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Sharp Oracle Inequalities for Low-complexity Priors

Tung Duy Luu∗ Jalal Fadili∗ Christophe Chesneau†

Abstract

In this paper, we consider a high-dimensional linear regression model with fixed design. We present
a unified analysis of the performance guarantees of exponential weighted aggregation and penalized es-
timators with a general class of priors which encourage objects which conform to some notion of sim-
plicity/complexity. More precisely, we show that these two estimators satisfy sharp oracle inequalities for
prediction ensuring their good theoretical performances. We also highlight the differences between them.
The results are then applied to several instances including the Lasso, the group Lasso, their analysis-type
counterparts, the `∞ and the nuclear norm penalties. When the noise is random, we provide oracle
inequalities in probability under mild assumptions on the noise distribution. These estimators can be
efficiently implemented using proximal splitting algorithms.

Key words. High-dimensional regression, exponential weighted aggregation, penalized estimation, oracle inequal-
ity, low-complexity models.

AMS subject classifications. 62G07 62G20

1 Introduction

1.1 Problem statement

Our statistical context is the following. We consider the linear regression model

y = Xθ0 + ξ, (1.1)

where y ∈ Rn is the response vector,X ∈ Rn×p is a deterministic design matrix, and ξ are errors.
The idea of aggregating elements in a dictionary has been introduced in machine learning to combine

different techniques (see [40, 66]) with some procedures such as bagging [9], boosting [30, 54] and random
forests [1, 5–7, 10, 31]. In the recent years, there has been a flurry of research on the use of low-complexity
regularization (among which sparsity and low-rank are the most popular) in various areas including statistics
and machine learning in high dimension. The idea is that even if the ambient dimension p of θ0 is very large,
its intrinsic dimension is much smaller than the sample size n. This makes it possible to build an estimate
Xθ̂ with good provable performance guarantees under appropriate conditions.

∗Normandie Univ, ENSICAEN, CNRS, GREYC, France, Email: {duy-tung.luu, Jalal.Fadili}@ensicaen.fr.
†Normandie Univ, UNICAEN, CNRS, LMNO, France, Email: christophe.chesneau@unicaen.fr.
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1.2 Variational/Penalized Estimators

Regularization is now a central theme in many fields including statistics, machine learning and inverse prob-
lems. It allows one to impose on the set of candidate solutions some prior structure on the object to be
estimated. This regularization ranges from squared Euclidean or Hilbertian norms to non-Hilbertian norms
(e.g. `1 norm for sparse objects, or nuclear norm for low-rank matrices) that have sparked considerable in-
terest in the recent years. In this paper, we consider the class of estimators obtained by solving the convex
optimization problem

θ̂
PEN

n ∈ Argmin
θ∈Rp

{Vn(θ)
def
= 1

nF (Xθ,y) + λJ(θ)}, (1.2)

where F : Rn × Rn → R is a general loss function assumed to be a proper, convex and sufficiently smooth
function of its first argument1. The regularizing penalty J is a proper closed convex function, and promotes
some specific notion of simplicity/low-complexity, and λ > 0 is the regularization parameter. A prominent
member covered by (1.2) is the Lasso [8, 11, 12, 16, 25, 46, 57] and its variants such the analysis/fused
Lasso [53, 58] or group Lasso [2, 3, 67, 69]. Another example is the nuclear norm minimization for low
rank matrix recovery motivated by various applications including robust PCA, phase retrieval, control and
computer vision [14, 15, 29, 48]. See [11, 43, 62, 64] for generalizations and comprehensive reviews.

1.3 Exponential Weighted Aggregation (EWA)

An alternative to the the variational estimator (1.2) is the aggregation by exponential weighting, which con-
sists in substituting averaging for minimization. The aggregators are defined via the probability density
function

µn(θ) =
exp (−Vn(θ)/β)∫

Θ exp (−Vn(ω)/β)dω
, (1.3)

where β > 0 is called temperature parameter. If all θ are candidates to estimate the true vector θ0, then
Θ = Rp. The aggregate is thus defined by

θ̂
EWA

n =

∫
Rp

θµn(θ)dθ. (1.4)

Aggregation by exponential weighting has been widely considered in the statistical and machine learning
literatures, see e.g. [18, 19, 22, 23, 27, 32, 38, 44, 49, 68] to name a few. θ̂

EWA

n can also be interpreted as
the posterior conditional mean in the Bayesian sense if F/(nβ) is the negative-loglikelihood associated to
the noise ξ with the prior density π(θ) ∝ exp (−λJ(θ)/β).

1.3.1 Oracle inequalities

Oracle inequalities, which are at the heart of our work, quantify the quality of an estimator compared to the
best possible one that could only be given with an oracle. These inequalities are well adapted in the scenario
where the prior penalty promotes some notion of low-complexity (e.g. sparsity, low rank, etc.). Given two
vectors θ1 and θ2, let Rn(θ1,θ2) be a nonnegative error measure between their predictions, respectively
Xθ1 andXθ2. A popular example is the averaged prediction squared error 1

n

∥∥Xθ1−Xθ2

∥∥2

2
, where

∥∥ ·∥∥
2

is the `2 norm. Rn will serve as a measure of the performance of the estimator θ̂
EWA

n . More precisely, we
1To avoid tirivialities, the set of minimizers is assumed non-empty, which holds for instance if J is also coercive.
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aim to prove that θ̂
EWA

n mimics as much as possible the best model of aggregation. This idea is materialized
in the following type of inequalities

Rn
(
θ̂

EWA

n ,θ0

)
≤ C inf

θ∈Rp

(
Rn(θ,θ0) + ∆n,p,λ,β(θ)

)
, (1.5)

whereC ≥ 1 is the leading constant of the oracle inequality and the remainder term ∆n,λ,β(θ) depends on the
performance of the estimator, the complexity of θ, the sample size n, the dimension p, and the regularization
and temperature parameters (λ, β). An estimator with good oracle properties would correspond to C close
to 1 (ideally, C = 1, in which case the inequality is said “sharp”), and ∆n,p,λ,β(θ) is small and decreases
rapidly to 0 as n→ +∞.

1.4 Contributions

We provide a unified analysis where we capture the essential ingredients behind the low-complexity priors
promoted by J , relying on sophisticated arguments from convex analysis and our previous work [28, 60–63].
Our main contributions are summarized as follows:

• We show that the the EWA estimator θ̂
EWA

n in (1.3) satisfies a sharp oracle inequality for prediction
with optimal remainder term, for the general case where J is a proper finite-valued sublinear func-
tion, where sublinearity is equivalent to saying that J is convex and positively homogeneous (hence
subadditive).

• We handle a more general data fidelity than the usual quadratic one.

• We prove a sharp prediction oracle inequality for the variational/penalized estimator θ̂
PEN

n in (1.2).
We highlight the differences between the two estimators in terms of the corresponding bounds.

• We then apply these two inequalities to several penalties routinely used in the literature, among which
the Lasso, the group Lasso, their analysis-type counterparts (fused (group) Lasso), the `∞ and the
nuclear norms. When the noise is random (typically Gaussian or subgaussian), we provide oracle
inequalities in probability. We show that we recover some known results as special cases and establish
new ones.

The estimators θ̂
EWA

n and θ̂
PEN

n can be easily implemented thanks to the framework of proximal splitting
methods, and more precisely forward-backward type splitting. While the latter is well-known to solve (1.2)
[62], its application within a proximal Langevin Monte-Carlo algorithm to compute θ̂

EWA

n with provable
guarantees has been recently developed by the authors in [27] to sample from log-semiconcave densities2,
see also [26] for log-concave densities.

