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Numerical analysis of a two-phase flow discrete fracture
model

Jérôme Droniou∗, Julian Hennicker†,‡, Roland Masson†

December 23, 2016

Abstract

We present a new model for two phase Darcy flows in fractured media, in which
fractures are modelled as submanifolds of codimension one with respect to the surrounding
domain (matrix). Fractures can act as drains or as barriers, since pressure discontinuities
at the matrix-fracture interfaces are permitted. Additionally, a layer of damaged rock at
the matrix-fracture interfaces is accounted for. The numerical analysis is carried out in
the general framework of the Gradient Discretisation Method. Compactness techniques
are used to establish convergence results for a wide range of possible numerical schemes;
the existence of a solution for the two phase flow model is obtained as a byproduct of the
convergence analysis. A series of numerical experiments conclude the paper, with a study
of the influence of the damaged layer on the numerical solution.

1 Introduction

Flow and transport in fractured porous media are of paramount importance for many appli-
cations such as petroleum exploration and production, geological storage of carbon dioxide,
hydrogeology, or geothermal energy. Two classes of models, dual continuum and discrete frac-
ture models, are typically employed and possibly coupled to simulate flow and transport in
fractured porous media. Dual continuum models assume that the fracture network is well con-
nected and can be homogenised as a continuum coupled to the matrix continuum using transfer
functions. On the other hand, discrete fracture models (DFM), on which this paper focuses,
represent explicitly the fractures as co-dimension one surfaces immersed in the surrounding
matrix domain. The use of lower dimensional rather than equi-dimensional entities to repre-
sent the fractures has been introduced in [3, 7, 28, 33, 34] to facilitate the grid generation and to
reduce the number of degrees of freedom of the discretised model. The reduction of dimension
in the fracture network is obtained from the equi-dimensional model by integration and averag-
ing along the width of each fracture. The resulting so called hybrid-dimensional model couple
the 3D model in the matrix with a 2D model in the fracture network taking into account the
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jump of the normal fluxes as well as additional transmission conditions at the matrix-fracture
interfaces. These transmission conditions depend on the mathematical nature of the equi-
dimensional model and on additional physical assumptions. They are typically derived for a
single phase Darcy flow for which they specify either the continuity of the pressure in the case
of fractures acting as drains [3, 8] or Robin type conditions in order to take into account the
discontinuity of the pressure for fractures acting either as drains or barriers [4, 10, 28, 34].

Fewer works deal with the extension of hybrid-dimensional models to two-phase Darcy flows.
Most of them build directly the model at the discrete level as in [7, 31, 37] or are limited to
the case of continuous pressures at the matrix-fracture interfaces as in [7, 9, 37]. In [32], an
hybrid-dimensional two-phase flow model with discontinuous pressures at the matrix-fracture
interfaces is proposed using a global pressure formulation. However, the transmission conditions
at the interface do not take into account correctly the transport from the matrix to the fracture.

In this paper, a new hybrid-dimensional two-phase Darcy flow model is proposed accounting
for complex networks of fractures acting either as drains or barriers. The model takes into ac-
count discontinuous capillary pressure curves at the matrix-fracture interfaces. It also includes
a layer of damaged rock at the matrix-fracture interface with its own mobility and capillary
pressure functions. This additional layer is not only a modelling tool, it also plays a major
role in the numerical analysis of the model and in the convergence of the non-linear Newton
iterations required to solve the discrete equations.

The discretisation of hybrid-dimensional Darcy flow models has been the object of many
works using cell-centred Finite Volume schemes with either Two Point or Multi Point Flux
Approximations (TPFA and MPFA) [1, 2, 4, 30, 33, 38, 40], Mixed or Mixed Hybrid Finite El-
ement methods (MFE and MHFE) [3, 31, 34], Hybrid Mimetic Mixed Methods (HMM, which
contains mixed-hybrid finite volume and mimetic finite difference schemes [19]) [5, 8, 10, 27],
Control Volume Finite Element Methods (CVFE) [7, 30, 35–37] or also the Vertex Approximate
Gradient (VAG) scheme [8–10, 41]. Let us also mention that non-matching discretisations of
the fracture and matrix meshes are studied for single phase Darcy flows in [6, 12, 29, 39]. The
convergence analysis for single-phase flow models with a single fracture is established in [3, 34]
for MFE methods, in [12] for non matching MFE discretisations, and in [4] for TPFA dis-
cretisations. The case of single-phase flows with complex fracture networks is studied in the
general framework of gradient discretisations in [8] for continuous pressure models and in [10]
for discontinuous pressure models. For hybrid-dimensional two-phase flow models, the only
convergence analysis is to our knowledge done in [9] for the VAG discretisation of the con-
tinuous pressure model with fractures acting only as drains. Let us recall that the gradient
discretisation method (GDM) enables convergence analysis of both conforming and non con-
forming discretisations for linear and non-linear second order diffusion and parabolic problems.
It accounts for various discretisations such as conforming Finite Element methods, MFE and
MHFE methods, some TPFA and symmetric MPFA schemes, and the VAG and HHM schemes
[21]. The main advantage of this framework is to provide the convergence proof for all schemes
satisfying some abstract conditions at the price of a single convergence analysis for a given
model, see e.g. [16, 17, 20, 25, 26]. We refer to the monograph [18] for a detailed presentation
of the GDM.

The main purpose of this paper is to propose an extension of the gradient discretisation
method to our hybrid-dimensional two-phase Darcy flow model. This provides, in an abstract
framework, the convergence of the solution of the gradient scheme to a weak solution of the
model; as a by-product, this proves the existence of such a solution. The numerical analysis
is partially based on the previous work [26] dealing with the gradient discretisation of single
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medium two-phase Darcy flows. The main new difficulty addressed in this work compared
with the analysis of [26] and [9] comes from the transmission conditions at the matrix-fracture
interfaces which involve an upwinding between the fracture phase pressures and the traces of
the matrix phase pressures. Note that, as in [26] and [9], the convergence analysis assumes that
the phase mobilities do not vanish.

The outline of this paper is as follows. Section 2 introduces the geometry of the fracture
network, the function spaces, the strong and weak formulations of the model as well as the
assumptions on the data. Section 3 details the gradient scheme framework including the def-
inition of the abstract reconstruction operators, of the discrete variational formulation, and
of the coercivity, consistency, limit conformity and compactness properties. Section 4 proves
the main result of this paper which is the convergence of the gradient scheme solution to a
weak solution of the model. This convergence is established through compactness arguments,
and requires to establish various compactness results on the approximation solutions: averaged
in time and space, uniform-in-time and weak-in-space, etc. The Minty monotonicity trick is
used to identify the limit of the non-linear term resulting from the the upwinding between the
fracture and matrix phase pressures. Section 5 studies on a 2D numerical example the influence
of the additional layer of damaged rock at the matrix-fracture interface on the solution of the
model. The discretisation used in this test case is based on the VAG scheme which can be
shown from [10] to satisfy the assumptions of our gradient discretisation method. Note that
numerical comparisons of our model with the equi-dimensional model as well as with the contin-
uous pressure model of [9] can be found in [11] without the accumulation term in the interfacial
layer, which plays a minor role in the numerical tests when this layer is thin with respect to
the fracture (see Section 5). It is shown that the discontinuous pressure model analysed in this
paper is more accurate than the continuous pressure model of [9] even in the case of fracture
acting only as drains; this improved accuracy is due to more accurate transmission conditions
at the matrix-fracture interfaces, in particular in the case of gravity dominant flows.

2 Notation and model

2.1 Geometry

Let Ω denote a bounded domain of Rd (d = 2, 3), polyhedral for d = 3 and polygonal for d = 2.
To fix ideas the dimension will be fixed to d = 3 when it needs to be specified, for instance in
the naming of the geometrical objects or for the space discretisation in the next section. The
adaptations to the case d = 2 are straightforward.

Let Γ =
⋃
i∈I Γi and its interior Γ = Γ \ ∂Γ denote the network of fractures Γi ⊂ Ω, i ∈ I.

Each Γi is a planar polygonal simply connected open domain included in a plane Pi of Rd. It
is assumed that the angles of Γi are strictly smaller than 2π, and that Γi ∩Γj = ∅ for all i 6= j.
For all i ∈ I, let us set Σi = ∂Γi, with nΣi as unit vector in Pi, normal to Σi and outward
to Γi. Further Σi,j = Σi ∩ Σj for i 6= j, Σi,0 = Σi ∩ ∂Ω, Σi,N = Σi \ (

⋃
j∈I\{i}Σi,j ∪ Σi,0),

Σ =
⋃

(i,j)∈I×I,i 6=j(Σi,j \ Σi,0) and Σ0 =
⋃
i∈I Σi,0. It is assumed that Σi,0 = Γi ∩ ∂Ω.

We define the two unit normal vectors na±(i) at each planar fracture Γi, such that na+(i) +
na−(i) = 0 (cf. figure 1). We define the set of indices χ = {a+(i), a−(i) | i ∈ I}, such that
#χ = 2#I. For ease of notation, we use the convention Γa+(i) = Γa−(i) = Γi.

For a = a±(i) ∈ χ, we denote by γa the one-sided trace operator on Γa. It satisfies the
condition γa(h) = γa(h �ωa), where ωa = {x ∈ Ω | (x− y) · na < 0, ∀y ∈ Γi}.
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Figure 1: Example of a 2D domain Ω and 3 intersecting fractures Γi, i = 1, 2, 3. We define the
fracture plane orientations by a±(i) ∈ χ for Γi, i ∈ I.

On the fracture network Γ, the tangential gradient is denoted by ∇τ , and such that

∇τv = (∇τivi)i∈I ,

where, for each i ∈ I, the tangential gradient ∇τi is defined by fixing a reference Cartesian
coordinate system of the plane Pi containing Γi. In the same manner, we denote by divτq =
(divτiqi)i∈I the tangential divergence operator.

2.2 Continuous model and hypotheses

We describe here the continuous model and assumptions that are implicitly made throughout
the paper. In the matrix domain Ω \ Γ, let us denote by Λm ∈ L∞(Ω)d×d the symmetric
permeability tensor, chosen such that there exist λm ≥ λm > 0 with

λm|ζ|2 ≤ Λm(x)ζ · ζ ≤ λm|ζ|2 for all ζ ∈ Rd,x ∈ Ω.

Analogously, in the fracture network Γ, we denote by Λf ∈ L∞(Γ)(d−1)×(d−1) the symmetric
tangential permeability tensor, and assume that there exist λf ≥ λf > 0, such that

λf |ζ|2 ≤ Λf (x)ζ · ζ ≤ λf |ζ|2 for all ζ ∈ Rd−1,x ∈ Γ.

On the fracture network Γ, we introduce an orthonormal system
(τ1(x), τ2(x),n(x)), defined a.e. on Γ. Inside the fractures, the normal direction is assumed
to be a permeability principal direction. The normal permeability λf,n ∈ L∞(Γ) is such that
λf,n ≤ λf,n(x) ≤ λf,n for a.e. x ∈ Γ with 0 < λf,n ≤ λf,n. We also denote by df ∈ L∞(Γ) the

width of the fractures, assumed to be such that there exist df ≥ df > 0 with df ≤ df (x) ≤ df
for a.e. x ∈ Γ. The half normal transmissibility in the fracture network is denoted by

Tf =
2λf,n
df

.

Furthermore, φm and φf are the matrix and fracture porosities, respectively, ρα ∈ R+ denotes
the density of phase α (with α = 1 the non-wetting and α = 2 the wetting phase) and g ∈ Rd

is the gravitational vector field. We assume that φ
m,f
≤ φm,f ≤ φm,f , for some φ

m,f
, φm,f > 0.

(kαm, k
α
f ) and (Sαm, S

α
f ) are the matrix and fracture phase mobilities and saturations, respectively.

Hypothesis on these functions are stated below.
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The PDEs model writes: find phase pressures (uαm, u
α
f ) and velocities (qαm,q

α
f ) (α = 1, 2),

such that

φm∂tS
α
m(pm) + div(qαm) = hαm on (0, T )× Ω \ Γ

qαm = −[kS]αm(pm) Λm∇uαm on (0, T )× Ω \ Γ

φfdf∂tS
α
f (pf ) + divτ (q

α
f )−

∑
a∈χ

Qα
f,a = dfh

α
f on (0, T )× Γ

qαf = −df [kS]αf (pf ) Λf∇τuf on (0, T )× Γ

(pm, pf )|t=0 = (pm,0, pf,0) on (Ω \ Γ)× Γ.

