
HAL Id: hal-01422441
https://hal.science/hal-01422441

Submitted on 25 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Computational engineering analysis with the
new-generation space-time methods

Kenji Takizawa

To cite this version:
Kenji Takizawa. Computational engineering analysis with the new-generation space-time methods.
Computational Mechanics, 2014, 54, pp.193 - 211. �10.1007/s00466-014-0999-z�. �hal-01422441�

https://hal.science/hal-01422441
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Computational engineering analysis with the new-generation
space–time methods

Kenji Takizawa

Abstract This is an overview of the new directions we
have taken the space–time (ST) methods in bringing solu-
tion and analysis to different classes of computationally chal-
lenging engineering problems. The classes of problems we
have focused on include bio-inspired flapping-wing aero-
dynamics, wind-turbine aerodynamics, and cardiovascular
fluid mechanics. The new directions for the ST methods
include the variational multiscale version of the Deforming-
Spatial-Domain/Stabilized ST method, using NURBS basis
functions in temporal representation of the unknown vari-
ables and motion of the solid surfaces and fluid meshes, ST
techniques with continuous representation in time, and ST
interface-tracking with topology change. We describe the
new directions and present examples of the challenging prob-
lems solved.

Keywords Bio-inspired flapping-wing aerodynamics ·
MAV · Wind-turbine aerodynamics · Cardiovascular fluid
mechanics · Space–time methods · DSD/SST method ·
ST-SUPS method · ST-VMS method · NURBS in time ·
STNMUM · ST with continuous temporal representation ·
ST-C · ST with topology change · ST-TC

1 Introduction

In computational engineering analysis, one frequently faces
the challenges involved in solving flow problems with mov-
ing boundaries and interfaces (MBI). This wide class of
problems include fluid–structure interaction (FSI), fluid–
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object interaction (FOI), fluid–particle interaction (FPI),
free-surface and multi-fluid flows, and flows with solid sur-
faces in fast, linear or rotational relative motion. The compu-
tational challenges still being addressed include accurately
representing the small-scale flow patterns, which requires a
reliable multiscale method. They also include contact or near
contact between moving solid surfaces and other cases of
topology change (TC) or near TC, such as those in flapping-
wing aerodynamics, wind-turbine aerodynamics, and car-
diovascular fluid mechanics. These three specific classes of
problems played a key role in motivating the development of
the computational-analysis methods discussed in this article.

A method for flows with MBI can be viewed as an
interface-tracking (moving-mesh) technique or an interface-
capturing (nonmoving-mesh) technique, or possibly a com-
bination of the two. In interface-tracking methods, as the
interface moves, the mesh moves to follow (i.e. “track”)
the interface. The Arbitrary Lagrangian–Eulerian (ALE)
finite element formulation [1] is the most widely used
moving-mesh technique. It has been used for many flow
problems with MBI, including FSI (see, for example,
[2–35]). The Deforming-Spatial-Domain/Stabilized Space–
Time (DSD/SST) method [30,36–42], introduced in 1992, is
also a moving-mesh method. The costs and benefits of mov-
ing the fluid mechanics mesh to track a fluid–solid interface
were articulated in many papers (see, for example, [39,43]).

Moving-mesh methods require mesh update methods.
Mesh update typically consists of moving the mesh for as
long as possible and remeshing as needed. With the key
objectives being to maintain the element quality near solid
surfaces and to minimize frequency of remeshing, a number
of advanced mesh update methods [40,44–48] were devel-
oped in conjunction with the DSD/SST method, including
those that minimize the deformation of the layers of small
elements placed near solid surfaces.
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Perceived challenges in mesh update are quite often given
as reasons for avoiding interface-tracking methods in classes
of problem that can be, and actually have been, solved with
such methods. A robust moving-mesh method with effective
mesh update can handle FSI or other MBI problems even
when the solid surfaces undergo large displacements (see,
for example, FPI [46,49] with the number of particles reach-
ing 1,000 [46], parachute FSI [40,43,50–56], flapping-wing
aerodynamics [57–59], and wind-turbine rotor and tower
aerodynamics [60]. It can handle FSI or other MBI prob-
lems also even when the solid surfaces are in near contact
or create near TC, if the “nearness” is sufficiently “near” for
the purpose of solving the problem. Examples of such prob-
lems are FPI with collision between the particles [46,49],
parachute-cluster FSI with contact between the parachutes of
the cluster [52–54,56], flapping-wing aerodynamics with the
forewings and hindwings crossing each other very close [57–
59], and wind-turbine rotor and tower aerodynamics with the
blades passing the tower close [60].

No method is a panacea for all classes of MBI prob-
lems. As mentioned in [30], certain classes of interfaces,
such as those in splashing, might be too complex to deal
with an interface-tracking technique, requiring an interface-
capturing technique. The Mixed Interface-Tracking/Interface-
Capturing Technique (MITICT) [46] was introduced for
computations that involve both fluid–solid interfaces that can
be accurately tracked with a moving-mesh method and fluid–
fluid interfaces that are too complex or unsteady to be tracked.
Those fluid–fluid interfaces are captured over the mesh track-
ing the fluid–solid interfaces. The MITICT was successfully
tested in 2D computations with solid circles and free sur-
faces [61,62] and in 3D computation of ship hydrodynam-
ics [21].

