

α
2
0 )C0Dαt ψ + (3sα0∂x ± e−

πi
4 s

α
2
0 s

α
0 )ψ = −i(V + f(|ψ|2))(∂xψ ± 3e−

πi
4 s

α
2
0 ψ). (2.20)

Finally, we obtain an IBVP in Ωint × [0, T ] with the boundary conditions (2.20) on Γ`,r

iC0Dαt ψ(x, t) = −ψxx + V ψ + f(|ψ|2)ψ, t > 0, x ∈ Ωint, (2.21)

ψ(x, 0) = ψ0(x), x ∈ Ωint, (2.22)

(∂x ∓ 3e−
πi
4 s

α
2
0 )C0Dαt ψ + (3sα0∂x ∓ e−

πi
4 s

3α
2

0 )ψ = −i(V + f(|ψ|2))(∂x ∓ 3e−
πi
4 s

α
2
0 )ψ, x ∈ Γ`,r.

(2.23)

Remark 1 Generally, the ABCs (2.19) perform better than (2.20). However, the stability anal-
ysis with (2.20) is easier to handle than with (2.19). The comparison is discussed in [60] for
general nonlinear Schrödinger equations. In this paper, we consider (2.20) as ABC.
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3 A priori error estimates

To state the stability of (2.21)-(2.23), we introduce two auxiliary variables

θ(t) = ∂xψ(x`, t)− 3s
α
2
0 e−

πi
4 ψ(x`, t),

φ(t) = ∂xψ(xr, t) + 3s
α
2
0 e−

πi
4 ψ(xr, t).

Thus, the reduced problem (2.21)-(2.23) can be equivalently rewritten as

iC0Dαt ψ(x, t) = −ψxx + V ψ + f(|ψ|2)ψ, x ∈ Ωint, t > 0, (3.1)

ψ(x, 0) = ψ0(x), x ∈ Ωint, (3.2)

ψx(x, t) = θ(t) + 3s
α
2
0 e−

πi
4 ψ(x, t), x ∈ Γ`, (3.3)

C
0Dαt θ(t) + i(V (x) + f(|ψ|2))θ(t) + 3sα0 θ(t) + 8s

3α
2

0 e−
πi
4 ψ(x, t) = 0, x ∈ Γ`, (3.4)

ψx(x, t) = φ(t)− 3s
α
2
0 e−

πi
4 ψ(x, t), x ∈ Γr, (3.5)

C
0Dαt φ(t) + i(V + f(|ψ|2))φ(t) + 3sα0φ(t)− 8s

3α
2

0 e−
πi
4 ψ(x, t) = 0, x ∈ Γr. (3.6)

Some useful lemmas are now given to state some a priori estimates for the reduced problem
(3.1)-(3.6).

Lemma 3.1 Let u(t) be a complex-valued function which is absolutely continuous on [0, T ].
Then, the following inequality holds

C
0Dαt |u(t)|2 ≤ ū(t)C0Dαt u(t) + u(t)C0Dαt ū(t), 0 < α < 1, (3.7)

where |u|2 = ūu and ū represents the complex conjugate function of u.

Proof. A direct calculation (considering the order of integration) is given as follows

ū(t)C0Dαt u(t) + u(t)C0Dαt ū(t)− C
0Dαt |u(t)|2

=
1

Γ(1− α)

[∫ t

0

uτ (τ)ū(t)

(t− τ)α
dτ +

∫ t

0

u(t)ūτ (τ)

(t− τ)α
dτ −

∫ t

0

u(τ)ūτ (τ) + ū(τ)uτ (τ)

(t− τ)α
dτ

]
=

1

Γ(1− α)

[∫ t

0

uτ (τ)[ū(t)− ū(τ)]

(t− τ)α
dτ +

∫ t

0

ūτ (τ)[u(t)− u(τ)]

(t− τ)α
dτ

]
=

1

Γ(1− α)

[∫ t

0

uτ (τ)

(t− τ)α

∫ t

τ
ūη(η)dηdτ +

∫ t

0

ūτ (τ)

(t− τ)α

∫ t

τ
uη(η)dηdτ

]
=

1

Γ(1− α)

[∫ t

0
ūη(η)dη

∫ η

0

uτ (τ)

(t− τ)α
dτ +

∫ t

0
uη(η)dη

∫ η

0

ūτ (τ)

(t− τ)α
dτ

]
=

1

Γ(1− α)

[∫ t

0

(t− η)αūη(η)

(t− η)α
dη

∫ η

0

uτ (τ)

(t− τ)α
dτ +

∫ t

0

(t− η)αuη(η)

(t− η)α
dη

∫ η

0

ūτ (τ)

(t− τ)α
dτ

]
=

1

Γ(1− α)

∫ t

0
(t− η)α

∂

∂η

∣∣∣∣∫ η

0

uτ (τ)

(t− τ)α
dτ

∣∣∣∣2 dη
=

α

Γ(1− α)

∫ t

0
(t− η)1−α

∣∣∣∣∫ η

0

uτ (τ)

(t− τ)α
dτ

∣∣∣∣2 dη ≥ 0.

Now, let us consider the following Lemma (see e.g. [49]).
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Lemma 3.2 Let 0 < α < 1. We assume that y(t) is a nonnegative absolutely continuous
function that satisfies

C
0Dαt y(t) ≤ c1y(t) + c2(t), 0 < α < 1, t ∈ (0, T ], (3.8)

where c1 > 0 and c2(t) is an integrable nonnegative function on [0, T ]. Then, we have

y(t) ≤ y(0)Eα,1(c1t
α) + Γ(α)Eα,α(c1t

α)0D−αt c2(t), (3.9)

where Eα,β(z) =
∑∞

n=0
zn

Γ(nα+β) are the Mittag-Leffler functions and D−αt u(t) is the Riemann-
Liouville integral given by

0D−αt u(t) =
1

Γ(α)

∫ t

0

u(τ)

(t− τ)1−αdτ, 0 < α < 1.