1.5 Relation to previous work

Our oracle inequality for θ̂
EWA

n extends the work of [20] with an unprecedented level of generality, far beyond
the Lasso and the nuclear norm. Our prediction sharp oracle inequality for θ̂

PEN

n specializes to that of [56]
in the case of the Lasso (see also the discussion in [21] and references therein) and that of [37] for the case
of the nuclear norm. Our work also goes much beyond that in [64] on weakly decomposable priors, where
we show in particular that there is no need to impose decomposability on the regularizer, since it is rather an
intrinsic property of it.

2In a forthcoming paper, this framework was extended to cover the even more general class of prox-regular functions.
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1.6 Paper organization

In Section 2, we provide some notations and preliminaries. Section 3 introduces some key concepts from
convex analysis and low-complexity regularization which are behind this work, and then state our main
assumptions on the data loss and the prior penalty. All these notions are exemplified on some penalties
some of which are popular in the literature. In Section 4, we prove our main oracle inequalities, and then
apply them to the previous penalty examples. A key intermediate result in the proof of our main results is
established in the appendix with an elegant argument relying on Moreau-Yosida regularization.

2 Notations and Preliminaries

Vectors and matrices For a d-dimensional Euclidean space Rd, we endow it with its usual inner product
〈·, ·〉 and associated norm ‖·‖2. For p ≥ 1, ‖·‖p will denote the `p norm of a vector with the usual adaptation
for p = +∞.

In the following, if T is a vector space, PT denotes the orthogonal projector on T , and

θT = PT θ and XT = X PT .

For a subset I of {1, . . . , p}, we denote by Ic its complement,
∣∣I∣∣ its cardinality. θI is the subvector whose

entries are those of θ restricted to the indices in I , and XI the submatrix whose columns are those of X
indexed by I . For any matrixX ,X> denotes its transpose, and for a linear operatorA,A∗ is its adjoint.

Sets For a nonempty set C ∈ Rp, we denote conv (C) the closure of its convex hull, and ιC its indicator
function, i.e. ιC(θ) = 0 if θ ∈ C and +∞ otherwise. For a nonempty convex set C, its affine hull aff(C)
is the smallest affine manifold containing it. It is a translate of its parallel subspace par(C), i.e. par(C) =
aff(C) − θ = R(C − C); for any θ ∈ C. The relative interior ri(C) of a convex set C is the interior of C for
the topology relative to its affine full.

Definition 2.1 (Polar set). Let C be a nonempty convex set. The set C◦ given by

C◦ =
{
η ∈ Rp : 〈η,θ〉 ≤ 1 for all θ ∈ C

}
is called the polar of C.

The set C◦ is closed convex and contains the origin. When C is also closed and contains the origin, then
it coincides with its bipolar, i.e. C◦◦ = C.

Functions A function f : Rp → R is coercive, if lim‖θ‖2→+∞ f(θ) = +∞. The effective domain of f is
defined by dom(f) =

{
θ ∈ Rp : f(θ) < +∞

}
and f is proper if f(θ) > −∞ for all θ and dom(f) 6= ∅

as is the case when it is finite-valued. A function is said sublinear if it is convex and positively homogeneous.
For a C1-smooth function f , ∇f(θ) is its (Euclidean) gradient. For a bivariate function g : (η,y) ∈

Rn×Rn → R that is C2 with respect to the first variable η, for any y, we will denote∇g(η,y) the gradient
of g at η with respect to the first variable.

The subdifferential ∂f(θ) of a convex function f at θ is the set

∂f(θ) =
{
η ∈ Rp : f(θ′) ≥ f(θ) + 〈η,θ′ − θ〉, ∀θ′ ∈ dom(f)

}
.
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An element of ∂f(θ) is a subgradient. If the convex function f is differentiable at θ, then its only subgradient
is its gradient, i.e. ∂f(θ) = {∇f(θ)}.

The Bregman divergence associated to a convex function f at θ with respect to η ∈ ∂f(θ) 6= ∅ is

Dηf
(
θ,θ

)
= f(θ)− f(θ)− 〈η,θ − θ〉.

The Bregman divergence is in general nonsymmetric. It is also nonnegative by convexity. When f is differ-
entiable at θ, we simply write Df

(
θ,θ

)
(which is, in this case, also known as the Taylor distance).

3 Estimation with Low-complexity Penalties

The estimators θ̂
PEN

n and θ̂
EWA

n in (1.2) and (1.4) require two essential ingredients: the data loss term F and
the prior penalty J . We here specify the class of such functions covered in our work, and provide illustrating
examples.

3.1 Choice of the data loss

The class of loss functions F that we consider obey the following assumptions:

(H.1) F (u,y) = ϕ(u)− 〈u,y〉, where ϕ ∈ C1(Rn) is strongly convex with modulus ν > 0.

(H.2) For any θ ∈ Rp,
∫
Rp exp

(
−
∥∥θ∥∥

2

)∣∣〈∇ϕ(Xθ),X(θ − θ)〉
∣∣ < +∞.

This is a fairly general class of data loss functions. It is reminiscent of the negative log-likelihood in the regu-
lar exponential family. The moment assumption (H.2) is satisfied in many situations of interest. For instance,
one can immediately check that this is true if∇ϕ is also Lipschitz continuous (as when ϕ is quadratic).

The following simple lemma gives useful bounds of the Bregman distance associated to F .

Lemma 3.1. For F satisfying (H.1), the following bounds hold

DF (·,y)(v,u) ≥ ν
2

∥∥v − u∥∥2

2
.

If ∇ϕ is κ-Lipschitz continuous, κ > 0, then

DF (·,y)(v,u) ≤ κ
2

∥∥v − u∥∥2

2
.

Proof. It is immediate to see that
DF (·,y)(v,u) = Dϕ(v,u).

The lower-bound is then by definition of strong convexity of ϕ. The upper-bound is known as the descent
lemma applied to ϕ, see e.g. [45, Theorem 2.1.5].

3.2 Choice of the prior penalty

Before stating our main assumption on J , we start by collecting some ingredients from convex analysis that
are essential to our exposition.
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Support function The support function of C ⊂ Rp is

σC(ω) = sup
θ∈C
〈ω,θ〉.

We recall the following properties whose proofs can be found in e.g. [33, 51].

Lemma 3.2. Let C be a non-empty set.

(i) σC is proper lsc and sublinear.

(ii) σC is finite-valued if and only if C is bounded.

(iii) If 0 ∈ C, then σC is non-negative.

(iv) If C is convex and compact with 0 ∈ int(C), then σC is finite-valued and coercive.

Gauges and polars Let C ⊆ Rp be a non-empty closed convex set containing the origin. The gauge of C
is the function γC defined on Rp by

γC(θ) = inf
{
λ > 0 : θ ∈ λC

}
.

As usual, γC(θ) = +∞ if the infimum is not attained.
Lemma 3.3 hereafter recaps the main properties of a gauge that we need. In particular, (ii) is a fundamental

result of convex analysis that states that there is a one-to-one correspondence between gauge functions and
closed convex sets containing the origin. This allows to identify sets from their gauges, and vice versa.

Lemma 3.3.

(i) γC is a non-negative, lsc and sublinear function.

(ii) C is the unique closed convex set containing the origin such that

C =
{
θ ∈ Rp : γC(θ) ≤ 1

}
.

(iii) γC is finite-valued if, and only if, 0 ∈ int(C), in which case γC is 1-Lipschitz continuous.

(iv) γC is finite-valued and coercive if, and only if, C is compact and 0 ∈ int(C).

See [61] for the proof.
Observe that thanks to sublinearity, local Lipschitz continuity valid for any finite-valued convex function

is streghthned to global Lipschitz continuity. Moreover, γC is a norm, having C as its unit ball, if and only if
C is bounded with nonempty interior and symmetric.

We now define the polar gauge.

Definition 3.1 (Polar Gauge). The polar of a gauge γC is the function γ◦C defined by

γ◦C(ω) = inf
{
µ ≥ 0 : 〈θ,ω〉 ≤ µγC(θ), ∀θ

}
.

