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Numerical analysis of a two-phase flow discrete fracture matrix model

Jérome Droniou*, Julian Hennicker™*, Roland Masson'

September 7, 2018

Abstract

We present a new model for two phase Darcy flows in fractured media, in which fractures are modelled
as submanifolds of codimension one with respect to the surrounding domain (matrix). Fractures can act as
drains or as barriers, since pressure discontinuities at the matrix-fracture interfaces are permitted. Addi-
tionally, a layer of damaged rock at the matrix-fracture interfaces is accounted for. The numerical analysis
is carried out in the general framework of the Gradient Discretisation Method. Compactness techniques
are used to establish convergence results for a wide range of possible numerical schemes; the existence of
a solution for the two phase flow model is obtained as a byproduct of the convergence analysis. A series
of numerical experiments conclude the paper, with a study of the influence of the damaged layer on the
numerical solution.

Keywords: Two phase Darcy flow, discrete fracture matrix model, hybrid-dimensional model, gradient
discretisation method, convergence analysis.

1 Introduction

Flow and transport in fractured porous media are of paramount importance for many applications such as
petroleum exploration and production, geological storage of carbon dioxide, hydrogeology, or geothermal energy.
Two classes of models, dual continuum and discrete fracture matrix models, are typically employed and possibly
coupled to simulate flow and transport in fractured porous media. Dual continuum models assume that the
fracture network is well connected and can be homogenised as a continuum coupled to the matrix continuum
using transfer functions. On the other hand, discrete fracture matrix models (DFM), on which this paper
focuses, represent explicitly the fractures as co-dimension one surfaces immersed in the surrounding matrix
domain. The use of lower dimensional rather than equi-dimensional entities to represent the fractures has been
introduced in [4, 31, 8, 36, 37] to facilitate the grid generation and to reduce the number of degrees of freedom of
the discretised model. The reduction of dimension in the fracture network is obtained from the equi-dimensional
model by integration and averaging along the width of each fracture. The resulting so called hybrid-dimensional
model couple the 3D model in the matrix with a 2D model in the fracture network taking into account the
jump of the normal fluxes as well as additional transmission conditions at the matrix-fracture interfaces. These
transmission conditions depend on the mathematical nature of the equi-dimensional model and on additional
physical assumptions. They are typically derived for a single phase Darcy flow for which they specify either the
continuity of the pressure in the case of fractures acting as drains [4, 9] or Robin type conditions in order to
take into account the discontinuity of the pressure for fractures acting either as drains or barriers [31, 37, 5, 11].

Fewer works deal with the extension of hybrid-dimensional models to two-phase Darcy flows. Most of
them build directly the model at the discrete level as in [8, 40, 34] or are limited to the case of continuous
pressures at the matrix-fracture interfaces as in [8, 40, 10]. In [35], an hybrid-dimensional two-phase flow model
with discontinuous pressures at the matrix-fracture interfaces is proposed using a global pressure formulation.
However, the transmission conditions at the interface do not take into account correctly the transport from the
matrix to the fracture.

In this paper, a new hybrid-dimensional two-phase Darcy flow model is proposed accounting for complex
networks of fractures acting either as drains or barriers. The model takes into account discontinuous capillary
pressure curves at the matrix-fracture interfaces. It also includes a layer of damaged rock at the matrix-
fracture interface with its own mobility and capillary pressure functions. This additional layer is not only a
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modelling tool. It also plays a major role in the convergence analysis of the model by giving time estimates
on the approximate interfacial saturations, which yield their compactness (see Remark 4.7) and enables the
identification of their limit. Moreover, when solving the discrete equations with a Newton-Raphson method, a
non-zero distribution of volume at the interfacial unknowns is in general required for the Jacobian not to be
degenerate. The sensitivity of the discrete solution as well as of the computational performance on interfacial
parameters is studied in the test case section. The results suggest that the model converges with vanishing
interfacial volume. However, this is still an open question.

The discretisation of hybrid-dimensional Darcy flow models has been the object of many works using cell-
centred Finite Volume schemes with either Two Point or Multi Point Flux Approximations (TPFA and MPFA)
[36, 5, 33, 43, 41, 2, 3], Mixed or Mixed Hybrid Finite Element methods (MFE and MHFE) [4, 37, 34], Hybrid
Mimetic Mixed Methods (HMM, which contains Mixed/Hybrid Finite Volume and Mimetic Finite Difference
schemes [22]) [30, 6, 9, 11], Control Volume Finite Element Methods (CVFE) [8, 40, 39, 33, 38], and the Vertex
Approximate Gradient (VAG) scheme [10, 9, 11, 44, 45]. Let us also mention that non-matching discretisations
of the fracture and matrix meshes are studied for single phase Darcy flows in [14, 32, 7, 42]. The convergence
analysis for single-phase flow models with a single fracture is established in [4, 37] for MFE methods, in [14]
for non matching MFE discretisations, and in [5] for TPFA discretisations. The case of single-phase flows with
complex fracture networks is studied in the general framework of the gradient discretisation method in [9] for
continuous pressure models and in [11] for discontinuous pressure models. For hybrid-dimensional two-phase
flow models, the only convergence analysis is to our knowledge done in [10] for the VAG discretisation of the
continuous pressure model with fractures acting only as drains. Let us recall that the gradient discretisation
method (GDM) enables convergence analysis of both conforming and non conforming discretisations for linear
and non-linear second order elliptic and parabolic problems. It accounts for various discretisations such as
conforming Finite Element methods, MFE and MHFE methods, some TPFA and symmetric MPFA schemes,
and the VAG and HHM schemes [24]. The main advantage of this framework is to provide, for a given model, a
convergence proof for all schemes satisfying some abstract conditions, at the reduced cost of a single convergence
analysis; see e.g. [28, 29, 19, 23, 20]. We refer to the monograph [21] for a detailed presentation of the GDM.

The main purpose of this paper is to propose an extension of the gradient discretisation method to our
hybrid-dimensional two-phase Darcy flow model. This provides, in an abstract framework, the convergence
of the approximate solution to a weak solution of the model; as a by-product, this proves the existence of a
solution to this continuous model. The numerical analysis is partially based on the previous work [29] dealing
with the gradient discretisation method for single medium two-phase Darcy flows. The main new difficulty
addressed in this work compared with the analysis of [29] and [10] comes from the transmission conditions at
the matrix-fracture interfaces; these conditions involve an upwinding between the fracture phase pressures and
the traces of the matrix phase pressures. Note that, as in [29] and [10], the convergence analysis assumes that
the phase mobilities do not vanish.

The outline of this paper is as follows. Section 2 introduces the geometry of the fracture network, the
function spaces, the strong and weak formulations of the model as well as the assumptions on the data. Section
3 details the gradient discretisation method, including the definition of the abstract reconstruction operators, of
the discrete variational formulation (gradient scheme), and of the coercivity, consistency, limit conformity and
compactness properties. Section 4 proves the main result of this paper which is the convergence of the gradient
scheme solution to a weak solution of the model. This convergence is established using compactness arguments,
and requires us to establish various compactness results on the approximation solutions: averaged in time and
space, uniform-in-time and weak-in-space, etc. The Minty monotonicity trick is used to identify the limit of the
non-linear term resulting from the the upwinding between the fracture and matrix phase pressures. Section 5
studies on a 2D numerical example the influence of the additional layer of damaged rock at the matrix-fracture
interface on the solution of the model. The discretisation used in this test case is based on the VAG scheme
which can be shown from [11] to satisfy the assumptions of our gradient discretisation method. Note that
numerical comparisons of our model with the equi-dimensional model as well as with the continuous pressure
model of [10] can be found in [12, 1] without the accumulation term in the interfacial layer, which plays a minor
role in the numerical tests when this layer is thin with respect to the fracture (see Section 5). It is shown
that the discontinuous pressure model analysed in this paper is more accurate than the continuous pressure
model of [10] even in the case of fractures acting only as drains; this improved accuracy is due to more accurate
transmission conditions at the matrix-fracture interfaces.



2 Notation and model

2.1 Geometry

Let © denote a bounded domain of R? (d = 2,3), polyhedral for d = 3 and polygonal for d = 2. To fix ideas
the dimension will be fixed to d = 3 when it needs to be specified, for instance in the naming of the geometrical
objects or for the space discretisation in the next section. The adaptations to the case d = 2 are straightforward.

Let T = Uielfi and its interior I' = T \ OT denote the network of fractures I'; € Q, i € I. Each I; is a
planar polygonal simply connected open domain included in a plane P; of R%. It is assumed that the angles
of T; are strictly smaller than 27, and that I; NT; = @ for all i # j. For all i € I, let us set ¥; = 9I';, with
ny, as unit vector in P;, normal to 3; and outward to I';. Further ¥; ; = ¥; N X, for i # j, ¥;0 = X; N 09,
zi,N = Zz \ (Ujel\{i} Ei,j U Ei,O); ¥ = U(i,j)e[x[,i#j(zixj \ Zi,O) and ZO = Uie[ Ei,0~ It is assumed that
21'70 = Fl N onN.

7 )}
i r 3,N
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Figure 1: Example of a 2D domain €2 and 3 intersecting fractures I';,7 = 1,2,3. We define the fracture plane
orientations by a*(i) € x for I';, i € I.

We define the two unit normal vectors ng+(;) at each planar fracture I';, such that ng+ ;) + ng-(;) = 0 and
oriented outward to the matrix side a® (i) (cf. figure 1). We define the set of indices x = {a™(i),a= (i) | i € I},
such that #x = 2#1I. For ease of notation, we use the convention I' i+ ;) = I'y—(;) = I';.

For a = a*(i) € x, we denote by v, the one-sided trace operator on I'y. It satisfies the condition ~4(h) =
Ya(h 1w, ), where wg ={x € Q| (x—y) -n, <0, Vy €I';}.

On the fracture network I'; the tangential gradient is denoted by V., and is such that

v'rfU = (vﬂvi)ieh

where, for each ¢ € I, the tangential gradient V, is defined by fixing a reference Cartesian coordinate system of
the plane P; containing I';. In the same manner, we denote by div.q = (div,,q;)ics the tangential divergence
operator.

2.2 Continuous model and hypotheses

We describe here the continuous model and assumptions that are implicitly made throughout the paper. In the
matrix domain Q\ I, let us denote by A,, € L>(9)?*4 the symmetric permeability tensor, chosen such that
there exist A\, > A, > 0 with

A lCP < A (x)C- ¢ < Ap¢)? for all ¢ € RY,x € Q.