We can then deduce the following result.

Theorem 3.3 Let (ψ(x, t), φ(t), θ(t)) be the solution of the reduced problem (3.1)-(3.6). Then,
for 0 < α < 1, we have the following a priori estimate∫ xr

x`

|ψ(x, t)|2 dx+
1

8
s
− 3α

2
0

(
|φ(t)|2 + |θ(t)|2

)
≤
∫ xr

x`

|ψ0(x)|2dx. (3.10)

Proof. By multiplying (3.1) by ψ̄(x, t), integrating by parts the result over Ωint, taking the
complex conjugate of (3.1), multiplying the result by ψ(x, t) and integrating by parts over Ωint,
and finally combining the two equations and taking the complex parts, we have∫ xr

x`

[
ψ̄(x, t)C0Dαt ψ(x, t) + ψ(x, t)C0Dαt ψ̄(x, t)

]
dx = 2=

{
ψ̄ψx

}∣∣xr
x`
. (3.11)

Substituting ψx(x`, t) and ψx(xr, t), defined by (3.3) and (3.5), into (3.11), we arrive at∫ xr

x`

[
ψ̄(x, t)C0Dαt ψ(x, t) + ψ(x, t)C0Dαt ψ̄(x, t)

]
dx

= −3
√

2s
α
2
0

(
|ψ(x`, t)|2 + |ψ(xr, t)|2

)
+ 2=

{
e−

πi
4
(
φ(t)ψ̄(xr, t)− θψ̄(x`, t)

)}
. (3.12)

Multiplying (3.6) by 1
8s
− 3α

2
0 φ̄(xr, t), then taking the complex conjugate of (3.6), multiplying the

result by 1
8s
− 3α

2
0 φ(xr, t), combining the two equations, taking the real parts, and using the same

arguments as (3.4), we obtain

1

8
s
− 3α

2
0

[
θ̄(t)C0Dαt θ(t) + θ(t)C0Dαt θ̄(t)

]
= −3

4
s
−α

2
0 |θ(t)|2 − 2<{e−

πi
4 θ(t)ψ̄(x`, t)}, (3.13)

1

8
s
− 3α

2
0

[
φ̄(t)C0Dαt φ(t) + φ(t)C0Dαt φ̄(t)

]
= −3

4
s
−α

2
0 |φ(t)|2 + 2<{e−

πi
4 φ(t)ψ̄(xr, t)}. (3.14)

Adding (3.12), (3.13) and (3.14), applying Lemma 3.1 and noticing that |={Z}|+|<{Z}| ≤
√

2|Z|
lead to

C
0Dαt

∫ xr

x`

|ψ(x, t)|2 dx+
1

8
s
− 3α

2
0

C
0Dαt

[
|φ(t)|2 + |θ(t)|2

]
≤ −3

√
2s

α
2
0

(
|ψ(x`, t)|2 + |ψ(xr, t)|2

)
+

3

8
s
−α

2
0 (|θ(t)|2 + |φ(t)|2) + 2

√
2
(∣∣φ(t)ψ̄|+ |θψ̄

∣∣) .
(3.15)
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Applying the Cauchy-Schwarz inequality∣∣θ(t)ψ̄(x`, t)
∣∣ ≤ 1

4ε
|θ(t)|2 + ε|ψ(x`, t)|2 and

∣∣φ(t)ψ̄(xr, t)
∣∣ ≤ 1

4ε
|φ(t)|2 + ε|ψ(xr, t)|2,

with ε = 3
2s

α
2
0 to Eq. (3.15), we get

C
0Dαt

[∫ l+

x`

|ψ(x, t)|2 dx+
1

8
s
− 3α

2
0

(
|φ(t)|2 + |θ(t)|2

)]
≤ − 9

24
s
−α

2
0

(
|φ(t)|2 + |θ(t)|2

)
≤ 0. (3.16)

Finally applying Lemma (3.2) completes the proof.

4 Discretization and analysis of the schemes

This section is devoted to the construction and numerical analysis of the linearized numerical
schemes. Let τ = T/N and h = (x`−xr)/J be the temporal and spatial step sizes, respectively,
where N and J are two given positive integers. We denote the discrete time by tn = nτ
(0 ≤ n ≤ N) and Ωτ = {tn|0 = t0 < t1 < . . . < tN = T}. A point of the uniform spatial grid is
such that xj = jh, (0 ≤ j ≤ J), and Ωh = {xj |xj = x` + jh, 0 ≤ j ≤ J}. We also set

ψnj = ψ(xj , tn), Vj = V (xj), φn = φ(tn), θn = θ(tn).

4.1 Derivation of the linearized L1-scheme

The L1-scheme for approximating the Caputo fractional derivative is

C
0Dαtnv =

1

Γ(1−α)

∫ tn

0

v′(s)

(tn−s)α
ds =

1

Γ(1− α)

n∑
k=1

vk − vk−1

τ

∫ tk

tk−1

1

(tn − s)α
ds+Qn

=
τ−α

Γ(2− α)

n∑
k=1

an−k(v
k − vk−1) +Qn,

where vn = v(tn) and ak = (k + 1)1−α − k1−α, k ≥ 0. Let us denote the L1 scheme by

C
0Dατ =

τ−α

Γ(2− α)

n∑
k=1

an−k(v
k − vk−1).

