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This contribution discusses extended physical interface models for fluid–structure interaction problems and 
investigates their phenomenological effects on the behavior of coupled systems by numerical simulation. 
Besides the various types of friction at the fluid–structure interface the most interesting phenomena are 
related to effects due to additional interface stiffness and damping. The paper introduces extended models 
at the fluid–structure interface on the basis of rheological devices (Hooke, Newton, Kelvin, Maxwell, 
Zener). The interface is decomposed into a Lagrangian layer for the solid-like part and an Eulerian layer 
for the fluid-like part. The mechanical model for fluid–structure interaction is based on the equations of 
rigid body dynamics for the structural part and the incompressible Navier–Stokes equations for viscous 
flow. The resulting weighted residual form uses the interface velocity and interface tractions in both layers 
in addition to the field variables for fluid and structure. The weak formulation of the whole coupled system 
is discretized using space–time finite elements with a discontinuous Galerkin method for time-integration 
leading to a monolithic algebraic system. The deforming fluid domain is taken into account by deformable 
space–time finite elements and a pseudo-structure approach for mesh motion. The sensitivity of coupled 
systems to modification of the interface model and its parameters is investigated by numerical simulation 
of flow induced vibrations of a spring supported fluid-immersed cylinder. It is shown that the presented 
rheological interface model allows to influence flow-induced vibrations.

KEY WORDS: fluid–structure interaction; rheological interface model; space time finite element method

1. INTRODUCTION

Real-life situations of fluid–structure interaction may involve complex physical effects at the
coupling interface that separates the fluid domain from the structural part. Besides the various
types of friction at the fluid–structure interface, the most interesting and effective phenomena
are related to additional interface stiffness and damping. Interactions between fluid and structure
occur in a wide range of problems of structural engineering. In the context of noise and vibration
reduction, engineers have developed passive damping material. These materials may be used to



design effective damping devices and to shift the eigenfrequencies of the coupled system appro-
priately. Many approaches have been proposed in the literature to model the absorbing material.
They are often based on poroelastic theory [1–4] and have to be discretized as three-dimensional
bodies, which leads to a large number of degrees of freedom. In the design process, parametric
studies are often needed and are accompanied by reduced models to provide efficient computa-
tional methods. This approach has been successfully used for vibro-acoustic problems where the
fluid is an acoustic fluid described by the pressure in [5, 6] or described by both pressure and
displacement in [7].

In this work, the rheological interface is divided into two layers. The first, namely the Lagrangian
layer, models the solid part of the interface in which the fluid is stagnant. The second, namely the
Eulerian layer, models the fluid part of the interface where the fluid behaves as an incompressible
flow along the solid part. For instance, a foam or porous medium interface would be seen as two
parts: (i) a part where the fluid is within closed solid cavities (Lagrangian layer) and (ii) a part
where the fluid flows in and along open solid cavities (Eulerian layer). The developed rheological
model allows stiffness and/or damping in both normal and tangential directions to the interface,
which permits a large number of possibilities to model a given material. For instance, a damping
in normal direction for the Eulerian layer could describe permeability of a tissue. The aim of this
paper is to provide a numerical strategy for reduced-order interface description in the context of
fluid–structure interaction problems. For this purpose, a generalized constitutive interface law is
assumed without restriction to specific interface physics.

The general governing equations of the extended interface physics have to be integrated in a
numerical solution scheme for fluid–structure interaction. Partitioned approaches solve the involved
equations sequentially for each of the subproblems and are designed for highly modular application
of specific discretization and solution methods. The interaction between the fluid and structural
subsystems is accomplished by interface conditions. Weakly coupled solutions in the time domain
are carried out if exchange of information between the subsystems takes place once per time step
only [8–11], and therefore, the overall system will not be in a physically consistent state. While
for weakly coupled systems such an approach is acceptable, it cannot be applied successfully
for numerical investigations of strong couplings. Strongly coupled solutions are obtained from
partitioned methods by iterating between the solutions of the subsystems within one time step
[12, 13], although hereby a consistent state of the overall system can often only be achieved by
under-relaxation in block Gauss–Seidel and Dirichlet–Neumann methodologies [14, 15]. Alterna-
tive partitioned schemes utilize exact or inexact Newton strategies [16–21]. Monolithic approaches
do not partition the overall physical domain so that all model equations are considered in a single
coupled system of equations. This monolithic method together with a consistent time discretiza-
tion is an ideal basis for conservative coupling formulations and guarantees the transient-precise
coupling. For physically strongly coupled systems such schemes may lead to improved convergence
and numerical efficiency compared to partitioned approaches [22, 23].

In this work, a monolithic approach for fluid and structural domain is used, leading to an
implicit coupling of the two subdomains including localized interface effects. The weighted residual
method is applied to the set of governing equations, including the two-layer rheological interface
model, and the resulting weak form is discretized using a time-discontinuous Galerkin method
based on space–time finite elements. Space–time finite elements for the solution of the incom-
pressible Navier–Stokes equations on moving meshes have been introduced by Tezduyar et al.
[24]. For applications in elastodynamics, Hughes and Hulbert [25] introduced time-discontinuous,
stabilized space–time (SST) finite elements. Tezduyar et al. developed the deforming-spatial-
domain/stabilized space–time (DSD/SST) finite element method for fluid–structure interaction
problems. The space–time finite element discretization of a velocity-based monolithic model for
strongly coupled fluid–structure interaction problems has been shown to be eligible for a number
of different applications [26–29].