(d—1)x(d—1)

Analogously, in the fracture network I', we denote by Ay € L*(T') the symmetric tangential perme-

ability tensor, and assume that there exist Ay > Ay > 0, such that
AlCPP < Ap(x)C- ¢ < Af[¢f* for all ¢ € R4 x T

On the fracture network I', we introduce an orthonormal system (71 (x), T2(x), n(x)), defined a.e. on I'". Inside the
fractures, the normal direction is assumed to be a permeability principal direction. The normal permeability
Afn € L(T') is such that A; , < Apn(x) < Appn for ae. x € T with 0 < Ap, < Ay, We also denote by



dy € L*(T") the width of the fractures, assumed to be such that there exist Ef >d; >0 with d; < dy (x) < Ef
for a.e. x € I'. The half normal transmissibility in the fracture network is denoted by

2Afn
Ty = ——.

f dy
Furthermore, ¢, and ¢; are the matrix and fracture porosities, respectively, p* € R* denotes the density of
phase a (with a = 1 the non-wetting and o = 2 the wetting phase) and g € R? is the gravitational vector field.
We assume that ¢ 5 < G < b, f» for some ¢ f,gzﬁ g > 0. (kg ko‘) and (S%,Sf) are the matrix and
fracture phase moblhtles and saturations, respectlvely Hypothesis on these functions are stated below.

The PDEs model writes: find phase pressures (uy,,u}) and velocities (qy,. qf) (o = 1,2), such that

G0 S (P ) + div(dy,) = hin on (0,T) x Q\I'
qy, = —[kS] (Py) AmVTS,  on (0,7) x Q\T
¢;d;0,SF(ps) + div.(qf) ZQf, = dgh§ on (0,7) x T (1a)
acx
qf = —ds[kS]5(By) AfVeup  on (0,7) xT
(PrnsPf)lt=0 = (Brn0-Pr.0) on (Q\T) x T.

The matrix-fracture coupling condition on (0,7") x I', (for all a € x) are

{ q?n ‘g + Q?,a = UatS?(%T?m) (1b)

Qf o = kSIF () Tr[u]a — (k513 (vaD) Tr a3
where n = d,¢,, with d, € (O -L) representing the interfacial width and ¢, € (0, 1] the interfacial porosity. We
assume that each of these parameters is uniformly bounded below. In these equations, we have

It can be seen as an upwind two point approxima-
tion of Q%u. The upwinding takes into account
the damaged rock type at the matrix-fracture in-

T T T T T q? terfaces. The arrows show the positive orientation
of the normal fluxes q, - n, and Q;’c"a.

Si =1- Si for p € {m, f} Ux, and (p,,,py) = (@, —ﬂfn,ﬂ} - ﬂ?) (1c)
N dy
qu : : ‘S 3 (Vapm)
.
— 7 5y
. q%l 'nai : Q?u Figure 2: Tllustration of the coupling condition.

In the above, we used the shorthand notations
[@]a = yaty, —@f,  [@°]3 = max(0,[a°]a) and [@°]; = [-@°]]
as well as, for € {m, f} Ux, ¢, € L*((0,T) x M,,) and a.e. (t,x) € (0,T) x M,

Su(e)(t,x) = Sp(x,0,(t,x))  and  [kS](0,)(t,x) = ki (x, S5 (x,0,(t%))).

Here and in the following, M, is defined by

Q ifu=m
M,=< ' ifu=Ff
Iy ifp=acy.



The various boundary conditions imposed on the domain are: homogeneous Dirichlet conditions at the boundary
of the domain, pressure continuity and flux conservation at the fracture-fracture intersections, and zero normal
flux at the immersed fracture tips. In other words,

Yoo\or iy, = 0 on 90\ JT", Yoonorti; =0 on QN AT
Vs Ufi = Y, Ug ; on X for all i # j such that ¥; ; has a non zero d — 2 Lebesgue measure
qu’i.nZiZOOHZ, qfi-ny, =0on Y N, i €1

icl

Let us define L?(T') = {v = (v;)ier, v; € L?(T';),i € I'}. The assumptions under which the model is considered
are:

® Do € H'(Q\T) and Do € LA(T),
e For e {m, f} and a = 1,2, h € L*((0,T) x M),

e For pe{m,ftUx: S, : M, xR — [0,1] is a Caratheodory function; for a.e. x € M, S\(x,-) is a
non-decreasing LlprhltZ contmuous function on R; for all ¢ € R, S} ,.(+,q) is piecewise constant on a finite
partition (Mj, 1) je 7, of polytopal subsets of M,,.

e For o =1,2 and p € {m, f} U x: there exist constants k,, k, > 0, such that k¥: M, x [0,1] = [k, k] is
a Caratheodory function.

Recall that a Caratheodory function is measurable w.r.t. its first argument and continuous w.r.t. its second
argument.

2.3 Weak formulation

The subspace HY(T') of L?*(T') consists in functions v = (v;);er such that v; € HY(T;) for all i € I, with
continuous traces at the fracture intersections ¥; ; for all ¢ # j. Its subspace of functions with vanishing traces
on ¥ is denoted by Hy, (T).
Let us now define the hybrid-dimensional function spaces that are used as variational spaces for the Darcy
flow model. Starting from
V=HYQ\T)x HYT),

consider the subspace
=V x VP

where (with yaq: HY(Q\T') — L2(9Q) the trace operator on )
VO ={ve H' (D) | yov =0 on 9Q} and VJ9 = Hy, ().

The weak formulation of (1) amounts to finding (@5, @})a=1,2 € [L*(0,T; V) x L*(0,T; V{)]? satistying the
following variational equalities, for any a = 1,2 and any (@5, <pf) € C§°([0,T) x Q) x C§° ([ T)xT):

6,5, (p,)0: P, dr,d kS, (P,.) A, Vg - VE;dr,d

I, L L pevmaoinans [ ], o) a.7m e
- / 8,52 (P,.0)75 (0, )dr,

s / / 7y (ST (aP) 81— (K815 (B [8°15 ) [P Jadtret @

acx

- / | 55 Cap At~ [ nE (b0 0, )0r)

=[], wo

pe{m,f}



Here,

] dx if p=m
dru(x) = { drp(x) = dp(x)dr(x) if p=f

with d7(x) the d — 1 dimensional Lebesgue measure on T'.

3 The gradient discretisation method

The gradient discretisation method consists in selecting a set (called a gradient discretisation) of a finite-
dimensional space and reconstruction operators on this space, and in substituting them for their continuous
counterpart in the weak formulation of the model. The scheme thus obtained is called a gradient scheme. Let
us first define the set of discrete elements that make up a gradient discretisation.

Definition 3.1 (Gradient discretisation (GD)) A spatial gradient discretisation for a discrete fracture ma-
triz model is Dg = (X©, (H%s, V%S)ME{””J}’ ([a.ps)aexs (T, )aex), where

e X0 is a finite-dimensional space of degrees of freedom (DOFs),

o Forpe{m,f}, I : X° — L*(M,) reconstructs a function on M, from the DOFs,

)dim M,

o Forpe{m,f}, V%S : X0 — LM, reconstructs a gradient on M,, from the DOFs,

o Forac€ x, [Japs : X® — L3(T'y) reconstructs, from the DOFs, a jump on Ty between the matriz and
fracture,

e Foracy, Th, : X% — L%(T,) reconstructs, from the DOFs, a trace on Ty from the matriz.
These operators must be chosen such that the following expression defines a norm on X°:
m o2 f 2 2 1/2
lwllos = (IV8, w2y + 1Vhew2a i + D Iwlapslee,)) -
aex

The spatial gradient discretisation Dg is extended to a space-time gradient discretisation by setting D =
(Ds,1p, (ty)n=o,..,n) with

e 0=ty <t; <-- <ty =T a discretisation of the time interval [0,T],

e I,: HY(Q\T) x L3(T") — X° an operator designed to interpolate the initial condition.

The space-time operators act on a family u = (u,)n—o,.. .~ € (XO)YNT the following way: for alln =0,...,N—1
and all t € (t,,,t,,4],
Mpu(t, ) = My 1, Vipu(t, ) = Vip t, 1, 3)
TaDu(tv ) = T%gun+1> [[u]]a,D(t7 ) = Hun+lﬂa’DS'

We extend these functions at t =0 by considering the corresponding spatial operators on .

,,,,, ~ is a family in X©, the discrete time derivatives §,w : (0, 7] — X are defined such that,
forallm =0,...,N —1andall t € (,,t,,4], with At =t —t,,
2

If w=(w,)n=0

Sw(t) = W e X°.
n+%

Let (e,),eporp, be a basis of X0 If w € X, we write w = EyeDOFD wye,. Then, for g € C(R), we
define g(w) € X° by g(w) = > vepor, 9(wy)e,. In other words, g(w) is defined by applying g to each degree
of freedom of w. Although this definition depends on the choice of basis (e,),epor,, We do not explicitly
indicate this dependency. This definition of g(w) is particularly meaningful in the context of piecewise constant
reconstructions, see Remark 3.3 below.



The gradient scheme for (1) consists in writing the weak formulation (2) with continuous spaces and operators
replaced by their discrete counterparts, after a formal integration-by-parts in time. In other words, the gradient
scheme is: find (u®)a=12 € [(X?)NT1]? such that, with p = u! — u?,

Po = Ip(P.0:Pr0) (4)

and, for any o = 1,2 and v® € (XO)N+1,

T T
2. ( /0 /M ¢, 1p [5t55(p)}ﬂ%v“dmdt+ /0 /M [kS]5, () Auv%u"‘.v%yadmdt>
ne{m,f} 1z .

+Z( /OT /F ([kS]?(T%p)Tf[[u“ rp— [kS]?(Hpo)Tf[[ua]];D> [v°] o pdrdt

T T

+/ / nThH {5t53(p)}T“Dvadet) = Z / / h Il v dr,dt. (5)

o Jr 0 JM
. ne{m,f} "

3.1 Properties of gradient discretisations

The convergence analysis of the GDM is based on a few properties that sequences of GDs must satisfy.