An immediate consequence is that gauges polar to each other have the property

〈θ,u〉 ≤ γC(θ)γ◦C(u) ∀(θ,u) ∈ dom(γC)× dom(γ◦C), (3.1)

just as dual norms satisfy a duality inequality. In fact, polar pairs of gauges correspond to the best inequalities
of this type.
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Lemma 3.4. Let C ⊆ Rp be a closed convex set containing the origin. Then,

(ii) γ◦C is a gauge function and γ◦◦C = γC .

(iii) γ◦C = γC◦ , or equivalently
C◦ =

{
θ ∈ Rp : γ◦C(θ) ≤ 1

}
.

(iv) The gauge of C and the support function of C are mutually polar, i.e.

γC = σC◦ and γC◦ = σC .

See [33, 51, 61] for the proof.

We are now ready to state our main assumption on J .

(H.3) J : Rp → R is the gauge of a non-empty convex compact set containing the origin as an interior point.

By Lemma 3.3, this assumption is equivalent to saying that J def
= γC is proper, convex, positively homoge-

neous, finite-valued and coercive. In turn, J is locally Lipschitz continuous on Rp. Observe also that by
virtue of Lemma 3.4 and Lemma 3.2, the polar gauge J◦ def

= γC◦ enjoys the same properties as J in (H.3).

3.3 Decomposability of the prior penalty

We are now in position to provide an important characterization of the subdifferential mapping of a function
J satisfying (H.3). This characterization will play a pivotal role in our proof of the oracle inequality.

We start by defining some essential geometrical objects that were introduced in [61].

Definition 3.2 (Model Subspace). Let θ ∈ Rp. We denote by eθ as

eθ = Paff(∂J(θ))(0).

We denote
Sθ = par(∂J(θ)) and Tθ = S⊥θ .

Tθ is coined the model subspace of θ associated to J .

It can be shown, see [61, Proposition 5], that θ ∈ Tθ, hence the name model subspace. When J is
differentiable at θ, we have eθ = ∇J(θ) and Tθ = Rp. When J is the `1-norm (Lasso), the vector eθ is
nothing but the sign of θ. Thus, eθ can be viewed as a generalization of the sign vector. Observe also that
eθ = PTθ(∂J(θ)), and thus eθ ∈ Tθ ∩ aff(∂J(θ)). However, in general, eθ 6∈ ∂J(θ).

We now provide a fundamental equivalent description of the subdifferential of J at θ in terms of eθ, Tθ,
Sθ and the polar gauge J◦.

Theorem 3.1. Let J satisfy (H.3). Let θ ∈ Rp and fθ ∈ ri(∂J(θ)).

(i) The subdifferential of J at θ reads

∂J(θ) = aff(∂J(θ)) ∩ C◦

=
{
η ∈ Rn : ηTθ = eθ and inf

τ≥0
max

(
J◦
(
τeθ + ηSθ + (τ − 1) PSθ fθ

)
, τ
)
≤ 1
}
.
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(ii) For any ω ∈ Rp, ∃η ∈ ∂J(θ) such that

J(ωSθ) = 〈ηSθ ,ωSθ〉.

Proof. (i) This follows by piecing together [61, Theorem 1, Proposition 4 and Proposition 5(iii)].

(ii) From [61, Proposition 5(iv)], we have

σ∂J(θ)−fθ(ω) = J(ωSθ)− 〈PSθ fθ,ωSθ〉.

Thus there exists a supporting point v ∈ ∂J(θ)−fθ ⊂ Sθ with normal vectorω [4, Corollary 7.6(iii)],
i.e.

σ∂J(θ)−fθ(ω) = 〈v,ωSθ〉.

Taking η = v + fθ concludes the proof.

Remark 3.1. The coercivity assumption in (H.3) is not needed for Theorem 3.1 to hold.

The decomposability of described in Theorem 3.1 depends on the particular choice of the mapping θ 7→
fθ ∈ ri(∂J(θ)). An interesting situation is encountered when eθ ∈ ri(J(θ)), so that one can choose fθ = eθ.
Strong gauges, see [61, Definition 6], are precisely a class of gauges for which this situation occurs, and in
this case, Theorem 3.1 has the simpler form

∂J(θ) = aff(∂J(θ)) ∩ C◦ =
{
η ∈ Rn : ηTθ = eθ and J◦(ηSθ) ≤ 1

}
. (3.2)

The Lasso, group Lasso and nuclear norms are typical examples of (symmetric) strong gauges. How-
ever, analysis sparsity penalties (e.g. the fused Lasso) or the `∞-penalty are not strong gauges, though they
obviously satisfy (H.3). See the next section for a detailed discussion.

3.4 Closure properties

A distinctive property of the class of penalties complying with (H.3) is that it enjoys important closure
properties that we summarize in the next lemma.

Lemma 3.5. The set of functions satisfying (H.3) is closed under addition3 and pre-composition by an
injective linear operator. More precisely, the following holds:

(i) Let J and G be two gauges satisfying (H.3). Then H def
= J +G also obeys (H.3). Moreover,

(a) THθ = T Jθ ∩ TGθ and eHθ = PTH
θ

(eJθ + eGθ ), where T Jθ and eJθ (resp. TGθ and eGθ ) are the model
subspace and vector at θ associated to J (resp. G);

(b) H◦(ω) = maxρ∈[0,1] conv (inf (ρJ◦(ω), (1− ρ)G◦(ω))).

(ii) Let J be a gauge satisfying (H.3), and D : Rq → Rp be surjective. Then H def
= J ◦D> also fulfills

(H.3). Moreover,

(a) THθ = Ker(D>SJ
u

) and eHθ = PTH
θ
DeJu, where T Ju and eJu are the model subspace and vector at

u
def
= D>θ associated to J;

3It is obvious that the same holds with any positive linear combination.
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(b) H◦(ω) = J◦(D+ω), whereD+ = D>
(
DD>

)−1.

The outcome of Lemma 3.5 is naturally expected. For instance, assertion (i) states that combining several
penalties/priors will promote objects living on the intersection of the respective low-complexity models.
Similarly, for (ii), one promotes low-complexity in the image of the analysis operator D>. It then follows
that one has not to deploy an ad hoc analysis when linearly pre-composing or combining (or both) several
penalties since our unified analysis in Section 4 will apply to them just as well.

Proof. (i) Convexity, positive homogeneity, coercivity and finite-valuedness are straightforward.

(a) This is [61, Proposition 8(i)-(ii)].
(b) We have from Lemma 3.4 and calculus rules on support functions,

H◦(ω) = σJ(θ)+G(θ)≤1(ω) = sup
J(θ)+G(θ)≤1

〈ω,θ〉 = max
ρ∈[0,1]

sup
J(θ)≤ρ,G(θ)≤1−ρ

〈ω,θ〉

([33, Theorem V.3.3.3]) = max
ρ∈[0,1]

conv
(
inf
(
σJ(θ)≤ρ(ω), σG(θ)≤1−ρ(ω)

))
(Positive homogeneity) = max

ρ∈[0,1]
conv

(
inf
(
ρσJ(θ)≤1(ω), (1− ρ)σG(θ)≤1(ω)

))
(Lemma 3.4) = max

ρ∈[0,1]
conv (inf (ρJ◦(ω), (1− ρ)G◦(ω))).

(ii) Again, Convexity, positive homogeneity and finite-valuedness are immediate. Coercivity holds by
injectivity ofD>.

(a) This is [61, Proposition 10(i)-(ii)].
(b) We have

H◦(ω) = sup
J(D>θ)≤1

〈ω,θ〉

(D> is injective) = sup
J(D>θ)≤1

〈D+ω,D>θ〉

= sup
J(u)≤1,u∈Span(D>)

〈D+ω,u〉

([33, Theorem V.3.3.3] and Lemma 3.4) = conv
(
inf
(
J◦(D+ω), ιKer(D)(D

+ω)
))

= J◦(D+ω).

where in the last equality, we used the fact that D+ω ∈ Span
(
D>

)
= Ker(D)⊥, and thus

ιKer(D)(D
+ω) = +∞ unlessω = 0, and J◦ is continuous and convex by (H.3) and Lemma 3.4.