In some MBI problems with contact between the solid
surfaces, the “nearness” that can be modeled with a moving-
mesh method without actually bringing the surfaces into
contact might not be “near” enough for the purpose of
solving the problem. Cardiovascular FSI with heart valves,
where the flow has to be completely blocked at contact, is
an example. The Fluid–Solid Interface-Tracking/Interface-
Capturing Technique (FSITICT) [51] was motivated by such
FSI problems. In the FSITICT, we track the interface we
can with a moving mesh, and capture over that moving
mesh the interfaces we cannot track, specifically the inter-
faces where we need to have an actual contact between the
solid surfaces. A specific application of the FSITICT was
presented in [63], where the ALE method is used for inter-
face tracking, and a fully Eulerian approach for interface
capturing, with some 2D benchmark problems as test com-
putations. This specific application was extended in [63] to
2D FSI models with flapping and contact, where the fully
Eulerian interface-capturing is complemented with mesh
adaptivity.

Since its inception, the DSD/SST method has been
applied to some of the most challenging flow problems
with MBI. The classes of problems solved include the free-
surface and multi-fluid flows [36,38,44–46,49,61,64–69],
FOI [36–38,45,49,61,65,67,70–77], aerodynamics of flap-
ping wings [57–59,78–80], flows with solid surfaces in
fast, linear or rotational relative motion [20,46,49,60,81–
83], compressible flows [49,65,77,84–86], shallow-water
flows [46,87,88], FPI [46,49,67,75,89–93], and FSI [40–
43,50–56,59,64–66,69,70,78,86,94–138]. Much of the suc-
cess with the DSD/SST method in recent years was due to
the new directions we have taken the ST methods in bringing
solution and analysis to different classes of computationally
challenging engineering problems.

The original DSD/SST method is based on the SUPG/
PSPG stabilization, where “SUPG” and “PSPG” stand for
the Streamline-Upwind/Petrov–Galerkin [139] and Pressure-
Stabilizing/Petrov–Galerkin [36,140] methods. Starting in
its very early years, the DSD/SST method also included
the “LSIC” (least-squares on incompressibility constraint)
stabilization. The ST-VMS method [30,41,42] is the vari-
ational multiscale version of the DSD/SST method. It was
called “DSD/SST-VMST” (i.e. the version with the VMS
turbulence model) when it was first introduced in [41]. The
VMS components are from the residual-based VMS method
given in [141–144]. We demonstrated the increased accuracy
brought by the ST-VMS method the first time with the com-
putations reported in [41,83,145]. We have been using the
ST-VMS method in most of our computations since then. The
original DSD/SST method was named “DSD/SST-SUPS”
in [41] (i.e. the version with the SUPG/PSPG stabilization),
which was also called “ST-SUPS” in [30].

The ST methods give us the the option of using higher-
order basis functions in time, including the NURBS, which
have been used very effectively as spatial basis func-
tions (see [4,8,146,147]). We started using that option
with the methods and concepts introduced in [41]. This
of course increases the order of accuracy in the com-
putations [41,42,129], and the desired accuracy can be
attained with larger time steps, but there are positive con-
sequences beyond that. The ST context provides us better
accuracy and efficiency in temporal representation of the
motion and deformation of the moving interfaces and vol-
ume meshes, and better efficiency in remeshing. This has
been demonstrated in a number of 3D computations, specif-
ically, flapping-wing aerodynamics [57–59,79,80], separa-
tion aerodynamics of spacecraft [55], and wind-turbine aero-
dynamics [60]. The mesh update method based on using
NURBS basis functions in mesh motion and remeshing was
named “ST/NURBS Mesh Update Method (STNMUM)” in
[60].

There are some advantages in using a discontinuous tem-
poral representation in ST computations. For a given order of
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temporal representation, we can reach a higher order accu-
racy than one would reach with a continuous representation
of the same order. When we need to change the spatial dis-
cretization (i.e. remesh) between two ST slabs, the temporal
discontinuity between the slabs provides a natural frame-
work for that change. There are advantages also in contin-
uous temporal representation. We obtain a smooth solution,
NURBS-based when needed. We also can deal with the com-
puted data in a more efficient way, because we can represent
the data with fewer temporal control points, and that reduces
the computer storage cost. These advantages motivated the
development of the ST computation techniques with contin-
uous temporal representation (ST-C) [148].

There are different types of nonmoving-mesh methods
that can compute MBI problems involving an actual con-
tact between solid surfaces or other cases of TC. Some of
those methods give up on the accurate representation of the
interface, and most give up on the consistent representation
of the interface motion. The DSD/SST formulation does not
need to give up on either, even where we have an actual
contact or some other TC, provided that we can update the
mesh even there. Using an ST mesh that is unstructured
both in space and time, as proposed for contact problems
in [46], would give us such a mesh update option. How-
ever, that would require a fully unstructured 4D mesh gen-
eration, and that is not easy in computing real-world prob-
lems. An ST interface-tracking method that can deal with
TC was introduced in [138], and it is called ST-TC. It is a
practical alternative to using unstructured ST meshes, but
without giving up on the accurate representation of the inter-
face or the consistent representation of the interface motion,
even where there is an actual contact between solid surfaces
or other TC. The ST-TC method is based on special mesh
generation and update, and a master–slave system that main-
tains the connectivity of the “parent” mesh when there is a
TC.