Definition 3.2 (Piecewise constant reconstruction operator) Let (e,),cpor, be the basis of X0 chosen
in Section 3. For p € {m, f}Ux, an operator 11 : X° — L*(M,,) is called piecewise constant if it has the
representation

IIu = g Uy 1,m for all u = E Uye, € XO,
veDOFp veDOFp
where (W) epor,, s a partition of M, up to a set of zero measure, and 1,4 is the characteristic function of

wh.

In the following, all considered function reconstruction operators II%, and T$%, are assumed to be piecewise
constant.

Remark 3.3 Recall that, if g € C°(R) and u € X°, then g(u) € X© is defined by the degrees of freedom
(9(uy))vepoFy- Then, any piecewise constant reconstruction operator II commutes with g in the sense that

g(lu) = Tlg(u).

The coercivity property enables us to control the functions and trace reconstruction by the norm on X©.
This is a combination of a discrete Poincaré inequality and a discrete trace inequality.

Definition 3.4 (Coercivity of spatial GD) Let

T vl 20y + T, vl 2y + Yaex ITD vz,
Cpy = max .
0#£vEXDO lv]lpg

A sequence (’DlS)leN of gradient discretisations is coercive if there exists Cp > 0 such that
Cp. <Cp foralll € N. (6)
The consistency ensures that a certain interpolation error goes to zero along sequences of GDs.
Definition 3.5 (Consistency of spatial GD) For u = (,,,u;) € VO and v € X°, define
5p5(0,U) = VB v = Vi, [ 2y + Hvésv = Vg 2 pya—
+ 0P v — Wyl 22(0) + Hnésv —Tyll2r)

+ > (IPlas = [l 2,y + IThew = vaTinllzar,)),

acx

and Spg (W) = min, e xo sps(v,w). A sequence (Dy)ien of gradient discretisations is GD-consistent (or consis-
tent for short) if, for all @ = (%,,,u;) € VO,

lim Spy () = 0. (7)
l—o0 s



To define the notion of limit-conformity, we need the following two spaces:
e} [e3e] 4
Cq =G (@\D) ",

— -1
Cr = {CIf = (qf4)ier | ar: € C(I';)

, Ziel qf:-ny, =0on X,

qyfq Ny, = 0 on ELN, 1€ I},

where Cp°(Q\T) € C®°(Q\T) is the set of functions ¢, such that for all x € Q there exists r > 0, such that
for all connected components w of {x +y € R? | |y| < »} N (Q\T) one has ¢ € C®(m), and such that all
derivatives of p are bounded. The limit-conformity imposes that, in the limit, the discrete gradient and function
reconstructions satisfy a natural integration-by-part formula (Stokes’ theorem).

Definition 3.6 (Limit-conformity of spatial GD) For all 9 = (q,,,q;) € CF x CF°, ¢, € C5°(I's) and
v € XO, define

wps(v.a.20) = [ (VB0 @+ (T3, 0)diva,, ) dx
+/ (Vésv gy + (HfDSv)diquf>dT(x)
r

— Z/ a,, nuTaDSvdT(x)
Fﬂ

aEx

+3° [ ea(Thy0 =T 0 = [0l Jar(x)

aex

and Wp,(q, p,) = MaxgL,exo Whﬂps (v,9,¢,)|. A sequence (Dy)ien of gradient discretisations is limit-
S
conforming if, for all @ = (q,,,q;) € CF x C° and all p, € C5°(T'a),

lhm W’Dg (qa 90(1) =0. (8)
— 00

Remark 3.7 (Domain of Wp,) Usually, the measure Wpg of limit-conformity is defined on spaces in which
the Darcy velocities of solutions to the model are expected to be, not smooth spaces as CF x C¥ [21, Definition
2.6]. However, if we do not aim at oblaining error estimates (which is the case here, given that such estimates
would require unrealistic reqularity assumptions on the data and the solution), Wp, only needs to be defined
and to converge to 0 on spaces of smooth functions — see Lemma A.2.

For any space-dependent function f, define T¢ f(x) = f(x+&). Likewise, for any time-dependent function g,
let Trg(t) = g(t+h). The compactness property ensures a sort of discrete Rellich theorem (compact embedding
of H} into L?). By the Kolmogorov theorem, this compactness is equivalent to a uniform control of the translates
of the functions.

Definition 3.8 (Compactness of spatial GD) For all v € X" and & = (&nr&p), with &, € R? and £ =
(&5)ier € @yc; 7(Pi), where T(P;) is the (constant) tangent space of Pi, define

05 (v, &) = [|Te, Mp v — Mp 0| L2(re)

m

+Z(HT5}H£S”—H{JSU”L%PI-)JF > ||T5}T%SU—T%SUIIL2(P1-))’

i€l a=a¥ (i)

where all the functions on Q (resp. T';) have been extended to R (resp. P;) by 0 outside their initial domain.

Let Tpg (&) = maxgz,e xo mrps (v,€). A sequence (DY)ien of gradient discretisations is compact if
lim sup T (€) = 0. 9
1€1—=0 1eN Ds( ) ®)

All these properties for spatial GDs naturally extend to space—time GDs with, for the consistency, additional
requirements on the time steps and on the interpolants of the initial conditions.



Definition 3.9 (Properties of space-time gradient discretisations) A sequence of space-time gradient
discretisations (D!)ien is

1. Coercive if (DY)en is coercive.
2. Consistent if

(i) (DY)ien is consistent,

(ii) At' = MaXp=0,... N—1 Atiw% — 0 asl— oo, and

(iii) For all® = (@, ¢;) € H'(Q\T) x L*(T), letting ¢ = 1,,(,,, %) we have, as | — oo,
1@ — HngSOZHLZ’(Q) — 0,
1Y@ — T%tg%@lHLz(Fn) —0 Vacy,
@, — H{;ls‘PlHLQ(F) — 0.

3. Limit-conforming if (Dls)leN is limit-conforming.
4. Compact if (DY)ien is compact.

Elements of (X%)N*+1 are identified with functions (0,7] — X° by setting, for u € (X°)N*! with u =

Vn=0,...,N =1, Vte (t, t, ], ult) =1, ;. (10)

This definition is compatible with the choices of space-time operators made in Definition 3.1, in the sense that,
for any ¢ € (0,71, pu(t,x) = % _(u(t))(x) (and similarly for the other reconstruction operators). With the
identification (10), the norm on (X%)N+1! is

T
lull3 = / lu(t) 3, dt.

4 Convergence analysis

In the rest of this paper, when the phase parameter « is absent this implicitly means that it is equal to 1. For
example, we write S, for S}L. The main convergence result is the following.

Theorem 4.1 (Convergence Theorem) Let (D');cn be a coercive, consistent, limit-conforming and compact
sequence of space-time gradient discretisations, with piecewise constant reconstructions. Then for any | € N
there is a solution (u®')4—12 of (5) with D = D..

Moreover, there exists (U%)a=1,2 = (Upy, U} )a=1,2 € [L*(0,T; V) x L*(0,T; VP)]? solution of (2) such that,
up to a subsequence as l — oo,

1. The following weak convergences hold, for a = 1,2,

I ut —uf weakly in L2((0,T) x MM)& for we {m, f},
Vi ut = vl weakly in L2((0,T) x M) | for p € {m, f}, (11)
TS u®t = y.ul, weakly in L*((0,T) x T'y), for all a € ¥,
[u*Napr — [@*]a  weakly in L*((0,T) x T'y), for alla € x.
2. The following strong convergences hold, with p = u' — u® and Py = E}L - ﬂi:
18,5,0) = S,(p,) i L(0.T) x My), for p & {m, f}, "
T%.S.(p") = Sq(vaD,)  in L*((0,T) x T'y), for all a € .

Remark 4.2 (Uniform-in-time strong-in-space convergence) It is additionally proved in [26] that the
saturations converge uniformly-in-time strongly in L? (that is, in L°°(0,T; L?(2))).



Remark 4.3 (Discretisation spaces varying with the time step) As mentioned in [13, Remark 3.5] for
a different model, it is also possible to consider gradient schemes in which the gradient discretisation changes
at each time step. This consists in choosing a family Dg = (Dgn)n=0,...,n, of spatial gradient discretisations
Ds.n (as in Definition 3.1), in considering unknowns u = (tp)n=0,... N € ngo ngn and in defining the space-
time operators (3) with Iy, w1, Vip Upi1, Th tnyy and [u,]aps respectively replaced by Ty,
Vs irting1s Thg o tnyr and [y 1]aps iy - The gradient scheme is then written as in (5). For a sequence

(ﬁfg)leN of such families of spatial GDs, the notions coercivity, consistency, limit-conformity and compactness
are defined by writing the bound and convergences in (6), (7), (8) and (9) with CpL, SpL (@), Wot (a,¢,) and
Tpi (§) replaced by

sup Cp. sup Sp. (u), sup Wpe (q,¢,) and sup  Tp. (€).
n=0,...,N; Sn n=0,...,N; Sim n=0,...,N; S n=0,...,N; Sim
With these notions, Theorem 4.1 still holds.

By using spatial GDs that change at each time step, one can represent in the GDM framework numerical
methods with moving or dynamically refined meshes, or whose gradient reconstruction involves time-dependent
parameters (as in RTy Mized Finite Elements with a diffusion tensor that depends on some unknown of the
system; see [13, Section 4.1]).

Before delving into the proof of the theorem, let us give an overview of the strategy. The convergence of
the solutions to the gradient schemes (5) is established by a compactness technique, as briefly described in
[18, Section 1.2]: (i) prove a priori estimates on the solutions to the scheme, (ii) using discrete compactness
theorems, deduce from these estimates that the (reconstructions of the) approximate solutions are compact in
appropriate spaces, (iii) prove that any limit, in these spaces, of the approximate solutions is a solution to the
continuous model (2).

(i) A priori estimates. The first a priori estimates are classically obtained by using the approximate solution
u® itself as a test function in the scheme (5). After summing the two equations corresponding to each
phase, the diffusion terms then directly yield an estimate on V/4u®. The time derivative term form the
discrete counterpart of S, (p,)0;p, which, after integration in time, would yield an estimate on &,(p,,)
with (&,,)" = S,,. To make explicit that this estimate is actually an estimate on the saturation, we re-write
&, as B,(S,) for a well-chosen B,,. These a priori estimates are stated in Lemma 4.4.