(1a)

The matrix-fracture coupling condition on (0, T )× Γa (for all a ∈ χ) are{
qαm · na +Qα

f,a = η∂tS
α
a (γapm)

Qα
f,a = [kS]αf (pf )TfJuαK−a − [kS]αa (γapm)TfJuαK+

a ,
(1b)

where η = daφa with given parameters da ∈ (0,
df
2

) and φa ∈ (0, 1]. In these equations, we have

S2
µ = 1− S1

µ for µ ∈ {m, f} ∪ χ, and (pm, pf ) = (u1
m − u2

m, u
1
f − u2

f ). (1c)

Sf (pf)

Qα
f,a

Sα
a (γapm)qα

m

qα
m·na

qα
f

df

Figure 2: Illustration of the coupling con-
dition. It can be seen as an upwind two
point approximation of Qα

f,a. The upwind-
ing takes into account the damaged rock
type at the matrix-fracture interfaces. The
arrows show the positive orientation of the
normal fluxes qαm · na and Qα

f,a.

In the above, we used the short hand notations

JuαKa = γau
α
m − uαf , JuαK+

a = max(0, JuαKa) and JuαK−a = J−uαK+
a

as well as, for µ ∈ {m, f} ∪ χ, ϕµ ∈ L2((0, T )×Mµ) and a.e. (t,x) ∈ (0, T )×Mµ,

Sαµ (ϕµ)(t,x) = Sαµ (x, ϕµ(t,x)) and [kS]αµ(ϕµ)(t,x) = kαµ(x, Sαµ (x, ϕµ(t,x))).

Here and in the following, Mµ is defined by

Mµ =


Ω if µ = m
Γ if µ = f
Γa if µ = a ∈ χ.

The various boundary conditions imposed on the domain are: homogeneous Dirichlet conditions
at the boundary of the domain, pressure continuity and flux conservation at the fracture-fracture
intersections, and zero normal flux at the immersed fracture tips. In other words,

γ∂Ω\∂Γum = 0 on ∂Ω \ ∂Γ, γ∂Ω∩∂Γuf = 0 on ∂Ω ∩ ∂Γ∑
i∈I

qf,i · nΣi = 0 on Σ, qf,i · nΣi = 0 on Σi,N , i ∈ I
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Let us define L2(Γ) = {v = (vi)i∈I , vi ∈ L2(Γi), i ∈ I}. The assumptions under which the
model is considered are:

• pm,0 ∈ H1(Ω \ Γ) and pf,0 ∈ L2(Γ),

• For µ ∈ {m, f} and α = 1, 2, hαµ ∈ L2((0, T )×Mµ),

• For µ ∈ {m, f} ∪ χ: S1
µ : Mµ × R → [0, 1] is a Caratheodory function; for a.e. x ∈

Mµ, S1
µ(x, ·) is a non-decreasing Lipschitz continuous function on R; S1

µ(·, q) is piecewise
constant on a finite partition (M j

µ)j∈Jµ of polytopal subsets of Mµ for all q ∈ R.

• For α = 1, 2 and µ ∈ {m, f} ∪ χ: there exist constants kµ,min, kµ,max > 0, such that
kαµ : Mµ × [0, 1]→ [kµ,min, kµ,max] is a Caratheodory function.

Recall that a Caratheodory function is measurable w.r.t. its first argument and continuous
w.r.t. its second argument.

2.3 Weak formulation

Let us define the subspace H1(Γ) of L2(Γ) consisting of functions v = (vi)i∈I such that vi ∈
H1(Γi) for all i ∈ I, with continuous traces at the fracture intersections Σi,j for all i 6= j. Its
subspace of functions with vanishing traces on Σ0 is denoted by H1

Σ0
(Γ).

Let us now define the hybrid-dimensional function spaces that are used as variational spaces
for the Darcy flow model. Starting from

V = H1(Ω \ Γ)×H1(Γ),

consider the subspace
V 0 = V 0

m × V 0
f

where (with γ∂Ω : H1(Ω\Γ)→ L2(∂Ω) the trace operator on ∂Ω)

V 0
m = {v ∈ H1(Ω\Γ) | γ∂Ωv = 0 on ∂Ω} and V 0

f = H1
Σ0

(Γ).

The weak formulation of (1) amounts to finding (uαm, u
α
f )α=1,2 ∈ [L2(0, T ;V 0

m)×L2(0, T ;V 0
f )]2

satisfying the following variational equalities, for any α = 1, 2 and any (ϕαm, ϕ
α
f ) ∈ C∞0 ([0, T )×

Ω)× C∞0 ([0, T )× Γ):∑
µ∈{m,f}

(
−
∫ T

0

∫
Mµ

φµS
α
µ (pµ)∂tϕ

α
µdτµdt+

∫ T

0

∫
Mµ

[kS]αµ(pµ) Λµ∇uαµ · ∇ϕαµdτµdt

−
∫
Mµ

φµS
α
µ (pµ,0)ϕαµ(0, ·)dτµ

)
+
∑
a∈χ

(∫ T

0

∫
Γa

Tf

(
[kS]αa (γapm)JuαK+

a − [kS]αf (pf )Ju
αK−a
)
JϕαKadτdt

−
∫ T

0

∫
Γa

ηSαa (γapm)∂tγaϕ
α
mdτdt−

∫
Γa

ηSαa (γapm,0)γaϕ
α
m(0, ·)dτ

)
=

∑
µ∈{m,f}

∫ T

0

∫
Mµ

hαµϕ
α
µdτµ.

(2)
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Here,

dτµ(x) =

{
dx if µ = m
dτf (x) = df (x)dτ(x) if µ = f

with dτ(x) the d− 1 dimensional Lebesgue measure on Γ.

3 The gradient discretisation method

The gradient discretisation method consists in selecting a set (gradient discretisation) of a
finite-dimensional space and reconstruction operators on this space, and in substituting them
for their continuous counterpart in the weak formulation of the model. The scheme thus
obtained is called a gradient scheme. Let us first define the set of discrete elements that make
up a gradient discretisation.

Definition 3.1 (Gradient discretisation (GD)) A spatial gradient discretisation for a dis-
crete fracture model is DS = (X0, (Πµ

DS ,∇
µ
DS)µ∈{m,f}, (J·Ka,DS)a∈χ, (Ta

DS)a∈χ), where

• X0 is a finite dimensional space of degrees of freedom,

• For µ ∈ {m, f}, Πµ
DS : X0 → L2(Mµ) reconstructs a function on Mµ from the DOFs,

• For µ ∈ {m, f}, ∇µ
DS : X0 → L2(Mµ)

dimMµ reconstructs a gradient on Mµ from the DOFs,

• For a ∈ χ, J·Ka,DS : X0 → L2(Γa) reconstructs, from the DOFs, a jump on Γa between the
matrix and fracture,

• For a ∈ χ, Ta
DS : X0 → L2(Γa) reconstructs, from the DOFs, a trace on Γa from the

matrix.

These operators must be chosen such that the following defines a norm on X0:

‖w‖DS =
(
‖∇m
DSw‖2

L2(Ω)d
+ ‖∇f

DSw‖
2
L2(Γ)d−1 +

∑
a∈χ
‖JwKa,DS‖2

L2(Γa)

)1/2

.

The gradient discretisation DS is extended to a space-time gradient discretisation by setting
D = (DS, (IµD)µ∈{m,f}, (tn)n=0,...,N) with

• 0 = t0 < t1 < · · · < tN = T is a discretisation of the time interval [0, T ],

• ImD : H1(Ω \ Γ) → X0 and IfD : L2(Γ) → X0 are operators designed to interpolate initial
conditions.

The space-time operators act on a family u = (un)n=0,...,N ∈ (X0)N+1 the following way: for all
n = 0, . . . , N − 1 and all t ∈ (tn, tn+1],

Πµ
Du(t, ·) = Πµ

DSun+1, ∇µ
Du(t, ·) = ∇µ

DSun+1,

Ta
Du(t, ·) = Ta

DSun+1, JuKa,D(t, ·) = Jun+1Ka,DS .

We extend these functions at t = 0, by considering the corresponding spatial operators on u0.
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If w = (wn)n=0,...,N is a family in X0, the discrete time derivatives δtw : (0, T ] → X0 are
defined such that, for all n = 0, . . . , N − 1 and all t ∈ (tn, tn+1], with ∆t

n+ 1
2

= tn+1 − tn,

δtw(t) =
wn+1 − wn

∆t
n+ 1

2

∈ X0.

Let (eν)ν∈dofD be a basis of X0. If w ∈ X0, we write w =
∑

ν∈dofD wνeν . Then, for g ∈ C(R),

we define g(w) ∈ X0 by g(w) =
∑

ν∈dofD g(wν)eν . In other words, g(w) is defined by applying
g to each degree of freedom of w. Although this definition depends on the choice of basis
(eν)ν∈dofD , we do not indicate that explicitly. This definition of g(w) is particularly meaningful
in the context of piecewise constant reconstructions, see Remark 3.3 below.

The gradient scheme for (1) consists in writing the weak formulation (2) with continuous
spaces and operators substituted by their discrete counterparts, after a formal integration-by-
parts in time. In other words, the gradient scheme is: find (uα)α=1,2 ∈ [(X0)N+1]2 such that,
with p = u1 − u2,

p0 = (ImDpm,0, I
f
Dpf,0) (3)

and, for any α = 1, 2 and vα ∈ (X0)N+1,

∑
µ∈{m,f}

(∫ T

0

∫
Mµ

φµΠµ
D

[
δtS

α
µ (p)

]
Πµ
Dv

αdτµdt+

∫ T

0

∫
Mµ

[kS]αµ(Πµ
Dp) Λµ∇µ

Du
α · ∇µ

Dv
αdτµdt

)
+
∑
a∈χ

(∫ T

0

∫
Γa

(
[kS]αa (Ta

Dp)TfJuαK+
a,D − [kS]αf (Πf

Dp)TfJuαK−a,D
)
JvαKa,Ddτdt

+

∫ T

0

∫
Γa

ηTa
D

[
δtS

α
a (p)

]
Ta
Dv

αdτdt
)

=
∑

µ∈{m,f}

∫ T

0

∫
Mµ

hαµΠµ
Dv

αdτµdt. (4)

3.1 Properties of gradient discretisations

The convergence analysis of the GDM is based a few properties that sequences of GDs must
satisfy.

Definition 3.2 (Piecewise constant reconstruction operator) Let (eν)ν∈dofD be the basis
of X0 chosen in Section 3. For µ ∈ {m, f} ∪ χ, an operator Π : X0 → L2(Mµ) is called
piecewise constant if it has the representation

Πu =
∑

ν∈dofD

uν1ωµν for all u =
∑

ν∈dofD

uνeν ∈ X0,

where (ωµν )ν∈dofD is a partition of Mµ up to a set of zero measure, and 1ωµν is the characteristic
function of ωµν .

In the following, all considered function reconstruction operators are assumed to be of
piecewise constant type.

Remark 3.3 Recall that, if g ∈ C0(R) and u ∈ X0, then g(u) ∈ X0 is defined by the degrees of
freedom (g(uν))ν∈dofD . Then, any piecewise constant reconstruction operator Π commutes with
g in the sense that g(Πu) = Πg(u).
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The coercivity property enables us to control the functions and trace reconstruction by the
norm on X0. This is a combination of a discrete Poincaré and a discrete trace inequality.

Definition 3.4 (Coercivity of spatial GD) Let

CDS = max
06=v∈X0

‖Πm
DSv‖L2(Ω) + ‖Πf

DSv‖L2(Γ) +
∑

a∈χ ‖Ta
DSv‖L2(Γa)

‖v‖DS
.

A sequence (DlS)l∈N of gradient discretisations is coercive if there exists CP > 0 such that
CDlS ≤ CP for all l ∈ N.

The consistency ensures that a certain interpolation error goes to zero along sequences of
GDs.