3.5 Examples

3.5.1 Lasso

The Lasso regularization is used to promote the sparsity of the minimizers, see [11] for a comphensive review.
It corresponds to choosing J as the `1-norm

J(θ) =
∥∥θ∥∥

1
=

p∑
i=1

∣∣θi∣∣. (3.3)
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It is also referred to as `1-synthesis in the signal processing community, in contrast to the more general
`1-analysis sparsity penalty detailed below.

We denote (ai)1≤i≤p the canonical basis of Rp and supp(θ)
def
=
{
i ∈ {1, . . . , p} : θi 6= 0

}
. Then,

Tθ = Span{(ai)i∈supp(θ)}, (eθ)i =

{
sign(θi) if i ∈ supp(θ)

0 otherwise
, and J◦ =

∥∥ · ∥∥∞. (3.4)

3.5.2 Group Lasso

The group Lasso has been advocated to promotessparsity of the groups, i.e. it drives all the coefficients in
one group to zero together hence leading to group selection, see [2, 3, 67, 69] to cite a few. The group Lasso
penalty with L groups reads

J(θ) =
∥∥θ∥∥

1,2

def
=

L∑
i=1

∥∥θbi∥∥2
. (3.5)

where
⋃L
i=1 bi = {1, . . . , p}, bi, bj ⊂ {1, . . . , p}, and bi ∩ bj = ∅ whenever i 6= j. Define the group support

as suppB(θ)
def
=
{
i ∈ {1, . . . , L} : θbi 6= 0

}
. Thus, one has

Tθ = Span{(aj){j : ∃i∈suppB(θ),j∈bi
}}, (eθ)bi =


θbi
‖θbi‖2

if i ∈ suppB(θ)

0 otherwise
, and J◦(ω) = max

i∈{1,...,L}
‖ωbi‖2 .

(3.6)

3.5.3 Analysis (group) Lasso

One can push the structured sparsity idea one step further by promoting group/block sparsity through a linear
operator, i.e. analysis-type sparsity. Given a linear operator D : Rq → Rp (seen as a matrix), the analysis
group sparsity penalty is

J(θ) =
∥∥D>θ∥∥

1,2
. (3.7)

This encompasses the 2-D isotropic total variation [53]. For when all groups of cardinality one, we have the
analysis-`1 penalty (a.k.a. general Lasso), which encapsulates several important penalties including that of
the 1-D total variation [53], and the fused Lasso [58]. The overlapping group Lasso [35] is also a special
case of (3.5) by taking D> to be an operator that exactract the blocks [17, 47] (in which case D has even
orthogonal rows).

Let Λθ =
⋃
i∈suppB(D>θ) bi and Λcθ its complement. From Lemma 3.5(ii) and (3.6), we get

Tθ = Ker(D>Λc
θ
), eθ = PTθDe

‖‖1,2
D>θ

where
(
e
‖‖1,2
D>θ

)
bi

=


(D>θ)

bi∥∥∥(D>θ)
bi

∥∥∥
2

if i ∈ suppB(D>θ)

0 otherwise.
(3.8)

If, in addition,D is surjective, then by virtue of Lemma 3.5(ii) we also have

J◦(ω) =
∥∥D+ω

∥∥
∞,2

def
= max

i∈{1,...,L}

∥∥(D+ω)bi
∥∥

2
(3.9)
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3.5.4 Anti-sparsity

If the vector to be estimated is expected to be flat (anti-sparse), this can be captured using the `∞ norm (a.k.a.
Tchebychev norm) as prior

J(θ) =
∥∥θ∥∥∞ = max

i∈{1,...,p}

∣∣θi∣∣. (3.10)

The `∞ regularization has found applications in several fields [36, 42, 55]. Suppose that θ 6= 0, and define
the saturation support of θ as Isat

θ
def
=
{
i ∈ {1, . . . , p} :

∣∣θi∣∣ = ‖θ‖∞
}
6= ∅. From [61, Proposition 14],

we have

Tθ =
{
θ ∈ Rp : θIsat

θ
∈ R sign(θIsat

θ
)
}
, (eθ)i =

{
sign(θi)/|Isatθ| if i ∈ Isat

θ

0 otherwise
, and J◦ = ‖·‖1 .

(3.11)

3.5.5 Nuclear norm

The natural extension of low-complexity priors to matrices θ ∈ Rp1×p2 is to penalize the singular values of
the matrix. Let rank(θ) = r, and θ = U diag(λ(θ))V > be a reduced rank-r SVD decomposition, where
U ∈ Rp1×r and V ∈ Rp2×r have orthonormal columns, and λ(θ) ∈ (R+ \ {0})r is the vector of singular
values (λ1(θ), · · · , λr(θ)) in non-increasing order. The nuclear norm of θ is

J(θ) =
∥∥θ∥∥∗ =

∥∥λ(θ)
∥∥

1
. (3.12)

This penalty is the best convex surrogate to enforce a low-rank prior. It has been widely used for various
applications [13–15, 29, 48].

Following e.g. [60, Example 21], we have

Tθ =
{
UA>+BV > : A ∈ Rp2×r,B ∈ Rp1×r}, eθ = UV > and J◦(ω) = |||ω|||2→2 =

∥∥λ(ω)
∥∥
∞.

(3.13)

4 Main results

Before delving into the details, we will need a bit of notations.
Throughout this section, we recall Tθ and eθ the model subspace and vector associated to θ (see Defini-

tion 3.2). Denote Sθ = T⊥θ . Given two coercive finite-valued gauge J1 and J2, and a linear operatorA, we
define |||A|||J1→J2

the operator bound as

|||A|||J1→J2
= sup{

θ∈Rp : J1(θ)≤1
} J2(Aθ).

Note that |||A|||J1→J2
is bounded (this follows from Lemma 3.3(v)). Whenever it is clear from the context, to

lighten notation when Ji is a norm, we write the subscript of the norm instead of Ji (e.g. p for the `p norm,
∗ for the nuclear norm, etc.).

Our main result will involve a measure of well-conditionedness of the design matrix X when restricted
to some subspace T . More precisely, for c > 0, we introduce the coefficient

Υ(T, c) = inf{
ω∈Rp : J(ωS)<cJ(ωT )

} |||PT |||2→J
∥∥Xω∥∥

2

n1/2(J(ωT )− J(ωS)/c)
. (4.1)
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This generalizes the compatibility factor introduced in [65] for the Lasso (and used in [20]). The experienced
reader may have recognized that this factor is reminescent of the null space property and restricted injectivity
that play a central role in the analysis of the performance guarantees of variational/penalized estimators (1.2);
see [28, 60–63]. One can see in particular that Υ(T, c) is larger than the smallest singular value ofXT .

4.1 Oracle inequality for θ̂
EWA

n

We are now ready to establish our first main result: an oracle inequality for the EWA estimator (1.4) under
assumptions (H.1) and (H.3). The oracle inequality is provided in terms of the loss

Rn
(
θ,θ0

)
= 1

nDϕ(Xθ,Xθ0).

By Lemma 3.1, we indeed have Rn(θ,θ0) ≥ ν
2n

∥∥Xθ−Xθ0

∥∥2

2
, and equality is attained when is quadratic.

If ∇ϕ is also Lipschitz continuous, then Lemma 3.1 asserts that Rn
(
θ,θ0

)
is equivalent to the quadratic

loss.