These initial estimates only concern spatial derivatives of the approximate solution (they are a discrete
equivalent of L?(0,T; H}) estimates). Since this solution depends on both time and space, estimates are
also required on its (discrete) time derivative to establish the compactness in an appropriate space. These
time derivative estimates are the purpose of Lemma 4.6 and, classically for parabolic PDEs, they are
obtained in a weak spatial norm (a sort of discrete H~' norm). They are obtained on 6,5 ,(p) and, thanks
to the modelling of the damaged rock type at the matrix-fracture interface (term 79,5 (vaP,,) in (1b)),
also on §,5,(p). These estimates are instrumental to obtain the compactness in time and space of all the
saturations in the model.

(ii) Compactness. The estimates on the discrete spatial and temporal derivatives, together with the com-
pactness property of the gradient discretisations, yield estimates on the spatial and temporal translates
of the saturations (Lemmas 4.8 and 4.9). A use of the Kolmogorov theorem and of the consistency of
the gradient discretisations (to identify, through Lemma A.2, weak limits of reconstructed gradients and
traces as the gradient and trace of the limit of the approximate solutions) then give the convergences
(11) and (12); this is stated in Theorem 4.11. A discontinuous Ascoli-Arzela theorem (Theorem A.1) is
then applied in Theorem 4.13 to obtain the convergence of the saturations uniformly-in-time and weakly
in L?(Q). This uniform-in-time convergence is essential to pass to the limit, in (iii) below, in the energy
estimate (16) (which involves pointwise-in-time values of the saturations).

(iii) The limit is a solution of the model. The conclusion, presented in Section 4.3, consists in proving that
the limit of the approximate solutions is a solution to the continuous model. As we do not have strong
convergence of the phase pressures u®, the main challenge in analysing this limit arises from the non-
linear upwinding terms [kS]; (THp) Ty [u®]{p — [k‘S];‘(Hép)Tf [u*]4.p- The limit of this term is obtained
by using the monotony properties of this upwinding, a Minty trick, and the discrete energy estimate (16).
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4.1 Preliminary estimates

Let us introduce some useful auxiliary functions. These functions are the same as in [19, 25], with adjustments
to account for the fact that the saturations depends on x and might not vanish at p = 0. For p € {m, f} U x,
let Rg,(x,) be the range of S, (x,-). The pseudo-inverse of S, (x,-) is the mapping [S,(x,)]" : Rg,(x,) = R
defined by
inf{z e R|Su(x,2) =q} if ¢> S5.(x,0),
[SH(X, N'(g) = 0 ifg= S/J(Xv 0),
sup{z € R|S,(x,2) =q} if ¢ < Su(x,0).

That is, [S,(x,-)]"(¢) is the point z in Rg,(x,.) that is the closest to S, (x,0) and such that S, (x,z) = q. The
function B, (x,-) : R — [0, 00] is given by

q .
/ [Su(x,)]"(r)dr  ifge Rsu(x,.) ,
S, (x,0)

00 else.

B#(Xv Q) =

B, (x,-) is convex lower semi-continuous (l.s.c.) and satisfies the following properties [25]

B,(x,8,(x,1)) = /OT 885;] (x,7)dr, (13)

Va,b e R, a(Su(x,b) — Su(x,a)) < B,(x,5,(x,0)) — Bu(x,S,(x,a)) (14)
and, for some K, K7 and K3 not depending on x or r,
K(JSM(X,T)Q — Ky < B,(x,Su(x,7)) < Kor?. (15)

In the following, we write A < B for “A < M B for a constant M depending only on an upper bound of Cp
and on the data in the assumptions of Section 2.2”.

Lemma 4.4 (Energy estimates) Under the assumptions of Section 2.2, let D be a gradient discretisation
with piecewise constant reconstructions Iy, T%. Let (u®)az1,2 € [(X°)NT1? be a solution of the gradient
scheme of (5). Take Ty € (0,T] and k € {0,..., N — 1} such that Ty € (tg,tgs+1]. Then

> [, o () = B, (S, (1T, po))]

pe{m,f}

+Z Z / / [kS]" H%p LVpu® - Vipu®dr,dt

a=1pe{m,f}

3 / Sa(Th,p(T0))) — Bq(Sa(Th,py))] dr (16)

aex
ey / (IS12 T80Ty [0 = ST (o) Ty [ ) [0 i
a= luex
tr41
2303 / BT u® .
o=1 pe{m,f} M
As a consequence,
Z Ju]p S 1+ Z ||HDPO||L2(M )+Z 1T epoll72(r.)- (17)
a=1,2 ne{m,f} aex

Proof We remove the spatial coordinate x in the arguments, when not needed. Reasoning as in [19, Lemma
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4.1], Property (14) gives

th+1
Z /0 /M o, 114 {(5t5'”(p)}ﬂ%pdrudt

pe{m,f}

k
- Z Z/M b 18, Pyr) — S, (5 p,)] T _py, 1 d7

pe{m,f} n=0

k
> Y % / 6 [Bu(Su(TT5_p 1)) — Bo(S, (I p,))] dri
pe{m, £} n=0"Mu
.S / 6, [B, (S, (I p(Tn))) — B(S, (I%_py))] dr (18)
ne{m,f} My

where we have used, by definition, 1%, _p(Ty) = Il p,,, ;- Similarly,

/W / nT%[étSa(p)}T;‘;pdetz / 1 [Ba(Sa(TH,0(T0))) — Ba(Sa(Th,pp))] dr. (19)
0 r, r,

Equation (16) is then obtained by taking v = (ug, ..., ug,,0,...,0) (for a = 1,2) in the gradient scheme (5),
by summing the resulting equations over a = 1,2, by using (18) and (19), and by reducing the time integrals
in the left-hand side from [0, tx+1] to [0, To], due to the non-negativity of the integrands.

The inequality (17) is the consequence of a few simple estimates on the terms of (16) with Ty, = T. For the
symmetric diffusion terms (for « = 1,2 and p € {m, f}), we write

T
L 1 msn)a, Vs - Vputdndt = db, 0V e 0100, (20)
"

where d, = 1 if 4 = m. The matrix—fracture coupling terms are handled by noticing that, for any s € R,
sts=(s)? and s7s = —(57)2, so that fora = 1,2 and a € ¥,

T
| (1 rn Ty T = ST 01 ) 0] ) 1o v

T
= [ (BT TH 01 0)* + 58T () Ty ([ )
Z ||[[ua]]ﬂ7D||%2((0’T)XFﬂ). (21)
Here, we have used [kS]S (Thp) > kq, [kS]?(Hyfgp) > kg and |s|> = (s7)% + (s7)?. Plugging estimates (15), (20)

and (21) in (16) (with Ty = T') and invoking Cauchy—Schwarz inequalities leads to

2
Z [HV%U(X”%%(O’T)XQW + ”V{)ua‘li?‘((oj)xr)d—l + Z H[[ua]]a,DH%?((O,T)XF)}

a=1 acx

2
< Y [ IR0 an T oy + ITEp0l32(a,] + TPl 3o,
pe{m,f} a=1

The proof of (17) is complete by noticing that the left-hand side is equal to Zizl lu®||%, and by using Young’s
inequality and the definition of C'p in the right-hand side. |

The existence of a solution to the gradient scheme follows by a standard fixed point argument based on the
Leray—Schauder topological degree, see e.g. [10, proof of Lemma 3.2] or [23, Step 1 in the proof of Theorem
3.1].

Corollary 4.5 Under the assumptions of Lemma 4.4, there exists a solution to the gradient scheme (5).
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We now want to obtain estimates on the discrete time derivatives. Let the dual norm of W = [w,,,, Wy, (Wq)aey] €
(X )2+ be defined by

Iles*—sup{ > / 6, w, 1T vdr, + > / 0T, w, TstdT:veX°,||v|Ds<1} (22)
pe{m,f} agx

Lemma 4.6 (Weak estimate on time derivatives) Under the assumptions of Section 2.2, let D be a gra-
dient discretisation with piecewise constant reconstructions I, T%. Let (u®)q=1,2 € [(X°)VT1)2 be a solution
of the gradient scheme of (5). Then,

T 2
65, (P)(£), 8,5 (P)(1), (8,54 (P) () aex
Al ...

dt ST+ > w3

a=1,2

Remark 4.7 (Damaged rock modelling) The modelling of the damaged rock type (term 10,SS(VaD,,) 0
(1b)) is essential to obtain the estimate on 6,5,(p) above. These estimates are required to obtain the compactness
of this discrete saturation (see Theorems 4.11 and 4.13).

Proof Take v € X° and apply (5) with o = 1 to the test function (0,...,0,v,0,...,0), where v is at an
arbitrary position n. This shows that, for all n =0,...,N and t € (t,,,1, ]

¢MH;3[5tSM(p)} Wyodr, + / nTD 55 )] () TSvdr

M,

ne{m,f} aex
— He%;f}( /M [Atl . /tt+ h#(s)ds}ﬂ%vdm— /MM [kS], (Tp) (t) Auv%u(t).v%vdm)
3 [ (S rsnO T Olp — 8], () OOz ) [ i

aex
L[ s
s)as
At’nﬁ‘r% tn g

where we have used the definition of Cp in the last step. Taking the supremum over all v such that ||v||ps <1
shows that

[vllps + [lu®)llDs [v]lDs,
L2(M,,)

1 tn+1
Sar— [ @ leands +lu@lo.. 23)
Ds,* Atn+% tn

|[605,(8) (8),85 1 (5) (8), (8,4 (p) (1)

Take the square of this relation, use (a + b)? < 2a? + 2b%, and apply Jensen’s inequality to introduce the square
inside the time integral. Multiply then by At 41 and sum over n to conclude. |
2

Lemma 4.8 (Estimate on time translates) Under the assumptions of Section 2.2, let D be a gradient dis-
cretisation with piecewise constant reconstructions H%, T%. For any h > 0 and any solution (u*)q=12 €

[(XO)NH12 of (5),

> ISu(Tallpp) = S, (Wp) 72 0.0y 0w,y + D 1Sa(TaTHP) = Sa(THP) 1720,y x1,)
ne{m,f} aEx

S+ an(1+ Y uslh), (24)
a=1

where we recall that Tpg(s) = g(s + h) and At = max{At__, : n=0,...,N — 1}, and where all functions of
2
time have been extended by 0 outside (0,T).