The sensitivity of coupled systems to modification of the interface model and its parameters
is investigated by numerical simulation of flow induced vibrations of a spring-supported cylinder
immersed in laminar incompressible flow.



2. FLUID–STRUCTURE INTERACTION WITH RHEOLOGICAL INTERFACE

2.1. Generalized rheological model

The fluid–structure interaction problem is modeled by a fluid domain �F with an immersed
structural domain �S . At the common interface �=�F ∪�S of the boundary-coupled system, a
lower order manifold is defined with the normal vector n and tangential vectors si as shown in
Figure 1. Both continua, fluid and structure, are assumed to be described in terms of velocity vF
and vS .

In order to be able to represent different types of rheological devices, a generalized three-
parameter model is utilized. Each geometrical direction may have its own set of parameters
denoted by subscript n for normal and s for tangential direction. The interface is assumed to be
in between two bodies �S and �F . By convention, the normal vector n is pointing from �S to
�F (Figure 1). The stress, displacement, and velocity vectors are defined in the local coordinate
interface basis (n,s1,s2). We assume that the general constitutive relation at the interface is linear
[30] and written as

t+aṫ−b�u−c�v=0. (1)

This relation is a differential equation in time where �u and �v are, respectively, the displacement
and velocity jumps at the interface. Herein the coefficient matrices a, b, and c denote the structural
material properties of the rheological interface which depend on the thickness. In the general case
these are fully occupied, leading to a coupled behavior in the different basis directions. In the
following we assume decoupled material behavior such that the coefficient matrices given by

a=

⎡
⎢⎣

�n 0 0

0 �s 0

0 0 �s

⎤
⎥⎦ , b=

⎡
⎢⎣

�n 0 0

0 �s 0

0 0 �s

⎤
⎥⎦ , c=

⎡
⎢⎣

�n 0 0

0 �s 0

0 0 �s

⎤
⎥⎦ (2)

are diagonal and regular in the local coordinate interface basis.
The actual choice of a, b, and c determines the specific active rheological model in each local

interface direction. The switch into the model choice can be made according to Table I and Figure 2
depicts associated specializations of the generalized equilibrium relation. The spring and damper
devices used in the rheological model have the inherent spatial extent of interface thickness h. The
unit of the stiffness parameters �n and �s is defined as Pascal per unit length (physical interface
thickness) while the damping parameters �n and �s are expressed in terms of Pascal·second per
unit length (physical interface thickness). The unit of the parameters �n and �s is second.

Determination of the parameters for a given interface material is subjected to experimental or
numerical investigations. For example, in Section 5.2.1 of [6], parameters of a Kelvin–Voigt model
are identified from a full three-dimensional numerical analysis of a poro-elastic material. On the
other hand, experiments on small samples can provide characteristic curves allowing a parameter
identification as is done in [5] using results from [31].
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Figure 1. Fluid–structure interface with local basis and stress vector.



Table I. Rheological models in the interface of thickness h.

Model � [s] h [m] · � [Pa·m−1] h [m] · � [Pa·s·m−1]

Hooke (a) 0 E 0
Newton (b) 0 0 �
Kelvin (c) 0 E �
Maxwell (d) �/E 0 �
Zener-M (e) �/E1 E2 �(E1 + E2)/E1
Zener-K (f) �/(E1 + E2) E1 E2/(E1 + E2) �E2/(E1 + E2)

η

E

η η

ηE1

E2

E1

E2ηEh
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Figure 2. Different possible rheological interface models.
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Figure 3. Concept of a two-layer rheological interface.
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Figure 4. Model of the two-layer interface.

2.2. Composition of interface by Lagrange–Euler layers

In the proposed rheological interface model, the interface links a solid body in Lagrangian descrip-
tion to a fluid body in Eulerian description. Therefore two layers (Figure 3) are introduced in the
interface domain: the Lagrangian layer (subscript L) and the Eulerian layer (subscript E). By this
construction, an independent model can be constructed in each layer. Moreover, this enables the
Lagrangian layer to represent a visco-elastic solid-like behavior as well as a mechanical behavior
of a stagnant compressible fluid, for instance such as in foams or porous media. In contrast, the
Eulerian layer is thought of containing a flowing media which is for a large number of applications
a viscous incompressible flow or a creeping flow. In the present approach, introduction of rheologic
interface models is accompanied by the interface velocity vi as additional unknown as well as the
tractions in the Lagrangian layer tL and in the Eulerian layer tE (Figure 4).



2.3. Strong form interface momentum balance

The stress continuity at the boundary between the Lagrangian and Eulerian layers

tE −tL =0 (3)

ensures local conservativity of interface forces.

2.4. Strong form governing equation in the Lagrangian layer

The kinematic consistency equations written in terms of relative velocity for the Lagrangian layer
are obtained by multiplying Equation (1) by b−1 and taking its time derivative:

b−1
L ṫL +aLb

−1
L ẗL −�vL −cLb−1

L �v̇L =0 (4)

with

�vL =vi −vS. (5)

The rate formulation assumes non-zero and time-independent parameters �nL and �sL .