In this article we provide an overview of these four new
directions we have taken the ST methods and show how that
brought solution to the three specific classes of problems
mentioned in the first paragraph. In Sect. 2, we briefly review
the Navier–Stokes equations of incompressible flows. The
ST-SUPS and ST-VMS methods are described in Sects. 3 and
4. Methods based on temporal representation with NURBS
basis functions, including the STNMUM, are given in Sect. 5.
The ST-C and ST-TC are described in Sects. 6 and 7. In the
three sections following that, we present examples of the
challenging problems solved. In Sect. 8, we present aero-
dynamic analysis of flapping wings of an actual locust and
an MAV, in Sect. 9 aerodynamic analysis of wind turbines,
and in Sect. 10 a proof-of-concept computation with two
pairs of symmetrically-flapping surfaces with coordinated
opening/closing actions. The concluding remarks are given
in Sect. 11.

2 Governing equations

LetΩt ⊂ R
nsd be the spatial domain with boundaryΓt at time

t ∈ (0, T ). The subscript t indicates the time-dependence of
the domain. The Navier–Stokes equations of incompressible
flows are written on Ωt and ∀t ∈ (0, T ) as

ρ

(
∂u
∂t

+ u · ∇∇∇u − f
)

− ∇∇∇ · σσσ = 0, (1)

∇∇∇ · u = 0, (2)

where ρ, u and f are the density, velocity and the exter-
nal force, respectively. The stress tensor σσσ is defined as
σσσ(p, u) = −pI+2μεεε(u), withεεε(u) = (

(∇∇∇u) + (∇∇∇u)T
)
/2.

Here p is the pressure, I is the identity tensor, μ = ρν is the
viscosity, ν is the kinematic viscosity, and εεε(u) is the strain-
rate tensor. The essential and natural boundary conditions for
Eq. (1) are represented as u = g on (Γt )g and n · σσσ = h on
(Γt )h, where (Γt )g and (Γt )h are complementary subsets of
the boundary Γt , n is the unit normal vector, and g and h
are given functions. A divergence-free velocity field u0(x) is
specified as the initial condition.

3 ST-SUPS (DSD/SST-SUPS) method

In the DSD/SST method (see, e.g., [36–42]), the finite ele-
ment formulation is written over a sequence of N ST slabs
Qn , where Qn is the slice of the ST domain between the
time levels tn and tn+1 (see Fig. 1). At each time step, the
integrations are performed over Qn . The ST finite element
interpolation functions are continuous within a ST slab, but
discontinuous from one ST slab to another. The notation (·)−n
and (·)+n will denote the function values at tn as approached
from below and above. Each Qn is decomposed into ele-
ments Qe

n , where e = 1, 2, . . . , (nel)n . The subscript n used
with nel is for the general case where the number of ST ele-
ments may change from one ST slab to another. The essential
and natural boundary conditions are enforced over (Pn)g and
(Pn)h, the complementary subsets of the lateral boundary of

Fig. 1 ST slab in an abstract representation
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the ST slab. The finite element trial function spaces Sh
u for

velocity and Sh
p for pressure, and the test function spaces

Vh
u and Vh

p = Sh
p are defined by using, over Qn , typically

first-order polynomials in space and time, but can also be of
higher-order functions.

The ST-SUPS (DSD/SST-SUPS) method (from [39]) is
written as follows: given (uh)−n , find uh ∈ Sh

u and ph ∈ Sh
p ,

such that ∀wh ∈ Vh
u and ∀qh ∈ Vh

p :

∫
Qn

wh · ρ

(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)
dQ

+
∫

Qn

εεε(wh) : σσσ(uh, ph)dQ −
∫

(Pn)h

wh · hhdP

+
∫

Qn

qh∇∇∇ · uhdQ +
∫
Ωn

(wh)+n · ρ
(
(uh)+n − (uh)−n dΩ

+
(nel)n

e=1

∫
Qe

n

1

ρ
τSUPGρ

(
∂wh

∂t
+ uh · ∇∇∇wh

)
+ τPSPG∇∇∇qh

]

·rMdQ +
(nel)n

e=1

∫
Qe

n

ρνLSIC∇∇∇ · whrCdQ = 0, (3)

where rM and rC are the the residuals of the momentum
equation and incompressibility constraint (continuity equa-
tion). The ST-SUPS method has all the ingredients of the
semi-discrete SUPG/PSPG finite element formulation. That
includes the test functions, domain integrations, stress terms
that have been integrated by parts, boundary integrations,
and the SUPG, PSPG and LSIC stabilization terms with
stabilization parameters τSUPG, τPSPG and νLSIC. The sta-
bilization is residual based because rM and rC appear as fac-
tors in the stabilization terms. The stabilization parameters
τSUPG, τPSPG and νLSIC originate from stabilized finite ele-
ment methods for fluid dynamics (see, e.g., [36,39,139,149–
152]). There are various ways of defining these parameters.
In the computations included in this article, we mostly use
the definitions given in [39], with some new options intro-
duced in [40,60,79,145]. For more ways of calculating the
stabilization parameters in finite element computation of flow
problems, see [30,106,153–177].