Definition 3.5 (Consistency of spatial GD) For u = (um, uf ) ∈ V 0 and v ∈ X0, define

sDS(v, u) = ‖∇m
DSv −∇um‖L2(Ω)d + ‖∇f

DSv −∇τuf‖L2(Γ)d−1

+ ‖Πm
DSv − um‖L2(Ω) + ‖Πf

DSv − uf‖L2(Γ)

+
∑
a∈χ

(
‖JvKa,DS − JuKa‖L2(Γa) + ‖Ta

DSv − γaum‖L2(Γa)

)
,

and SDS(u) = minv∈X0 sDS(v, u). A sequence (DlS)l∈N of gradient discretisations is GD-consistent
(or consistent for short) if, for all u = (um, uf ) ∈ V 0,

lim
l→∞
SDlS(u) = 0.

To define the notion of limit-conformity, we need the following two spaces:

C∞Ω = C∞b (Ω \ Γ)
d
,

C∞Γ =
{

qf = (qf,i)i∈I | qf,i ∈ C∞(Γi)
d−1

,
∑

i∈I
qf,i · nΣi = 0 on Σ,

qf,i · nΣi = 0 on Σi,N , i ∈ I
}
,

where C∞b (Ω\Γ) ⊂ C∞(Ω\Γ) is the set of functions ϕ, such that for all x ∈ Ω there exists r > 0,
such that for all connected components ω of {x+y ∈ Rd | |y| < r}∩(Ω\Γ) one has ϕ ∈ C∞(ω),
and such that all derivatives of ϕ are bounded. The limit-conformity imposes that, in the limit,
the discrete gradient and function reconstructions satisfy a natural integration-by-part formula
(Stokes’ theorem).

Definition 3.6 (Limit-conformity of spatial GD) For all q = (qm,qf ) ∈ C∞Ω ×C∞Γ , ϕa ∈
C∞0 (Γa) and v ∈ X0, define

wDS(v,q, ϕa) =

∫
Ω

(
∇m
DSv · qm + (Πm

DSv)divqm

)
dx

+

∫
Γ

(
∇f
DSv · qf + (Πf

DSv)divτqf

)
dτ(x)

−
∑
a∈χ

∫
Γa

qm · naT
a
DSvdτ(x)

+
∑
a∈χ

∫
Γa

ϕa

(
Ta
DSv − Πf

DSv − JvKa,DS
)

dτ(x)
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and WDS(q, ϕa) = max06=v∈X0
1

‖v‖DS
|wDS(v,q, ϕa)|. A sequence (DlS)l∈N of gradient discretisa-

tions is limit-conforming if, for all q = (qm,qf ) ∈ C∞Ω ×C∞Γ and all ϕa ∈ C∞0 (Γa),

lim
l→∞
WDlS(q, ϕa) = 0.

Remark 3.7 (Domain of WDS) Usually, the measure WDS of limit-conformity is defined on
spaces in which the Darcy velocities of solutions to the model are expected to be, not smooth
spaces as C∞Ω ×C∞Γ [18, Definition 2.6]. However, if we do not aim at obtaining error estimates
(which is the case here, given that such estimates would require unrealistic regular assumptions
on the data and the solution), WDS only needs to be defined and to converge to 0 on spaces of
smooth functions – see Lemma A.2.

For any space dependent function f , define Tξf(x) = f(x + ξ). Likewise, for any time
dependent function g, let Thg(t) = g(t + h). The compactness property ensures a sort of
discrete Rellich theorem (compact embedding of H1

0 into L2). By the Kolmogorov theorem,
this compactness is equivalent to a uniform control of the translates of the functions.

Definition 3.8 (Compactness of spatial GD) For all v ∈ X0 and ξ = (ξm, ξf ), with ξm ∈
Rd and ξf = (ξif )i∈I ∈

⊕
i∈I τ(Pi), where τ(Pi) is the (constant) tangent space of Pi, define

τDS(v, ξ) = ‖TξmΠm
DSv − Πm

DSv‖L2(Rd)

+
∑
i∈I

(
‖Tξif

Πf
DSv − Πf

DSv‖L2(Pi) +
∑

a=a±(i)

‖Tξif
Ta
DSv − Ta

DSv‖L2(Pi)
)
,

where all the functions on Ω (resp. Γi) have been extended to Rd (resp. Pi) by 0 outside their
initial domain. Let TDS(ξ) = max06=v∈X0

1
‖v‖DS

τDS(v, ξ). A sequence (DlS)l∈N of gradient dis-

cretisations is compact if
lim
|ξ|→0

sup
l∈N
TDlS(ξ) = 0.

All these properties for spatial GDs naturally extend to space–time GDs with, for the
consistency, additional requirements on the time steps and on the interpolants of the initial
conditions.

Definition 3.9 (Properties of space-time gradient discretisations) A sequence of space-
time gradient discretisations (Dl)l∈N is

1. Coercive if (DlS)l∈N is coercive.

2. Consistent if

(i) (DlS)l∈N is consistent,

(ii) ∆tl = maxn=0,...,N−1 ∆tl
n+ 1

2

→ 0 as l→∞, and

(iii) For all ϕm ∈ H1(Ω \ Γ),

‖ϕm − Πm
DlS

ImDlϕm‖L2(Ω) +
∑
a∈χ
‖γaϕm − Ta

DlS
ImDlϕm‖L2(Γa) −→ 0 as l→∞

and, for all ϕf ∈ L2(Γ), ‖ϕf − Πf

DlS
IfDlϕf‖L2(Γ) −→ 0 as l→∞.
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3. Limit-conforming if (DlS)l∈N is limit-conforming.

4. Compact if (DlS)l∈N is compact.

Elements of (X0)N+1 are identified with functions (0, T ]→ X0 by setting, for u ∈ (X0)N+1

with u = (un)n=0,...,N ,

∀n = 0, . . . , N − 1 , ∀t ∈ (tn, tn+1] , u(t) = un+1. (5)

This definition is compatible with the choices of space-time operators made in Definition 3.1,
in the sense that, for any t ∈ (0, T ], Πµ

Du(t,x) = Πµ
DS(u(t))(x) (and similarly for the other

reconstruction operators). With the identification (5), the norm on (X0)N+1 is

‖u‖2
D =

∫ T

0

‖u(t)‖2
DSdt.

4 Convergence analysis

In the rest of this paper, when the phase parameter α is absent it implicitly mean that it is
equal to 1 so, e.g., we write Sµ for S1

µ. The main convergence result is the following.

Theorem 4.1 (Convergence Theorem) Let (Dl)l∈N be a coercive, consistent, limit-confor-
ming and compact sequence of space-time gradient discretisations, with piecewise constant re-
constructions. Then for any l ∈ N there is a solution (uα,l)α=1,2 of (4) with D = Dl.

Moreover, there exists (uα)α=1,2 = (uαm, u
α
f )α=1,2 ∈ [L2(0, T ;V 0

m)× L2(0, T ;V 0
f )]2 solution of

(2), such that, up to a subsequence as l→∞,

1. The following weak convergences hold, for α = 1, 2,
Πµ
Dlu

α,l ⇀ uαµ in L2((0, T )×Mµ) , for µ ∈ {m, f},
∇µ
Dlu

α,l ⇀ ∇uαµ in L2((0, T )×Mµ)
dimMµ , for µ ∈ {m, f},

Ta
Dlu

α,l ⇀ γau
α
m in L2((0, T )× Γa) , for all a ∈ χ,

Juα,lKa,Dl ⇀ JuαKa in L2((0, T )× Γa) , for all a ∈ χ.
(6)

2. The following strong convergences hold, with p = u1 − u2 and pµ = u1
µ − u2

µ:{
Πµ
DlSµ(pl)→ Sµ(pµ) in L2((0, T )×Mµ) , for µ ∈ {m, f},

Ta
DlSa(p

l)→ Sa(γapm) in L2((0, T )× Γa) , for all a ∈ χ. (7)

Remark 4.2 It is additionally proved in [23] that the saturations converge uniformly-in-time
strongly in L2 (that is, in L∞(0, T ;L2)).
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4.1 Preliminary estimates

Let us introduce some useful auxiliary functions. These functions are the same as in [16, 22],
with basic adjustment to account for the fact that the saturation might not vanish at p = 0.
For µ ∈ {m, f} ∪ χ, let RSµ(x,·) be the range of Sµ(x, ·). The pseudo-inverse of Sµ(x, ·) is the
mapping [Sµ(x, ·)]i : RSµ(x,·) → R defined by

[Sµ(x, ·)]i(q) =


inf{z ∈ R |Sµ(x, z) = q} if q > Sµ(x, 0) ,
0 if q = Sµ(x, 0) ,
sup{z ∈ R |Sµ(x, z) = q} if q < Sµ(x, 0).

That is, [Sµ(x, ·)]i(q) is the point z in RSµ(x,·) that is the closest to Sµ(x, 0) and such that
Sµ(x, z) = q. The extended function Bµ(x, ·) : R→ [0,∞] is given by

Bµ(x, q) =


∫ q

Sµ(x,0)

[Sµ(x, ·)]i(τ)dτ if q ∈ RSµ(x,·) ,

∞ else.

Bµ(x, ·) is convex lower semi-continuous (l.s.c.) and satisfies the following properties [22]

Bµ(x, Sµ(x, r)) =

∫ r

0

τ
∂Sµ
∂q

(x, τ)dτ, (8)

∀a, b ∈ R , a(Sµ(x, b)− Sµ(x, a)) ≤ Bµ(x, Sµ(x, b))−Bµ(x, Sµ(x, a)) (9)

and, for some K0, K1 and K2 not depending on x or r,

K0Sµ(x, r)2 −K1 ≤ Bµ(x, Sµ(x, r)) ≤ K2r
2. (10)

In the following, we write A . B for “A ≤ MB for a constant M depending only on an
upper bound of CD and on the data in the assumptions of Section 2.2”.

Lemma 4.3 (Energy estimates) Under the assumptions of Section 2.2, let D be a gradient
discretisation with piecewise constant reconstructions Πµ

D, Ta
D. Let (uα)α=1,2 ∈ [(X0)N+1]2 be

a solution of the gradient scheme of (4). Take T0 ∈ (0, T ] and k ∈ {0, . . . , N − 1} such that
T0 ∈ (tk, tk+1]. Then∑
µ∈{m,f}

∫
Mµ

φµ
[
Bµ(Sµ(Πµ

DSp(T0)))−Bµ(Sµ(Πµ
DSp0))

]
dτµ

+
2∑

α=1

∑
µ∈{m,f}

∫ T0

0

∫
Mµ

[kS]αµ(Πµ
Dp)Λµ∇µ

Du
α · ∇µ

Du
αdτµdt

+
∑
a∈χ

∫
Γa

η
[
Ba(Sa(T

a
DSp(T0)))−Ba(Sa(T

a
DSp0))

]
dτ

+
2∑

α=1

∑
a∈χ

∫ T0

0

∫
Γa

(
[kS]αa (Ta

Dp)TfJuαK+
a,D − [kS]αf (Πf

Dp)TfJuαK−a,D
)
JuαKa,Ddτdt

≤
2∑

α=1

∑
µ∈{m,f}

∫ tk+1

0

∫
Mµ

hαµΠµ
Du

αdτµdt.

(11)

12



As a consequence,∑
α=1,2

‖uα‖2
D . 1 +

∑
µ∈{m,f}

‖Πµ
Dp0‖2

L2(Mµ) +
∑
a∈χ
‖Ta
DSp0‖2

L2(Γa). (12)

Proof We remove the spatial coordinate x in the arguments, when not needed. Reasoning as
in [16, Lemma 4.1], Property (9) gives∑

µ∈{m,f}

∫ tk+1

0

∫
Mµ

φµΠµ
D

[
δtSµ(p)

]
Πµ
Dpdτµdt

=
∑

µ∈{m,f}

k∑
n=0

∫
Mµ

φµ
[
Sµ(Πµ

DSpn+1)− Sµ(Πµ
DSpn)

]
Πµ
DSpn+1dτµ

≥
∑

µ∈{m,f}

k∑
n=0

∫
Mµ

φµ
[
Bµ(Sµ(Πµ

DSpn+1))−Bµ(Sµ(Πµ
DSpn))

]
dτµ

=
∑

µ∈{m,f}

∫
Mµ

φµ
[
Bµ(Sµ(Πµ

DSp(T0)))−Bµ(Sµ(Πµ
DSp0))

]
dτµ (13)

where we used, by definition, Πµ
DSp(T0) = Πµ

DSpk+1. Similarly,∫ tk+1

0

∫
Γa

ηTa
D

[
δtSa(p)

]
Ta
Dpdτdt ≥

∫
Γa

η
[
Ba(Sa(T

a
DSp(T0)))−Ba(Sa(T

a
DSp0))

]
dτ. (14)

Equation (11) is then obtained by taking vα = (uα0 , . . . , u
α
k+1, 0, . . . , 0) (for α = 1, 2) in the

gradient scheme (4), by summing the resulting equations over α = 1, 2, by using (13) and (14),
and by reducing the time integrals in the left-hand side from [0, tk+1] to [0, T0], due to the
non-negativity of the integrands.