2.5. Strong form governing equation in Eulerian layer

Since in the Eulerian layer adjacent material particles do not necessarily remain neighbors during
deformation, the following relation applies, neglecting a and b terms in Equation (1):

c−1
E tE −�vE =0 (6)

with

�vE =vF −vi . (7)

The matrix cE contains viscous damping �s E in tangential direction and �nE in normal direction.
The tangential component can be linked to sliding friction while the normal component can be
used for interface permeability as it is, e.g., for membrane tissues.

3. SPACE–TIME WEAK FORM OF THE RHEOLOGICAL INTERFACE

A space–time discretization uniformly includes the temporal axis in addition to the spatial dimen-
sions in a finite element approach. For numerical efficiency, the interface space–time domain R
is divided into a sequence of N time slabs Rn =�n ×[tn, tn+1], as shown in Figure 5, which are
solved successively. The spatial discretization at the fluid–structure interface is assumed to be such
that a fitting mesh is realized (Figure 5(a)).

At time instant tn the energy of the discretized system at the end of the previous time slab
t−n has to be equal to the energy at the beginning of the next time step t+n (Figure 5(b)). For
time-discontinuous approximations of field unknowns this leads to additional jump terms in the
weak form. Moreover, spatial discretizations from t−n and t+n do not need to be conforming. For
first-order ordinary differential equations the resulting time integration scheme is A-stable and
third-order accurate for linear temporal interpolation.

3.1. Weak form of interface momentum balance

The interface momentum balance is weakly enforced by multiplying Equation (3) by the interface
velocity weighted function �vi supposed to be sufficiently smooth. By integrating over the space
time slab Rn , this leads to ∫

Rn
�vi ·(tE −tL )dR=0 ∀�vi . (8)



(a) (b)

Figure 5. Discretization in space and time: (a) fluid–structure interface in the space–time domain
and (b) time-discontinuous shape functions.

3.2. Weak form of the Lagrangian layer

The weighted residual formulation of the Lagrangian interface layer is obtained from Equation (4)
by choosing the Lagrangian interface traction �tL as test function and integrating over the space
time slab Rn . Performing an integration by parts in time on the term

∫
Rn �tL ·aLb

−1
L ẗL dR, the

second-order time derivative is avoided and linear shape functions can be used in time direction.
Since a time-discontinuous Galerkin scheme is used, the continuity of state variables is weakly
enforced by introducing additional jump terms to the integral form of the interface equation.

Using relation (5), the resulting weak form of the Lagrangian part of the two-layer interface
model then reads as∫

Rn
�tL ·b−1

L ṫL dR−
∫
Rn

�tL ·vi dR+
∫
Rn

�tL ·vS dR (9a)

−
∫
Rn

�tL ·cLb−1
L v̇i dR+

∫
Rn

�tL ·cLb−1
L v̇S dR (9b)

−
∫
Rn

�ṫL ·aLb
−1
L ṫL dR+

∫
�n+1

�tL (t−n+1) ·aLb
−1
L ṫL (t−n+1)d� (9c)

−
∫

�n

�tL (t+n ) ·aLb
−1
L ṫL (t+n )d�+

∫
�n

�tL (t+n ) ·b−1
L [tL (t+n )−tL (t−n )]d� (9d)

−
∫

�n

�tL (t+n ) ·cLb−1
L [vi (t

+
n )−vi (t

−
n )]d�+

∫
�n

�tL (t+n ) ·cLb−1
L [vS(t+n )−vS(t−n )]d� (9e)

−
∫

�n

�ṫL (t+n ) ·aLb
−1
L [tL (t+n )−tL (t−n )]d�=0 ∀�tL . (9f)

3.3. Weak form of the Eulerian layer

The weighted residual formulation of the Eulerian layer is obtained by multiplying Equation (6)
by the Eulerian interface traction �tE and integrating over the space time slab Rn . Using relation
(7), the resulting weak form of the Eulerian part of the two-layer interface model then reads as∫

Rn
�tE ·c−1

E tE dR−
∫
Rn

�tE ·vF dR+
∫
Rn

�tE ·vi dR=0 ∀�tE . (10)

3.4. Transformation to the global basis

The velocities for fluid and solid bodies are usually described in the global frame of reference,
while the interface conditions and rheological models considered in the previous derivations are



defined in a local interface coordinate system. A symmetric transformation matrix from the local
interface basis to the global frame of reference is introduced for both velocity and stress vectors.

4. SPACE–TIME DISCRETIZATION OF THE RHEOLOGICAL INTERFACE

4.1. Discretization of the weak form in space and time

The approximation space for the velocity at the coupling boundaries is determined by the chosen
approximations of the solid and fluid domains, respectively. In other words, the discretized contin-
uous solid boundary velocity vh

S and fluid boundary velocity vh
F are given by the space–time finite

element discretization in the domain as is shown in Figure 5(a). The additional velocity at the
interface vh

i as well as the tractions th
L and th

E use the same approximation space as structure and
fluid velocity leading to an LBB-stable discrete formulation, see Figure 6. In the following, an
approximation of the interface field variables in terms of space–time ansatz functions is chosen:

vh
i (x, t)=Ni (x, t)v̂i , th

L (x, t)=NL (x, t)t̂L , th
E (x, t)=NE (x, t)t̂E , (11)

where v̂i , t̂L , and t̂E are the vectors of nodal values of the approximation related to the shape
function given by Ni , NL , and NE for the interface, the Lagrangian layer and the Eulerian layer,
respectively.