If v ∈ C2([0, T ]), the truncation error Qn satisfies [40,51]

|Qn| ≤ Cτ2−α. (4.1)

For a sequence of functions {wnj }0≤n≤N,0≤j≤J , we define

δxw
n
j+ 1

2

=
wnj+1 − wnj

h
, δ2

xw
n
j =

1

h

(
δxwj+ 1

2
− δxwj− 1

2

)
,

δtw
n
j =

wnj − w
n−1
j

τ
, Dα

τ w
n
j :=

τ−α

Γ(2− α)

n∑
i=1

an−iδtw
i
j . (4.2)
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Writing the TFNSE equation at the left point x`

iC0Dαt ψn0 = −(ψn0 )xx + V0ψ
n
0 + f(|ψn0 |2)ψn0 ,

and using the Taylor expansion, we have

(ψn0 )x =
1

h
(ψn1 − ψn0 )− h

2
(ψn0 )xx +O(h2)

= δxψ
n
1
2

+
h

2

(
i C0Dαt ψn0 − (V0 + f(|ψn0 |2))ψn0

)
+O(h2). (4.3)

Similarly, at the right boundary point xJ , we have

(ψnJ )x = δxψ
N
J− 1

2

− h

2

(
i C0Dαt ψnJ − (VJ + f(|ψnJ |2))ψnJ

)
+O(h2). (4.4)

We apply the L1-scheme to approximate the time-fractional Caputo derivative, the second-
order central finite difference method to approximate the second-order spatial derivative at the
interior points, and use (4.3) and (4.4) to couple the ABCs and the linearized approach to deal
with the nonlinear term. This yields

i C0Dατ ψnj = −δ2
xψ

n
j +

[
Vj + f(|ψn−1

j |2)
]
ψnj + Tnj , 1 ≤ j ≤ J − 1 , 1 ≤ n ≤ N, (4.5)

i
h

2
C
0Dατ ψn0 = −δxψn1

2

+
(
θn+3s

α
2
0 e−

πi
4 ψn0

)
+
h

2

[
V0 + f(|ψn−1

0 |2)
]
ψn0 + Tn0 , (4.6)

C
0Dατ θn = −i

[
V0 + f(|ψn−1

0 |2)
]
θn−3sα0 θ

n−8s
3α
2

0 e−
πi
4 ψn0 +Rn0 , (4.7)

i
h

2
C
0Dατ ψnJ = δxψ

n
J− 1

2

+
(
3s

α
2
0 e−

πi
4 ψnJ − φn

)
+
h

2

[
VJ + f(|ψn−1

J |2)
]
ψnJ + TnJ , (4.8)

C
0Dατ φn = −i

[
VJ + f(|ψn−1

J |2)
]
φn−3sα0φ

n+8s
3α
2

0 e−
πi
4 ψnJ +RnJ , (4.9)

ψ0
j = ψ0(xj), 0 ≤ j ≤ J. (4.10)

Applying the Taylor expansion and (4.1), we have

|Tnj | ≤ C(τ + h2), 1 ≤ j ≤ J − 1, 1 ≤ n ≤ N, (4.11)

|Tn0 | ≤ C(τ + h2), |TnJ | ≤ C(τ + h2), 1 ≤ n ≤ N, (4.12)

|Rn0 | ≤ Cτ, |RnJ | ≤ Cτ, 1 ≤ n ≤ N. (4.13)

Omitting the small terms in (4.5)-(4.10) based on the above error bounds, we construct the
following finite difference scheme for solving problem (3.1)-(3.4)

iDατ Ψn
j = −δ2

xΨn
j +

[
Vj + f(|Ψn−1

j |2)
]
Ψn
j , 1 ≤ j ≤ J − 1 , 1 ≤ n ≤ N, (4.14)

i
h

2
Dατ Ψn

0 = −δxΨn
1
2

+
(
Θn+3s

α
2
0 e−

πi
4 Ψn

0

)
+
h

2

[
V0 + f(|Ψn−1

0 |2)
]
Ψn

0 , (4.15)

Dατ Θn = −i
[
V0 + f(|Ψn−1

0 |2)
]
Θn−3sα0 Θn−8s

3α
2

0 e−
πi
4 Ψn

0 , (4.16)

i
h

2
Dατ Ψn

J = δxΨn
J− 1

2

+
(
3s

α
2
0 e−

πi
4 Ψn

J − Φn
)

+
h

2

[
VJ + f(|Ψn−1

J |2)
]
Ψn
J , (4.17)

Dατ Φn = −i
[
VJ + f(|Ψn−1

J |2)
]
Φn−3sα0 Φn+8s

3α
2

0 e−
πi
4 Ψn

J , (4.18)

Ψ0
j = Ψ0(xj), 0 ≤ j ≤ J, (4.19)

where Ψn
j ,Φ

n and Θn correspond to the numerical approximations of ψnj , φ
n and θn, respectively.
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4.2 Numerical analysis of the linearized L1-scheme

Let us now consider the convergence analysis of the finite difference scheme. Let u = {(u0, u1, ..., uJ)}
and v = {(v0, v1, ..., vJ)} defined on Ωh. We introduce the following inner products and norms

(u, v) = h(
1

2
ū0v0 +

J−1∑
j=1

ūjvj +
1

2
ūJvJ), ‖u‖ =

√
(u, u),

|u|1 =

√√√√h
J∑
j=1

|δxūj− 1
2
| |δxuj− 1

2
|, ‖u‖∞ = max

0≤j≤J
|uj |.

We first introduce the following set of useful lemmas.

Lemma 4.1 (see [51]) We assume that ak = (k + 1)1−α − k1−α. Then, one gets

1 = a0 > a1 > · · · > an → 0. (4.20)

Lemma 4.2 For any discrete function v ∈ Ωh, the following inequality holds

‖v‖2∞ ≤ ε|v|21 + (
1

ε
+

1

xr − x`
)‖v‖2.