Proof Let us start by assuming that A € (0,7), and let us consider integrals over (0,7 — h) (we therefore do
not use extensions outside (0,77) yet). By the Lipschitz continuity and monotonicity of the saturations S, = .5 }L
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we have [S,(b) — S, (a)]* S (S,(b) — S,(a))(b — a). Thus, setting n(s) = min{k = 1,...,N | ¢, > s} for all
s € R,

T—h T—h
> / / (Tallpp) — S, (IWhp)*dr,ds + ) / / (TrhTSp) — S (THp)|*drds

pne{m,f} acx
) #E{Zm:f}/T h/ (T,ITp) — SH(H%p))( )(TITSp — 1% p) ()d7,ds
T—h
/ / Sa(TaTHp) = S4(THp) ) (5)(Ta Thp — Thp) (s)drds
n(s+h)
< 5 Su(p)| (0)( p)(s)didr,
/ ue{mf}/ /n(s) } ThH " H :
3 / " T [5,54(0)] () (TuThp — Tp)(s)dtar ] ds. (25)

In the last line, we simply wrote SH(ThH%p)(s) =S, (I5p)(s) = S, (I5p)(s + h) = S, (I5p)(s) as the sum of
the jumps if S, (TI%p) between s and s + h (likewise for S, (T$Hp)).
For a fixed s, define v € (X?)N+1 by

S Pagern) " Pugsy n(s)+1<k<n(s+h)

else.
With this choice,
Who(t.x) = 1 o 1(0) (Tallsp — W) (s, ),
TaDv(ta X) = ]-(tn(g),t"(s_'_h)](t) (ThT"Zl)p - TDP)(sa X)7
o (26)
Viso(t.x) =1 o (1) (T Visp — Viap)(s.) . and
[oon(t) =1, o1 (Talplap — [Pa)(s,%).

We keep s fixed and concentrate on the integrand of the outer integral in the right-hand side of (25).
Estimate (23), the definition (22) of | - |pg.«, and Young’s inequality yield

> / / .11 65 u (P )]H%vddeZ/ / nTD 55 )]T“Dvdet

pe{m,f} acx

N/O Ol 22 ag,) + Nu@)llps)[[0]ls 1 (t)dt

n(s)’tn(s+h)]
T
2 2
S [ U Ollzzany + @010 1 J O+ Coony — a0l
Returning to (25), integrate the previous estimate over s € (0,7 — h). In this step, it is crucial to realise that

T—h T
tn(SJrh) — tn(s) S h + At and /0 1(tn(5)’tn(s+h)](t)d8 S /0 1[t7h7At,t](S)dS S h + At.

Hence, recalling the definition of v,

RHS(25) < ( + Al) / U llzzar,y + u(®)lps)?dt

T—h T—h
4 / [DagesnBads + / ||pn<s>%sds]

< (A0 1+ ulld + lpl3).
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Since p = u! — u?, this proves (24) with L?(0,T — h) norms in the left-hand side, instead of L?(0,7) norms.
The complete form of (24) follows by recalling that 0 < .5, < 1, so that HSM(H%p)||2L2((T_h7T)XMM) < h (and
similarly for other saturation terms). ||

Lemma 4.9 (Estimate on space translates) Under the assumptions of Section 2.2, let D be a gradient
discretisation with piecewise constant reconstructions Ik, TS, Let (u®)a=12 € [(X°)NTY? be a solution of
(5), and let & = (&,,,&;), with &, € R and Ef = (&})ier € @ 7(Pi), where T(P;) is the (const.) tangent
space of P;. Then, extending the functions IIhp and S, by 0 outside M,

ITe,, S (IBD) = S, (D) 172 (0,7 xmay + Z(HTg;Sf(H;JP) - Sf(Hép)HZm((o,T)xPi)
iel

2
+ Z ||T§7 (Tpp) — Sa(T%P)H%mo,T)xpi)) S Tos (€)Y lullp + (€],
a=a* (i

where we recall that T¢ f(x) = f(x+ (), and Tp, is given in Definition 8.8.

Proof Let us focus on the matrix €2, and remember that, as a function of x, S, is piecewise constant on a
polytopal partition (£2;);es . Write
Te,, S (pp) — Sp(pp) = Sy (x + &, Lpp(x 4 &4, 1) — S (x + &, LD (%, )

Let Q¢ =U;{x€Q;|x+§, #Q}U{xe R\ Q| x+&,, € Q} be the set of points x that do not belong to
the same element 2; as their translate x + §,,,. By assumption on S,,,,

0 R4\ Q¢
sup [, (x+ &) = Sulxal < { ) o e

geR on Q&,rt
Moreover, since each ; is polytopal, Q¢ | < [€,,]. Hence,
[ supstxct €0 - S x)Pxat 5 1 (28)
R4 g€R

On the other hand, by definition of 7Tp, and the Lipschitz continuity of S,,,,

[0+ € T 4,000 — 8,50+ T, 1) st

T
N / /Rd B p(x + €,,, 1) — TBp(x, )| 2dxdt < |[pl|5Tos (€). (29)
0
Plugging (28) and (29) into (27) and reasoning similarly for S I and S, concludes the proof. |

Remark 4.10 This proof is the only place where the assumption that each M{L is polytopal is used; this is to
ensure that |Q¢ | S |€,,| (and likewise for fracture and interfacial terms). Obviously, this asssumption on the
sets Mﬁ could be relazed (e.g., into “each MZL has a Lipschitz-continuous boundary”), but assuming that these
sets are polytopal is not restrictive for practical applications.

4.2 Initial convergences

We can now state our initial convergence theorem for sequences of solutions to gradient schemes. This theorem
does not yet identify the weak limits of such sequences.

Theorem 4.11 (Averaged-in-time convergence of approximate solutions)

Let (D')1ex be a coercive, consistent, limit-conforming and compact sequence of space-time gradient discretisa-
tions, with piecewise constant reconstructions. Let (u®')a—12 1en be such that (u®')a—12 € [(X))MH1)2 is a
solution of (5) with D = D'. Then, there exists (u*)a=1,2 = (W5, U})a=12 € [L*(0,T;V,) x L*(0, T} VJQ)]2 such
that, up to a subsequence as | — oo, the convergences (11) and (12) hold.
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Proof Combining Lemmata 4.4 and A.2 immediately gives (11) up to a subsequence. By assumption, 0 <
S,,Sq < 1 and therefore, by Lemmata 4.8 and 4.9 and the Kolmogorov compactness theorem, there exists a
subsequence of (I}, S, (p')); that strongly converges in L*((0,T) x M,,) and a subsequence of (T, S,(p")); that
strongly converges in LQ((O T) x I'y). Also, by assumption, S,,, 5, are non-decreasing functions, which allows

us to identify the limits in (12) by applying Corollary A.3. |

Let C& be the subspace of functions in Cp°(Q \ T') vanishing on a neighbourhood of the boundary 9.
Define also C° = yr(C§°(9)) as the image of C5°(Q) through the trace operator vyr: H}(Q) — L3(I).

The following lemma and theorem add a uniform-in-time weak L? convergence property to the convergences
established in Theorem 4.11.

Lemma 4.12 (Uniform-in-time, weak-in-space translate estimates) Under the assumptions of Section
2.2, let D be a gradient discretisation with piecewise constant reconstructions I, T%. Let (u*)q=12 €
[(XO)NH1]2 be a solution of the gradient scheme (5), and p = u' —u®. Then, for all ¢ = (¢,,, ;) € CF x C°
and all s,t € [0, T,

> {d,6, 155, (p)(s) — d,¢,IT5S,, (p)(2), Pudia,) T > THS.(0)(5) = nTHSa(P) (), YaPum) 21,

pne{m,f} acx
S Spa(9) + (Spa(9) <1+Z||ua|p> [1s = 1% + (a0)]. (30)

where Cy, only depends on ¢, d; is the width of the fractures, and d,,, =

Proof Let us introduce an interpolant Pp_ : CF x CF° — X0 such that, for all p € CF x C°, sp, (Pp o) =
Sps(p). As in the proof of Lemma 4.8, let n(r) = min{k = 1,...,N | ¢, > r} for all » € [0,T]. Denote by L
the left-hand side of (30) and introduce I3, Pp_¢ in the first sum and T4, Py ¢ in the second sum to write

L< (\<du¢“n%sﬂ<p)(s> = 4,305, () (1), 9~ T P2} 1o ) (31)
pe{m,f}
+ 3 (|5 S )(s) = 1THSa(0) (O Va8 = ThPro#) par ) (32)
acx

+ Y <du¢u[n%su(p)(s)—H%Sﬂ(p)(t)},ﬂ%spos@

2
ne{m,f} LAML)

+ 3 (n[THSa)(5) — THSL(p)B)], T, Pp,e)

acx

SSpa@) | Y (4,0, [0S, (0)(s) — TS, (p)(8)] T P )

L2 (M)
ne{m,f}
£ (n[THSa(p)(5) = THSa(0) ()], TH,Pr,0) |, |- (33)
acx ¢

Here, the terms (31) and (32) have been estimated by using 0 < S, S, < 1 and the definition of Pp,_p. Let L,
be the second addend in (33). Assuming that ¢ < s, and hence n(t) < n(s), write I}, S,,(p)(s) — IS, (p)(t)
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and T%S,(p)(s) — THS,(p)(t) as the sum of their jumps, and recall the definition (22) of | - |pg,« to obtain

n(s)—1
k;_l,_ ( Z <d'u,¢'u,H%5tSu(p)(tk+l)7H%SPDSL)O>L2(M“)
n(t) ne{m,f}
+ Z <77T%5t5u(p)(tk+1)a TuDSPDS<p>L2(MM))
acx

IN

n(s)—1
Y Aty

k=n(t)

T
IPp. el / 1ty i )] [368(0) 1,85 (0) (1), (8,5 () (1) Jacr

(305 (0) 141, 8, (0) (ta2). (350 (0) e |, [Pl

IA

dr.
Dg,*

Use now Lemmata 4.6 and the Cauchy—Schwarz inequality to infer

2 2
L1 5 [P, ¢los (1 +3 ||ua||%> (s =%+ (a)

a=1

N

] (34)
By the triangle inequality,

IPp.ellps < Sps(9) + IVemll2@ye + V05l 2ryer + D Ilelallz2r,) = Sps () + Co.
acx

Plugging this into (34) and the resulting inequality into (33) concludes the proof. |

Theorem 4.13 (Uniform-in-time, weak-in-space convergence) Under the assumptions of Theorem 4.11,
forallpe{m,f} andacy, S ( ) 110, T] = L*(My,) and Sy (YaP,,) : [0,T] = L*(Ty) are continuous for the
weak topologies of L*(M,) and L (I‘a), respectively, and

H%,S#(pl) — S,,(,,) uniformly in [0,T], weakly in L*(M,),

35
908 (0" — Su(VaB,y) uniformly in [0,T), weakly in L*(T), (35)

where the definition of the uniform-in-time weak L? convergence is recalled in Appendiz A.1.