4 ST-VMS (DSD/SST-VMST) method

4.1 Conservative form

The conservative form of the ST-VMS method is written as
follows: given (uh)−n , find uh ∈ Sh

u and ph ∈ Sh
p , such that

∀wh ∈ Vh
u and ∀qh ∈ Vh

p :

∫
Qn

wh · ρ

(
∂uh

∂t
+ ∇∇∇ · (uhuh) − fh

)
dQ

+
∫

Qn

εεε(wh) : σσσ(uh, ph)dQ −
∫

(Pn)h

wh · hhdP

+
∫

Qn

qh∇∇∇ · uhdQ +
∫
Ωn

(wh)+n · ρ
(
(uh)+n − (uh)−n dΩ

+
(nel)n

e=1

∫
Qe

n

τSUPS

ρ
ρ

(
∂wh

∂t
+ uh · ∇∇∇wh

)
+ ∇∇∇qh

]
· rMdQ

+
(nel)n

e=1

∫
Qe

n

ρνLSIC∇∇∇ · whrCdQ

+
(nel)n

e=1

∫
Qe

n

τSUPSrM ·
(
∇∇∇wh uhdQ

−
(nel)n

e=1

∫
Qe

n

τ 2
SUPS

ρ
rM ·

(
∇∇∇wh rMdQ = 0. (4)

The stabilization parameter τSUPS is calculated in essentially
the same way as τSUPG is calculated. The notation “SUPS,”
introduced in [41], indicates that there is a single stabilization
parameter for the SUPG and PSPG stabilizations, instead of
two separate parameters.

Remark 1 One of the main differences between the ALE and
ST forms of the VMS method is that the ST form retains the
fine-scale time derivative term ∂u′

∂t

∣∣
ξξξ

(ξξξ is the vector of ele-

ment coordinates). Dropping this term is called the “quasi-
static” assumption (see [15] for the terminology). This is the
same as the “WTSE” option in the DSD/SST formulation
(see Remark 2 of [40]). We believe that this makes a signif-
icant difference, especially when the polynomial orders in
space or time are higher (see [41]).

4.2 Convective form

∫
Qn

wh · ρ

(
∂uh

∂t
+ uh · ∇∇∇uh − fh

)
dQ

+
∫

Qn

εεε(wh) : σσσ(uh, ph)dQ −
∫

(Pn)h

wh · hhdP

+
∫

Qn

qh∇∇∇ · uhdQ +
∫
Ωn

(wh)+n · ρ
(
(uh)+n − (uh)−n dΩ

+
(nel)n

e=1

∫
Qe

n

τSUPS

ρ
ρ

(
∂wh

∂t
+ uh · ∇∇∇wh

)
+ ∇∇∇qh

]
· rMdQ
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+
(nel)n

e=1

∫
Qe

n

νLSIC∇∇∇ · whρrCdQ

−
(nel)n

e=1

∫
Qe

n

τSUPSwh ·
(

rM · ∇∇∇uh dQ

−
(nel)n

e=1

∫
Qe

n

τ 2
SUPS

ρ
rM ·

(
∇∇∇wh · rMdQ = 0. (5)

Remark 2 The 6th and 7th terms of the ST-VMS method
in either form are the SUPG/PSPG and LSIC stabiliza-
tion terms, respectively. If we exclude the last two terms
of the convective form, the method reduces to the ST-
SUPS (DSD/SST-SUPS) method under the condition τPSPG

= τSUPG.

5 Temporal representation with NURBS basis functions

The concept of using NURBS basis functions, in conjunc-
tion with the ST methods, in temporal representation of the
unknown variables and motion of the solid surfaces and fluid
meshes was first introduced in [41].

5.1 ST basis functions

An ST basis function can be written as a product of its spatial
and temporal parts:

Nα
a = T α (θ) Na (ξξξ) , a = 1, 2, . . . , nen,

α = 1, 2, . . . , nent, (6)

where θ ∈ [−1, 1] is the temporal element coordinate, and
nen and nent are the number of spatial and temporal ele-
ment nodes. Figure 2 shows an example of temporal NURBS
basis functions. Temporal NURBS basis functions can be
used in an ST slab for the representation of the unknown
variables and test functions as well as the spatial coordi-
nates.

As pointed out in [30,41,42,60,79], different components
(i.e. unknowns), and the corresponding test functions, can
be discretized with different sets of temporal basis func-

Fig. 2 Temporal NURBS basis functions

tions. This was shown in [30,41,42,60,79] by introduc-
ing a secondary mapping Θζ (θ) ∈ [−1, 1], where Θζ (θ)

is a strictly increasing function, and rewriting the gener-
alized ST basis function for the element indices (a, α)

as(
Nα

a

)
ζ

= T α
(
Θζ (θ)

)
Na (ξξξ) . (7)

For example, we can discretize time and position as

t =
nent

α=1

T α(Θt (θ))tα, (8)

x =
nent

α=1

T α(Θx (θ))xα. (9)

Here Θt (θ) and Θx (θ) are the secondary mappings for time
and position, and tα and xα are the time and position values
corresponding to the basis function T α .

5.2 Motion of solid surfaces

As an example, Fig. 3 shows, from [79], how the motion
of the forewing (FW) of a locust is represented temporally.
In the preliminary computations reported in [79], quadratic
NURBS basis functions were used in the temporal repre-
sentation of the wing motion. Based on those computations,
using even higher-order temporal basis functions was pro-
posed in [79], so that the acceleration is continuous. Fig. 4
shows, from [57], how the path of a point on the hind-
wing (HW) of the locust is represented with cubic NURBS
basis functions over four temporal patches (see [57] for
details).

5.3 Rotation representation with constant angular velocity

With temporal NURBS basis functions, as described in [30,
41,42,60,79], we can represent a path accurately, such as
representing a circular arc exactly with quadratic NURBS.