4.2. Verification of the rheological interface model

Verification of the developed rheological interface is performed taking into account the purely
time-dependent setup depicted in Figure 7. This setup consists of the Lagrangian interface layer
and an attached mass ms . The Eulerian layer is fixed such that vE =0=vi . The Lagrangian traction
tL =2e1 H (4− t) describes an instant discontinuous loading function. In this work, H (t) denotes the
Heaviside function. Several combinations of material parameters are studied according to Table II,

Solid

tL
tE

vi

vS

vF

Fluid

Figure 6. Spacial discretization at the rheological interface. Note that the interface has no thickness in the
model while it has one on the figure for the sake of clarity.

1
H 4 t

tL 2e1H 4 t

0 4
e1

vi 0

Lagrangian
layer

vs

ms

t

(a) (b)

Figure 7. Verification test setup with loading function.



Table II. Data values for verification tests.

Device mS � E1 E2

Hooke 1 0 1 10 100 —
Kelvin 1 1 1 10 100 —
Newton 1 1 10 100 − —
Maxwell 0 100 2.5 5 10 —
Zener(K)-1 0 5 2.5 5 10 10
Zener(K)-2 0 5 10 2.5 5 10

representing five different rheological devices namely Hooke, Kelvin–Voigt, Newton, Maxwell,
and Zener(K) devices. The time step size is chosen as �t =0.01. As shown in Figure 8, numerical
results obtained by the proposed implemented method are in very good agreement with closed-
form solutions to the time-dependent behavior associated to fundamental rheological device types.
The time-discontinuous Galerkin method enables accurate representation of jumps in the temporal
solution to the Maxwell device, see Figure 8(d) and the Zener-(K,M) device, see Figures 8(e) and
(f), for the prescribed discontinuous loading function.

5. RHEOLOGICAL INTERFACE MODEL IN A FLUID–STRUCTURE PROBLEM

5.1. Model of the fluid flow

For an incompressible fluid of density � the strong forms of the balance of momentum and mass
conservation

�(vF,t +vF ·∇vF −b)−∇ ·T = 0 in QF =�F × I (12)

∇ ·vF = 0 in QF (13)

are defined on the current space–time domain QF of the flow and are completed by Dirichlet
boundary conditions v̄F for the velocity and Neumann boundary conditions t̄ for the tractions
on P F as well as initial conditions vF0 =vF (t0), fulfilling the incompressibility constraint at t0.
Volume forces (e.g. gravity) can be introduced by the vector b. For a Newtonian fluid, the stress
tensor consists of the static pressure p and the linear strain rate tensor D with the kinematic
viscosity �,

T=2�D− pI, D= 1
2 ((∇vF )+(∇vF )T). (14)

The weighted residual formulation of the incompressible and viscous fluid using the Galerkin
method reads as ∀�vF ,�p,�t

∫
QF

�vF ·�(vF,t +vF ·∇vF −b)dQ+2�
∫
QF

D(�vF ) :D(vF )dQ−
∫
QF

∇ ·�vF p dQ (15a)

+
∫
QF

�p∇ ·vF dQ (15b)

+
∫

�F
�vF (t+n ) ·�(vF (t+n )−vF (t−n ))d� (15c)

−
∫

P F
v

�vF ·tdP +
∫

P F
v

�t ·(vF − v̄F )dP −
∫

P F
t

�vF · t̄dP (15d)

+∑
e

∫
QF

e

(��v,t +�v ·∇(�v)−∇ ·(�T)) ·	m
1

�
(�v,t +�v ·∇v−∇ ·T−�b)dQ=0. (15e)
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Figure 8. Results for the verification of the rheological interface: (a) displacements for Hooke device; (b)
displacements for Kelvin–Voigt device; (c) velocities for Newton device; (d) displacement for Maxwell
device; (e) displacement for Zener-K device, E1 varia; and (f) Displacement for Zener-K device, E2 varia.

Line (15a) represents the weak form of conservation of momentum for a Newtonian fluid with
volume force vector b. The incompressibility constraint (15b) is weighted with the pressure. Line
(15c) ensures the consistent transfer of momentum from the previous time slab end t−n to the current
one t+n . Prescribed velocities v̄F and tractions t̄ at Dirichlet and Neumann boundaries are present
in variational form (15d) after partial integration. The weighted residual form is stabilized by a
Galerkin/least squares term [32] of the momentum balance in line (15e). The Galerkin/least squares
stabilization suppresses numerical oscillations in solutions to hyperbolic differential equations



by the introduction of additional numerical diffusion and allows the application of equal order
approximations of velocities and pressure for the incompressible flow field. The stabilization
parameter 	m is determined for each element e using the definition given by Tezduyar et al. [24].

The approximation of the fluid field variables in terms of a space–time discretization using
ansatz functions depending on the spatial coordinates and time is

vh
F (x, t)=NF (x, t)v̂F ph(x, t)=NF (x, t) p̂ (16)

and follows the detailed implementation in [26]. The deforming fluid domain is taken into account
by deformable space–time finite elements and a pseudo-structure approach for mesh motion.