Theorem 4.1. Consider the data generated by (1.1) and the EWA estimator θ̂
EWA

n in (1.4) with the density
(1.3), where F and J satisfy Assumptions (H.1)-(H.2) and (H.3). Then, for any 0 < ε < ν and τ > 1 such
that λ ≥ τJ◦

(
X>ξ

)
/n, the following holds,

Rn
(
θ̂

EWA

n ,θ0

)
≤ inf
θ∈Rp

Rn(θ,θ0

)
+

λ2
(
τJ◦(eθ) + 1

)2|||PTθ |||22→J
2τ2(ν − ε)Υ

(
Tθ,

τJ◦(eθ)+1
τ−1

)2

+pβ+
1

2nε

∥∥(Id−∇ϕ)(Xθ0)
∥∥2

2
.

(4.2)

Remark 4.1.

1. The oracle inequality is sharp. The remainder in it has several terms. The first one encodes the
complexity of the model promoted by J . The second one, pβ, captures the influence of the tempera-
ture parameter. In particular, taking β sufficiently small of the order O

(
(pn)−1

)
, this term becomes

O(n−1). When ϕ is quadratic, the last term in (4.2) vanishes in which case we can set ε = 0. We
also point out that if ∇ϕ is also κ-Lipschitz continuous, then Lemma 3.1 asserts that Rn

(
θ,θ0

)
is

equivalent to a quadratic loss. This means that the oracle inequaliy in Theorem 4.1 can be stated in
terms of the quadratic prediction error. However, the inequality is not anymore sharp in this case as
a constant factor equal to the condition number κ/ν ≥ 1 naturally multiplies the right-hand side.

2. If J is such that eθ ∈ ∂J(θ) ⊂ C◦ (typically for a strong gauge by (3.2)), then J◦(eθ) ≤ 1 (in fact an
equality if θ 6= 0). Thus the term J◦(eθ) can be omitted in (4.2).

3. A close inspection of the proof of Theorem 4.1 reveals that the term pβ can be improved to the smaller
bound

pβ +
(
Vn(θ̂

EWA

n )− Eµn [Vn(θ)]
)

+
ν

2n

(∥∥Xθ̂EWA

n

∥∥2

2
− Eµn

[∥∥Xθ∥∥2

2

])
≤ pβ,

where the upper-bound is a consequence of Jensen inequality.

Proof. By convexity of J and Lemma 3.1, we have for any η ∈ ∂Vn(θ) and any θ ∈ Rp,

DηVn
(
θ,θ

)
≥ ν

2n

∥∥Xθ −Xθ∥∥2

2
.

12



Taking the expectation w.r.t. to µn on both sides, and using Jensen inequality, we get

Vn(θ) ≥ Eµn [Vn(θ)] + Eµn
[
〈η,θ − θ〉

]
+

ν

2n
Eµn

[∥∥Xθ −Xθ∥∥2

2

]
≥ Vn(θ̂

EWA

n ) + Eµn
[
〈η,θ − θ〉

]
+

ν

2n

∥∥Xθ −Xθ̂EWA

n

∥∥2

2
.

This holds for any η ∈ ∂Vn(θ), and in particular at the minimal selection
(
∂Vn(θ)

)0 (see Section A for
details). It then follows from Proposition A.14 that

Eµn
[
〈
(
∂Vn(θ)

)0
,θ − θ〉

]
= −pβ.

We thus deduce the inequality

Vn(θ̂
EWA

n )− Vn(θ) ≤ pβ − ν

2n

∥∥Xθ̂EWA

n −Xθ
∥∥2

2
, ∀θ ∈ Rp. (4.3)

By definition of the Bregman divergence and in view of (H.1), we have

Rn
(
θ̂

EWA

n ,θ0

)
−Rn

(
θ,θ0

)
=
(
Vn(θ̂

EWA

n )− V (θ)
)

+
1

n
〈(Id−∇ϕ)(Xθ0),Xθ̂

EWA

n −Xθ〉

+
1

n
〈X>ξ, θ̂

EWA

n − θ〉 − λ
(
J(θ̂

EWA

n )− J(θ)
)
.

Using (H.1), Young inequality and the duality inequality (3.1), we have for any ε > 0

Rn
(
θ̂

EWA

n ,θ0

)
−Rn

(
θ,θ0

)
≤
(
Vn(θ̂

EWA

n )− V (θ)
)

+
1

2nε

∥∥(Id−∇ϕ)(Xθ0)
∥∥2

2

+
ε

2n

∥∥Xθ̂EWA

n −Xθ
∥∥2

2
+

1

n
J◦
(
X>ξ

)
J(θ̂

EWA

n − θ)− λ
(
J(θ̂

EWA

n )− J(θ)
)

≤
(
Vn(θ̂

EWA

n )− V (θ)
)

+
1

2nε

∥∥(Id−∇ϕ)(Xθ0)
∥∥2

2

+
ε

2n

∥∥Xθ̂EWA

n −Xθ
∥∥2

2
+
λ

τ

(
J(θ̂

EWA

n − θ)− τ
(
J(θ̂

EWA

n )− J(θ)
))
.

Denote ω = θ̂
EWA

n − θ. By virtue of (H.3), Lemma 3.1 and (3.1), we obtain

J(ω)− τ
(
J(θ̂

EWA

n )− J(θ)
)
≤ J(ωTθ) + J(ωSθ)− τ〈eθ,ωTθ〉 − τJ(ωSθ)

≤ J(ωTθ) + J(ωSθ) + τJ◦(eθ)J(ωTθ)− τJ(ωSθ)

=
(
τJ◦(eθ) + 1

)
J(ωTθ)− (τ − 1)J(ωSθ)

≤
(
τJ◦(eθ) + 1

)(
J(ωTθ)− τ−1

τJ◦(eθ)+1J(ωSθ)
)
.

4In the appendix, we provide a self-contained proof based on a novel Moreau-Yosida regularization. In [20, Corollary 1 and 2],
an alternative proof is given using an absolute continuity argument since µn is locally Lipschitz, hence a Sobolev function.
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This inequality together with (4.3) (applied with θ = θ) and (4.1) yield

Rn
(
θ̂

EWA

n ,θ0

)
−Rn

(
θ,θ0

)
≤ pβ − ν − ε

2n

∥∥Xω∥∥2

2
+

1

2nε

∥∥(Id−∇ϕ)(Xθ0)
∥∥2

2

+
λ
(
τJ◦(eθ) + 1

)
|||PTθ |||2→J

∥∥Xω∥∥
2

n1/2τΥ
(
Tθ,

τJ◦(eθ)+1
τ−1

)
≤ pβ +

1

2nε

∥∥(Id−∇ϕ)(Xθ0)
∥∥2

2
+

λ2
(
τJ◦(eθ) + 1

)2|||PTθ |||22→J
2τ2(ν − ε)Υ

(
Tθ,

τJ◦(eθ)+1
τ−1

)2 ,

where we applied Young inequality to get the last inequality. Taking the infimum over θ ∈ Rp yields the
desired bound.

Partly smooth functions Theorem 4.1 has a nice instanciation for the case of partly smooth functions
convex functions. These functions have been thoroughly studied recently in [60–63] for various statistical
and inverse problems. In particular, a finite-valued convex function J is partly smooth at a point θ relative
to an active set M 3 θ, if M is a smooth submanifold of Rp, and J behaves smoothly along M and
sharply transverse to it. In addition, the partial smoothness submanifold is always unique. There are two
consequences of partial smoothness. First, the sharpness property is equivalently characterized by Tθ(M) =
Tθ, where Tθ(M) is the tangent space ofM at θ. Second, eθ coincides with the Riemannian gradient of J
alontM. Moreover, both these two properties locally persists at all nearby points of θ onM; see [60, 62] for
details. As an example, a smooth function at θ is partly smooth relative to the whole space Rp. All popular
penalty functions discussed in Sections 3.5 and 4.3 are also partly smooth (see [60, 62]).