The inequality (12) is the consequence of a few simple estimates on the terms of (11) with
T0 = T . For the symmetric diffusion terms (for α = 1, 2 and µ ∈ {m, f}), we write∫ T

0

∫
Mµ

[kS]αµ(Πµ
Dp)∇µ

Du
α · ∇µ

Du
αdτµdt ≥ dµ,minkµ,min‖∇µ

Du
α‖2

L2((0,T )×Mµ). (15)

The matrix–fracture coupling terms are handled by noticing that, for any s ∈ R, s+s = (s+)2

and s−s = −(s−)2, so that for α = 1, 2 and a ∈ χ,∫ T

0

∫
Γa

(
[kS]αa (Ta

Dp)TfJuαK+
a,D − [kS]αf (Πf

Dp)TfJuαK−a,D
)
JuαKa,Ddτdt

=

∫ T

0

∫
Γa

(
[kS]αa (Ta

Dp)Tf (JuαK+
a,D)2 + [kS]αf (Πf

Dp)Tf (JuαK−a,D)2dτdt
)

& ‖JuαKa,D‖2
L2((0,T )×Γa). (16)

Here, we used [kS]αa (Ta
Dp) ≥ ka,min, [kS]αf (Πf

Dp) ≥ kf,min and |s|2 = (s+)2 + (s−)2. Using (10),
(15) and (16) in (11) (with T0 = T ), Cauchy–Schwarz inequalities lead to

2∑
α=1

[
‖∇m
Du

α‖2
L2((0,T )×Ω)d

+ ‖∇f
Du

α‖2
L2((0,T )×Γ)d−1 +

∑
a∈χ
‖JuαKa,D‖2

L2((0,T )×Γ)

]
.

∑
µ∈{m,f}

[ 2∑
α=1

‖hαµ‖L2((0,T )×Mµ)‖Πµ
Du

α‖L2((0,T )×Mµ) + ‖Πµ
Dp0‖2

L2(Mµ)

]
+ ‖Ta

DSp0‖2
L2(Mµ).
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The proof of (12) is complete by noticing that the left-hand side is equal to
∑2

α=1 ‖uα‖2
D, and

by using Young’s inequality and the definition of CD in the right-hand side.

The existence of a solution to the gradient scheme follows by a standard fixed point argument
based on the Leray–Schauder topological degree, see e.g. [9, proof of Lemma 3.2] or [20, Step
1 in the proof of Theorem 3.1].

Corollary 4.4 Under the assumptions of Lemma 4.3, there exists a solution to the gradient
scheme (4).

We now want to obtain estimates on the discrete time derivatives. Let the dual norm of
W = [wm, wf , (wa)a∈χ] ∈ (X0)2+]χ be defined by

|W |DS ,∗ = sup

{ ∑
µ∈{m,f}

∫
Mµ

φµΠµ
DSwµΠµ

DSvdτµ +
∑
a∈χ

∫
Γa

ηTa
DSwaT

a
DSvdτ :

v ∈ X0 , ‖v‖DS ≤ 1

} (17)

Lemma 4.5 (Weak estimate on time derivatives) Under the assumptions of Section 2.2,
let D be a gradient discretisation with piecewise constant reconstructions Πµ

D, Ta
D. Let (uα)α=1,2 ∈

[(X0)N+1]2 be a solution of the gradient scheme of (4). Then,∫ T

0

∣∣∣[δtSm(p)(t), δtSf (p)(t), (δtSa(p)(t))a∈χ
]∣∣∣2
DS ,∗

dt . 1 +
∑
α=1,2

‖uα‖2
D

Proof Take v ∈ X0 and apply (4) with α = 1 to the test function (0, . . . , 0, v, 0, . . . , 0), where
v is at an arbitrary position n. This shows that, for all n = 0, . . . , N and t ∈ (tn, tn+1]∑

µ∈{m,f}

∫
Mµ

φµΠµ
D

[
δtSµ(p)

]
(t)Πµ

Dvdτµ +
∑
a∈χ

∫
Γa

ηTa
D

[
δtSa(p)

]
(t)Ta

Dvdτ

=
∑

µ∈{m,f}

(∫
Mµ

[ 1

∆t
n+ 1

2

∫ tn+1

tn

hµ(s)ds
]
Πµ
Dvdτµ −

∫
Mµ

[kS]µ(Πµ
Dp)(t) Λµ∇µ

Du(t) · ∇µ
Dvdτµ

)
−
∑
a∈χ

∫
Γa

(
[kS]a(T

a
Dp)(t)TfJu(t)K+

a,D − [kS]f (Π
f
Dp)(t)TfJu(t)K−a,D

)
JvKa,Ddτ

.

∥∥∥∥∥ 1

∆t
n+ 1

2

∫ tn+1

tn

hµ(s)ds

∥∥∥∥∥
L2(Mµ)

‖v‖DS + ‖u(t)‖DS‖v‖DS ,

where we have used the definition of CD in the last step. Taking the supremum over all v such
that ‖v‖DS = 1 shows that∣∣∣[δtSm(p)(t), δtSf (p)(t), (δtSa(p)(t))a∈χ

]∣∣∣
DS ,∗

.
1

∆t
n+ 1

2

∫ tn+1

tn

‖hµ(s)‖L2(Mµ)ds+ ‖u(t)‖DS . (18)

Take the square of this relation, use (a + b)2 ≤ 2a2 + 2b2, and apply Jensen’s inequality to
introduce the square inside the time integral. Multiply then by ∆t

n+ 1
2

and sum over n to

conclude.
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Lemma 4.6 (Estimate on time translates) Under the assumptions of Section 2.2, let D
be a gradient discretisation with piecewise constant reconstructions Πµ

D, Ta
D. For any h > 0 and

any solution (uα)α=1,2 ∈ [(X0)N+1]2 of (4),∑
µ∈{m,f}

‖Sµ(ThΠ
µ
Dp)− Sµ(Πµ

Dp)‖2
L2((0,T )×Mµ) +

∑
a∈χ
‖Sa(ThT

a
Dp)− Sa(T

a
Dp)‖2

L2((0,T )×Γa)

. (h+ ∆t)
(

1 +
2∑

α=1

‖uα‖2
D

)
,

(19)

where we recall that Thg(s) = g(s + h) and ∆t = max{∆t
n+ 1

2

: n = 0, . . . , N − 1}, and where

all functions of time have been extended by 0 outside (0, T ).

Proof Let us start by assuming that h ∈ (0, T ), and let us consider integrals over (0, T−h) (we
therefore do not use extensions outside (0, T ) yet). By the Lipschitz continuity and monotonicity
of the saturations Sµ = S1

µ we have |Sµ(b) − Sµ(a)|2 . (Sµ(b) − Sµ(a))(b − a)). Thus, setting
n(s) = min{k = 1, . . . , N | tk ≥ s} for all s ∈ R,

∑
µ∈{m,f}

∫ T−h

0

∫
Mµ

|Sµ(ThΠ
µ
Dp)− Sµ(Πµ

Dp)|2dτµds+
∑
a∈χ

∫ T−h

0

∫
Γa

|Sa(ThT
a
Dp)− Sa(T

a
Dp)|2dτds

.
∑

µ∈{m,f}

∫ T−h

0

∫
Mµ

φµ

(
Sµ(ThΠ

µ
Dp)− Sµ(Πµ

Dp)
)

(s)(ThΠ
µ
Dp − Πµ

Dp)(s)dτµds

+
∑
a∈χ

∫ T−h

0

∫
Γa

η
(
Sa(ThT

a
Dp)− Sa(T

a
Dp)
)

(s)(ThT
a
Dp − Ta

Dp)(s)dτds

.
∫ T−h

0

[ ∑
µ∈{m,f}

∫
Mµ

∫ t
n(s+h)

t
n(s)

φµΠµ
D

[
δtSµ(p)

]
(t)(ThΠ

µ
Dp − Πµ

Dp)(s)dtdτµ

+
∑
a∈χ

∫
Γa

∫ t
n(s+h)

t
n(s)

ηTa
D

[
δtSa(p)

]
(t)(ThT

a
Dp − Ta

Dp)(s)dtdτ
]
ds. (20)

In the last line, we simply wrote Sµ(ThΠ
µ
Dp)(s)− Sµ(Πµ

Dp)(s) = Sµ(Πµ
Dp)(s+ h)− Sµ(Πµ

Dp)(s)
as the sum of the jumps if Sµ(Πµ

Dp) between s and s+ h (likewise for Sa(T
a
Dp)).

For a fixed s, define v ∈ (X0)N+1 by

vk =

{
pn(s+h) − pn(s) if n(s) + 1 ≤ k ≤ n(s+ h)

0 else.

With this choice,

Πµ
Dv(t,x) = 1[t

n(s)
,t
n(s+h)

](t) (ThΠ
µ
Dp − Πµ

Dp)(s,x),

Ta
Dv(t,x) = 1[t

n(s)
,t
n(s+h)

](t) (ThT
a
Dp − Ta

Dp)(s,x),

∇µ
Dv(t,x) = 1[t

n(s)
,t
n(s+h)

](t) (Th∇µ
Dp −∇µ

Dp)(s,x) , and

JvKa,D(t,x) = 1[t
n(s)

,t
n(s+h)

](t) (ThJpKa,D − JpKa,D)(s,x).

(21)
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We keep s fixed and concentrate on the integrand of the outer integral in the right-hand
side of (20). Estimate (18), the definition (17) of | · |DS ,∗, and Young’s inequality yield∑

µ∈{m,f}

∫ T

0

∫
Mµ

φµΠµ
D

[
δtSµ(p)

]
Πµ
Dvdτµdt+

∑
a∈χ

∫ T

0

∫
Γa

ηTa
D

[
δtSa(p)

]
Ta
Dvdτdt

.
∫ T

0

(‖hµ(t)‖L2(Mµ) + ‖u(t)‖DS)‖v‖DS1[t
n(s)

,t
n(s+h)

](t)dt

.
∫ T

0

(‖hµ(t)‖L2(Mµ) + ‖u(t)‖DS)21[t
n(s)

,t
n(s+h)

](t)dt+ (tn(s+h) − tn(s))‖v‖2
DS .

Returning to (20), integrate the previous estimate over s ∈ (0, T − h). In this step, it is crucial
to realise that

tn(s+h) − tn(s) ≤ h+ ∆t and

∫ T−h

0

1[t
n(s)

,t
n(s+h)

](t)ds ≤
∫ T

0

1[t−h−∆t,t](s)ds ≤ h+ ∆t.

Hence, recalling the definition of v,

RHS(20) . (h+ ∆t)

[∫ T

0

(‖hµ(t)‖L2(Mµ) + ‖u(t)‖DS)2dt

+

∫ T−h

0

‖pn(s+h)‖2
DSds+

∫ T−h

0

‖pn(s)‖2
DSds

]
. (h+ ∆t)

(
1 + ‖u‖2

D + ‖p‖2
D

)
.

Since p = u1 − u2, this proves (19) with L2(0, T − h) norms in the left-hand side, instead of
L2(0, T ) norms. The complete form of (19) follows by recalling that 0 ≤ Sµ ≤ 1, so that
‖Sµ(Πµ

Dp)‖2
L2((T−h,T )×Mµ) ≤ h (and similarly for other saturation terms).