Fig. 3 FW control mesh and corresponding surface at three temporal-
control points
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Fig. 4 Path of a point on the HW as represented with cubic NURBS
basis functions over four temporal patches

We can also specify a speed along that path, such as a constant
angular velocity for a circular arc [30,60,79]. In this this
subsection, from [60], we describe how to do that.

For the circular arc, with quadratic NURBS, nent = 3.
With the secondary-mapping concept described in Sect. 5.1,
the velocity can be expressed as follows:

dx
dt

=
nent

α=1

dT α

dΘx

dΘx

dθ
xα

) (
nent∑
α=1

dT α

dΘt

dΘt

dθ
tα

)−1

, (10)

leading to

dx
dt

=
nent

α=1

dT α

dΘx
xα

) (
nent∑
α=1

dT α

dΘt
tα

)−1 (
dΘx

dθ

dθ

dΘt

)
. (11)

Thus, the speed along the path can be specified only by mod-
ifying the secondary mapping. For a circular arc, two meth-
ods were introduced in [79] and also described in [30]; one is
modifying the secondary mapping for position and the other
one is modifying both such that dt

dθ
is constant. We note that,

in theory, the secondary-mapping selections do not make any
difference as long as the relationship dΘx

dΘt
is the same. In our

implementation, to keep the process general, we search for
the parametric coordinate θ by using an iterative solution
method [30,79]. We use the latter set of the secondary map-
pings, having constant dt

dθ
.

5.4 STNMUM

5.4.1 Mesh computation and representation

Given the fluid mechanics mesh on a moving solid surface,
we compute the fluid mechanics volume mesh using the
mesh moving techniques [40,44–46] developed in conjunc-
tion with the DSD/SST method. As proposed in [79] and
also described in [30], these mesh moving techniques are
applied to computing the meshes that will serve as temporal-
control points. This allows us to do mesh computations
with longer time in between, but get the mesh-related infor-
mation, such as the coordinates and their time derivatives,
from the temporal representation whenever we need. Obvi-
ously this also reduces the storage amount and access asso-
ciated with the meshes. However, because of the longer time
between the control meshes, linear interpolation of the sur-
faces between control points in time might be needed in
computing those meshes with the mesh moving technique
mentioned.

Remark 3 Getting the meshes used in the computations from
the temporal representation can be done independent of
which time direction was used in computing the control
meshes. For example, in flapping-wing aerodynamics, it does
not matter if the control meshes were computed while the
wings were flapping forward or backward in time.

5.4.2 Remeshing

In many computations remeshing becomes unavoidable. Two
choices were proposed in [79] and also described in [30]. To
explain those choices, let us assume that when we try to
move from control mesh Mβ

c to Mβ+1
c , we find the qual-

ity of Mβ+1
c to be less than desirable. In the first choice,

called “trimming,” we remesh going back to Mβ−p+1
c , where

p is the order of the NURBS basis functions. Then when-
ever our solution process needs a mesh, depending on the
time, we use the control meshes belonging to either only
the un-remeshed set or only the remeshed set (Fig. 5). In
the second choice, we perform knot insertion p times in the
temporal representation of the surface at the right-most knot
before the maximum value of the basis function correspond-
ing to tβ+1

c , making that knot a new patch boundary. Then
we do the mesh moving computation for the control meshes
associated with the newly-defined basis functions, not only
the one at the new patch boundary, but also going back
(p − 1) basis functions (Fig. 6). We favor the second choice,
because we believe that in many cases the need for remesh-
ing is generated by a topological change, which we can avoid
going over with a large step if we use the knot insertion
process.
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Fig. 5 Remeshing and trimming NURBS. A set of un-remeshed
meshes (top). A set of remeshed meshes (middle). Common basis func-
tions (bottom)

Fig. 6 Remeshing with knot insertion. For the set of un-remeshed
meshes, there are p newly-defined basis functions and the correspond-
ing control points are marked “New.” We carry out the mesh moving
computations for those meshes

6 ST-C

In this section, from [148], we describe the version of ST-C
used in extracting continuous temporal representation from

Fig. 7 Continuous solution (top) and its basis functions (bottom),
where ϑ is the parametric coordinate

computed data. This is essentially a post-processing method,
and can also be seen as a data compression method. For the
version used in direct computation of the solution with con-
tinuous temporal representation, see [148].

6.1 Least-squares projection for full temporal domain

When we have the complete sequence of computed data,
we can project that to a smooth representation, with basis
functions that provide us that smooth representation, such
as NURBS basis functions. As an example, Fig. 7 shows
the goal continuous data φC and its basis functions, where
ϑ denotes the parametric temporal coordinate. The pro-
jection for each spatial node can be done independently
from the other nodes. Consider the time-dependent, typi-
cally discontinuous computed data φD for a node. We define
the basis functions as T α

C , where α = 0, 1, . . ., and the
coefficients to be determined in the projection as φα . We
use a standard least-squares projection: given φD, find the
solution φC ∈ SC, such that for all test functions wC ∈
VC:

T∫
0

wC (φC − φD) dt = 0, (12)

where T represents time period of the computation, and SC

and VC are the solution and test function spaces constructed
from the basis functions. This approach requires that we store
all the computed data before the projection, and that would
be a significant computer storage cost when the number of
time steps is large.