5.2. Model of spring-supported rigid body

For investigation of vibration phenomena of less deforming bodies like sections of cables or bridge
decks in aeroelastic applications, it is often sufficient to model an elastically supported rigid body
instead of a deformable solid. The momentum balance of a rigid body is given by

Mv̇S +f=p(t) in I, (17)

where vS contains the center of gravity velocity as well as the angular velocity of the solid, M is
the mass matrix combined with the inertia matrix, p(t) the vector of resulting external forces, and
f is the vector of linear spring forces governed by Hooke’s law in a rate formulation

K−1ḟ−vS =0 in I, (18)

where K is the stiffness matrix of the spring forces. Herein, the acceleration of a material point
is expressed by the temporal derivative of velocity vS and gives rise to uniform and consistent
formulation in terms of velocities at the boundary of the body. In the following application, the
rotational degree of freedom is not considered but could be easily incorporated by inertia 
 and
angular velocity �̇. For solution of the initial value problem, conditions VS0 =vS(t0) on initial
velocity are necessary.

Following [26], the time-discontinuous Galerkin formulation of the above model equations in
the time slab In reads as∫

In

�vS ·(Mv̇S +f−p)dt +�vS(t+n )M(vS(t+n )−vS(t−n )) (19a)

+
∫

In

�f ·(K−1ḟ−vS)dt +�f(t+n )K−1(f(t+n )−f(t−n ))=0 ∀�vS,�f. (19b)

The approximation of the rigid body variables uses ansatz functions in time only

vh
S(t)=NS(t)v̂S fh =NS(t)f̂ (20)

and the velocity state at the outer boundary of the rigid body is obtained by first order projection
of vS at the center of gravity.

6. APPLICATION TO ONE-DIMENSIONAL TEST PROBLEM

6.1. Setup

The one-dimensional problem presented in Figure 9 validates the formulation for a fluid–structure
interaction problem. This problem also enables a detailed description of the implementation. The
Lagrangian layer of the interface is a Hooke device (� �=0) while the Eulerian layer is a Newton
device (� �=0). The structure is a spring (stiffness k)-supported mass m which is fixed on the
other extremity. The fluid (density �) is contained in a channel (length l) and is supposed to be
incompressible. The coordinate system x is attached to the channel such that x =0 is the contact
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Figure 9. One-dimensional problem.

point between the fluid and the Eulerian layer of the interface. The traction t̄ is imposed on the right
boundary at x = l. The whole system is initially at rest. The velocities of the interface, structure,
and fluid are denoted by vi (t), vS(t), and vF (x, t), respectively. The pressure in the fluid is denoted
p(x, t). The traction in the Lagrangian layer, Eulerian layer and in the spring are denoted by tL ,
tE , and f , respectively.

6.2. Weak form

The weak form follows the description given in Section 3 for the interface, in Section 5.2 for
the solid, and in Section 5.1 for the fluid. The notation is the same but degenerated to the one-
dimensional case.

The weak form of this specific one-dimensional fluid–structure system reads for the spring-
supported mass as

∫
In

�vS(mv̇S + f − tL )dt +�vS(t+n )m(vS(t+n )−vS(t−n )) = 0 ∀�vS (21)

∫
In

� f

(
1

k
ḟ −vS

)
dt +� f (t+n )

1

k
( f (t+n )− f (t−n )) = 0 ∀� f (22)

for the simplified fluid (no convective term is taken into account)
∫

[0 l]×In

(�vF�v̇F�vF,x p)dx dt −
∫

In

(�vF (0)tE�vF (l)t̄)dt

+
∫

[0 l]
�vF (t+n )�(vF (t+n )−vF (t−n ))dx =0 ∀�vF , (23)

∫
[0 l]×In

�pvF,x dx dt =0 ∀�p, (24)

and for the two-layer rheologic interface
∫

In

�vi (tE − tL )dt = 0 ∀�vi , (25)

∫
In

�tL
1

�
ṫL dt −

∫
In

�tLvi dt +
∫

In

�tLvs dt +�tL (t+n )
1

�
(tL (t+n )− tL (t−n )) = 0 ∀�tL , (26)

∫
In

�tE
1

�
tE dt −

∫
In

�tEv f dt +
∫

In

�tEvi dt = 0 ∀�tE . (27)

6.3. Space–time discretization

Physical variables are discretized by linear shape functions between tn and tn+1 denoted by t
superscript. Space in the fluid domain is discretized by quadratic shape functions (q superscript)
for velocity and by linear shape functions (l superscript) for pressure, the LBB condition is thus



satisfied and stabilization terms are not needed. This discretization scheme leads to the following
shape functions and element matrices

N t
1(t) = tn+1 − t

�t
; N t

2(t)= t − tn
�t

(28)

N x
1 (x) = 1− x

l
; N x

2 (x)= x

l
(29)

N q
1 (x) = 1

l2
(2x −l)(x −l); N q

2 (x)= 1

l2
4x(l −x); N q

3 (x)= 1

l2
x(2x −l) (30)

Nt = [N t
1 N t

2]; Nl = [N x
1 N x

2 ]; Nq = [N q
1 N q

2 N q
3 ] (31)

Np = [N t
1Nl N t

2Nl ]; Nv = [N t
1Nq N t

2Nq ] (32)

A =
∫ tn+1

tn
Nt

T �
�t

Nt dt; B=
∫ tn+1

tn
Nt

TNt dt; C=
∫ tn+1

tn

∫ l

0
NT

v

�
�t

Nv dx dt (33)

