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Vibration of axisymmetric composite piezoelectric shells
coupled with internal fluid

W. Larbi, J.-F. Deu and R. Ohayon
Structural Mechanics and Coupled Systems Laboratory, Conservatoire National des Arts et Métiers, 

292 rue Saint-Martin, 75141 Paris Cedex 03, France

This paper presents the theoretical and finite element formulations of piezoelectric composite shells of 
revolution filled with compressible fluid. The originality of this work lies (i) in the development of a 
variational formulation for the fully coupled fluid/piezoelectric structure system, and (ii) in the finite 
element implementation of an inexpensive and accurate axisymmetric adaptive laminated conical shell 
element. Various modal results are presented in order to validate and illustrate the efficiency of the 
proposed fluid–structure finite element formulation.

KEY WORDS: axisymmetric conical shells; piezoelectric laminates; fluid–structure interaction; free
vibrations; finite element method

1. INTRODUCTION

In the context of noise reduction techniques by active treatments, this work presents the theoret-
ical formulation and the finite element implementation of the specific problem of piezoelectric
composite shells of revolution filled with compressible fluid. The originality of this work lies
(i) in the modal formulation of the fully coupled fluid/piezoelectric structure system, and (ii) in
the development of an inexpensive and accurate adaptive axisymmetric laminated conical shell
element.

For the resolution of structural-acoustic vibration problems, two classes of methods can be
distinguished according to whether they are based on analytical or numerical discrete approaches.
Analytical methods are classically restricted to simple geometries and boundary conditions. For
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example, the vibration of cylindrical thin shells filled with a compressible fluid has been studied
using a wave propagation approach in [1] for elastic structures, or using a state-space method in
[2] for piezoelectric structures. Three-dimensional exact solutions have recently been proposed
for the free vibration analysis of arbitrary thick simply supported piezoelectric hollow cylinders
filled with compressible fluid [3, 4]. Methods based on discretization of the structural-acoustic
governing equations, such as the finite element method, are not restricted to specific boundary
conditions but require a higher computational effort. For example, a mixed formulation based on a
piezoelectric shell finite element for the structure and a three-dimensional boundary element for the
fluid, is developed in [5] to calculate the coupled response of smart structural-acoustic systems. For
problems involving axisymmetric geometries, semi-analytic approaches are frequently used because
they are computationally more efficient and accurate than fully discrete methods approaches. These
methods, which employed a discretization in Fourier series for the circumferential direction, have
recently been developed for vibrations analysis of axisymmetric piezoelectric shells [6–8], as well
as axisymmetric laminated composite cylinders filled with fluid [9–11].

In this paper, a semi-analytical approach is used for adaptive conical laminated shells filled with
compressible fluid. The piezoelectric shell model is based on the Kirchhoff–Love theory and is
supposed to be polarized in thickness direction. The associated finite element model combines an
equivalent single-layer approach for the mechanical behaviour with a layerwise representation of
the electric potential in the thickness direction. In this work, we consider that the fluid is inviscid,
compressible and barotropic, gravity effect being neglected. Extension to vibration damping of
more complex systems involving surface gravity effects in the inviscid incompressible case [12]
or internal gravity effects in the inviscid compressible case [13] will be the purpose of further
investigations. Considering the above assumptions, the fluctuating fluid forces are determined by
means of the linearized Euler equations and reduced to the Helmholtz equation for the pressure.
The dynamic formulation of the coupled system is derived from a variational principle involving
shell displacements and rotation, electric potential and fluid pressure. Concerning the finite element
discretization, a one-dimensional element with two nodes is used for the adaptive conical shell
structure and a quadrangular element with four nodes for the fluid. Moreover, an appropriate
interface element is developed to ensure the interaction between the fluid and structure. For the
shell element, each node has (i) four mechanical degrees-of-freedom to describe axial, radial
and circumferential displacements, as well as the rotation about the circumferential axis, and
(ii) one electrical degree-of-freedom related to the sensor voltage per piezoelectric layer. For
the fluid element, the pressure is the unique nodal unknown. It should be mentioned that the
variables associated with these two elements are expanded in Fourier series in the circumferential
direction. Finally, some numerical examples are presented in order to validate and demonstrate the
effectiveness of the proposed formulation.