Let’s denote M the set of all possible partial smoothness active submanifolds associated to J . An inter-
esting fact is that there are many situations where M contains finitely many active submanifolds, as is the
case for the examples of Section 3.5. With this notation at hand, the oracle inequality (4.2) now reads

Rn
(
θ̂

EWA

n ,θ0

)
≤ inf
M∈M
θ∈M

Rn(θ,θ0

)
+

λ2
(
τJ◦(eθ)+1

)2

|||PTθ(M)|||22→J

2τ2(ν−ε)Υ
(
Tθ(Mθ),

τJ◦(eθ)+1
τ−1

)2

+pβ+
1

2nε

∥∥(Id−∇ϕ)(Xθ0)
∥∥2

2
.

4.2 Oracle inequality for θ̂
PEN

n

The next result establishes that θ̂
PEN

n satisfies a sharp prediction oracle inequality that we will compare to
(4.2).

Theorem 4.2. Consider the data generated by (1.1) and the penalized estimator θ̂
PEN

n in (1.2), where F and
J satisfy Assumptions (H.1) and (H.3). Then, for any 0 < ε < ν and τ > 1 such that λ ≥ τJ◦

(
X>ξ

)
/n,

the following holds,

Rn
(
θ̂

PEN

n ,θ0

)
≤ inf
θ∈Rp

Rn(θ,θ0

)
+

λ2
(
τJ◦(eθ) + 1

)2|||PTθ |||22→J
2τ2(ν − ε)Υ

(
Tθ,

τJ◦(eθ)+1
τ−1

)2

+
1

2nε

∥∥(Id−∇ϕ)(Xθ0)
∥∥2

2
.

(4.4)
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In plain words, the difference between the prediction performance of θ̂
EWA

n and θ̂
PEN

n lies in the term pβ
(or rather its lower-bound in Remark 4.1-3). Thus letting p → 0 in (4.2), one recovers the oracle inequal-
ity (4.4) of penalized estimators. In particular, for β = O

(
(pn)−1

)
, this is at most of the same order as

the first one in the remainder. Observe also that the penalized estimator θ̂
PEN

n does not need the moment
assumption (H.2) for (4.4) to hold.

Proof. The proof follows the same lines as that of Theorem 4.1 except that we use the fact that θ̂
PEN

n is a
global minimizer of Vn, i.e. 0 ∈ ∂Vn(θ̂

PEN

n ). Indeed, we have for any θ ∈ Rp

Vn(θ) ≥ Vn(θ̂
PEN

n ) +
ν

2n

∥∥Xθ −Xθ̂PEN

n

∥∥2

2
. (4.5)

Continuing exactly as just after (4.3), replacing θ̂
EWA

n with θ̂
PEN

n and invoking (4.5) instead of (4.3), we
arrive at the claimed result.

4.3 Applications

In this section, we exemplify our oracle inequalities for the penalties described in Section 3.5.

4.3.1 Lasso

To lighten the notation, let Iθ = supp(θ). From (3.4), it is easy to see that

|||PTθ |||2→1 =
√
|Iθ| and J◦(eθ) = ‖sign(θIθ)‖∞ ≤ 1,

where last bound holds as an equality whenever θ 6= 0. It remains to check whether the event {λ ≥
τ
∥∥X>ξ∥∥∞/n} holds with high probability when the noise is random under reasonable assumptions on
ξ. We have the following corollary.

Corollary 4.1. Let the data generated by (1.1) with noise ξ whose entries are n iid subgaussian centered
random variables with parameterσ. Assume thatX is such that maxi ‖Xi‖2 ≤

√
n. Consider the estimators

θ̂
EWA

n and θ̂
PEN

n , where J the Lasso penalty (3.3) and F satisfies Assumptions (H.1)-(H.2). Let 0 < ε < ν.

Suppose that λ ≥ τσ

√
2 log(p/δ)

n , for some τ > 1 and δ ∈]0, 1[. Then, with probability at least 1 − δ, the
following holds

Rn
(
θ̂

EWA

n ,θ0

)
≤ inf

I⊂{1,...,p}
θ: supp(θ)=I

(
Rn
(
θ,θ0

)
+ λ2(τ+1)2|I|

2τ2(ν−ε)Υ
(

Span{ai}i∈I ,
τ+1
τ−1

)2

)

+ pβ +
1

2nε

∥∥(Id−∇ϕ)(Xθ0)
∥∥2

2
, (4.6)

and

Rn
(
θ̂

PEN

n ,θ0

)
≤ inf

I⊂{1,...,p}
θ: supp(θ)=I

(
Rn
(
θ,θ0

)
+ λ2(τ+1)2|I|

2τ2(ν−ε)Υ
(

Span{ai}i∈I ,
τ+1
τ−1

)2

)

+
1

2nε

∥∥(Id−∇ϕ)(Xθ0)
∥∥2

2
. (4.7)
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When ϕ is quadratic, the oracle inequality (4.7) recovers [20, Theorem 1] in the exactly sparse case. (4.7)
also coincides in this case with the oracle inequaliy in [56, Theorem 4] (see also [21, Theorem2]). The first
term in the remainder grows as |I| log(p)

n which is the classical scaling under the individual sparsity scenario.

Proof. By the union bound, we have

P
(∥∥X>ξ∥∥∞ > ε

)
≤ P

(
p⋃
i=1

|〈Xi, ξ〉| > ε

)
≤

p∑
i=1

P (|〈Xi, ξ〉| > ε) ≤ p max
i∈{1,...,p}

P (|〈Xi, ξ〉| > ε) .

Since ξ1, . . . , ξn are n iid subgaussian centered random variables with parameter σ2, for any i ∈ {1, . . . , p},
〈Xi, ξ〉 is a sum of n random variables iid subgaussian centered random variables with parameter σ2X2

i,j .
Owing to the Hoeffding bound [34], we obtain

P (|〈Xi, ξ〉| > ε) ≤ 2 exp
(
− ε2/

(
2σ2 ‖Xi‖22

))
.

Taking ε = λn/τ , we conclude.

4.3.2 Group Lasso

Recall the notations in Section 3.5.2, and denote Iθ = suppB(θ). From (3.6), we have

|||PTθ |||2→J =
√
|Iθ| and J◦(eθ) = ‖eθ‖∞,2 ≤ 1,

where |Iθ| is nothing but the number of active blocks in θ, and the last bound holds as an equality whenever
θ 6= 0.

When the noise is iid Gaussian, we get the following oracle inequalities.

Corollary 4.2. Let the data generated by (1.1) with noise ξ whose entries are n iid N (0, σ2). Consider
the estimators θ̂

EWA

n and θ̂
PEN

n , where F satisfies Assumptions (H.1)-(H.2), and J is the group Lasso (3.5)
with L non-overlapping blocks of equal size K. Assume thatX is such that maxi

∣∣∣∣∣∣X>biXbi

∣∣∣∣∣∣
2→2
≤ n. Let

0 < ε < ν. Suppose that λ ≥ τσ

√
K+2

(
2δ log(L)+

√
Kδ log(L)

)
n , for some τ > 1 and δ > 1. Then, with

probability at least 1− 2L1−δ, the following holds

Rn
(
θ̂

EWA

n ,θ0

)
≤ inf

I⊂{1,...,L}
θ: suppB(θ)=I

(
Rn
(
θ,θ0

)
+ λ2(τ+1)2|I|

2τ2(ν−ε)Υ
(

Span{aj}j∈bi,i∈I ,
τ+1
τ−1

)2

)

+ pβ +
1

2nε

∥∥(Id−∇ϕ)(Xθ0)
∥∥2

2
, (4.8)

and

Rn
(
θ̂

PEN

n ,θ0

)
≤ inf

I⊂{1,...,L}
θ: suppB(θ)=I

(
Rn
(
θ,θ0

)
+ λ2(τ+1)2|I|

2τ2(ν−ε)Υ
(

Span{aj}j∈bi,i∈I ,
τ+1
τ−1

)2

)

+
1

2nε

∥∥(Id−∇ϕ)(Xθ0)
∥∥2

2
. (4.9)
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The first remainder term is on the order
|I|

(√
K+
√

2 log(L)
)2

n , which is similar to the scaling that has been
provided in the literature for EWA with other group sparsity priors [27, 50]. Similar rates were given for
θ̂

PEN

n with group Lasso in [41, 43, 64].