D =
∫ tn+1

tn

∫ l

0

�
�x

NT
v Np dx dt; E=

∫ l

0
Nq

TNq dx; F=
∫ tn+1

tn

∫ l

0
NT

v Nv dx dt (34)

with the vectors of unknown coefficients of the approximation in space and time

v̂i = [vn
i vn+1

i ]T; t̂E = [tn
E tn+1

E ]T; t̂L = [tn
L tn+1

L ]T (35)

v̂S = [vn
S vn+1

S ]T; f̂= [ f n f n+1]T (36)

v̂F = [vn
F,0 vn

F, l
2

vn
F,l vn+1

F,0 vn+1
F, l

2
vn+1

F,l ]T (37)

p̂ = [pn
0 pn

l pn+1
0 pn+1

l ]T (38)

where the superscripts n and n+1 are relative to time tn and tn+1, respectively, and the subscripts
0, l/2, and l are used to define the fluid velocity at x =0, x = l/2, and x = l, respectively. The
approximation of the different variables of the problem can be summarized as

vi = Nt v̂i ; tE =Nt t̂E ; tL =Nt t̂L (39)

vS = Nt v̂S; f =Nt f̂ (40)

vF = Nv v̂F ; p=Npp̂. (41)

The discretized weak form for the interface is

�v̂T
i Bt̂E −�v̂T

i Bt̂L = 0 ∀�v̂i , (42)

�t̂T
L

1

�
At̂L −�t̂T

LBv̂i +�t̂T
LBv̂S +�tn

L
1

�
tn
L = �tn

L tn
L

− ∀�t̂L , (43)

�t̂T
E

1

�
Bt̂E −�t̂T

EBv̂F +�t̂T
EBv̂i = 0 ∀�t̂E . (44)

The discretized weak form for the solid is

�v̂T
SmAv̂S +�v̂T

SBf̂−�v̂T
SBt̂L +�vn

Smvn
S = �vn

Smvn
S
− ∀�v̂S, (45)

�f̂T 1

k
Af̂−�f̂TBv̂S +� f n 1

k
f n = � f n 1

k
f n− ∀� f. (46)



Table III. Parameters for the one-dimensional case.

� � k m � l � t̄0

100 0.01 500 50 1000 1 1.2 20 000

The discretized weak form for the fluid is

�v̂T
F�Cv̂F −�v̂T

F Dp̂ (47)

−[�vn
F,0 �vn+1

F,0 ]Bt̂E +[�vF,0
n�vn

F, l
2

�vF,l
n]�E[vn

F,0 vn
F, l

2
vn

F,l ]
T (48)

= [�vn
F,l �vn+1

F,l ]Bˆ̄t+[�vn
F,0 �vn

F, l
2

�vn
F,l ]�E[vn−

F,0 vn−
F, l

2
vn−

F,l ]
T ∀�v̂F , (49)

�p̂TDTv̂F =0 ∀�p̂. (50)

The final discretized system of Equations (42)–(50) consists of a total of 20 unknowns given by
the vectors v̂i , t̂E , t̂L , v̂S , f̂, v̂F , and p̂. This linear symmetric system is solved for each time slab.

6.4. Verification of the method by Newmark reference solution

The pressure and the velocity in the fluid domain are solved analytically writing the momentum
balance and continuity equations

−p,x = �v̇F (51)

vF,x = 0 (52)

with p(x = l, t)=−t̄(t), p(x, t =0)=0, and vF (x, t =0)=0. This leads to the solution

p(x, t)=�v̇F (l −x)− t̄(t), (53)

where vF is only a function of time.
The momentum balance applied successively to the solid, to the interface and the fluid connection

to the Eulerian interface layer lead to the following time dependant discrete system:

⎡
⎢⎢⎣

m 0 0

0 0 0

0 0 �l

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v̇S

v̇i

v̇F

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0 0 0

0 � −�

0 −� �

⎤
⎥⎥⎦

⎡
⎢⎢⎣

vS

vi

vF

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

k+� −� 0

−� � 0

0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

xS

xi

xF

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0

0

t̄(t)

⎤
⎥⎥⎦ , (54)

where vF denotes the fluid velocity at the interface, xS , xi , and xF are respectively the solid,
interface, and fluid positions. In the last equation the fluid acts as an added mass to the Eulerian
interface layer. This system is solved by the Newmark method with the standard value �Newmark =
0.25 and �Newmark =0.5, leading to a second-order implicit scheme in conjuction with a time step
�t =0.01 to produce a qualified reference solution.

The parameters for verification of the space–time approach are given in Table III. The space–
time computation is performed using the same time step �t =0.01 as the Newmark-based reference
computation. The results for a given traction t̄(t)= t̄0 H (t) are shown in Figures 10(a), (c), and (e).
and those for the prescribed harmonic traction t̄(t)= t̄0 sin(�t) in Figures 10(b), (d), and (f). The
results obtained by the proposed approach are in very good agreement with the reference solution.
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Figure 10. Results of the verification for the one-dimensional problem: (a) fluid velocity v f (0) at the
interface, t̄(t)= t̄0 H (t); (b) fluid velocity v f (0) at the interface, t̄(t)= t̄0 sin(�t); (c) interface velocity vi ,
t̄(t)= t̄0 H (t); (d) interface velocity vi , t̄(t)= t̄0 sin(�t); (e) structure velocity vS , t̄(t)= t̄0 H (t); and (f)

structure velocity vS , t̄(t)= t̄0 sin(�t).