Lemma 4.3 (see [39]) Suppose that {ωn}n=0,··· and {gn}n=0,··· are two nonnegative sequences
that satisfy ω0 ≤ g0 and

Dα
τ ω

n ≤ λ1ω
n + λ2ω

n−1 + gn, n ≥ 1,

where λ1 > 0 and λ2 ≥ 0 are two given real-valued constants. Then, there exists a constant τ∗

such that, for τ ≤ τ∗,

ωn ≤ 2
(
ω0 +

tαn
Γ(1 + α)

max
0≤j≤n

gj
)
Eα(2λtn) 1 ≤ n ≤ N, (4.21)

where Eα(z) = Eα,1(z) and λ = λ1 + λ2
2−2α .

Lemma 4.4 Let {vn}Nn=0 be a sequence of functions defined in Ωτ . If v0 ≤ κ and

<(Dα
τ v

n, vn) ≤ C‖vn−1‖2 + C‖vn‖2 + κ2, 1 ≤ n ≤ N, (4.22)

where κ > 0 and C is a positive constant bounded independently of τ , then, there exists a positive
constant τ∗ such that, for τ < τ∗,

‖vn‖ ≤ Cκ. (4.23)

Proof. From the definition of Dα
τ and Lemma 3.1, we have

<( C
0Dατ vn, vn) = <(

τ2−α

Γ(2− α)

(
a0v

n −
n−1∑
j=1

(an−j−1 − an−j)vj − an−1v
0, vn

)

≥ τ2−α

Γ(2− α)

(
a0‖vn‖2−

n−1∑
j=1

(an−j−1−an−j)
‖vj‖2+‖vn‖2

2
−an−1

‖v0‖2+‖vn‖2

2

)

=
τ2−α

2Γ(2− α)

(
a0‖vn‖2 −

n−1∑
j=1

(an−j−1 − an−j)‖vj‖2 − an−1‖v0‖2
)

=
1

2
Dα
τ ‖vn‖2. (4.24)
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Substituting (4.24) into (4.22) and using Lemma 4.3, we can easily get (4.23).

We now define the error function on the grid, for 0 ≤ j ≤ J , 0 ≤ n ≤ N ,

enj = ψnj −Ψn
j , ϕ

n = φn − Φn, ϑ = θn −Θn,

and let K = max1≤n≤N{‖ψn‖∞ + |φn|+ |θn|}+ 1.
We have the following result.

Theorem 4.5 Let us assume that system (3.1)-(3.4) has unique smooth solutions ψ(x, t), θ(t)
and φ(t) in Ωint×[0, T ]. Then, there exist two positive constants τ0 and h0 such that, when τ ≤ τ0

and h ≤ h0, system (4.14)-(4.19) admits a unique solution {Ψn
j ,Φ

n,Θn}, for n = 1, 2, · · · , N ,
satisfying

‖Ψn‖∞ + |Θn|+ |Φn| ≤ K, (4.25)

‖en‖+ |ϕn|+ |ϑn| ≤ C∗(τ + h2). (4.26)

Proof. At each discrete time t = tn, the proposed numerical method produces a tridiagonal
system of linear algebraic equations. Since the associated matrix is strictly diagonally dominant,
then the numerical solution of the problem is unique.

Now, we prove the error estimates of the numerical scheme. Subtracting (4.14)-(4.19) from
(4.5)-(4.10), we have the error equations: for 1 ≤ n ≤ N

i C0Dατ enj = −δ2
xe
n
j + Vje

n
j + f(|ψn−1

j |2)ψnj − f(|Ψn−1
j |2)Ψn

j + Tnj , 1 ≤ j ≤ J − 1 , (4.27)

i
h

2
C
0Dατ en0 =−δxen1

2

+
(
ϑn+3s

α
2
0 e−

πi
4 en0

)
+
h

2
V0e

n
0 +

h

2

(
f(|ψn−1

0 |2)ψn0−f(|Ψn−1
0 |

2)Ψn
0

)
+Tn0 , (4.28)

C
0Dατ ϑn = −i

(
V0ϑ

n + f(|ψn−1
0 |2)θn − f(|Ψn−1

0 |2)Θn
)
−3sα0ϑ

n−8s
3α/2
0 e−

πi
4 en0 +Rn0 , (4.29)

i
h

2
C
0Dατ enJ = δxe

n
J−1

2

+
(
3s

α
2
0 e−

πi
4 enJ−ϕn

)
+
h

2
VJe

n
J +

h

2

(
f(|ψn−1

J |
2)ψnJ − f(|Ψn−1

J |2)Ψn
J

)
+ TnJ ,

(4.30)

C
0Dατ ϕn = −i

[
VJϕ

n + f(|ψn−1
J |2)φn − f(|Ψn−1

J |2)Φn
]
−3sα0ϕ

n+8s
3α
2

0 e−
πi
4 enJ +RnJ , (4.31)

e0
j = 0, 0 ≤ j ≤ J. (4.32)

Multiplying Eq. (4.27) by heni , and summing up over j from 1 to J − 1, we have

ih
J−1∑
j=1

( C
0Dατ enj )enj = h

J−1∑
j=1

{
−(δ2

xe
n
j )enj + Vje

n
j e
n
j +

[
f(|ψn−1

j |2)ψnj − f(|Ψn−1
j |2)Ψn

j

]
enj + Tnj e

n
j

}
.