2. FINITE ELEMENT FORMULATION OF THE PIEZOELECTRIC STRUCTURE
COUPLED WITH AN INTERNAL FLUID

Let us consider the linear vibrations of an elastic/piezoelectric structure completely filled with
a homogeneous, inviscid and compressible fluid, neglecting gravity effects. We establish in this
section the variational formulation of the coupled problem and the corresponding matrix equations.
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Figure 1. Fluid/piezoelectric structure-coupled system.

2.1. Governing equations of the spectral-coupled problem

We consider a piezoelectric structure occupying the domain �S at the equilibrium. The structure is
clamped on a part �u and traction free on the complementary part �� of its external boundary. The
interior fluid domain is denoted by �F and the fluid–structure interface by � (see Figure 1). For the
considered spectral problem, electric boundary conditions are defined by null electric potential on
�� and null surface density of electric charge on the remaining part �D. Thus, the total structure
boundary is ��S = �u ∪ �� ∪� =�� ∪�D with �u ∩ �� ∩ �=�� ∩�D = ∅.

The linearized deformation tensor is denoted by e and the corresponding stress tensor by r.
Moreover, D denotes the electric displacement and E the electric field. �S is the mass density of
the structure and nS is the unit normal external to �S.

Since the compressible fluid is assumed to be inviscid, instead of describing its motion by a fluid
displacement vector field, which requires an appropriate discretization of the fluid irrotationality
constraint [14], we use the pressure scalar field p. Let us consider cF as the constant speed of
sound in the fluid, �F the mass density of the fluid, and n the unit normal external to �F.

The local equations describing the spectral fluid–piezoelectric structure-coupled problem are

div r+ �2�Su = 0 in �S (1a)

rnS = 0 on �� (1b)

u = 0 on �u (1c)

rnS = pn on � (1d)

div D = 0 in �S (2a)

D · nS = 0 on �D (2b)

� = 0 on �� (2c)
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�p + �2

c2
F

p = 0 in �F (3a)

�p

�n
= �2�Fu · n on � (3b)

where � is the angular frequency.
Equation (1a) corresponds to the elastodynamic equation in the absence of body force;

Equations (1b) and (1c) are the classical mechanical boundary conditions; Equation (1d) results
from the action of pressure forces exerted by the fluid on the structure; Equation (2a) corresponds
to the electric charge equation for a dielectric medium; Equations (2b) and (2c) are the previously
described electric boundary conditions; Equation (3a) is the Helmholtz equation; and Equation (3b)
is the contact condition for the fluid on �.

The stress tensor r and electric displacement vector D are related to the linear strain tensor e and
electric field vector E through the converse and direct linear piezoelectric constitutive equations

r= ce− eTE (4)

D = ee+ dE (5)

where c is the elastic stiffness matrix, d is the dielectric permittivity matrix, and e is the piezoelectric
coupling matrix.

Moreover, we have the following gradient relations between the linearized strain tensor e and
the displacement u, and between the electric field E and the electric potential �:

e= 1
2 (∇u + ∇Tu) (6)

E = −∇� (7)

For a detailed derivation of those classical equations, we refer the reader, for example, to [15]
for piezoelectric aspects and to [16] for fluid–structure aspects.

2.2. Variational formulation in terms of (u, �, p)

The local equations of Section 2.1 are expressed in terms of the chosen unknown fields of the
piezoelectric structure/fluid boundary value problem, i.e. the structural mechanical displacement
u, the electric potential in the structure �, and the fluid pressure p.

In order to obtain the variational formulation associated with the local equations of the cou-
pled fluid–piezoelectric structure system given in Equations (1)–(3), the test-function method is
applied. We proceed in three steps, successively considering the equations relating to the structure
(subject to fluid pressure actions), the electric charge equation for a dielectric medium, and the
equations relating to the fluid (subject to a wall displacement). We recall that the chosen unknown
fields are the structure displacement u, the electric potential � and the fluid pressure p.