It is expected that the time-discontinuous Galerkin method will outperform the Newmark method
if discontinuous loading functions are applied to the system.

6.5. Investigation on the influence of Eulerian interface damping

The eigenfrequency of the spring mass system is given by �s =√
k/m =3.16. In order to study

the influence of the damping interface parameter �, the load is chosen as t̄(t)= t̄0 sin(�t) with
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Figure 11. Influence of Eulerian interface damping for the one-dimensional problem.

�=0.95�s so that the excitation frequency is very close to the eigenfrequency of the structural
system. The Eulerian interface damping parameter takes the values �=1, 0.1, and 0.01 while the
other numerical values for this test are the same as in the previous verification.

The structure velocity is plotted for the three values of � in Figure 11. A large value of damping
(�=1) is close to a perfect interface, meaning that energy is transferred correctly from the fluid to
the structure while a small value (�=0.01) is close to a slip boundary condition. The results show
that smaller damping values lead to reduced oscillation amplitudes, which is in good agreement
with the expectations.

7. APPLICATION TO VORTEX-INDUCED VIBRATIONS

In this section the two-layer interface model is applied to the two-dimensional problem of flow-
induced vibration of a spring-supported cylinder in a cross flow (Figure 12). This test case reveals
two interesting and examinable phenomena: von Kármán vortex streets and the lock-in effect. The
vortices are alternately detaching from both sides of the body and then convected with the flow.
Coupled to the periodic vortex shedding, periodic pressure fluctuations occur on the surface of
the body. The alternation leads to a harmonic excitation of the body, hence the spring-supported
cylinder may start moving orthogonal to the flow direction. If the vortex shedding frequency f is
close to the eigenfrequency f0 of the structural system, resonance and vibrations at large amplitudes
may develop. In certain ranges of Reynolds number a reverse interaction from solid to fluid can be
observed. The frequency of eddy detachment then adapts to the eigenfrequency of the structure,
called the lock-in effect.

The diameter of the cylinder is d =0.16cm and the inflow on the left boundary is denoted
by vx =v∞. At the outlet, the pressure gradient is set to zero, i.e. the pressure is set to the
surrounding reference pressure p=0. The cylinder is spring-supported in the transverse flow
direction. The stiffness of the spring is k =6793g ·s−2 and the density of the cylinder is given by
�S =148.2g ·cm−3. This parameter setup determines the eigenfrequency of the structural system
to f =7.6Hz. The material parameters of water at a temperature of T =20◦C are used for the
fluid: �=0.01002g ·s−1 ·cm−1 and �=0.9982g ·cm−3. This setup has also been used by Walhorn
[33], so that the simulations with rheological devices can be compared to simulations with strong
coupling conditions. Moreover, there are experimental examinations for this case, coupling the
detaching frequency to the Reynolds number of the flow [34].
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Table IV. Inflow velocities for different Reynolds numbers.

Re 90 100 110 120 130

v∞[cm·s−1] 5.6464 6.2738 6.9012 7.5286 8.1559

To trace the eddy detachment frequency, the horizontal fluid velocity at the monitoring point
A is observed. The state at the interface is observed by tracking displacements and velocities at
the monitoring points B and C. The flow is disturbed by an asymmetric inflow velocity during the
first time steps in order to accelerate the development of vortices.

7.1. Fixed cylinder without rheological interface

In this first test the cylinder is fixed (vs =0) and the rheological interface model is not active.
In order to verify the fluid model, the behavior at different Reynolds numbers (Re=v∞·d ·�/�)
is investigated by changing the inflow velocity according to Table IV. The developing velocity
and pressure field is depicted in Figures 13(a) and (b). The von Kármán vortex street can be
clearly resolved, the transportation of the eddies with the fluid velocity is observed. The typical
asymmetric and time-dependent stress distribution is present on the surface of the cylinder. The
resulting Strouhal number (Sr = f ·d/v∞) in comparison with the results of Walhorn [33], Sarrate
and Huerta [35] and the relation stated by Roshko [34] is depicted in Figure 13(c). The Strouhal
number obtained by simulations on the chosen mesh is slightly above the results of Sarrate and
Roshko. The results show that the considered mesh can be used in order to further examine the
qualitative behavior of the rheological interface.

7.2. Fixed cylinder with active rheological interface

In the following, the test case described above is examined for interface layers with finite stiffness
and damping. The impact of rheological interfaces on the development of the von Kármán vortex
street is examined. The solid body is still fixed in space while the rheological interface is now active.
Consequently, interface deformations are possible and lead to different shear stress distributions
at the interface. The vortex shedding frequency fRe=110 ≈7.6Hz, associated to Re=110 without
rheological interface effects, matches the eigenfrequency fs =7.6Hz of the cylindrical rigid body
system. The effect of the two components of the rheological interface model on the vortex shedding
frequency at the specific Reynolds number Re=110 is therefore investigated in this section.