Multiplying en0 , iϑ
n
, enJ and iϕn on both sides of (4.28)-(4.31), respectively, adding the results

with the above formula, then using the following summation by parts formulas

−h
J−1∑
j=1

(δ2
xe
n
j )enj − en0δxen1

2

+ enJδxe
n
J− 1

2

= |en|21

and

h
(1

2
en0

C
0Dατ en0 +

J−1∑
j=1

( C
0Dατ enj )enj +

1

2
eJ0

C
0Dατ enJ

)
=
(
C
0Dατ en, en

)
,
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we arrive at

i
(
C
0Dατ en, en

)
+ iϕn C

0Dατ ϕn + iϑ
n C

0Dατ ϑn

= |en|21 + h
J−1∑
j=1

Vje
n
j e
n
j + h

J−1∑
j=1

[
f(|ψn−1

j |2)ψnj − f(|Ψn−1
j |2)Ψn

j

]
enj + h

J−1∑
j=1

Tnj e
n
j

+
(
ϑn+3s

α
2
0 e−

π
4
ien0
)
en0 +

h

2
V0e

n
0e
n
0 +

h

2

(
f(|ψn−1

0 |2)ψn0 − f(|Ψn−1
0 |2)Ψn

0

)
en0 + Tn0 e

n
0

+
(
V0ϑ

n + f(|ψn−1
0 |2)θn − f(|Ψn−1

0 |2)Θn
)
ϑ
n−3isα0ϑ

nϑ
n−8is

3α/2
0 e−

πi
4 en0ϑ

n
+ iRn0ϑ

n

+
(
3s

α
2
0 e−

πi
4 enJ−ϕn

)
enJ +

h

2
VJe

n
Je
n
J +

h

2

(
f(|ψn−1

J |
2)ψnJ − f(|Ψn−1

J |2)Ψn
J

)
enJ + TnJ e

n
J

+
[
VJϕ

n + f(|ψn−1
J |2)φn − f(|Ψn−1

J |2)Φn
]
ϕn−3isα0ϕ

nϕn+8is
3α
2

0 e−
π
4
ienJϕ

n +RnJϕ
n. (4.33)

Now, we prove the results (4.25) and (4.26) by mathematical induction. First, we show that the
estimates hold for n = 1. Since {Ψ0

j ,Φ
0,Θ0} = {ψ0

j , φ
0, θ0}, we have(

f(|ψ0
j |2)ψ1

j−f(|Ψ0
j |2)Ψ1

j

)
e1
j =

(
f(|ψ0

j |2)ψ1
j−f(|ψ0

j |2)Ψ1
j

)
e1
j = f(|ψ0

j |2)|e1
j |2, 0 ≤ j ≤ J ,

(4.34)(
f(|ψ0

0|2)θ1 − f(|Ψ0
0|2)Θ1

)
ϑ

1
=
(
f(|ψ0

0|2)θ1 − f(|ψ0
0|2)Θ1

)
ϑ

1
= f(|ψ0

0|2)|ϑ1|2, (4.35)(
f(|ψ0

J |2)φ1 − f(|Ψ0
J |2)Φ1

)
ϕ1 =

(
f(|ψ0

J |2)φ1 − f(|ψ0
J |2)Φ1

)
ϕ1 = f(|ψ0

J |2)|ϕ1|2. (4.36)

Thus, by taking the imaginary part of the equation (4.33) and by using the Cauchy-Schwarz
inequality, we get

<
(

(Dατ e1, e1) + ϕ1Dατ ϕ1 + ϑ
1Dατ ϑ1

)
≤ C‖e1‖2 + C|ϕ1|2 + C|ϑ1|2 + C(τ + h2)2. (4.37)

By Lemma 4.4, we conclude that there exists a parameter τ1 such that, for τ ≤ τ1,

‖e1‖+ |ϕ1|+ |ϑ1| ≤ C∗(τ + h2). (4.38)

Meanwhile, we have

|e1|21 = h

J∑
j=1

|δxē1
j− 1

2

| |δxe1
j− 1

2

| ≤ h
J∑
j=1

( |e1
j |+ |e1

j−1|
h

)2
≤ 4

h2
‖e1‖2 ≤ 4C∗

h2
(τ + h2)2. (4.39)

Together with (4.38), (4.39) and Lemma 4.2, we deduce that

‖e1‖L∞ ≤ C(τ + h2 +
τ

h
).

Hence, one obtains

‖Ψ1‖∞ + |Θ1|+ |Φ1| ≤ ‖ψ1‖∞ + |θ1|+ |φ1|+ ‖e1‖L∞ + |ϑ1|+ |ϑ1|

≤ ‖ψ1‖∞ + |θ1|+ |φ1|+ C1(τ + h2 +
τ

h
) ≤ K,
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whenever C1(τ + h2 + τ
h) ≤ 1.

Now, suppose that the main results (4.25) and (4.26) hold for n ≤ k − 1, then we have the
following set of inequalities(

f(|ψk−1
j |2)ψkj −f(|Ψk−1

j |2)Ψk
j

)
=
(
f(|ψk−1

j |2)ψkj −f(|Ψk−1
j |2)ψkj

)
+
(
f(|Ψk−1

j |2)ψkj −f(|Ψk−1
j |

2)Ψk
j

)
= ψkj f

′(ξk−1
j )(|ψk−1

j |
2 − |Ψk−1

j |
2)+f(|Ψk−1

j |
2)(ψkj −Ψk

j )

≤ C(|ek−1
j |+ |ekj |), (4.40)

where ξk−1
j ∈ (ψk−1

j ,Ψk−1
j ) and we remark that ‖Ψk−1

j ‖L∞ ≤ K. Similarly, we show that

f(|ψk−1
0 |2)θk − f(|Ψk−1

0 |2)Θk ≤ C|ek−1
0 |+ C|ϑk|, (4.41)

f(|ψk−1
J |2)φk − f(|Ψk−1

J |2)Φk ≤ C|ek−1
J |+ C|ϕk|. (4.42)

In addition, we can write that

=
(

(ϑk+3s
α
2
0 e−

π
4
iek0)ek0 + T k0 e

k
0 + (f(|ψk−1

0 |2)θk − f(|Ψk−1
0 |2)Θk)ϑ

k − 8is
3α/2
0 e−

πi
4 ek0ϑ

k
)

= −3
√

2

2
s
α
2
0 |e

k
0|2 + =

(
ϑkek0 + T k0 e

n
0 + (f(|ψk−1

0 |2)θk − f(|Ψn−1
0 |2)Θk)ϑ

k − 8is
3α/2
0 e−

πi
4 ek0ϑ

k
)