Lemma 4.7 (Estimate on space translates) Under the assumptions of Section 2.2, let D
be a gradient discretisation with piecewise constant reconstructions Πµ

D, Ta
D. Let (uα)α=1,2 ∈

[(X0)N+1]2 be a solution of (4), and let ξ = (ξm, ξf ), with ξm ∈ Rd and ξf = (ξif )i∈I ∈⊕
i∈I τ(Pi), where τ(Pi) is the (const.) tangent space of Pi. Then, extending the functions

Πµ
Dp and Sµ by 0 outside Mµ,

‖TξmSm(Πm
Dp)− Sm(Πm

Dp)‖2
L2((0,T )×Rd) +

∑
i∈I

(
‖Tξif

Sf (Π
f
Dp)− Sf (Πf

Dp)‖2
L2((0,T )×Pi)

+
∑

a=a±(i)

‖Tξif
Sa(T

a
Dp)− Sa(T

a
Dp)‖2

L2((0,T )×Pi)

)
. TDS(ξ)

2∑
α=1

‖uα‖2
D + |ξ|,

where we recall that Tζf(x) = f(x + ζ), and TDS is given in Definition 3.8.

Proof Let us focus on the matrix Ω, and remember that, as a function of x, Sm is piecewise
constant on a polytopal partition (Ωj)j∈Jm . Write

TξmSm(Πm
Dp)− Sm(Πm

Dp) = Sm(x + ξm,Π
m
Dp(x + ξm, t))− Sm(x + ξm,Π

m
Dp(x, t))

+ Sm(x + ξm,Π
m
Dp(x, t))− Sm(x,Πm

Dp(x, t)). (22)
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Let Ωξm =
⋃
j{x ∈ Ωj | x + ξm 6∈ Ωj} ∪ {x ∈ Rd \ Ω | x + ξm ∈ Ω} be the set of points x that

do not belong to the same element Ωj as their translate x + ξm. By assumption on Sm,

sup
q∈R
|Sm(x + ξm, q)− Sm(x, q)| ≤

{
0 on Rd \ Ωξm ,
1 on Ωξm .

Moreover, since each Ωj is polytopal, |Ωξm| . |ξm|. Hence,∫ T

0

∫
Rd

sup
q∈R
|Sm(x + ξm, q)− Sm(x, q)|2dxdt . |ξm|. (23)

On the other hand, by definition of TDS and the Lipschitz continuity of Sm,∫ T

0

∫
Rd
|Sm(x + ξm,Π

m
Dp(x + ξm, t))− Sm(x + ξm,Π

m
Dp(x, t))|2dxdt

.
∫ T

0

∫
Rd
|Πm
Dp(x + ξm, t)− Πm

Dp(x, t)|2dxdt . ‖p‖2
DTDS(ξ). (24)

Plugging (23) and (24) into (22) and reasoning similarly for Sf and Sa concludes the proof.

Remark 4.8 This proof is the only place where the assumption that each M j
µ is polytopal

is used; this is to ensure that |Ωξm | . |ξm| (and likewise for fracture and interfacial terms).
Obviously, this asssumption on the sets M j

µ could be relaxed (e.g., into “each M j
µ has a Lipschitz-

continuous boundary”), but assuming that these sets are polytopal is not restrictive for practical
applications.

4.2 Initial convergences

We can now state our initial convergence theorem for sequences of solutions to gradient schemes.
This theorem does not yet identify the weak limits of such sequences.

Theorem 4.9 (Averaged-in-time convergence of approximate solutions)
Let (Dl)l∈N be a coercive, consistent, limit-conforming and compact sequence of space-time
gradient discretisations, with piecewise constant reconstructions. Let (uα,l)α=1,2 ,l∈N be such that
(uα,l)α=1,2 ∈ [(X0

l )Nl+1]2 is a solution of (4) with D = Dl. Then, there exists (uα)α=1,2 =
(uαm, u

α
f )α=1,2 ∈ [L2(0, T ;V 0

m) × L2(0, T ;V 0
f )]2 such that, up to a subsequence as l → ∞, the

convergences (6) and (7) hold.

Proof Combining Lemmata 4.3 and A.2 immediately gives (6). By assumption, 0 ≤ Sµ, Sa ≤ 1
and therefore, by Lemmata 4.6 and 4.7 and the Kolmogorov compactness theorem, there exists
a subsequence of (Πµ

DlSµ(pl))l that strongly converges in L2((0, T )×Mµ) and a subsequence of
(Ta
DlSa(p

l))l that strongly converges in L2((0, T )× Γa). Also, by assumption, Sµ, Sa are non-
decreasing functions, which allows us to identify the limits in (7) by applying Corollary A.3.

Let C∞Ω be the subspace of functions in C∞b (Ω \ Γ) vanishing on a neighbourhood of the
boundary ∂Ω. Define also C∞Γ = γΓ(C∞0 (Ω)) as the image of C∞0 (Ω) of the trace operator
γΓ : H1

0 (Ω)→ L2(Γ).
The following lemma and theorem add a uniform-in-time weak L2 convergence property to

the properties already established in Theorem 4.9.
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Lemma 4.10 (Uniform-in-time, weak-in-space translate estimates) Under the assump-
tions of Section 2.2, let D be a gradient discretisation with piecewise constant reconstructions
Πµ
D, Ta

D. Let (uα)α=1,2 ∈ [(X0)N+1]2 be a solution of the gradient scheme of (4), and p = u1−u2.
Then, for all ϕ = (ϕm, ϕf ) ∈ C∞Ω × C∞Γ and all s, t ∈ [0, T ],∣∣∣∣∣∣

∑
µ∈{m,f}

〈
dµφµΠµ

DSµ(p)(s)− dµφµΠµ
DSµ(p)(t), ϕµ

〉
L2(Mµ)

+
∑
a∈χ
〈ηTa

DSa(p)(s)− ηTa
DSa(p)(t), γaϕm〉L2(Γa)

∣∣∣∣∣
. SDS(ϕ) + (SDS(ϕ) + Cϕ)

(
1 +

2∑
α=1

‖uα‖2
D

) 1
2 [
|s− t| 12 + (∆t)

1
2

]
. (25)

where Cϕ only depends on ϕ, df is the width of the fractures, and dm = 1.

Proof Let us introduce an interpolant PDS : C∞Ω ×C∞Γ → X0 such that, for all ϕ ∈ C∞Ω ×C∞Γ ,

sDS(PDSϕ, ϕ) = SDS(ϕ).

As in the proof of Lemma 4.6, let n(r) = min{k = 1, . . . , N | tk ≥ r} for all r ∈ [0, T ]. Denote
by L the left-hand side of (25) and introduce Πµ

DSPDSϕ in the first sum and Ta
DSPDSϕ in the

second sum to write

L ≤
∑

µ∈{m,f}

(∣∣∣〈dµφµΠµ
DSµ(p)(s)− dµφµΠµ

DSµ(p)(t), ϕµ − Πµ
DSPDSϕ

〉
L2(Mµ)

∣∣∣) (26)

+
∑
a∈χ

(∣∣∣〈ηTa
DSa(p)(s)− ηTa

DSa(p)(t), γaϕm − Ta
DSPDSϕ

〉
L2(Γa)

∣∣∣) (27)

+

∣∣∣∣∣∣
∑

µ∈{m,f}

〈
dµφµ

[
Πµ
DSµ(p)(s)− Πµ

DSµ(p)(t)
]
,Πµ
DSPDSϕ

〉
L2(Mµ)

+
∑
a∈χ

〈
η
[
Ta
DSa(p)(s)− Ta

DSa(p)(t)
]
,Ta
DSPDSϕ

〉
L2(Γa)

∣∣∣∣∣
. SDS(ϕ) +

∣∣∣∣∣∣
∑

µ∈{m,f}

〈
dµφµ

[
Πµ
DSµ(p)(s)− Πµ

DSµ(p)(t)
]
,Πµ
DSPDSϕ

〉
L2(Mµ)

+
∑
a∈χ

〈
η
[
Ta
DSa(p)(s)− Ta

DSa(p)(t)
]
,Ta
DSPDSϕ

〉
L2(Γa)

∣∣∣∣∣ . (28)

Here, the terms (26) and (27) have been estimated by using 0 ≤ Sµ, Sa ≤ 1 and the definition
of PDSϕ. Let L1 be the second addend in (28). Assuming that t < s, and hence n(t) ≤ n(s),
write Πµ

DSµ(p)(s) − Πµ
DSµ(p)(t) and Ta

DSa(p)(s) − Ta
DSa(p)(t) as the sum of their jumps, and
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recall the definition (17) of | · |DS ,∗ to obtain

L1 ≤
∣∣∣∣∣
n(s)−1∑
k=n(t)

∆t
k+ 1

2

( ∑
µ∈{m,f}

〈
dµφµΠµ

DδtSµ(p)(tk),Π
µ
DSPDSϕ

〉
L2(Mµ)

+
∑
a∈χ

〈
ηTa
DδtSa(p)(tk),T

a
DSPDSϕ

〉
L2(Mµ)

)∣∣∣∣∣
≤

n(s)−1∑
k=n(t)

∆t
k+ 1

2

∣∣∣[δtSm(p)(tk), δtSf (p)(tk), (δtSa(p)(tk))a∈χ
]∣∣∣
DS ,∗
‖PDSϕ‖DS

≤ ‖PDSϕ‖DS
∫ T

0

1[t
n(t)

,t
n(s)

](r)
∣∣∣[δtSm(p)(r), δtSf (p)(r), (δtSa(p)(r))a∈χ

]∣∣∣
DS ,∗

dr.

Use now Lemmata 4.5 and the Cauchy–Schwarz inequality to infer

L1 . ‖PDSϕ‖DS

(
1 +

2∑
α=1

‖uα‖2
D

) 1
2 [

(s− t) 1
2 + (∆t)

1
2

]
. (29)

By the triangle inequality,

‖PDSϕ‖DS ≤ SDS(ϕ) + ‖∇ϕm‖L2(Ω)d + ‖∇τϕf‖L2(Γ)d−1 +
∑
a∈χ
‖JϕKa‖L2(Γa) = SDS(ϕ) + Cϕ.

Plugging this into (29) and the resulting inequality into (28) concludes the proof.

Theorem 4.11 (Uniform-in-time, weak-in-space convergence) Under the assumptions
of Theorem 4.9, for all µ ∈ {m, f} and a ∈ χ, Sµ(pµ) : [0, T ]→ L2(Mµ) and Sa(γapm) : [0, T ]→
L2(Γa) are continuous for the weak topologies of L2(Mµ) and L2(Γa), respectively, and

Πµ
DlSµ(pl) −→ Sµ(pµ) uniformly in [0, T ], weakly in L2(Mµ),

Ta
DlSa(p

l) −→ Sa(γapm) uniformly in [0, T ], weakly in L2(Γa),
(30)

where the definition of the uniform-in-time weak L2 convergence is recalled in the appendix.

Proof The proof hinges on the discontinuous Arzelà-Ascoli theorem (Theorem A.1 in the ap-
pendix). Consider first the matrix saturation. The space Rm =

{
dmφmϕm | ϕm ∈ C∞0 (Ω \ Γ)

}
is dense in L2(Ω). Apply (25) to ϕ = (ϕm, 0). Since ϕf = γaϕm = 0 only the term involving Sm
remains in the left-hand side. The resulting estimate and the property 0 ≤ Sm ≤ 1 show that
the sequence of functions (t 7→ Πm

DlSm(pl)(t))l∈N satisfies the assumptions of Theorem A.1 with
R = Rm. Hence, (Πm

DlSm(pl))l∈N has a subsequence that converges uniformly on [0, T ] weakly
in L2(Ω). Given (7), the weak limit of this sequence must be Sm(pm).