Proof The proof hinges on the discontinuous Arzela-Ascoli theorem (Theorem A.1 in the appendix). Consider
first the matrix saturation. The space R,, = {dp, 1@ | € € C5°(Q2\T)} is dense in L*(Q). Apply (30) to
¢ = (¢,0). Since p; = vap,, = 0, only the term involving S,, remains in the left-hand side. The resulting
estimate and the property 0 < S,, < 1 show that the sequence of functions (¢ — II7%S,, (p')(t))ien satisfies
the assumptions of Theorem A.1 with R = R,,. Hence, (I} S,,(p"))ien has a subsequence that converges
uniformly on [0, 7] weakly in L?(2). Given (12), the weak limit of this sequence must be S,,(B,,)-

A similar reasoning, based on the space Ry = {dfgbfgaf \ pp € Cfio} — which is dense in L?(T") — and using

¢ = (0,) in (30), gives the uniform-in-time weak L*(T") convergence of HéLSf (p') towards S (Dy)-
Let us now turn to the convergence of the trace saturations. Take ¢,, € C§° such that the support of vy.¢,,
is non empty for exactly one a € x. Considering ¢ = (¢,,,0) in (30) leads to

(T3S0 (0')(5) = 1T Sa B (0), Va0 ) |

< Spa(9) + (Sps (%) (1+ZWD> [Is = 1% + (A0)?]

Since it was established that (d,,¢,,I175,S (P)1en converges uniformly-in-time weakly in L2(Q), the sequence
(A @y JI S, (DY), 1) 12(02) )ieN i equi-continuous and the last term in (36) therefore tends to 0 uniformly in /
as s—t — 0. Hence, (36) enables the usage of Theorem A.1, by noticing that {nVa¢,, | ¢m € C ; supp(Yo@,,) =
() for all b € x with b # a} is dense in L?(I',), and gives the uniform-in-time weak L2(I',) convergence of

T:S.). |1
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4.3 Proof of Theorem 4.1

The proof of the main convergence theorem can now be given.

First step: passing to the limit in the gradient scheme.

Let us introduce the family of functions (F§)acy *:

B35 (%, 8) = | Ty [kS]5 (Thip)B* — Ty [kSIF (08" | (1), for all § € L2(T),

. . =1,2
and their continuous counterparts (F®%)gz, "

F0(t,x, 8) = [Ty 10S)5 (aBa) BT = Ty 1RSI ()8 | (t.x),  for all B € LA(T,).
The following properties are easy to check. Firstly, since T, [kS]e and [kS] s are positive and s — st and
s+ —s~ are non-decreasing,

[F;;?(t,x, B) — F&(t,x, 7)} [5(t, x) — 'y(t,x)] >0, forall 8,7 € LA(T,). (37)
Secondly, by the convergences (12), for (3;)ien C L*(T'y) and B € L?(T,),
Bi— B in L*((0,T)xTy) = F(B) — F*(8) in L*((0,T) x T'y). (38)

Thirdly, by Lemma 4.4, the sequences (F3; ([u']q,p1))ien (a € x, @ = 1,2) are bounded in L*((0,T) x T';) and
there exists thus p¢ € L2((0,T) x I'y) such that, up to a subsequence,

Fo ([u'am) = pg  weakly in L*((0,T) x T'). (39)

Consider ¢ = (5, 05) = Yo, 07F © v, where (1°F)uex = (U, 95 )ic,.0 € CF x CF and

(CEL = C5°([0,T)). Take (Ug’l)n:o,...,Nl = (PDl goa(tﬁl))nzoy__’Nz € (XlO)NLJr1 as “test function” in (5).
S

Here, P, is defined as in the proof of Lemma 4.12. Apply the discrete integration-by-parts of [21, Section
S

D.1.7] on the accumulation terms in (5), let I — oo and use standard convergence arguments [19, 21] based on
Theorem 4.11 to see that

T T
Z{ ) (‘/ / ¢M53(ﬁu)8tapgdrudt+/ / [£S]2(5,) A,V - Veadr,dt
0 M, o Ju,

a=1 \ pe{m,f}

- [ 0.5 0,0010.am,)
M,
’ r (40)
+Z( / /F P2 [ ladrdt — / /F NS (VoD ) OsYap s drdt — /F 1SS (VDm0 Va Pl (07.)(17)}
0 o 0 . .

aex
2 T
:Z Z // hi o dryde.
0o JM,

a=1pe{m.f}

Note that Equation (40) also holds for any smooth ¢%, by density of tensorial functions in smooth functions
[17, Appendix D]. Recalling the weak formulation (2), proving Theorem 4.1 is now all about showing that

by / ' /F Rt =3 / ' /F (Tl Tudrd (41)

This is achieved by using Minty’s trick.
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Second step: proof that

l—o0

T
limsup / / F5" [[ua’l]]upz)ﬂuo“l]]a’pszdt < Z/ / pala]«drdt. (42)
aa J0 JT,

Having in mind to employ the energy inequality (16) with Ty = T', we first establish, for u € {m, f} and
a € x, the following convergences as [ — oo:

T
// hoTIL utdr, dt—)// houdr,dt (43)
0o JM,

| B8,y s — [ 0,55, (B0 (4
M, M,

[ 1Bu(Su T3 e — [ aB(Sy b o))ar (45)

a

The convergence (43) is obvious by Theorem 4.11. From the choice (4) of the scheme’s initial conditions,
together with the consistency of the interpolation operator I, H%,Spé — Dy I L? (M,) and T“Dgpé = YaPm.o

in L?(Ty), as | — oo. Then, (15) and [27, Lemma A.1] yield (44) and (45).
We further show that

liminf / 8B, (5, (T o)), > / 6,B,,(S,(7,)(T))dr,. (46)
Ml»"
i || 1B,(S,(Thypho)dr 2 [ nBy(S, () (1) (47)
— 00 Fu
T
lim inf / /]V . (kS (T ph) A, Vi u™t - Vi udr,dt > / / [kS]5 (B,)A, Vg, - Vg dr,dt. (48)

By the uniform-in-time weak L? convergences of Theorem 4.13, S#(H%gplNl) — S,(P,)(T) in L*(M,,) and

Sa(T%lspﬁyl) — 8. (VaP,,)(T) in L*(Ty), as | — co. Note also that, since (by assumption) S, and S, are not

explicitly space-dependent on each open set of the formerly introduced partitions of M, and I'q, respectively,
so are B, and B,. On these partitions, B, and B, are convex Ls.c. and an easy adaptation of [25, Lemma 4.6]
(which essentially states the L2-weak l.s.c. of strongly l.s.c. convex functions on L?), to account for the terms
¢,, and 7, thus shows that (46) and (47) hold. To prove (48), apply the Cauchy-Schwarz inequality to write

T T 1
/ / 6812 (T, ')A, Vs - Vi uldr,dt < ( /0 / (k] (I, ')A, VT Vﬂgdmdt)
I3 , 2 %
x </O / [ks]z(H%zpl)Auv%lua’l : V%Lumldﬂtdt)

and take the inferior limit as [ — oo, using the strong convergence of [kS]Z‘(H’;)L p') and weak convergence of

V%Lu‘” to pass to the limit in the left-hand side and the first term in the right-hand side.
Let us now come back to the proof of (42). Plugging the convergences (43)—(48) into (16) with Ty = T yields

limsup / / Fo ([u'op0) [u®'] o prdrdt

l—o0
<Z// heuddr,dt — // [kS]%(p,) A, VT -V dTﬂdt>
+32 / 0B, (S, (Br0)) A7, — /MM¢#BN(SH(1?H)(T))dTM)

+X( [ aBu(Soapmadr = [0S, D)), (49)
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Recall that C§°([0,7)) ® [C& x O] is dense in (L2((0,T) x My))uefm,f}- Owing to Appendix A.3, we infer
from (40) that ¢,0,S5(B;) € L2(0,T; V'), that ¢,,0,5% (B,) + X o Ve (1015 (YaPyn)) € L2(0,T;V,3') (where ~;
is the adjoint of 7,), and that, for any ¢* € V|

2
Z{ > / $,0055(D,,), ¢ )dt + / / [£S]%(B,) A, VS ch”dT#dt)

ne{m,fy 70

+Z/ / Pl det+/ (105G (YaPm): Yai, dt)} Z > // hSgad,.

acx a=1ue{m,f}

Note that the duality product between (VO)’ and VJP is taken respective to the measure dry(x) = d,(x)d7(x),
and remember the abuse of notation (57). Apply this to ¢* = (uj,,u}). Recalling that S7 =1 —
BtS,%(T?H) = _3“%(15;4) and thus

> / (0,005,(D,), P, dt+Z/ (n0:So(YaPm)s YaPp )t

ne{m,f} aEx

+Z{#€{Zm:f}// [£S]0(B,) A,V Vu“dqﬂt—&—%/ / P[] det}
—Z > / / housdr,dt. (50)

a=1pe{m,f}

S ,» We have

[19, Lemma 3.6] establishes a temporal integration-by-parts property by using arguments purely based on the
time variable, and that can easily be adapted to our context, even considering the “combined” time derivatives
Dm0 Ss (D) + 2 q Va (M9:Sq (VaPy,)) and the heterogeneities of the media treated here — i.e. the presence of ¢,,,
see assumptions in Section 2 2. This adaptation yields

T
| 6508500 vy et = [ 6,8,8,m@Nrs ~ [ 60B(5, )00y
0 My M

and

/0 (G 0e S (Brn) D)t + > / (04 S5 (YaDpm) YaPrm ) dt

= [ nBan @ Oix = [ 6,8, (5, B O)x
" Z( / 188 (P ()T = /F a 1B.(S4(7aP,)(0))dr ).

Plugging these relations into (50) and using (49) concludes the proof of (42).