≤ −3
√

2

2
s
α
2
0 |e

k
0|2 +

(
C1|ek0|2 +

1

4C1
|ϑk|2

)
+
(
C2|ek0|2 +

1

4C2
|T k0 |2

)
+
(
C3|ek0|2 +

1

4C3
|ϑk|2

)
+<(8is

3α/2
0 e−

πi
4 )
(
C4|ek0|2 +

1

4C4
|ϑk|2

)
,

where Ci, i = 1, 2, 3, 4 are arbitrary positive real-valued constants. Let us set C1 + C2 + C3 +

<(8is
3α/2
0 )C4 = 3

√
2s

α
2
0 /2 in the above formula. We then deduce that

=
(

(ϑk+3s
α
2
0 e−

π
4
iek0)ek0 + T k0 e

k
0 + (f(|ψk−1

0 |2)θk − f(|Ψk−1
0 |2)Θk)ϑ

k − 8is
3α/2
0 e−

πi
4 ek0ϑ

k
)

≤ C|ϑk|2 + C|T k0 |2. (4.43)

Similarly to (4.43), we obtain

=
(

(3s
α
2
0 e−

πi
4 enJ−ϕn)enJ + TnJ e

n
J + (f(|ψn−1

J |2)φn − f(|Ψn−1
J |2)Φn)ϕn + 8is

3α
2

0 e−
π
4
ienJϕ

n
)

≤ C|ϕn|2 + C|TnJ |2. (4.44)

Now, let us consider n = k in (4.33). By taking the imaginary part of the resulting equation,
by using (4.40)-(4.44) and the Cauchy-Schwarz inequality, one gets

<
(

( C
0Dατ ek, ek) + ϕk C

0Dατ ϕk + ϑ
k C

0Dατ ϑk
)

(4.45)

≤ C
(
‖ek−1‖2 + ‖ek‖2 + |ϕk|2 + |ϑk|2 + (τ + h2)2

)
. (4.46)

Now, by Lemma 4.4, when τ < τ2, we prove that there exists a parameter τ2 such that

‖ek‖+ |ϕk|+ |ϑk| ≤ C∗(τ + h2). (4.47)
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Moreover, we have

|ek|21 = h
∣∣∣ J∑
j=1

(δxē
k
j− 1

2

)(δxe
k
j− 1

2

)
∣∣∣ ≤ 4

h2
‖ek‖2 ≤ 4C∗

h2
(τ + h2)2. (4.48)

Together with (4.47), (4.48) and Lemma 4.2, we deduce that

‖ek‖L∞ ≤ C(τ + h2 +
τ

h
).

Therefore, we obtain

‖Ψk‖∞ + |Θk|+ |Φk| ≤ ‖ψk‖∞ + |θk|+ |φk|+ ‖ek‖L∞ + |ϑk|+ |ϑk|

≤ ‖ψk‖∞ + |θk|+ |φk|+ C(τ + h2 +
τ

h
) ≤ K,

as long as C2(τ + h2 + τ
h) ≤ 1. Finally, the conclusions also hold for n = k, completing hence

the proof.

4.3 Fast evaluation based on the L1-schemes

We now introduce the fast evaluation of the Caputo derivative, proposed in [27], to circumvent
the huge storage and computational cost for the long time simulation. The main idea of this
fast evaluation algorithm is to split the Caputo derivative into the sum of a local part and a
history part

C
0Dαt ψn =

1

Γ(1− α)

∫ tn

tn−1

ψ′(x, s)ds

(tn − s)α
+

1

Γ(1− α)

∫ tn−1

0

ψ′(s)ds

(tn − s)α
:= Cloc(tn) + Chist(tn).

For the local part Cloc(tn), we apply the L1-approximation, i.e.,

Cloc(tn) ≈ ψ(x, tn)− ψ(x, tn−1)

τΓ(1− α)

∫ tn

tn−1

1

(tn − s)α
ds =

ψ(x, tn)− ψ(x, tn−1)

ταΓ(2− α)
. (4.49)

For the history part Chist(tn), we integrate by part and get

Chist(tn) =
1

Γ(1− α)

[
ψ(x, tn−1)

τα
− ψ(x, t0)

tαn
− α

∫ tn−1

0

ψ(x, s)ds

(tn − s)1+α

]
. (4.50)

Then, we use a sum-of-exponentials expansion to approximate the convolution integral of ψn

with the kernel t−1−α. For a given absolute error ε and for α, there exist some positive real
numbers si and wi, i = 1, · · · , Nexp (Nexp is the number of exponentials) such that∣∣∣∣∣∣ 1

t1+α
−
Nexp∑
i=1

ωie
−sit

∣∣∣∣∣∣ ≤ ε, for all t ∈ [τ, T ]. (4.51)

We replace the kernel 1
t1+α

in (4.50) by its sum-of-exponentials approximation in (4.51) to have

Chist(tn) ≈ 1

Γ(1− α)

ψ(x, tn−1)

τα
− ψ(x, t0)

tαn
− α

Nexp∑
i=1

ωiUhist,i(tn)

 ,
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where Uhist,i(tn) is defined by

Uhist,i(tn) =

∫ tn−1

0
e−(tn−s)siψ(x, s)ds,

and has a simple recurrence relation

Uhist,i(tn) = e−siτUhist,i(tn−1) +

∫ tn−1

tn−2

e−si(tn−s)ψ(x, s)ds, (4.52)

with Uhist,i(t0) = 0. The integral can be calculated by∫ tn−1

tn−2

e−si(tn−s)ψ(x, s)ds ≈ e−siτ

s2
i τ

[
(e−siτ − 1 + siτ)ψn−1 + (1− e−siτ − e−siτsiτ)ψn−2

]
.