Proof. The proof is essentially an adaptation of [41, Lemma 3.1], where we also used that for all i = 1, . . . , L,

n−1 tr
(
X>biXbi

)
≤ Kn−1

∣∣∣∣∣∣X>biXbi

∣∣∣∣∣∣
2→2
≤ K.

4.3.3 Analysis (group) Lasso

We now turn to the prior penalty (3.7). Recall the notations in Section 3.5.3, and remind Λθ =
⋃
i∈suppB(D>θ) bi.

Without loss of generality, we assume that D is a Parseval tight frame, meaning that DD> = Id, and thus
D+ = D>. This together with (3.8)-(3.9) and Cauchy-Schwarz inequality entail

|||PTθ |||2→J = sup
‖ωTθ‖2

≤1

∥∥D>ωTθ∥∥1,2
= sup
‖D>ωTθ‖2

≤1

∥∥D>ωTθ∥∥1,2

= sup∥∥∥D>ΛθωTθ

∥∥∥
2
≤1

∥∥D>ΛθωTθ∥∥1,2

=

√
|suppB(D>θ)|.

However, from (3.8), we do not have in general
∥∥∥∥D> PKer(D>

Λc
θ

)De
‖‖1,2
D>θ

∥∥∥∥
∞,2
≤ 1.

With arguments analogue to those for proving Corollary 4.2, we arrive at the following oracle inequalities.

Corollary 4.3. Let the data generated by (1.1) with noise ξ whose entries are n iid N (0, σ2). Consider
the estimators θ̂

EWA

n and θ̂
PEN

n , where F satisfies Assumptions (H.1)-(H.2), and J is the analysis group
Lasso (3.7) with L blocks of equal size K. Assume that D is a Parseval tight frame, and X is such that

maxi
∣∣∣∣∣∣D>biX>XDbi

∣∣∣∣∣∣
2→2
≤ n. Let 0 < ε < ν. Suppose that λ ≥ τσ

√
K+2

(
2δ log(L)+

√
Kδ log(L)

)
n , for

some τ > 1 and δ > 1. Then, with probability at least 1− 2L1−δ, the following holds

Rn
(
θ̂

EWA

n ,θ0

)
≤ inf

I⊂{1,...,L}
θ: suppB(D>θ)=I

Rn
(
θ,θ0

)
+

λ2
(
τ
∥∥D> P

Ker(D>
Λc
θ

)
De
‖‖1,2
D>θ

∥∥
∞,2

+1
)2

|I|

2τ2(ν−ε)Υ

(
Ker(D>

Λc
θ

),

τ
∥∥D> P

Ker(D>
Λc
θ

)
De
‖‖1,2
D>θ

∥∥
∞,2

+1

τ−1

)2


+ pβ +

1

2nε

∥∥(Id−∇ϕ)(Xθ0)
∥∥2

2
, (4.10)
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and

Rn
(
θ̂

PEN

n ,θ0

)
≤ inf

I⊂{1,...,L}
θ: suppB(D>θ)=I

Rn
(
θ,θ0

)
+

λ2
(
τ
∥∥D> P

Ker(D>
Λc
θ

)
De
‖‖1,2
D>θ

∥∥
∞,2

+1
)2

|I|

2τ2(ν−ε)Υ

(
Ker(D>

Λc
θ

),

τ
∥∥D> P

Ker(D>
Λc
θ

)
De
‖‖1,2
D>θ

∥∥
∞,2

+1

τ−1

)2


+

1

2nε

∥∥(Id−∇ϕ)(Xθ0)
∥∥2

2
. (4.11)

To the best of our knowledge, this result is new to the literature. The scaling of the remainder term is
the same as in [27, Remark 6.2] and [50] with analysis sparsity priors different from ours (the authors in the
latter also assume thatD is invertible).

4.3.4 Anti-sparsity

From Section 3.5.4, recall the saturation support Isat
θ of θ. From (3.11), we get

|||PTθ |||2→∞ = 1 and J◦(eθ) =
∥∥∥sign(θIsat

θ
)
∥∥∥

1
/|Isat

θ | ≤ 1,

with equality whenever θ 6= 0.
Assuming that the noise is iid zero-mean Gaussian, we get the following oracle inequalities.

Corollary 4.4. Let the data generated by (1.1) with noise ξ whose entries are n iid N (0, σ2). Assume
that X is such that maxi,j |Xi,j | ≤ 1/

√
n. Consider the estimators θ̂

EWA

n and θ̂
PEN

n , where F satisfies
Assumptions (H.1)-(H.2), and J is the anti-sparsity penalty (3.10). Let 0 < ε < ν. Suppose that λ ≥√

2
π τ(1 + δ)σp/n, for some τ > 1 and δ > 0. Then, with probability at least 1− e−

δ2

π , the following holds

Rn
(
θ̂

EWA

n ,θ0

)
≤ inf
I⊂{1,...,p}
θ: Isat

θ =I

(
Rn
(
θ,θ0

)
+ λ2(τ+1)2

2τ2(ν−ε)Υ
({
θ : θI∈R sign(θI)

}
,
τ+1
τ−1

)2

)

+ pβ +
1

2nε

∥∥(Id−∇ϕ)(Xθ0)
∥∥2

2
, (4.12)

and

Rn
(
θ̂

PEN

n ,θ0

)
≤ inf
I⊂{1,...,p}
θ: Isat

θ =I

(
Rn
(
θ,θ0

)
+ λ2(τ+1)2

2τ2(ν−ε)Υ
({
θ : θI∈R sign(θI)

}
,
τ+1
τ−1

)2

)

+
1

2nε

∥∥(Id−∇ϕ)(Xθ0)
∥∥2

2
. (4.13)

We are not aware of any result of this kind in the literature. The first remainder term scales as
( p
n

)2. The
bound imposed onX is similar to what is generally assumed in the vector quantization literature [42, 55].

18



Proof. The function ξ 7→
∥∥X>ξ∥∥

1
is Lipschitz continuous with Lipschitz constant

∑p
i=1 ‖Xi‖2. Moreover,

E
[∥∥X>ξ∥∥

1

]
=
√

2
πσ
∑p

i=1 ‖Xi‖2. Setting ε = λn/τ −
√

2
πσ
∑p

i=1 ‖Xi‖2 ≥ δ
√

2
πσ
∑p

i=1 ‖Xi‖2, it
follows from the Gaussian concentration of Lipschitz functions [39] that

P
(∥∥X>ξ∥∥

1
≥ λn/τ

)
= P

(∥∥X>ξ∥∥
1
− E

[∥∥X>ξ∥∥
1

]
> ε
)

≤ exp

−
(
λn/τ −

√
2
πσ
∑p

i=1 ‖Xi‖2
)2

2σ2
(∑p

i=1 ‖Xi‖2
)2


≤ exp

(
−δ

2

π

)
.

4.3.5 Nuclear norm

We now turn to the nuclear norm case. Recall the notations of Section 3.5.5. For matrices θ ∈ Rp1×p2 ,
a measurement map X takes the form of a linear operator whose ith component is given by the Frobenius
scalar product

X(θ)i = tr((Xi)>θ) = 〈Xi,θ〉F,

where Xi is a matrix in Rp1×p2 . We denote ‖·‖F the associated norm. From (3.13), it is immediate to see
that whenever θ 6= 0,

J◦(eθ) =
∣∣∣∣∣∣UV >∣∣∣∣∣∣

2→2
= 1.

Moreover, since
‖θ‖∗ = ‖λ(θ)‖1 ≤

√
r ‖λ(θ)‖2 =

√
r ‖θ‖F ,

we deduce that
|||PTθ |||F→∗ =

√
r.