First, we introduce the space C∗
u of sufficiently regular functions u defined in �S verifying u = 0

on �u . Multiplying Equation (1a) by any function �u ∈ C∗
u , then applying Green’s formula, and
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finally taking Equations (1b) and (1d) into account, leads to∫
�S

r(u, �) : e(�u) dv −
∫

�
pn · �u ds − �2�S

∫
�S

u · �u dv = 0 ∀�u ∈ C∗
u (8)

Secondly, we consider the space C∗
� of sufficiently regular functions � in �S verifying �= 0

on ��. Multiplying Equation (2a) by any function ��∈ C∗
� and integrating over �S, we have∫

�S

div D(u, �)�� dv = 0 ∀��∈ C∗
� (9)

Finally, we consider the space Cp of sufficiently regular functions p defined in �F. Multiplying
Equation (3a) by �p ∈ Cp, applying Green’s formula, and taking Equation (3b) into account, we
obtain

1

�F

∫
�F

∇p · ∇�p dv − �2

�Fc2
F

∫
�F

p�p dv − �2
∫

�
u · n�p ds = 0 ∀�p ∈ Cp (10)

Using the piezoelectric constitutive Equations (4) and (5), and taking the electric boundary
condition (2b) into account, Equations (8) and (9) can be rewritten in the following forms:∫

�S

ce(u) : e(�u) dv −
∫

�S

eTE(�) : e(�u) dv −
∫

�
pn · �u ds − �2�S

∫
�S

u · �u dv = 0 (11)

and ∫
�S

ee(u) · E(��) dv +
∫

�S

dE(�) · E(��) dv = 0 (12)

Thus, the variational formulation of the coupled fluid–piezoelectric structure spectral problem
consists in finding � ∈ R+ and (u, �, p) ∈ (C∗

u , C∗
�, Cp) satisfying Equations (10)–(12).

2.3. Finite element formulation

Let us introduce U,U and P corresponding to the vectors of nodal values of u, � and p, respectively,
and the submatrices corresponding to the various bilinear forms involved in Equations (10)–(12)
defined by ∫

�S

ce(u) : e(�u) dv ⇒ �UTKuU (13a)

�S

∫
�S

u · �u dv ⇒ �UTMuU (13b)

∫
�S

eTE(�) : e(�u) dv ⇒ �UTCu�U (13c)

∫
�S

ee(u) · E(��) dv ⇒ �UTCT
u�U (13d)
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∫
�

pn · �u ds ⇒ �UTCupP (13e)

1

�F

∫
�F

∇p · ∇�p dv ⇒ �PTKpP (13f)

1

�Fc2
F

∫
�F

p�p dv ⇒ �PTMpP (13g)

∫
�S

dE(�) · E(��) dv ⇒ �UTK�U (13h)

The variational equations (10)–(12) for the fluid–piezoelectric structure-coupled problem can
be written in discretized form⎡

⎢⎢⎣
Ku −Cu� −Cup

CT
u� K� 0

0 0 Kp

⎤
⎥⎥⎦

⎡
⎢⎣

U

U

P

⎤
⎥⎦ =�2

⎡
⎢⎢⎣

Mu 0 0

0 0 0

CT
up 0 Mp

⎤
⎥⎥⎦

⎡
⎢⎣

U

U

P

⎤
⎥⎦ (14)

Remarks

• The matrices involved in Equation (14) are unsymmetric. A symmetric formulation with
mass coupling can be established by introducing the fluid displacement potential as additional
variable [16]. For the sake of brevity, this procedure is not detailed here and will be the subject
of a future work.

• Using the second line of Equation (14), the degrees-of-freedom associated with the electric
potential can be expressed in terms of structure displacements as

U= − K−1
� CT

u�U (15)

Thus, after substitution of U into Equation (14), we get the following spectral problem in
terms of U and P:[

Ku + Cu�K−1
� CT

u� −Cup

0 Kp

][
U

P

]
=�2

[
Mu 0

CT
up Mp

] [
U

P

]
(16)

It should be noted that the term Cu�K−1
� CT

u� represents an ‘added-stiffness’ contribution due
to the electromechanical coupling [17].

• A standard unsymmetric system, associated to the fluid–elastic structure coupled problem,
can be obtained from Equation (16) by choosing a zero elastic-electric coupling matrix Cu�
(i.e. when piezoelectric coupling constants are zero)[

Ku −Cup

0 Kp

] [
U

P

]
=�2

[
M 0

CT
up Mp

][
U

P

]
(17)
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3. APPLICATION TO AXISYMMETRIC COMPOSITE CONICAL SHELLS FILLED
WITH COMPRESSIBLE FLUID

In this section, the proposed finite element formulation is applied to the vibration analysis of
axisymmetric conical elastic/piezoelectric shells coupled with an internal compressible fluid.