Finally, the Fast approximate evaluation of the Caputo fractional derivative is given by

FC
0 Dαt ψn =

ψ(x, tn)− ψ(x, tn−1)

ταΓ(2− α)
+

1

Γ(1− α)

ψ(x, tn−1)

τα
− ψ(x, t0)

tαn
− α

Nexp∑
i=1

ωiUhist,i(tn)

 ,
(4.53)

for n > 0, and where Uhist,i(tn) can be obtained by the recurrence relation (4.52).
The following lemma provides an error bound for the fast approximation FC

0 Dαt ψn appearing
in (4.53).

Lemma 4.6 (see [27]) We assume that ψ(t) ∈ C2([0, tn]) and let

FRnψ := C
0D

α
t ψ(x, t)

∣∣
t=tn
− FC

0 Dαt ψn(x, tn), with 0 < α < 1.

Then, we have the following error inequality

|FRnψ| ≤ τ2−α

Γ(2− α)

(
1− α

12
+

22−α

2− α
− (1 + 2−α)

)
max

0≤t≤tn
|ψ′′(x, t)|+ αεtn−1

Γ(1− α)
max

0≤t≤tn−1

|ψ(x, t)| .

By using the fast evaluation of the Caputo derivative instead of the direct L1-approximation
in (4.14)-(4.19), we have the finite difference scheme given by

iFC0 Dαt Ψn
j = −δ2

xΨn
j +

[
Vj + f(|Ψn−1

j |2)
]
Ψn
j , 1 ≤ j ≤ J − 1 , 1 ≤ n ≤ N, (4.54)

i
h

2
FC
0 Dαt Ψn

0 = −δxΨn
1
2

+
(
Θn − 3s

α
2
0 e−

πi
4 Ψn

0

)
+
h

2

[
V0 + f(|Ψn−1

0 |2)
]
Ψn

0 , (4.55)

FC
0 Dαt Θn = −i

[
V0 + f(|Ψn−1

0 |2)
]
Θn + 3sα0 Θn + 8s

3α
2

0 e−
πi
4 Ψn

0 , (4.56)

i
h

2
FC
0 Dαt Ψn

J = δxΨn
J− 1

2

+
(
3s

α
2
0 e−

πi
4 Ψn

J − Φn
)

+
h

2

[
VJ + f(|Ψn−1

J |2)
]
Ψn
J , (4.57)

FC
0 Dαt Φn = −i

[
VJ + f(|Ψn−1

J |2)
]
Φn + 3sα0 Φn − 8s

3α
2

0 e−
πi
4 Ψn

J , (4.58)

Ψ0
j = Ψ0(xj), 0 ≤ j ≤ J. (4.59)

Furthermore, the error estimate is given as follows.
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Theorem 4.7 Let us suppose that (3.1)-(3.4) has a unique smooth solution (ψ(x, t), θ(t), φ(t)) in
Ωint× [0, T ]. Then, there exist some positive real-valued constants τ0 and h0 such that, for τ ≤ τ0

and h ≤ h0, the system (4.54)-(4.59) admits a unique solution {Ψn
j ,Φ

n,Θn}, n = 1, 2, · · · , N ,
satisfying

‖Ψn‖∞ + |Θn|+ |Φn| ≤ K, (4.60)

‖en‖+ |ϕn|+ |ϑn| ≤ C∗1 (τ + h2 + ε). (4.61)

The proof of (4.61) is similar to the one of (4.26) by using the truncation error given in Lemma
4.6.

5 Numerical examples

In this section, we provide four examples to not only demonstrate the effectiveness of our method,
but also to illustrate the dynamics of numerical solutions of TFNSEs in different situations.

Example 1. In this example we consider the TFNSE with cubic nonlinearity, i.e. f(|ψ|) = 2|ψ|2
and with the gaussian potential V (x) := e−5x2 . The initial data is: ψ0(x) = e−5x2 . For the
calculations in Figures 1 and 2, we fix : T = 4 and ]x`, xr[:=]− 5, 5[. The left and right pictures

represent the amplitude of the wave field, i.e. |ψα,fast
τ,h |, for α = 0.5 and α = 0.75, respectively, and

computed by the fast scheme (4.54)-(4.59) for the discretization parameters τ := T/N = 10−3

(N = 4 × 103) and h := (xr − x`)/J = 5 × 10−2 (J = 200), with the tolerance parameter
ε = 10−9. For the ABCs, we fix s0 = 20 (we see below that any other value s0 does not modify
the results). The CPU time for α = 0.5 is 21 (sec.) and 27 (sec.) for α = 0.75. Using the fast
scheme compared with the direct scheme (4.14)-(4.19) does not affect the accuracy. Indeed, we

report on Figure 2 the absolute error between ψα,fast
τ,h and ψα,dir

τ,h (”dir” means ”direct” here):

|ψα,fast
τ,h −ψα,dir

τ,h |, on the grid for the same discretization parameters τ and h, and the two values of
α. The error is smaller than ε and clearly does not modify the accuracy of a given computation.
To demonstrate the complexity of the two schemes (direct vs. fast), we plot on Figure 3 the
CPU time of the two schemes in seconds vs. the number N of grid points in time. We observe
that while the CPU time for the direct scheme scales as O(N2), it increases almost linearly with
respect to N for the fast scheme. There is a significant speed-up even for moderate values of N .

From these first computations, we conclude that the fast scheme leads to a similar accuracy
as for the direct scheme (according to the tolerance ε, other computations confirming this obser-
vation) while being much more efficient, with a nearly linear cost in time for a low storage, most
particularly when τ gets smaller. For these reasons, we now always use the fast scheme to study
the convergence rates in space and time, and for the various simulations. We also denote ψα,fast

τ,h

by ψτ,h to simplify the notations in the text (but we keep the initial notation ψα,fast
τ,h inside the

figures).
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Figure 1: (Example 1) amplitude |ψα,fast
τ,h | for α = 0.5 (left) and α = 0.75 (right).