A similar reasoning, based on the space Rf =
{
dfφfϕf | ϕf ∈ C∞Γ

}
– which is dense in

L2(Γ) – and using ϕ = (0, ϕf ) in (25), gives the uniform-in-time weak L2(Γ) convergence of

Πf
DlSf (p

l) towards Sf (pf ).
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Let us now turn to the convergence of the trace saturations. Take ϕm ∈ C∞Ω such that the
support of γaϕm is non empty for exactly one a ∈ χ. Considering ϕ = (ϕm, 0) in (25) leads to∣∣∣〈ηTa

DlSa(p
l)(s)− ηTa

DlSa(p
l)(t), γaϕm

〉
L2(Γa)

∣∣∣
. SDS(ϕ) + (SDS(ϕ) + Cϕ)

(
1 +

2∑
α=1

‖uα‖2
D

) 1
2 [
|s− t| 12 + (∆t)

1
2

]
+
∣∣∣〈dmφmΠm

DlSm(pl)(s)− dmφmΠm
DlSm(pl)(t), ϕm

〉
L2(Ω)

∣∣∣ . (31)

Since it was established that (dmφmΠm
DlSm(pl))l∈N converges uniformly-in-time weakly in L2(Ω),

the sequence (〈dmφmΠm
DlSm(pl), ϕm〉L2(Ω))l∈N is equi-continuous and the last term in (31) there-

fore tends to 0 uniformly in l as s − t → 0. Hence, (31) enables the usage of Theorem A.1,
by noticing that {ηγaϕm | ϕm ∈ C∞Ω , supp(γbϕm) = ∅ for all b ∈ χ with b 6= a} is dense in
L2(Γa), and gives the uniform-in-time weak L2(Γa) convergence of Ta

DlSa(p
l).

4.3 Proof of Theorem 4.1

The proof of the main convergence theorem can now be given.

First step: passing to the limit in the gradient scheme.
Let us introduce the family of functions (Fa,α

Dl )α=1,2
a∈χ :

Fa,α
Dl (t,x, β) =

[
Tf [kS]αa (Ta

Dlp
l)β+ − Tf [kS]αf (Πf

Dlp
l)β−

]
(t,x), for all β ∈ L2(Γa),

and their continuous counterparts (Fa,α)α=1,2
a∈χ :

Fa,α(t,x, β) =
[
Tf [kS]αa (γapm)β+ − Tf [kS]αf (pf )β

−
]
(t,x), for all β ∈ L2(Γa).

The following properties are easy to check. Firstly, since Tf , [kS]αa and [kS]f are positive and
s 7→ s+ and s 7→ −s− are non-decreasing,[

Fa,α
Dl (t,x, β)− Fa,α

Dl (t,x, γ)
][
β(t,x)− γ(t,x)

]
≥ 0, for all β, γ ∈ L2(Γa). (32)

Secondly, by the convergences (7), for (βl)l∈N ⊂ L2(Γa) and β ∈ L2(Γa),

βl −→ β in L2((0, T )× Γa) =⇒ Fa,α
Dl (βl) −→ Fa,α(β) in L2((0, T )× Γa). (33)

Thirdly, by Lemma 4.3, the sequences (Fa,α
Dl (JulKa,Dl))l∈N (a ∈ χ, α = 1, 2) are bounded in

L2((0, T )× Γa) and there exists thus ραa ∈ L2((0, T )× Γa) such that, up to a subsequence,

Fa,α
Dl (Juα,lKa,Dl) ⇀ ραa in L2((0, T )× Γa). (34)

Consider ϕα = (ϕαm, ϕ
α
f ) =

∑b
k=1 θ

α,k ⊗ ψα,k, where (ψα,k)k∈N = (ψα,km , ψα,kf )k=1,...,b ∈ C∞Ω ×
C∞Γ and (θα,k)k=1,...,b ∈ C∞0 ([0, T )). Take (vα,ln )n=0,...,N l = (PDlS

ϕα(tln))n=0,...,N l ∈ (X0
l )N

l+1 as

“test function” in (4). Here, PDlS
is defined as in the proof of Lemma 4.10. Apply the discrete
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integration-by-parts of [18, Section C.1.6] on the accumulation terms in (4), let l→∞ and use
standard convergence arguments [16, 18] based on Theorem 4.9 to see that

2∑
α=1

{ ∑
µ∈{m,f}

(
−
∫ T

0

∫
Mµ

φµS
α
µ (pµ)∂tϕ

α
µdτµdt+

∫ T

0

∫
Mµ

[kS]αµ(pµ) Λµ∇uαµ · ∇ϕαµdτµdt

−
∫
Mµ

φµS
α
µ (pµ,0)ϕαµ(0, ·)dτµ

)
+
∑
a∈χ

(∫ T

0

∫
Γa

ραa Jϕ
αKadτdt

−
∫ T

0

∫
Γa

ηSαa (γapm)∂tγaϕ
α
mdτdt−

∫
Γa

ηSαa (γapm,0)γaϕ
α
m(0, ·)dτ

)}

=
2∑

α=1

∑
µ∈{m,f}

∫ T

0

∫
Mµ

hαµϕ
α
µdτµdt.

(35)

Note that Equation (35) also holds for any smooth ϕα, by density of tensorial functions in
smooth functions [15, Appendix D]. Recalling the weak formulation (2), proving Theorem 4.1
is now all about showing that

∑
a,α

∫ T

0

∫
Γa

ραa Jϕ
αKadτdt =

∑
a,α

∫ T

0

∫
Γa

Fa,α(JuαKa)JϕαKadτdt. (36)

This is achieved by using Minty’s trick.

Second step: proof that

lim sup
l→∞

∑
a,α

∫ T

0

∫
Γa

Fa,α
Dl (Juα,lKa,Dl)Juα,lKa,Dldτdt ≤

∑
a,α

∫ T

0

∫
Γa

ραa Ju
αKadτdt. (37)

Having in mind to employ the energy inequality (11) with T0 = T , we first establish, for
µ ∈ {m, f} and a ∈ χ, the following convergences as l→∞:∫ T

0

∫
Mµ

hαµΠµ
Dlu

α,ldτµdt −→
∫ T

0

∫
Mµ

hαµu
α
µdτµdt , (38)∫

Mµ

Bµ(Sµ(Πµ

DlS
pl0))dτµ −→

∫
Mµ

Bµ(Sµ(pµ,0))dτµ , (39)∫
Γa

Ba(Sa(T
a
DlS
pl0))dτ −→

∫
Γa

Ba(Sa(γapm,0))dτ. (40)

The convergence (38) is obvious by Theorem 4.9. From the choice (3) of the scheme’s initial
conditions, together with the consistency of the interpolation operators ImD and IfD, Sµ(Πµ

DlS
pl0)→

Sµ(pµ,0) in L2(Mµ) and Sa(T
a
DlS
pl0) → Sa(γapm,0) in L2(Γa), as l → ∞. Then, (10) and [24,

Lemma A.1] yield (39) and (40).
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We further show that

lim inf
l→∞

∫
Mµ

Bµ(Sµ(Πµ

DlS
plN l))dτµ ≥

∫
Mµ

Bµ(Sµ(pµ)(T ))dτµ , (41)

lim inf
l→∞

∫
Γa

Ba(Sa(T
a
DlS
plN l))dτ ≥

∫
Γa

Ba(Sa(γapm)(T ))dτ , (42)

lim inf
l→∞

∫ T

0

∫
Mµ

[kS]αµ(Πµ
Dlp

l)Λµ∇µ
Dlu

α,l · ∇µ
Dlu

α,ldτµdt

≥
∫ T

0

∫
Mµ

[kS]αµ(pµ)Λµ∇uαµ · ∇uαµdτµdt. (43)

By the uniform-in-time weak L2 convergences of Theorem 4.11, Sµ(Πµ

DlS
pl
N l) ⇀ Sµ(pµ)(T ) in

L2(Mµ) and Sa(T
a
DlS
pN

l

n ) ⇀ Sa(γapm)(T ) in L2(Γa), as l → ∞. Note also that, since (by

assumption) Sµ and Sa are not explicitly space-dependent on each open set of the formerly
introduced partitions of Mµ and Γa, respectively, then Bµ, Ba are neither. On these partitions,
the conditions of [22, Lemma 4.6] are fulfilled, namely Bµ, Ba are convex and l.s.c. This lemma,
which essentially states the L2-weak l.s.c. of strongly l.s.c. convex functions on L2, establishes
(41) and (42). To show (43), apply the Cauchy-Schwarz inequality to write∫ T

0

∫
Mµ

[kS]αµ(Πµ
Dlp

l)Λµ∇uαµ · ∇µ
Dlu

α,ldτµdt ≤
(∫ T

0

∫
Mµ

[kS]αµ(Πµ
Dlp

l)Λµ∇uαµ · ∇uαµdτµdt
) 1

2

×
(∫ T

0

∫
Mµ

[kS]αµ(Πµ
Dlp

l)Λµ∇µ
Dlu

α,l · ∇µ
Dlu

α,ldτµdt
) 1

2

and take the inferior limit as l → ∞, using the strong convergence of [kS]αµ(Πµ
Dlp

l) and weak

convergence of ∇µ
Dlu

α,l to pass to the limit in the left-hand side and the first term in the
right-hand side.

Let us now come back to the proof of (37). Plugging the convergences (38)–(43) into (11)
with T0 = T yields

lim sup
l→∞

∑
a,α

∫ T

0

∫
Γa

Fa,α
Dl (Juα,lKa,Dl)Juα,lKa,Dldτdt

≤
∑
µ,α

(∫ T

0

∫
Mµ

hαµu
α
µdτµdt−

∫ T

0

∫
Mµ

[kS]αµ(pµ) Λµ∇uαµ · ∇uαµdτµdt
)

+
∑
µ

(∫
Mµ

φµBµ(Sµ(pµ,0))dτµ −
∫
Mµ

φµBµ(Sµ(pµ)(T ))dτµ

)
+
∑
a

(∫
Γa

ηBa(Sa(γapm,0))dτ −
∫

Γa

ηBa(Sa(γapm)(T ))dτ
)
. (44)

Recall that C∞0 ([0, T ))⊗ [C∞Ω ×C∞Γ ] is dense in (L2((0, T )×Mµ))µ∈{m,f}. Owing to Appendix

A.3, we infer from (35) that φf∂tS
α
f (pf ) ∈ L2(0, T ;V 0

f
′
), that φm∂tS

α
m(pm)+

∑
a γ
∗
a (η∂tS

α
a (γapm)) ∈
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L2(0, T ;V 0
m
′
) (where γ∗a is the adjoint of γa), and that, for any ϕα ∈ V ,

2∑
α=1

{ ∑
µ∈{m,f}

(∫ T

0

〈φµ∂tSαµ (pµ), ϕαµ〉dt+

∫ T

0

∫
Mµ

[kS]αµ(pµ) Λµ∇uαµ · ∇ϕαµdτµdt
)

+
∑
a∈χ

(∫ T

0

∫
Γa

ραa Jϕ
αKadτdt+

∫ T

0

〈η∂tSαa (γapm), γaϕ
α
m〉dt

)}

=
2∑

α=1

∑
µ∈{m,f}

∫ T

0

∫
Mµ

hαµϕ
α
µdτµ.

Note that the duality product between (V 0
f )′ and V 0

f is taken respective to the measure dτf (x) =
df (x)dτ(x), and remember the abuse of notation (52). Apply this to ϕα = (uαm, u

α
f ). Recalling

that S2
µ = 1− S1

µ, we have ∂tS
2
µ(pµ) = −∂tS1

µ(pµ) and thus

∑
µ∈{m,f}

∫ T

0

〈φµ∂tSαµ (pµ), pµ〉dt+
∑
a∈χ

∫ T

0

〈η∂tSαa (γapm), γapm〉dt

+
2∑

α=1

{ ∑
µ∈{m,f}

∫ T

0

∫
Mµ

[kS]αµ(pµ) Λµ∇uαµ · ∇uαµdτµdt+
∑
a∈χ

∫ T

0

∫
Γa

ραa Ju
αKadτdt

}

=
2∑

α=1

∑
µ∈{m,f}

∫ T

0

∫
Mµ

hαµu
α
µdτµdt. (45)

[16, Lemma 3.6] establishes a temporal integration-by-parts property by using arguments
purely based on the time variable, and that can easily be adapted to our context, even consider-
ing the “combined” time derivatives φm∂tS

α
m(pm)+

∑
a γ
∗
a (η∂tS

α
a (γapm)) and the heterogeneities

of the media treated here – i.e. the presence of φµ, see assumptions in Section 2.2. This adap-
tation yields∫ T

0

〈φf∂tSαf (pµ), pf〉V 0
f
′
,V 0
f

dt =

∫
Mf

φfBf (Sf (pf )(T ))dτf −
∫
Mf

φfBf (Sµ(pf )(0))dτf

and∫ T

0

〈φm∂tSαm(pm), pm〉dt+
∑
a∈χ

∫ T

0

〈η∂tSαa (γapm), γapm〉dt

=

∫
Mm

φmBm(Sm(pm)(T ))dx−
∫
Mm

φmBm(Sm(pm)(0))dx

+
∑
a∈χ

(∫
Γa

ηBa(Sa(γapm)(T ))dτ −
∫

Γa

ηBa(Sa(γapm)(0))dτ
)
.