6.2 Successive-projection technique

In ST-C with the successive-projection technique (ST-C-
SPT), we extract the continuous solution shown in Fig. 7
without storing all the computed data. We describe the tech-
nique here for the special case with quadratic B-splines.
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Fig. 8 Continuous solution up to tn = 4.0 (top) and its basis functions
(bottom)

Fig. 9 Continuous solution up to tn+1 = 5.0 (top) and its basis func-
tions (bottom). The bold part of the top curve indicates the part of the
solution that does not change. The empty squares denote the temporal
control values to be determined. The dashed lines denote the modified
and new basis functions, which correspond to those control values

To explain the successive nature of the SPT, let us sup-
pose that we have the continuous solution extracted up to
tn = 4.0, as shown in Fig. 8. We assume that this contin-
uous solution, which we will call φC, has already replaced
φD up to tn = 4.0. With that, we describe how we extract
the continuous solution up to tn+1 = 5.0, as shown in
Fig. 9. With the newly computed data φD between tn = 4.0
and tn+1 = 5.0, we solve the following projection equa-
tion: given φD on t ∈ (4.0, 5.0), φC on t ∈ [2.0, 4.0],
and φα

C, α = 2, 3, find φC ∈ SC, such that ∀wC ∈
VC:

4.0∫
2.0

wC
(
φC − φC

)
dt +

5.0∫
4.0

wC (φC − φD) dt = 0. (13)

We note that Eq. (13) is essentially used for defining
the coefficients φα

C, α = 4, 5, 6, which correspond to
the basis functions T α

C . How to deal with the initial part
of the extraction, description of the ST-C-SPT for the
general case (i.e. beyond quadratic B-splines), and com-
ments on efficient implementation of the SPT can be found
in [148].

Fig. 10 Hypothetical case of two bars that are initially coinciding, with
one hole in the fluid mechanics domain (left). Then the red bar starts
moving upward, creating a second hole in the domain (right)

Fig. 11 Hypothetical case of two bars that are are initially aligned
with connected ends, with one hole in the domain (left). Then the red
bar starts a flapping motion, up (middle) and down (right), creating a
second hole in the domain, except when their ends become connected
periodically during the flapping motion

7 ST-TC

7.1 TC

We consider two hypothetical cases of two bars to provide a
context for TC. In the first case, shown in Fig. 10, the bars are
initially coinciding, with just one hole in the fluid mechanics
domain. Then the red bar starts moving upward, creating a
second hole. In the second case, shown in Fig. 11, the bars
are initially aligned with connected ends, again with a single
hole in the domain. Then the red bar starts a flapping motion,
up and down, creating a second hole in the domain, except
when their ends become connected periodically during the
flapping motion. When the red bar is in the upper position,
the part of the domain below it is connected to the part of the
domain above the blue bar. When the red bar is in the lower
position, the part of the domain above it is connected to the
part of the domain below the blue bar. These two cases are
representatives of the typical TC challenges we expect to see
in the classes of MBI problems we are targeting. Especially
the first case is really not possible to treat in a consistent way
without using an ST method.

7.1.1 Master–slave system

We propose a very simple technique in the ST context. Hav-
ing a constraint between nodes in a finite element formula-
tion is quite common. These constraints reduce the number of
unknowns, but in our implementation we delay that unknown
elimination until the iterative solution of the linear systems
encountered at nonlinear iterations of a time step. The itera-
tive solution of the linear systems is performed with reduced
number of unknowns. The technique is easy to manage in a
parallel-computing environment, especially if the precondi-
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tioner is simple enough. Typically we assign a master node to
each slave node, and we use only the unknowns of the master
nodes in iterative solution of the linear systems. We can use
different master–slave relationships at different time levels.
This is a practical alternative to, but less general than, using
ST meshes that are unstructured in time. Still, we can use this
concept to deal with the TC cases considered above, and the
important point is that the connectivity of the “parent” mesh
does not change. Consequently, the distribution model in the
parallel-computing environment does not change during the
computations with moving meshes.

With this technique, we need to implement one more func-
tionality. We exclude certain elements from the integration
of the finite element formulation. The exclusion principles
are given below.

– Exclude all spatial elements with zero volume from the
spatial integration.

– Exclude all ST elements with zero ST volume from the
ST integration.

– We assume that checking if an ST element has zero ST
volume is equivalent to checking if all the spatial ele-
ments associated with that ST element have zero volume.
Therefore, for this purpose, we check the spatial-element
volumes.

– To identify the spatial elements with zero volume, which
should have zero Jacobian at all the integration points,
instead of evaluating the Jacobians, we make the determi-
nation for a given spatial element from the master–slave
relationship of its nodes. The method is explained more
in [138].

7.1.2 Design of the master–slave system

The data we need to provide to the solver is simple. It is just
the master–slave relationship at each time level. However
there are some restrictions, and here we explain the three
that we want to emphasize. The first restriction is that we
cannot have a node which is not part of any active (nonzero
volume) spatial element. This is because the values at such
nodes would no longer be in our equation system, and there-
fore would become undefined. If because of another TC such
a node comes back to the equation system later as part of
an active element, it would add an undefined component to
the equation system. The second restriction is that when we
construct the ST elements, we have to have matching lateral
element-boundary faces between the active adjacent ST ele-
ments. This condition cannot be checked on the spatial mesh.
Therefore we need to check it on the ST mesh. The third one
is related to implementation. The master–slave relationship
also extends to cases when we have boundary conditions on
the master and slave nodes. In other words, the conditions at
the master node also apply to the slave nodes.