7.2.1. Lagrangian part of interface layer. The Kelvin–Voigt model is applied exemplarily for
the Lagrangian layer of the interface. For decreasing damping � this model approaches the
pure Hooke device. At constant stiffness �=104, the damping parameter is varied in the range



Figure 13. Fixed cylinder in a flow: (a) velocities and pressure field with shedding vortices (fine mesh);
(b) velocities and pressure field around the cylinder; and (c) comparison of Strouhal number.

�∈ [2×102,6×105]. For increasing damping the eddy shedding frequency converges to the
frequency of the direct coupling case, see Figure 14(a). The Lagrangian part of the rheological
interface leads to a variation of only 1% in the vortex shedding frequency. At constant damping
�=103, the stiffness parameter is varied in the range �∈ [5×103,1×105]. The resulting vortex
shedding frequency band is between 7.3 and 7.6 Hz as shown in Figure 14(b). According to theory,
direct coupling conditions are implemented for large values of �. Normal and tangential motions
are possible in the rheological interface with active Lagrangian layer. The interface deformation
changes the boundary of the flow domain and therefore influences the vortex shedding frequency.

7.2.2. Eulerian part of interface layer. A Newtonian rheological interface is applied in the tangen-
tial direction while in normal direction kinematic consistency is realized. In Figure 15(a), the
resulting horizontal velocity in control point C is depicted. For large values of tangential damping
parameter �t the resulting velocity converges to zero, corresponding to a no-slip interface condition
(direct kinematic coupling of fluid and structure velocities). For increasing damping coefficients,
a linear relation between damping and tangential velocity is observed. In this region the impact of
pressure and shear stress from the fluid on the cylinder is nearly constant. Below �≈1 the behavior
changes and the tangential velocity converges to the free-stream velocity of the surrounding flow
with slip interface conditions (�→0). The impact on the frequency of detaching eddies is shown
in Figure 15(b). For a damping coefficient larger than �=10 the vortex shedding frequency is not
changed. For �∈ [1,10] the frequency increases by 7%. In a narrow transition region between �=1
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Figure 14. Influence of the Lagrangian part of the rheological interface on the vortex shedding frequency:
(a) results for constant stiffness and (b) results for constant damping.
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Figure 15. Eulerian part of rheological interface with Newton device in tangential direction only:
(a) horizontal velocity in point C and (b) eddy frequency.

and �=0.5 vortex shedding does not take place anymore. This transition region is very small and
the eddy detaching behavior is very sensitive.

7.3. Spring-supported cylinder with rheologic interface at Re=110

The rigid cylinder is now free to move and the vortex shedding frequency associated with Re=110
is again close to the eigenfrequency of the spring mass system such that flow-induced vibrations
can be expected. To check the influence of a rheological interface on the resonance behavior, the
investigation of the tangential Newtonian interface is repeated for the full fluid–structure system.

The displacement of the cylinder is plotted for various damping parameters in Figure 16. For
large damping parameters (�>5) the tangential Newtonian device meet no slip interface conditions
for the fluid–structure interaction system. Therefore energy is constantly transferred from the flow
to the rigid cylinder due to active shear stress and resonance can be observed. If the damping
parameter � is decreased (�=1,2) a transition to slip interface conditions is realized and the eddy
detachment frequency increases up to 15%. This shift between the eigenfrequency of the structure
and the frequency of the exciting flow force now avoids the resonance case and leads to limit cycle
oscillations of the cylinder at still large amplitudes. For �<0.5 the eddies vanish completely as
already seen for the rigid cylinder in the previous section. The result is a full decoupling of flow
shear stresses and structural forces since the pressure field is symmetric.
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Figure 16. Influence of rheological damping on resonance behavior.

This investigation shows that already a very simple rheological device is able to influence the
behavior of a fluid–structure interaction system.

8. CONCLUSIONS

A rheological interface model for fluid–structure interaction problems is introduced in order to
investigate its influence on flow-induced vibrations of the coupled system. The interface model
is composed of two characteristic layers, a Lagrangian for the solid-like part and a Eulerian for
the fluid-like part. The formulation introduces interface velocity and interface tractions for both
layers in addition to fluid and solid variables. In this work the fluid–structure system is assumed to
consist of a spring-supported rigid body and an incompressible viscous fluid. The velocity-based
weak form of the equations for the whole coupled system including the rheological interface is
discretized using space–time finite elements. This approach leads to a monolithic and uniform
finite element description of the coupled system including the proposed rheologic interface model.

The interface model is first validated and then applied to a simplified one-dimensional generic
problem. It is shown that by introduction of a proper damping interface, oscillations of the coupled
system are reduced when it is harmonically excited close to the eigenfrequency of the structural part.

The influence of various combinations of rheologic interface models to flow-induced vibrations
of a cylinder is studied. At the critical Reynolds number, parameter studies of the rheologic model
are performed. It is shown that a rheologic interface is able to change the vortex shedding frequency
and therefore can modify the sensitivity to resonance behavior of the flow-immersed cylindrical
rigid body.

An important aspect of the developed model is the determination of correct model parameters
within the two different interface layers. These parameters can be obtained by either experiments
or numerical analysis of the real multidimensional interface setup and dimensional reduction.
Moreover, it is known that for vibro-acoustic problems interface model parameters are frequency-
dependent, hence it is expectable to observe dependency on the Reynolds number also for free
flow fluid–structure interaction problems. This would lead to a non-linear and time-dependent
rheological interface model, which is a topic for further investigation.
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