Plugging these relations into (45) and using the result in (44) concludes the proof of (37).

Third step: conclusion.
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As in the first step, take ϕα = (ϕαm, ϕ
α
f ) =

∑b
k=1 θ

α,k ⊗ ψα,k and set (vα,ln )n=0,...,N l =

(PDlS
ϕα(tln))n=0,...,N l ∈ (X0

l )N
l+1. Developing the monotonicity property (32) of Fa,α

Dl yields

∑
a,α

∫ T

0

∫
Γa

Fa,α
Dl (Juα,lKa,D)Juα,lKa,Ddτdt−

∑
a,α

∫ T

0

∫
Γa

Fa,α
Dl (Jvα,lKa,D)(Juα,lKa,D − Jvα,lKa,D)dτdt

−
∑
a,α

∫ T

0

∫
Γa

Fa,α
Dl (Juα,lKa,D)Jvα,lKa,Ddτdt ≥ 0.

Use (33) and (34) to pass to the limit in the second and third integral terms:

lim sup
l→∞

∑
a,α

∫ T

0

∫
Γa

Fa,α
Dl (Juα,lKa,D)Juα,lKa,Ddτdt

≥
∑
a,α

∫ T

0

∫
Γa

Fa,α(JϕαKa)(JuαKa − JϕαKa)dτdt+
∑
a,α

∫ T

0

∫
Γa

ραa Jϕ
αKadτdt.

Use (37) and the density of the tensorial function spaces C∞0 ([0, T ))⊗ [C∞Ω ×C∞Γ ] in L2(0, T ;V )
(cf. [10, proposition 2.3]) to obtain∑

a,α

∫ T

0

∫
Γa

ραa (JuαKa − JvαKa)dτdt ≥
∑
a,α

∫ T

0

∫
Γa

Fa,α(JvαKa)(JuαKa − JvαKa)dτdt

for all (vα)α=1,2 ∈ L2(0, T ;V )2. The conclusion is now standard in the Minty trick, see e.g. [18,
Proof of Theorem 3.34]. For any smooth (ϕα)α=1,2, choose vα = uα ± εϕα and let ε → 0 to
derive (36) and conclude the proof.

5 Two-phase flow test cases

We present in this section a series of test cases for two-phase flow through a fractured 2 di-
mensional reservoir of geometry as shown in figure 3. The domain Ω is of extension (0, 10)m×
(0, 20)m and the fracture width df is assumed constant equal to 1 cm. We consider isotropic
permeability in the matrix and in the fracture. The following geological configuration is consid-
ered: Matrix and fracture permeabilities are λm = 0.1 Darcy and λf = 100 Darcy, respectively,
matrix and fracture porosities are φm = 0.2 and φf = 0.4, respectively.

Initially, the reservoir is saturated with water (density ρ2 = 1000 kg/m3, viscosity κ2 =
0.001 Pa.s) and oil (density ρ1 = 700 kg/m3, viscosity κ1 = 0.005 Pa.s) is injected from below.
Also, hydrostatic distribution of pressure is assumed. The oil then rises by gravity, thanks to
its lower density compared to water. At the lower boundary of the domain, we impose constant
capillary pressure of 0.1 bar and water pressure of 3 bar; at the upper boundary, the capillary
pressure is constant equal to 0 bar and the water pressure is 1 bar. Elsewhere, homogeneous
Neumann conditions are imposed.

We use the VAG scheme to obtain solutions for the DFM. We refer to [10] for a presen-
tation of the scheme as a gradient scheme, and for proofs that, under standard regularity
assumptions on the meshes, the corresponding sequences of gradient discretisations are coer-
cive, GD-consistent, limit-conforming and compact. The tests are driven on a triangular mesh
extended to a 3D mesh with one layer of prisms (we use a 3D implementation of the VAG
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Figure 3: Geometry
of the reservoir under
consideration. DFN
in red and matrix do-
main in blue. Ω =
(0, 10)m×(0, 20)m and
df = 0.01m.

scheme). The resulting numbers of cells and degrees of freedom are exhibited in Table 1. The
mesh size is of order 10df .

The non-linear system of equations occurring at each time step is solved via a Newton
algorithm with relaxation. To solve the linear system obtained at each step of the Newton
iteration, we use the sequential version of the SuperLU direct sparse solver [13, 14]. The stopping
criterion on the L1 relative residual is critrel

Newton. To ensure well defined values for the capillary
pressure, after each Newton iteration, we project the (oil) saturation on the interval [0, 1−10−14].
The time stepping is progressive, i.e. after each iteration, the upcoming time step is deduced
by multiplying the previous one by 2, while imposing a maximal time step ∆tmax. If at a given
time iteration the Newton algorithm does not converge after 35 iterations, then the actual time
step is divided by 4 and the time iteration is repeated. The number of time step failures at the
end of a simulation is indicated by NChop.

Nb Cells Nb DOF Nb DOF el. critrel
Newton ∆tmax for 0 ≤ t ≤ 1/2 d ∆tmax for 1/2 d < t ≤ 10 d

5082 10610 5528 1.E−6 0.01 d 0.19 d

Table 1: Nb Cells is the number of cells of the mesh; Nb DOF is the number of discrete
unknowns; Nb DOF el. is the number of discrete unknowns after elimination of cell unknowns
without fill-in. Time steps used in the simulations in days (d)

Inside the matrix domain the capillary pressure function is given by Corey’s law pm =
−am log(1−Sm) with am = 1 bar. Inside the fracture network, we suppose pf = −af log(1−Sf )
with af = 0.02 bar. The matrix and fracture relative permeabilities of each phase α are given
by Corey’s laws kαr,m(Sαm) = (Sαm)2 and kαr,f (S

α
f ) = Sαf , and the phase mobilities are defined by

kαµ(Sαµ ) = 1
κα
kαr,m(Sαµ ), µ ∈ {m, f} (see Figure 4). The phase saturations at the interfacial layers

are defined by the interpolation

Sαa = θSαm + (1− θ)Sαf , (46)

with parameter θ ∈ [0, 1]. The mapping Sαa : [0,+∞)→ [0, 1) is a diffeomorphism so the choice

[kS]αa = θkαm(Sαm) + (1− θ)kαf (Sαf ).

is valid, since this function can be written as kαa (Sαa ) with kαa (ξ) = θkαm(Sαm ◦ (Sαa )−1(ξ)) + (1−

25



θ)kαf (Sαf ◦ (Sαa )−1(ξ)). Finally, the interfacial porosity φa is set to 0.2 and

da =
df
2
ε,

with parameter ε > 0. The parameter η is then defined by η = φada.
Let us start with some remarks. From the capillary pressure functions (cf. figure 4), it is

obvious that for given p, the one-sided jump of the oil saturation is negative, i.e.

Sm(p)− Sf (p) < 0. (47)

To account for the interfacial zone properly, the mobilities have to be adjusted by choosing
the model parameter θ depending on the rock type characteristics of the layer. Obviously, θ = 0
refers to a fracture rock type and θ = 1 to a matrix rock type.

On the other hand, with larger η, the volume of the interfacial layers gets augmented
and the interfacial accumulation terms play a more important role. The availability of the
supplementary volume has a direct impact on the phase front speed inside the fracture during
its filling: (46)–(47) show that the volume of oil in the interfacial layers is strictly decreasing
as a function of θ, given a distribution of capillary pressures. This indicates that, from the
accumulation point of view, the fracture front speed should grow with growing θ, and this
effect should be enhanced by a larger η.
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Figure 4: Curves for capillary pressures and relative permeabilities.

Figure 5 (a) indicates that, for a fixed θ = 0, 0.5, 1, the solutions are not sensitive to small
variations of ε. Quantitatively, we see that the solution for ε = 0.1 is close to the solution for
ε = 10−6. With respect to the computational performance exposed in Table 2, we thus see that
choosing ε = 0.1 is a good compromise between accuracy and cost. This point is presented in
more detail for the intermediate rock type, i.e. θ = 0.5, in Figure 6. Figure 5 (b) confirms the
aforementioned feature of extended (large ε) interfacial layers to delay the propagation of the
oil in the drain. As suggested, this effect is even more important, with decreasing θ. In Figure
5 (c), we study the impact of the choice of the interfacial mobility for parameters θ = 0, 0.5, 1
on the solution. Here, the interfacial accumulation is negligible due to an ε close to zero. Let us
shortly remark that in the limit of a vanishing interfacial layer, i.e. η = 0, we want to recover
the fracture mobilities for the mass exchange fluxes between the matrix-fracture interface and
the fracture. Hence, in this case, the right choice of θ would be 0. We observe that changing the
mobilities does not much influence the solution, due to the fact that fluxes are mostly oriented
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Figure 5: Fracture oil saturation for time t = 6h.

from the fracture towards the interfacial layers. The regions where a difference is observed in
the fracture oil front for the different models are those with a small positive oil saturations.
There, the relative permeabilities for θ = 0 and θ = 0.5 are very close and the difference to
θ = 1 is at its peak; this explains the behaviour of the fracture front for the three models.

θ 0 0.5 1
ε 1 1.E-1 1.E-6 0 1 1.E-1 1.E-6 0 1 1.E-1 1.E-6 0

N∆t 125 125 125

-

125 125 125

-

183 284 377

-
NNewton 506 521 547 513 521 546 674 892 1410
NChop 0 0 0 0 0 0 22 61 94
CPU 147 160 159 151 152 170 402 860 1402

Table 2: Computational cost

Table 2 shows that the computational cost increases with decreasing ε and that, in the case
of ε = 0, the Jacobian becomes singular. Furthermore, the efficiency severely deteriorates for
θ = 1. In this case, S ′a(p) is (significantly) smaller during the filling of the fracture (for capillary
pressures p below a characteristic p1 ∈ R+), since S ′m(p) � S ′f (p). When oil fluxes oriented
from the fracture to the interface are present, the Jacobian is thus ill-conditioned.
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Figure 6: Volume occupied by oil in the matrix, fracture and oil volume normalised by ε in the
interfacial layers, for θ = 0.5, as a function of time.

6 Conclusion

We introduced a new discrete fracture model for two phase Darcy flow, permitting pressure
discontinuity at the matrix-fracture interfaces. It respects the heterogeneities of the media
and between the matrix and the fractures, since it takes into account saturation jumps due
to different capillary pressure curves in the respective domains. It also considers damaged
layers located at the matrix-fracture interfaces. Another feature of the model are upwind
fluxes between these interfacial layers and the fractures. The upwinding is needed for transport
dominated flow in normal direction to the fractures. The extension to gravity is straightforward
(cf. [11]).

We developed the numerical analysis of the model in the framework of the gradient discreti-
sation method, which contains for example the VAG and HMM schemes. Based on compactness
arguments, we showed in Theorem 4.1 the strong L2 convergence of the saturations and the
weak L2 convergence for the pressures to a solution of Model (1). In Theorem 4.11, we es-
tablished uniform-in-time, weak L2 in space convergence for the saturations, a result that is
extended to uniform-in-time, strong L2 in space convergence in [23].

Finally, we presented a series of test cases, with the objective to study the impact of the
interfacial layer on the solution. The observed behaviour of the solutions for the different
situations corresponds to the expectations. It exhibits significant differences, during the filling
of the fracture, for large interfacial layers and small differences for small layers. In terms of
computational cost, we saw that the presence of a damaged zone at the matrix-fracture interface
is needed in order to solve the linear system of the discrete problem, occurring at each time
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step. We also observed that for a large contrast between the drain’s and the interfacial layer’s
capillary pressures, the simulation becomes expensive. Therefore, we see that, in order to cope
with both, fractures acting as drains or as barriers, the possibility to deal with mixed rock
types for the damaged zone is essential.

A Appendix

A.1 Uniform-in-time weak L2 convergence

Let A be a subset of Rn, endowed with the standard Lebesgue measure, and {ϕ` : ` ∈ N} be a
dense countable set in L2(A). On any bounded ball of L2(A), the weak topology can be defined
by the following metric:

dist(v, w) =
∑
`∈N

min (1, | 〈v − w,ϕ`〉L2(A) |)
2`

.