Fig. 12 Contraction. The red nodes, 3 and 5, are on the contraction
interface and are contacting. The white nodes are the slaves. They are
in the same position as their masters, but for visualization purposes we
slightly shift their positions in the figure. The numbers indicate the node
numbers on the parent mesh. (Color figure online)

Fig. 13 Flapping. Red and blue bars at different instants in time as the
red bar crosses the blue bar. (Color figure online)

7.2 Conceptual examples

7.2.1 Contraction and expansion

This is related to the first one of the two cases of TC described
in Sect. 7.1. Contraction and expansion are basically the
same, except having different directions in time progression.
Figure 12 shows a contraction example. The spatial element
with nodes 1 and 2, for example, has zero volume at the first
time level. However, it has nonzero volume at the second
time level, and therefore the corresponding ST element has
nonzero volume.

7.2.2 Flapping

This is related to the second one of the two cases of TC
described in Sect. 7.1. Figure 13 shows the red and blue bars
at three instants in time as the red bar crosses the blue bar.
Figure 14 shows, for the flapping motion, the ST trajectories
of the neighboring ends of the blue and red bars. Figure 15
shows the ST element edges for the line separating the two
sides of the domain containing the blue and red bars (shown
as the vertical dashed line in Fig. 13). For each side of the
domain, the spatial node motions along the ST element edges
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Fig. 14 Flapping. The ST trajectories of the neighboring ends of the
blue and red bars. (Color figure online)

Fig. 15 Flapping. The ST element edges for the vertical dashed line
in Fig. 13

Fig. 16 Flapping. Blue-bar side of the ST boundary between the two
sides. (Color figure online)

have to be designed in a fashion that does not lead to mesh
entanglement. Figure 16 shows the master–slave relationship
for the blue-bar side of the domain, and Fig. 17 the red-
bar side. In addition, those two sides are in a master–slave
relationship along the vertical dashed line in Fig. 13.

8 Aerodynamic analysis of flapping wings of an actual
locust and an MAV

This section is from [57,58]. The fluid mechanics computa-
tions are carried out with the conservative form of the ST-
VMS method. More information on the computational para-

Fig. 17 Flapping. Red-bar side of the ST boundary between the two
sides. (Color figure online)

Fig. 18 Tracking points in the data set from the BCM wind tunnel

meters and conditions can be found in [57,58]. The motion
and deformation data for the wings is extracted from the
high-speed, multi-camera video recordings of a locust in a
wind tunnel at Baylor College of Medicine (BCM), Houston,
Texas. The video recording is accomplished by using a set of
tracking points marked on the FWs and HWs of the locust.
The tracking points can be seen in Fig. 18. The interested
reader can find in [57] the details of how the wing motion
and deformation data is extracted from the video data and
represented in space and time with the methods described
in Sect. 5, including the STNMUM, and some additional
techniques. Figure 19 illustrates, in the context of the HW
wingtip trajectory, how the STNMUM is used in the compu-
tation. Figure 20 show how the body and wings compare for
the locust and MAV models. Figure 21 shows for the locust
the vorticity magnitude during the second flapping cycle.
Figure 22 shows for the MAV the vorticity magnitude during
the third flapping cycle. In Figs. 21 and 22, the color range
from blue to red corresponds to a vorticity range from low to
high, and lighter and darker shades of a color correspond to
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Fig. 19 Mesh update with the STNMUM in the context of the HW
wingtip trajectory, represented with cubic NURBS over four temporal
patches. Control point numbering is local to each patch. A control point
at the start of a patch and collocated with a control point at the end of
the previous patch is in parentheses. A fluid mechanics volume mesh is
generated for each patch at the middle control point, and the meshes at
the other control points are computed with the mesh moving techniques
developed in conjunction with the DSD/SST method. That gives us a
temporal representation of the mesh

Fig. 20 Locust body and wings (left) and MAV body and wings (right)

lower and higher values. Figure 23 shows the lift and thrust
generated by the locust and MAV.

9 Aerodynamic analysis of wind turbines

This section is from [83] and [60]. Computer modeling of
wind-turbine aerodynamics is challenging because correct
aerodynamic torque calculation requires correct separation-
point calculation, which requires an accurate flow field,
which in turn requires good mesh resolution and turbulence
model. We use an actual wind-turbine model, which is NREL
5MW offshore baseline wind turbine, and the geometric com-

Fig. 21 Locust. Vorticity for four equally-spaced points during the
second flapping cycle

plexity is also a computational challenge. Including the tower
in the model increases the computational challenge because
of the mesh update requirements of the fast, rotational rela-
tive motion between the rotor and tower.

First we describe how we computed the aerodynamics of a
rotor without the tower by using the ST-SUPS and ST-VMS
methods. More information on the computational parame-
ters and conditions can be found in [83]. Figure 24 shows,
from [15], the airfoil cross-sections of the wind-turbine blade
superposed on the blade. Figure 25 shows time history of the
aerodynamic torque generated by a single blade, as com-
puted with the ST-SUPS, ST-VMS (conservative form) and
ALE methods. The ALE results are from [15], which we
take as the reference solution. The figure demonstrates how
the ST-VMS method increases the accuracy in this particular
computational analysis.