Figure 2: (Example 1) absolute error |ψα,fast
τ,h − ψα,dir

τ,h | for α = 0.5 (left) and α = 0.75 (right).

We now analyze both the truncation error related to the introduction of an ABC and the
convergence rate of the fast scheme. To this aim, we compute a reference solution ψref on the
larger domain ]− 12, 12[ until the time T = 0.5, for some extremely small values of τ and h. We
report the following error: we define E∞(N, J) := ||ψref − ψτ,h||∞ for two fixed values of τ and
h. When analyzing the convergence rate in space of the fast scheme, we represent the quantity
E∞(N0, J) := ||ψref − ψτ0,h||∞ vs. J (both in log10-scale) for τ0 = 10−4 (N0 = 5 × 103) and
for various values of s0. When we study the convergence rate in time, we fix h0 := 5 × 10−3

(J0 = 2×103) and represent E∞(N, J0) := ||ψref−ψτ,h0 ||∞ vs. N (in log10-scale). From Figures
4 and 5, we show that both the convergence rate of the fast scheme (4.54)–(4.59) (as well as
direct scheme (4.14)–(4.19)) is of the order of O(h2 +τ). In addition, the ABCs are accurate and
not affected by the choice of the parameter s0. Finally, an analysis (not reported here) shows
that the L∞-error of the direct and fast schemes is almost the same (up to the tolerance ε).
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Figure 3: (Example 1) comparison of the CPU time (sec. in log10-scale) required for the direct
and fast methods vs. the number N of time points (log10 scale) (left: α = 0.5; right: α = 0.75).

Figure 4: (Example 1) E∞(N0, J) vs. J (both in log10-scale) for various values of s0 and by
using the fast scheme (4.54)-(4.59) (left: α = 0.5; right: α = 0.75).

Example 2. In this second example, we investigate the evolution of the numerical solution ψ of
the TFNSE for different fractional orders α with the nonlinearity f(|ψ|2)ψ = −2|ψ|2ψ and for
V (x) = 0. The initial data is ψ0 = e2i(x+3)sech(x+ 3). The computational domain is ]− 10, 10[
for a maximal time of computation T = 2. The discretization parameters are τ = 4 × 10−3

(N = 5× 102) and h = 2× 10−2 (J = 103). For the ABC, we consider s0 = 20.
In the standard situation, i.e. for α = 1, the soliton propagates from the left to the right

domain with a given angle. One can see on Figure 6 that the evolution of the solution is pretty
sharp on the first time steps and then the solution propagates straight when α = 0.25 with less
dispersion. The situation tends to the standard case when α tends to 1.
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Figure 5: (Example 1) E∞(N, J0) vs. N (both in log10-scale) for various values of s0 and by
using the fast scheme (4.54)-(4.59) (left: α = 0.5; right: α = 0.75).

Figure 6: (Example 2) evolution of |ψ| for α = 0.25 (CPU time 87 sec.), 0.5 (89 sec.), 0.75 (85
sec.) and 0.95 (76 sec.).
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Example 3. This third example, reported on Figure 7, is dedicated to the collision of two
waves for different values of α. The nonlinearity and the external potential for the TFNSE are
respectively given by

f(|ψ|2)ψ = −2|ψ|2ψ, V (x) = e−3x2 .

The initial data is built as the superposition of two waves

ψ0(x) = e−2i(x−8)sech(x− 8) + e2i(x+8)sech(x+ 8).

We consider the interval ]− 20, 20[ and a final computational time T = 6. We fix N = 3000 grid
points in time and J = 1000 spatial discrete points. For the ABC, we choose s0 = 20.

For the standard nonlinear equation with α = 1, the two soliton waves collide and keep their
own shapes moving away after the collision. This can be observed here when α is close to 1. For
smaller values of α, this property is loss and the waves do not even cross. At the same time,
some waves are created, with high oscillations corresponding to fluctuations and suggesting the
appearance of a decoherence phenomena that depends on α.

Figure 7: (Example 3) evolution of |ψ| for α = 0.5 (487 sec.), 0.75 (442 sec.), 0.95 (540 sec.)
and 0.999 (545 sec.).
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Example 4. In this last example, we consider the TFNSE with a cubic-plus-quintic nonlinearity
f(|ψ|2)ψ = 2|ψ|2ψ + |ψ|4ψ and V (x) = 0. The initial data is built as the superposition of two
Gaussian functions

ψ0 = e−3(x−2)2 + e−3(x+2)2 .

The interval of computation is ]−15, 15[ and the final time is T = 3. The time step is τ = 4×10−3

(for N = 750 points) and the spatial mesh size is equal to h = 1.5 × 10−2 (with J = 2 × 103

points). For the ABC, we consider s0 = 20.
The dynamics of the solution is plotted on Figure 8 for various values of α. While the two

waves clearly mixed for α close to 1 with many oscillations and then largely spread out, they
tend to form just one smooth wave after a short time, propagating without being deformed. The
support tends to be smaller when α decays.

Figure 8: (Example 4) evolution of |ψ| for α = 0.25 (717 sec.), 0.5 (627 sec.), 0.75 (668 sec.)
and 0.95 (645 sec.).

6 Conclusion

In this paper, we studied the computation of the time fractional nonlinear Schrödinger equation
(TFNSE) on unbounded domain. First, we generalized the construction of approximate non-
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linear ABCs through the unified approach proposed in [57, 58] to compute the solution to the
TFNSE. In addition, we analyzed the stability of the reduced problem with the approximate
nonlinear ABCs and the convergence of the linearized finite difference scheme. To speed-up
the computations, we used the fast evaluation of the fractional Caputo derivative given in [27].
We presented some numerical examples to verify the performance of the proposed numerical
methods. The extension of the method to the two-dimensional TFNSE on unbounded domain
and its fast evaluation will be discussed in a future work.
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