Third step: conclusion.
As in the first step, take ¢* = (¢5,, 9§) = 22:1 6** @y and set (V)= N1 = (PDl ©*(th ) =0, N1 €

(X0)N'+1. Developing the monotonicity property (37) of FZ", integrating over (0,T) x 'y and summing over
a, o yields

Z/ / Fo ([u™']a D)[[ual]]aDdet—Z/ / Fo ([0 p) (4 0.0 — [0 p)drdt
- Z/ / F5 ([u®']a,0) [v* o, pdrdt > 0.
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Use (38), (39) and (11) to pass to the limit in the second and third integral terms:
T
timsup Y [ [ FR (0 o) [0 pdra
wa /0 JT,

l—o0
> / ) ARG NIy N E NET > / ' st

Use (42) and the density of the tensorial function spaces C§°([0,7)) ® [CF x C°] in L?(0,T;V) (cf. [11,
proposition 2.3]) to obtain

2 /oT [ A [l 2 > /OT [ Fe L@ - [ horat

for all (v*)a=12 € L%*(0,T;V)?. The conclusion is now standard in the Minty trick (see e.g. [21, Proof of
Theorem 3.34]): for any smooth (¢®)a=1,2, choose 7% = T* £ ep® and let ¢ — 0 to derive (41) and conclude
the proof. |

5 Two-phase flow test cases

We present in this section a series of test cases for two-phase flow through a fractured 2 dimensional reservoir
of geometry as shown in Figure 3. The domain 2 is of extension (0,10)m x (0,20)m and the fracture width d
is assumed constant equal to 1 cm. We consider isotropic permeability in the matrix and in the fracture. The
following geological configuration is considered: the matrix and fracture permeabilities are A, = 0.1 Darcy and
Ay =100 Darcy, respectively; the matrix and fracture porosities are ¢,, = 0.2 and ¢; = 0.4, respectively.

Initially, the reservoir is saturated with water (density p? = 1000 kg/m?, viscosity x% = 0.001 Pa.s) and oil
(density p' = 700 kg/m3, viscosity k! = 0.005 Pa.s) is injected from below. Also, hydrostatic distribution of
pressure is assumed. The oil then rises by gravity, thanks to its lower density compared to water. At the lower
boundary of the domain, we impose constant capillary pressure of 0.1 bar and water pressure of 3 bar; at the
upper boundary, the capillary pressure is constant equal to 0 bar and the water pressure is 1 bar. Elsewhere,
homogeneous Neumann conditions are imposed.

Figure 3: Geometry of the
reservoir under consider-

ation. Fracture in red
and matrix domain in blue.
Q = (0,10)mx(0,20)m
and dy = 0.01m.

We use the VAG scheme to obtain solutions for the DFM. We refer to [11] for a presentation of the scheme as
a gradient scheme, and for proofs that, under standard regularity assumptions on the meshes, the corresponding
sequences of gradient discretisations are coercive, GD-consistent, limit-conforming and compact. The tests are
driven on a triangular mesh extended to a 3D mesh with one layer of prisms (we use a 3D implementation of
the VAG scheme). The resulting numbers of cells and degrees of freedom are exhibited in Table 1. The mesh
size is of order 10d;.

The non-linear system of equations occurring at each time step is solved via a Newton algorithm with
relaxation. To solve the linear system obtained at each step of the Newton iteration, we use the sequential
version of the SuperLU direct sparse solver [16, 15]. The stopping criterion on the L! relative residual is
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critf$! .. To ensure well defined values for the capillary pressure, after each Newton iteration, we project

the (oil) saturation on the interval [0,1 — 10~!4]. The time stepping is progressive, i.e. after each iteration,
the upcoming time step is deduced by multiplying the previous one by 2, while imposing a maximal time step
Atmae- If at a given time iteration the Newton algorithm does not converge after 35 iterations, then the actual
time step is divided by 4 and the time iteration is repeated. The number of time step failures at the end of a
simulation is indicated by Ncpop.-

Nb Cells | Nb DOF | Nb DOF el. | critition | Almaz for 0 <t < 1/2d | Alpgy for 1/2d <t < 10 d
5082 10610 5528 1L.E—6 0.01d 0.19d

Table 1: Nb Cells is the number of cells of the mesh; Nb DOF is the number of discrete unknowns; Nb DOF
el. is the number of discrete unknowns after elimination of cell unknowns without fill-in. Time steps used in
the simulations in days (d)

Inside the matrix domain the capillary pressure function is given by Corey’s law p,, = —a, log(l — Sp,)
with a,, = 1 bar. Inside the fracture network, we suppose py = —ayslog(l — Sy) with ay = 0.02 bar. The
matrix and fracture relative permeabilities of each phase « are given by Corey’s laws k2, (S%) = (Sq)? and
kpx (S¢) = S%, and the phase mobilities are defined by & (S;) = K%k?m(Sﬁ‘), w € {m, f} (see Figure 4). The

phase saturations at the interfacial layers are defined by the interpolation
Sg =055, + (1 -0)S%, (51)
with parameter 6 € [0,1]. The mapping S : [0, +00) — [0,1) is a diffeomorphism so the choice
[KST3 = 0K3,(S5) + (1 - O)K3(S7).

is valid, since this function can be written as kg (Sg) with kg(€) = kg, (S5, o (S§)7'(€)) + (1 — O)kF(SF o
(S2)71(¢)). Finally, the interfacial porosity ¢, is set to 0.2 and

i
da = 35,
with parameter € > 0. The parameter 7 is then defined by n = ¢,d,.
Let us start with some remarks. From the capillary pressure functions (cf. figure 4), it is obvious that for
given p, the one-sided jump of the oil saturation is negative, i.e.

Snz(p) - Sf (p) <0. (52)

To account for the interfacial zone properly, the mobilities have to be adjusted by choosing the model
parameter 6 depending on the rock type characteristics of the layer. Obviously, 8 = 0 refers to a fracture rock
type and 6 = 1 to a matrix rock type.

On the other hand, with larger n, the volume of the interfacial layers gets augmented and the interfacial
accumulation terms play a more important role. The availability of the supplementary volume has a direct
impact on the phase front speed inside the fracture during its filling: (51)—(52) show that the volume of oil in
the interfacial layers is strictly decreasing as a function of 6, given a distribution of capillary pressures. This
indicates that, from the accumulation point of view, the fracture front speed should grow with growing 6, and
this effect should be enhanced by a larger 7.
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Figure 4: Curves for capillary pressures and relative permeabilities.
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Figure 5: Fracture oil saturation for time ¢ = 6h.

Figure 5 (a) indicates that, for a fixed § = 0,0.5,1, the solutions are not sensitive to small variations of
e. Quantitatively, we see that the solution for ¢ = 0.1 is close to the solution for ¢ = 107%. With respect to
the computational performance exposed in Table 2, we thus see that choosing ¢ = 0.1 is a good compromise
between accuracy and cost. This point is presented in more detail for the intermediate rock type, i.e. § = 0.5,
in Figure 6. Figure 5 (b) confirms the aforementioned feature of extended (large ¢) interfacial layers to delay
the propagation of the oil in the drain. As suggested, this effect is even more important, with decreasing 6.
In Figure 5 (c), we study the impact of the choice of the interfacial mobility for parameters 6 = 0,0.5,1 on
the solution. Here, the interfacial accumulation is negligible due to an € close to zero. Let us remark that in
the limit of a vanishing interfacial layer, i.e. n = 0, we aim at recovering the fracture mobilities for the mass
exchange fluxes between the matrix-fracture interface and the fracture. Hence, in this case, the right choice of
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6 would be 0. We observe that changing the mobilities does not much influence the solution, due to the fact
that fluxes are mostly oriented from the fracture towards the interfacial layers. The regions where a difference
is observed in the fracture oil front for the different models are those with a small positive oil saturation. There,
the relative permeabilities for # = 0 and € = 0.5 are very close and the difference to 8 = 1 is at its peak; this

explains the behaviour of the fracture front for the three models.

VOLUME OF OIL IN THE MATRIX

VOLUME OF OIL IN THE FRACTURE
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Figure 6: Volume occupied by oil in the matrix, fracture and oil volume normalised by ¢ in the interfacial layers,
for # = 0.5, as a function of time.

0 0 0.5
£ I [IE1[1E6]0] 1 [1LEI|JLE6][0| 1T [LE1[1E6]O
Nay 125 | 125 | 125 125 | 125 | 125 183 | 284 | 377
Npewton | D06 | 521 | 547 513 | 521 | 546 674 | 892 | 1410
Nchop 0 0 0 | [0 0 0 | [227] 61 94 |
CPU | 147 | 160 | 159 151 [ 152 | 170 402 | 860 | 1402

Table 2: Computational cost

Table 2 shows that the computational cost increases with decreasing ¢ and that, in the case of ¢ = 0, the
Jacobian becomes singular. Furthermore, the efficiency severely deteriorates for § = 1. In this case, S, (p) is
(significantly) smaller during the filling of the fracture (for capillary pressures p below a characteristic p; € RT),
since 57, (p) < S%(p). When oil fluxes oriented from the fracture to the interface are present, the Jacobian is
thus ill-conditioned.

6 Conclusion
We introduced a new discrete fracture matrix model for two phase Darcy flow, permitting pressure discontinuity

at the matrix-fracture interfaces. It respects the heterogeneities of the media and between the matrix and the
fractures, since it takes into account saturation jumps due to different capillary pressure curves in the respective
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domains. It also considers damaged layers located at the matrix-fracture interfaces. Another feature of the model
are upwind fluxes between these interfacial layers and the fractures. The upwinding is needed for transport
dominated flow in normal direction to the fractures. The extension to gravity is straightforward (cf. [12]).

We developed the numerical analysis of the model in the framework of the gradient discretisation method,
which contains for example the VAG and HMM schemes. Based on compactness arguments, we showed in
Theorem 4.1 the strong L? convergence of the saturations and the weak L? and H' convergences for the
pressures to a solution of Model (1). In Theorem 4.13, we established uniform-in-time, weak L? in space
convergence for the saturations, a result that is extended to uniform-in-time, strong L? in space convergence in
[26].