When we include the tower, we deal with the mesh update
requirements with the methods described in Sect. 5, includ-
ing the STNMUM. Figure 26 illustrates, in the context of the
blade tip trajectory, how the STNMUM is used in the com-
putation. More information can be found in [60]. Figure 27
shows the vorticity magnitude, computed with the conserva-
tive form of the ST-VMS method and the STNMUM. In that
figure, the color range from blue to red corresponds to a vor-
ticity range from low to high, and lighter and darker shades
of a color correspond to lower and higher values. Figure 28
shows the torque for the individual blades.
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Fig. 22 MAV. Vorticity for four equally-spaced points during the third
flapping cycle
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Fig. 23 Total lift (top) and thrust (bottom) generated over one cycle

Fig. 24 Airfoil cross-sections of the wind-turbine blade superposed on
the blade (from [15])
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Fig. 25 Time history of the aerodynamic torque generated by a single
blade. Computed with the ST-SUPS (“SUPS”), ST-VMS (“VMST”),
and ALE methods

Fig. 26 Mesh update with the STNMUM in the context of the blade tip
trajectory, represented with quadratic NURBS over six temporal patches
in 1/3 rotation. Control point numbering is local to each patch. A control
point at the start of a patch and collocated with a control point at the
end of the previous patch is in parentheses. A fluid mechanics volume
mesh is generated for each patch at the middle control point, and the
meshes at the other control points are computed with the mesh moving
techniques developed in conjunction with the DSD/SST method. That
gives us a temporal representation of the mesh

Remark 4 The drop in the aerodynamic torque as the blade
passes the tower is a well-known phenomenon, observed
in experiments and in other computations of wind-turbine
aerodynamics (see, for example, [35]). In [35], a sliding-
interface technique [147] was used in conjunction with the
ALE-VMS formulation [20] to compute wind-turbine aero-
dynamics, including the rotor–tower interaction.
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Fig. 27 Vorticity, computed with the ST-VMS method and the STN-
MUM
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Fig. 28 Torque for the individual blades. The figure clearly shows the
expected torque drop for each blade as it passes the tower, while the
other two blades maintain relatively constant torque

10 Two pairs of symmetrically-flapping surfaces with
coordinated opening/closing actions

This section is from [138]. The 2D model was intended to
resemble the left ventricle of human heart and represent the
TC challenges one would face in computing the blood flow.
There are two pairs of symmetrically-flapping surfaces with
zero thickness, positioned and functioning like the mitral
and aortic valves would be. The 2D domain changes its area
like the left ventricle would change its volume. When one of
the pairs closes, the domain is separated into two. Figure 29
shows the computational domain. The flow enters through the
flapping pair at the inlet (we call this pair “mitral”), and exits
through the pair at the outlet (we call this pair “aortic”). We

Fig. 29 Computational domain. The 2D model was intended to resem-
ble the left ventricle of human heart. The red lines represent the solid
surfaces, and the rest of the domain boundaries are the inlet (near the
domain center) and outlet (upper left). (Color figure online)
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Fig. 30 Opening/closing stages of the mitral and aortic pairs over the
period 1.0 s, prescribed in terms of the angle ratio. The ratios 0.0 and
1.0 represent the closed and fully open stages

carry out the computational analysis with the convective form
of the ST-VMS method and the ST-TC described in Sect. 7.
In representation of the deforming parts of the domain, we
use quadratic NURBS spatially, and cubic NURBS tempo-
rally. The mesh is handled with the methods described in
Sect. 5, including the STNMUM. There is no remeshing
in the customary sense of the word. Figure 30 shows the
opening/closing stages of the mitral and aortic pairs over the
period 1.0 s, prescribed in terms of the angle ratio for each
pair. More information on the computational parameters and
conditions can be found in [138].

Figures 31 and 32 show, from the preliminary computa-
tion reported in [138], the velocity magnitude at different
instants. In those figures, the color range from blue to red
corresponds to a velocity range from low to high. Figure 33
shows the velocity vectors and pressure around the mitral
pair when the pair is closed. The results have all the good fea-
tures expected from computations with moving-mesh meth-
ods, such as pressure jump with zero thickness and boundary-
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Fig. 31 Velocity at t = 0.002 s and t = 0.126 s

Fig. 32 Velocity at t = 0.290 s and t = 0.566 s

layer representation. As pointed out in [138], taking this com-
putation beyond what was reported requires a different way
of dealing with the flow at the inlet when we use stress con-
ditions there. This was not attempted in this 2D test compu-
tation, because the objective was just to show that the ST-TC
method could successfully deal with the TC challenges of
this class of problems.

11 Concluding remarks

We have presented an overview of the new directions we
have taken the ST methods in bringing solution and analy-
sis to different classes of computationally challenging engi-
neering problems. Moving in these new directions was moti-
vated mostly by the following three classes of problems we
targeted: bio-inspired flapping-wing aerodynamics, wind-
turbine aerodynamics, and cardiovascular fluid mechanics.
The new directions for the ST methods include (a) the VMS
version of the DSD/SST method, which is called ST-VMS,

Fig. 33 Two opening/closing pairs. Velocity vectors and pressure (col-
ored) around the mitral pair when the pair is closed (t = 0.126 s). The
red lines indicate the zero-thickness surfaces

(b) ST methods based on using NURBS basis functions in
temporal representation of the unknown variables and motion
of the solid surfaces and fluid meshes, including the mesh
update method STNMUM, c) ST techniques with continu-
ous representation in time, which is called ST-C, and d) ST
interface-tracking with topology change, which is called ST-
TC. We described the new directions, and demonstrated their
power by presenting examples of the challenging problems
solved from the three classes of problems targeted.
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