A sequence (vm)m∈N of bounded functions [0, T ]→ L2(A) converges uniformly on [0, T ] weakly
in L2(A) to some v if it converges uniformly for the weak topology of L2(A), meaning that, for
all φ ∈ L2(A), 〈vm(·), φ〉L2(A) → 〈v(·), φ〉L2(A) uniformly on [0, T ] as m→∞.

With this introductory material, the following result is a consequence of [18, Theorem 4.26]
or [16, Theorem 6.2] (see also the reasoning at the end of [16, Proof of Theorem 3.1]).

Theorem A.1 (Discontinuous weak L2 Ascoli–Arzela theorem) Let R be a dense sub-
set of L2(A) and (vm)m∈N be a sequence of functions [0, T ]→ L2(A) such that

• supm∈N supt∈[0,T ] ‖vm(t)‖L2(A) < +∞,

• for all ϕ ∈ R, there exist ωϕ : [0, T ]2 → [0,∞) and (δm(ϕ))m∈N ⊂ [0,∞) satisfying

ωϕ(s, t)→ 0 as s− t→ 0 , δm(ϕ)→ 0 as m→∞ , and

∀(s, t) ∈ [0, T ]2 , ∀m ∈ N , |〈vm(s)− vm(t), ϕ〉L2(A)| ≤ δm(ϕ) + ωϕ(s, t).

Then, there exists a function v : [0, T ] → L2(A) such that, up to a subsequence as m → ∞,
vm → v uniformly on [0, T ] weakly in L2(A). Moreover, v is continuous on [0, T ] for the weak
topology of L2(A).

A.2 Generic results on gradient discretisations

The following lemma is a classical result in the context of the standard gradient discretisation
method, see e.g. [18, Lemma 4.7]. We give a sketch of its proof for gradient discretisations
adapted to discrete fracture model.

Lemma A.2 (Regularity of the Limit) Let (Dl)l∈N be a coercive and limit-conforming se-
quence of gradient discretisations, and let (vl)l∈N be such that vl ∈ (X0

l )Nl+1, where Nl is
the number of time steps of Dl. We assume that (‖vl‖Dl)l∈N is bounded. Then, there exists
v = (vm, vf ) ∈ L2(0, T ;V 0

m) × L2(0, T ;V 0
f ) such that, up to a subsequence, the following weak

convergences hold:
Πµ
Dlv

l ⇀ vµ in L2((0, T )×Mµ) , for µ ∈ {m, f},
∇µ
Dlv

l ⇀ ∇vµ in L2((0, T )×Mµ)
d
, for µ ∈ {m, f},

Ta
Dlv

l ⇀ γavm in L2((0, T )× Γa), for all a ∈ χ,
JvlKa,Dl ⇀ JvKa in L2((0, T )× Γa), for all a ∈ χ.

(48)
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Proof By coercivity and since (‖vl‖Dl)l∈N is bounded, all the sequences in (48) are bounded
in their respective spaces. Up to a subsequence, we can therefore assume that there exists
vµ ∈ L2((0, T )×Mµ), ξµ ∈ L2((0, T )×Mµ)

d
, βa ∈ L2((0, T )× Γa) and ja ∈ L2((0, T )× Γa)

such that Πµ
Dlv

l ⇀ vµ, ∇µ
Dlv

l ⇀ ξµ, Ta
Dlv

l ⇀ βa and JvlKa,Dl ⇀ ja weakly in their respective L2

spaces as l→∞.
Take q ∈ C∞Ω × C∞Γ , ϕa ∈ C∞0 (Γa) and ρ ∈ C∞c (0, T ). For F a function of x, define

ρ⊗ F (t,x) = ρ(t)F (x). The definition of WDlS yields∣∣∣∣∣
∫ T

0

∫
Ω

(
∇m
Dlv

l · (ρ⊗ qm) + (Πm
Dlv

l)div(ρ⊗ qm)
)

dxdt

+

∫ T

0

∫
Γ

(
∇f
Dlv

l · (ρ⊗ qf ) + (Πf
Dlv

l)divτ (ρ⊗ qf )
)

dτ(x)dt

−
∑
a∈χ

∫ T

0

∫
Γa

(ρ⊗ (qm · na))T
a
Dlv

ldτ(x)dt

+
∑
a∈χ

∫ T

0

∫
Γa

(ρ⊗ ϕa)
(

Ta
Dlv

l − Πf
Dlv

l − JvlKa,Dl
)

dτ(x) dt

∣∣∣∣∣
≤ ‖vl‖Dl‖ρ‖L2(0,T )WDlS(q, ϕa).

The limit-conformity shows that the right-hand side of this inequality tends to 0. Hence,∫ T

0

∫
Ω

(
ξm · (ρ⊗ qm) + vmdiv(ρ⊗ qm)

)
dxdt

+

∫ T

0

∫
Γ

(
ξf · (ρ⊗ qf ) + vfdivτ (ρ⊗ qf )

)
dτ(x)dt

−
∑
a∈χ

∫ T

0

∫
Γa

(ρ⊗ (qm · na))βadτ(x)dt

+
∑
a∈χ

∫ T

0

∫
Γa

(ρ⊗ ϕa)
(
βa − vf − ja

)
dτ(x) dt = 0.

Applying this to (q, ϕa) = ((qm, 0), 0) with qm ∈ C∞0 (Ω\Γ)d, and using the density of tensorial
functions {∑N

r=1 ρr⊗qm : N ∈ N , ρr ∈ C∞c (0, T ) , qm ∈ C∞0 (Ω\Γ)d} in C∞c ((0, T )×Ω\Γ)d (see
[15, Appendix D]) shows that ξm = ∇vm. With (q, ϕa) = ((0,qf ), 0) where qf ∈ C∞(Γi)

d−1, we

obtain ξf = ∇vf . Considering now (q, ϕa) = ((qm, 0), 0) with qm ∈ C∞b (Ω \ Γ)d and applying
the divergence theorem gives βa = γavm. Finally, taking (q, ϕa) = ((0, 0), ϕa) with a general
ϕa ∈ C∞0 (Γa) yields ja = βa − vf = γavm − vf = JvKa.

With [26, Lemma 3.6], we can state the following.

Corollary A.3 Under the assumptions of Lemma A.2, if gµ : R → R (µ ∈ {m, f}) and ga :
R→ R (a ∈ χ) are continuous, non-decreasing functions and if (Πµ

Dlgµ(vl))l strongly converges
in L2((0, T )×Mµ) and (Ta

Dlga(v
l))l strongly converges in L2((0, T )× Γa), then{

Πµ
Dlgµ(vl)→ gµ(vµ) in L2((0, T )×Mµ),

Ta
Dlga(v

l)→ ga(γavm) in L2((0, T )× Γa).
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A.3 Identification of time derivatives

We discuss here how weak formulations, with derivatives on test functions, enable us to recover
some regularity properties on time derivatives of quantities of interest.

Let us start with a classical situation, similar to [16, Remark 1.1]. Let (M, ν) be a measured
space and E be a Banach space densely embedded in L2(M), so that E ↪→ L2(M) ↪→ E ′.
Assume also that E ′ is separable. Let L : L2(0, T ;E)→ R be a continuous linear form and let
E ⊂ C1

0([0, T );E) be such that E0 = {Φ ∈ E : Φ(0, ·) = 0} is dense in L2(0, T ;E). Suppose
that U ∈ L2(0, T ;E) and U0 ∈ L2(M) satisfy, for all Φ ∈ E ,

−
∫ T

0

∫
M

U(t,x)∂tΦ(t,x)dν(x)dt+

∫
M

U0(x)Φ(0,x)dν(x) = L(Φ). (49)

This relation shows that

Ξ : Φ 7→ −
∫ T

0

∫
M

U(t,x)∂tΦ(t,x)dν(x)dt

is linear (equal to L) on E0, and continuous for the topology of L2(0, T ;E). By density of E0 in
this space, Ξ can be extended into an element of (L2(0, T ;E))′ = L2(0, T ;E ′) (see [15, Theorem
1.4.1]). We denote this element by ∂tU , as it clearly corresponds to the distributional derivative
of U [15, Section 2.1.2]. By [15, Section 2.5.2] this shows that U : [0, T ]→ L2(M) is continuous
and, using [15, Proposition 2.5.2] to integrate by parts in (49), that U(0) = U0 and

∀Φ ∈ E , 〈∂tU,Φ〉L2(0,T ;E′),L2(0,T ;E)dt =

∫ T

0

〈∂tU(t),Φ(t)〉E′,Edt = L(Φ). (50)

By density of E in L2(0, T ;E), this relation actually holds for any Φ ∈ L2(0, T ;E).
Fixing M = Mf , dν = dτf , E = V 0

f , E = C1([0, T ];C∞Γ ) and

L(Φ) =

∫ T

0

∫
Mf

hαfΦdτfdt−
∫ T

0

∫
Mf

[kS]αf (pf ) Λf∇uαf · ∇Φdτfdt

+
∑
a∈χ

(∫ T

0

∫
Γa

ραa (−Φ)dτdt
)
,

and using (35) with ϕαm = 0 and ϕαf = Φ, ϕβf = 0, for α, β = 1, 2 with α 6= β, this identifies

∂t(φfS
α
f (pf )) = φf∂tS

α
f (pf ) as an element of L2(0, T ;V 0

f
′
).

Let us now consider a slightly more complicated case, in which the time derivatives of two
functions need to be combined to exhibit a certain regularity. With the same M and E as
above, take (N, λ) a measured space and γ : E → L2(N) a continuous linear mapping. Assume
that U ∈ L2(0, T ;E), V ∈ L2(0, T ;L2(N)), U0 ∈ L2(M) and V0 ∈ L2(N), satisfy, for all φ ∈ E ,

−
∫ T

0

∫
M

U(t,x)∂tΦ(t,x)dν(x)dt−
∫ T

0

∫
N

V (t,x)∂tγ(Φ(t))(x)dλ(x)dt

+

∫
M

U0(x)Φ(0,x)dν(x) +

∫
N

V0(x)γ(Φ(0))(x)dλ(x) = L(Φ).

(51)

The same reasoning as above shows that

Ξ̃ : Φ 7→ −
∫ T

0

∫
M

U(t,x)∂tΦ(t,x)dν(x)dt−
∫ T

0

∫
M

V (t,x)∂tγ(Φ(t))(x)dλ(x)dt
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can be extended into a linear continuous form on L2(0, T ;E). Letting γ∗ : L2(N)→ E ′ be the

adjoint of γ (that is, 〈g, γ(Φ)〉L2(N) = 〈γ∗g,Φ〉E′,E for all g ∈ L2(N) and Φ ∈ E), the form Ξ̃ is
naturally denoted by ∂tU + γ∗∂tV . Note that, in this sum, the two terms cannot be separated
and it cannot, for example, be asserted that ∂tU ∈ L2(0, T ;E ′) and γ∗∂tV ∈ L2(0, T ;E ′). Then,
a reasoning similar to the one in [15] shows that U + γ∗V : [0, T ]→ L2(M) is continuous with
value U0 + γ∗V0 at t = 0, and that, for all Φ ∈ L2(0, T ;E),

〈∂tU + γ∗∂tV,Φ〉L2(0,T ;E′),L2(0,T ;E) = L(Φ).

To write more natural equations, in the rest of the paper we sometimes make an abuse of
notation and separate the two derivatives. We then write

〈∂tU + γ∗∂tV,Φ〉L2(0,T ;E′),L2(0,T ;E) =

∫ T

0

〈∂tU,Φ〉dt+

∫ T

0

〈γ∗∂tV,Φ〉dt

=

∫ T

0

〈∂tU,Φ〉dt+

∫ T

0

〈∂tV, γΦ〉dt,
(52)

where, in the right-hand side, the duality brackets do not have indices, to avoid claiming that
∂tU ∈ L2(0, T ;E ′) or γ∗∂tV ∈ L2(0, T ;E ′), and to remember that these two terms must be
understood together.

Used in (35) with γ = γa for all a ∈ χ, the above reasoning and notations enable us
to identify the (combined) time derivatives of φmS

α
m(pm) and

∑
a ηS

α
a (γapm) as elements of

L2(0, T ;V 0
m
′
).
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