Finally, we presented a series of test cases, with the objective to study the impact of the interfacial layer on
the solution. The observed behaviour of the solutions for the different situations corresponds to the expectations.
It exhibits significant differences, during the filling of the fracture, for large interfacial layers and small differences
for small layers. In terms of computational cost, we saw that the presence of a damaged zone at the matrix-
fracture interface is needed in order to solve the linear system of the discrete problem, occurring at each time
step. We also observed that for a large contrast between the drain’s and the interfacial layer’s capillary pressures,
the simulation becomes expensive. Therefore, we see that, in order to cope with both, fractures acting as drains
or as barriers, the possibility to deal with mixed rock types for the damaged zone is essential.

A Appendix

A.1 Uniform-in-time weak L? convergence

Let A be a subset of R, endowed with the standard Lebesgue measure, and {py : £ € N} be a dense countable
set in L2(A). On any bounded ball of L?(A), the weak topology can be defined by the following distance:

min (1, | (v — w,
dist (v, w) = Z L @€>L2(A) )

2¢
(eN

A sequence (v, )men of bounded functions [0, 7] — L?*(A) converges uniformly on [0, 7] weakly in L?(A) to some
v if it converges uniformly for the weak topology of L?(A), meaning that, for all ¢ € L?(A), (vm(-), ¢)r2(a) —
(v(-), @) 12(a) uniformly on [0, 7] as m — oo.

With this introductory material, the following result is a consequence of [21, Theorem 4.26] or [19, Theorem
6.2] (see also the reasoning at the end of [19, Proof of Theorem 3.1]).

Theorem A.1 (Discontinuous weak L? Ascoli-Arzela theorem) Let R be a dense subset of L?(A) and
(Um )men be a sequence of functions [0, T] — L?(A) such that

® SUDPpeN SUPie(o,T) [vm ()] 2 (a) < 400,
e for all p € R, there exist w, : [0,T]* — [0,00) and (0(¢))men C [0,00) satisfying
wp(s,t) >0 ass—t—0, dp(p) = 0 asm— oo, and

V(s,t) € 0,T)?, Vm € N, [(Up(8) — vm(t), ) r2(a)| < 6m () + we(s,1).

Then, there exists a function v : [0,T] — L?(A) such that, up to a subsequence as m — o0, Uy, — v uniformly
on [0, T) weakly in L?(A). Moreover, v is continuous on [0,T] for the weak topology of L?(A).

A.2 Generic results on gradient discretisations

The following lemma is a classical result in the context of the standard gradient discretisation method, see e.g.
[21, Lemma 4.7]. We give a sketch of its proof for gradient discretisations adapted to discrete fracture matrix
model.

Lemma A.2 (Regularity of the limit) Let (D');en be a coercive and limit-conforming sequence of gradient
discretisations, and let (v')en be such that v! € (X))N+1 where Ny is the number of time steps of D'. We
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assume that (|v*|pi)iex is bounded. Then, there exists v = (v,,,v;) € L*(0,T;V,%) x L*(0,T; Vy) such that,
up to a subsequence, the following weak convergences hold:

0t =, in L2((0,T) x M,), for p € {m, f},
Vit = Vo, in L2((0,T) x M#) , for p € {m, [}, (53)
T%, 0" — YT, in L2((0,T) x Ty), for alla € x,
[V e = [0]a  in L*((0,T) x T'y), for all a € x.

Proof By coercivity and since (||v!]|pi)ien is bounded, all the sequences in (53) are bounded in their re-
spective spaces. Up to a subsequence, we can therefore assume that there exists v, € L2((0,T) x M,),
€, € L*((0,T) x Mu)d7 Ba € L*((0,T) xT'y) and j, € L*((0,T) x I'y) such that I, o' — v, Vot — €,
THv '~ B, and [[vl]]t1 pl — j, weakly in their respective L? spaces as [ — oo.

Take q € CF x Cr , 0q € C3°(Ty) and p € C§°(0,T). For F' a function of x, set (p ® F)(t,x) = p(t)F(x).
The definition of Wp (see Definition 3.6) yields

V' (p® ) + (g )div(p ® a,,) ) dxdt

+ /T/ (V%Lvl (p@aqy) + (Hélvl)divT(p ® qf))dr(x)dt

_2/ / (0 ® (a, - na)) Troldr(x dt+2// (09 0a) (Tpoo! = Thyo! = [o']g o1 ) dr ()

acx aex
< ||t ot llpll 220, myWoL (@, @a)-

The limit-conformity shows that the right-hand side of this inequality tends to 0. Hence,
/ / (p®a,,) +7, dlv(p®qm))dxdt—|—/ / £ P@CIf)-l—delVT(p@(]f))d (x)dt
Q

-y / / (05 (0, ma)) (9 + /O / (@080 =75 )70 i =0

acx

Applying this to (q,¢,) = ((q,,,0),0) with q,, € C5°(Q2 \ T')%, and using the density of tensorial functions
{Zi\le pr®4q,, : NeN, p. € C5(0,T), q,, € C(Q\T)4} in C$°((0,T) x (2\T))4 (see [17, Appendix D])
shows that &, = V7,, Wlth (a,0,) = ((0 qf) 0) where q; € C§°(I' l)d ', we obtain §; = V7. Considering
now (q,¢,) = ((a,,,0),0) with q,, € C°(Q2\ T')? and applying the divergence theorem gives 8, = Va0,
Finally, taking (q,¢,) = ((0,0), p,) with a general p, € C5°(T'a) yields j, = B, =0 = Va¥,, =y = [0]a- |1

With [29, Lemma 3.6], we can state the following.

Corollary A.3 Under the assumptions of Lemma A.2, if g, : R — R (u € {m, f}) and g, : R = R (a € x) are
continuous, non-decreasing functions and if (I}, g, (v')); strongly converges in L*((0,T) x M,,) and (T, g, (v"));
strongly converges in L*((0,T) x Ty), then

{ H%lg“(vl) - 9,(,) in L*((0,T) x M,,),
T59a(v") = ga(vaT,) i L*((0,T) x Ty).

A.3 Identification of time derivatives

We discuss here how weak formulations, with derivatives on test functions, enable us to recover some regularity
properties on time derivatives of quantities of interest.

Let us start with a classical situation, similar to [19, Remark 1.1]. Let (M,v) be a measured space and
E be a Banach space densely embedded in L?(M), so that E — L?(M) < E’. Assume also that E’ is
separable. Let £ : L?(0,T;E) — R be a continuous linear form and let & C C}([0,T); E) be such that
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Eo={Pe&: ®0,) =0} is dense in L?(0,T; E). Suppose that U € L*(0,T; E) and Uy € L*(M) satisfy, for
all @ € &,

T
—/ / U(t,x)@tfb(t,x)dy(x)dtJr/ Up(x)®(0,x)dv(x) = L(P). (54)
0o Jm M
This relation shows that

Z:0 —/0 /M U(t,x)0:®(t, x)dv(x)dt

is linear (equal to £) on &y, and continuous for the topology of L?(0,T; E). By density of & in this space, = can
be extended into an element of (L?(0,T; E)) = L*(0,T; E’) (see [17, Theorem 1.4.1]). We denote this element
by 0,U, as it clearly corresponds to the distributional derivative of U [17, Section 2.1.2]. By [17, Section 2.5.2]
this shows that U: [0,T] — L?(M) is continuous and, using [17, Proposition 2.5.2] to integrate by parts in (54),
that U(0) = Uy and

T
VO € €, (U, D) 20 L2 (0.1 dE = / (DU (1), (1)) v pdt = L(D). (55)
0

By density of £ in L?(0,T; E), this relation actually holds for any ® € L?(0,T; E).
We now consider the setting in the proof of Theorem 4.1 (see Section 4.3). Fixing M = My, dv = dry,
E=VP, &=CY[0,T};C) and

T T T
L®) = / HaBdrydt - / / BS15 (By) A,V - Vdrydi + 3 / / i (~®)drar).
o Jmy o Jmy o Jr,

aex
and using (40) with ¢, = 0 and ¢§ = @, 90? =0, for a, 8 = 1,2 with a # j, this identifies 9;(¢,S¢(p;)) =
$£0:5¢(Py) as an element of L?(0,T; VfU’).

Let us now deal with a slightly more complicated case, in which the time derivatives of two functions need
to be combined to exhibit a certain regularity. With the same M and E as above, take (N, \) a measured
space and v : E — L?(N) a continuous linear mapping. Assume that U € L?(0,T; E), V € L?(0,T; L?>(N)),
Up € L*(M) and Vy € L%(N), satisfy, for all ¢ € &,

T T
—/ / U(t,x)@tq)(t,x)dy(x)dt—/ /V(t,X)@t’y(@(t))(x)d)\(x)dt
0o Jm o JN
+/ Uo(X)‘I’(O,X)dV(X)ﬁL/ Vo(x)7(2(0))(x)dA(x) = L(®).
M N

The same reasoning as above shows that

(56)

[

s — /0 /M U(t, x)9,®(t, x)dv(x)dt — /0 /N V(t,x)0y(2(2)) (x)dA(x)dt

can be extended into a linear continuous form on L%(0,T;E). Letting v* : L?(N) — E’ be the adjoint of
7 (that is, (g,7(®))r2(v) = (¥*9.®)pr,p for all g € L*(N) and ® € E), the form Z is naturally denoted by
0yU 4+~*9,V. Note that, in this sum, the two terms cannot be separated and it cannot, for example, be asserted
that 0,U € L%*(0,T;E") and v*0;V € L?*(0,T;E’). Then, a reasoning similar to the one in [17] shows that

U++*V:[0,T] — L*(M) is continuous with value Uy +v*Vp at t = 0, and that, for all ® € L(0,T; E),
(U + 40V, @) L2(0,1:8),22(0,1:8) = L(P).

To write more natural equations, in the paper we sometimes make an abuse of notation and separate the two
derivatives. We then write

T T
<8tU+’y*3tV, (I)>L2(0,T;E/),L2(O,T;E) = / <8tU, (I)>dt+/ <'y*8tV,¢>>dt
0 0
(57)

T T
= [ v [ v,
0 0
where, in the right-hand side, the duality brackets do not have indices, to avoid claiming that 9,U € L?(0,T; E’)

or v*0;V € L?(0,T; E'), and to remember that these two terms must be understood together.
Used in (40) with v = v, for all a € x, the above reasoning and notations enable us to identify the (combined)

time derivatives of ¢,,5% (p,,) and >, 7S%(VaP,,) as an element of L?(0,T; Voh.
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