For standard Gaussian noise ξ, we need to bound

|||X∗(ξ)|||2→2 =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Xiξi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2→2

,

which is the operator norm of a random series with matrix coefficients. Thus arguing as in [20, Lemma 6]
(which relies on [59, Theorem 4.1.1], we get the following oracle inequalities for the nuclear norm. Define

v(X) = max

(∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

Xi(Xi)>

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2→2

,

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

(Xi)>Xi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2→2

)
.

Corollary 4.5. Let the data generated by (1.1) with a linear operator X : Rp1×p2 → Rn, with noise ξ
whose entries are n iidN (0, σ2). Assume that v(X) ≤ n. Consider the estimators θ̂

EWA

n and θ̂
PEN

n , where
F satisfies Assumptions (H.1)-(H.2), and J is the nuclear norm (3.10). Let 0 < ε < ν. Suppose that
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λ ≥ τσ

√
2 log((p1+p2)/δ)

n , for some τ > 1 and δ > 0. Then, with probability at least 1 − δ, the following
holds

Rn
(
θ̂

EWA

n ,θ0

)
≤ inf
r∈{1,...,min(p1,p2)}

θ: rankθ=r

(
Rn
(
θ,θ0

)
+ λ2(τ+1)2r

2τ2(ν−ε)Υ
(
Tθ ,

τ+1
τ−1

)2

)

+ p1p2β +
1

2nε

∥∥(Id−∇ϕ)(Xθ0)
∥∥2

2
, (4.14)

and

Rn
(
θ̂

PEN

n ,θ0

)
≤ inf
r∈{1,...,min(p1,p2)}

θ: rankθ=r

(
Rn
(
θ,θ0

)
+ λ2(τ+1)2r

2τ2(ν−ε)Υ
(
Tθ ,

τ+1
τ−1

)2

)

+
1

2nε

∥∥(Id−∇ϕ)(Xθ0)
∥∥2

2
. (4.15)

The set over which the infimum is taken just reminds us that the nuclear norm is partly smooth (see above)
relative to the constant rank manifold (which is a Riemannian submanifold of Rp1×p2) [24, Theorem 3.19].
The first remainder term now scales as r log(p1+p2)

n and we recover the same rate as in [20, Theorem 3] for
θ̂

EWA

n and in [37, Theorem 2] for θ̂
PEN

n .

A Expectation of the inner product

We start with some definitions and notations that will be used in the proof. For a non-empty closed convex
set C ∈ Rp, we denote

(
C
)0 its minimal selection, i.e. the element of minimal norm in C. This element is of

course unique. For a proper lsc and convex function f and γ > 0, its Moreau envelope (or Moreau-Yosida
regularization) is defined by

γf(θ)
def
= min
θ∈Rp

1

2γ

∥∥θ − θ∥∥2

2
+ f(θ).

The Moreau envelope enjoys several important properties that we collect in the following lemma.

Lemma A.1. Let f be a finite-valued and convex function. Then

(i) (γf(θ))γ>0 is a decreasing net, and ∀θ ∈ Rp, γf(θ)↗ f(θ) as γ ↘ 0.

(ii) γf ∈ C1(Rp) with γ−1-Lipschitz continuous gradient.

(iii) ∀θ ∈ Rp, ∇ γf(θ)→
(
∂f(θ)

)0 and
∥∥∇ γf(θ)

∥∥
2
↗
∥∥(∂f(θ)

)0∥∥
2

as γ ↘ 0.

(iv) γf is coercive.

Proof. (i) [4, Proposition 12.32]. (ii) [4, Proposition 12.29]. (iii) Since f is continuous, it is subdifferen-
tiable everywhere, and the result follows from [4, Corollary 23.46(i)]. (iv) Combine [52, Theorem 3.31 and
Exercise 3.29(b)].

We are now equipped to prove the following important result5.
5The result will be proved using Moreau-Yosida regularization. Yet another alternative proof could be based on mollifiers for

approximating subdifferentials.
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Proposition A.1. Let the density µn in (1.3), where F and J satisfy Assumptions (H.1) and (H.3). Then,
∀θ ∈ Rp,

Eµn
[
〈
(
∂Vn(θ)

)0
,θ − θ〉

]
= −pβ.

Proof. Let V γ
n (θ)

def
= F (Xθ,y) + λ γJ(θ) and define µγn(θ)

def
= exp (−V γ

n (θ))/Z, where 0 < Z < +∞
is the normalizing constant of the density µn. Assumption (H.1) and Lemma A.1(ii)-(iii) tell us that V γ

n ∈
C1(Rp) and ∇V γ

n (θ)→
(
∂Vn(θ)

)0 as γ → 0. Thus

Eµn
[
〈
(
∂Vn(θ)

)0
,θ − θ〉

]
=

∫
Rp

lim
γ→0
〈µγn(θ)∇V γ

n (θ),θ − θ〉dθ.

We now check that 〈µγn(θ)∇V γ
n (θ),θ − θ〉 is dominated by an integrable function. Since F is bounded

below (by (H.1)), and γJ is coercive by Lemma A.1-(iv), V γ
n is also coercive. In turn, it follows from [52,

Theorem 11.8(c)] that ∃(a, b) ∈]0,+∞[×]−∞,+∞[ such that for all γ > 0 and θ ∈ Rp

µγn(θ) ≤ exp
(
−a
∥∥θ∥∥

2
− b
)
/Z. (A.1)

Moreover, for all θ ∈ Rp, we have ∂Vn(θ) ⊂ C◦ by Theorem 3.1(i). This together with Lemma A.1-(iii)
yield ∥∥∇ γJ(θ)

∥∥
2
≤
∥∥(∂Vn(θ)(θ)

)0∥∥
2
≤ diam(C◦),

where diam(C◦) is the diameter of the compact set C◦. Altogether, we have∣∣〈µγn(θ)∇V γ
n (θ),θ − θ〉

∣∣ ≤ µγn(θ)
(∣∣〈X>F (Xθ,y),θ − θ〉

∣∣+ λ
∥∥∇ γJ(θ)

∥∥
2

∥∥θ − θ∥∥
2

)
≤ (Z exp(b))−1 exp

(
−a
∥∥θ∥∥

2

)(∣∣〈F (Xθ,y),X(θ − θ)〉
∣∣+ λ diam(C◦)

∥∥θ − θ∥∥
2

)
.

It is easy to see that the function in this upper-bound is integrable, where we also use (H.2). Hence, we can
apply the dominated convergence theorem to get

Eµn
[
〈
(
∂Vn(θ)

)0
,θ − θ〉

]
= lim

γ→0

∫
Rp

〈µγn(θ)∇V γ
n (θ),θ − θ〉dθ.

Now, by simple differential calculus (chain and product rules), we have

〈µγn(θ)∇V γ
n (θ),θ − θ〉 = −β〈∇µγn(θ),θ − θ〉

= −β
p∑
i=1

∂

∂θi

(
µγn(θ)(θi − θi)

)
− pβµγn(θ).

Integrating the first term, we get by Fubini theorem and the Newton-Leibniz formula∫
Rp−1

(∫
R

∂

∂θi

(
µγn(θ)(θi − θi)

)
dθi

)
dθ1 · · · dθi−1dθi+1 · · · dθp

=

∫
Rp−1

[
µγn(θ)(θi − θi)

]
Rdθ1 · · · dθi−1dθi+1 · · · dθp = 0,

where we used coercivity of V γ
n (see above) to conclude that lim|θi|→+∞ µ

γ
n(θ)(θi−θi) = 0. For the second

term, we have from Lemma A.1(i) that µγn → µn as γ → 0. Thus, arguing again as in (A.1), we can apply
the dominated convergence theorem to conclude that

lim
γ→0

∫
Rp

µγn(θ)dθ =

∫
Rp

µn(θ)dθ = 1.

This concludes the proof.
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