3.1. Elastic laminated conical shell

Consider a hollow truncated conical shell of length L , slope angle �, having an arbitrary constant
thickness h and made of N orthotropic layers (see Figures 2 and 3). The particular geometry of
the structure is used to reduce the dimensions of the problem through a semi-analytical procedure
whereby variables are expanded as Fourier series in the circumferential direction. The orthogonality
property of harmonic functions decouples the contributions of the components of the series and
allows a separate analysis for each circumferential harmonic.
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Figure 2. Conical shell: geometry and notations.
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Figure 3. Cross-sectional view of the laminated composite conical shell.
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3.1.1. Strain-displacement relations. Since a classical shell element based on Kirchhoff–Love
hypotheses is used in this work, the components of the displacement vector can be written as

ux = u(x, �) + z�(x, �) (18a)

u� = v(x, �) + z	(x, �) (18b)

uz = w(x, �) (18c)

u, v and w being the axial, circumferential and radial displacement components at the middle
surface of the shell. � and 	 are the rotations about the � and x axes, respectively, given by

� = −�w

�x
(19)

	 = cos �

R
v − 1

R

�w

��
(20)

where R denotes the local radius of the shell written by

R = x sin � (21)

With these notations, the state of strain at any point x , � (on the shell) and z (distance from
the neutral surface), is equal to the sum of the middle surface strains (membrane) and the strains
due to the changes of curvature (flexural). Denoting the middle surface extensional strains in the
lengthwise and circumferential directions by εxx and ε��, the middle surface changes in curvature
in the lengthwise and circumferential directions by 
xx and 
��, and the middle surface in-plane
shear strain and change in twist by εx� and 
x�, the state of strain at any point (x, �, z) within the
shell can be written as

εxx = εxx + z
xx (22a)

ε�� = ε�� + z
�� (22b)

2εx� = εx� + z
x� (22c)

where the factor 2 in the left-hand side of Equation (22c) comes from the definition of the strain
tensor (Equation (6)) and the middle surface extensional strains are defined by

εxx = �u

�x
(23a)

ε�� = sin �

R
u + 1

R

�v

��
+ cos �

R
w (23b)

εx� = 1

R

�u

��
− sin �

R
v + �v

�x
(23c)
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and the middle surface curvatures are expressed by


xx = −�2
w

�x2
(24a)


�� = cos �

R2

�v

��
− 1

R2

�2
w

��2
− sin �

R

�w

�x
(24b)


x� = −2 cos � sin �

R2
v + cos �

R

�v

�x
+ 2 sin �

R2

�w

��
− 2

R

�2
w

�x��
(24c)

Equations (23) and (24) correspond to strain–displacement relations for thin conical shells in Love
theory [18].

3.1.2. Fourier series expansion. The geometric and material rotational symmetry of the structure
allows a semi-analytical formulation for the shell finite element. Thus, the displacement field is
expended in Fourier series in the circumferential direction according to the following expressions:

u = u0(x) +
∞∑

n=1
un(x) cos n� (25a)

v = v0(x) +
∞∑

n=1
vn(x) sin n� (25b)

w = w0(x) +
∞∑

n=1
wn(x) cos n� (25c)

where n identifies the harmonic component.
In fact, due to the axisymmetry, the modes for n�1 appear by pair, the two members of a pair

being denoted as companion modes. Those companion modes have exactly the same frequency
and their shapes have the same geometry, the only difference being in their angular position.
Moreover, displacement components appear grouped in (u, �v/��, w) or in (�u/��, v, �w/��)

in Equations (23) and (24). As a consequence, the displacement components of one companion
mode are of the form (cos n�, sin n�, cos n�) or (sin n�, cos n�, sin n�). To obtain both companion
modes, one would have to introduce both sine and cosine functions in each displacement compo-
nent (u, v, w). However, for sake of brevity, only one of the companion modes is considered in
Equations (25) and consequently in our simulations.

Using Equations (23)–(25), middle surface extensional strains and curvatures can be written as

εxx = ε0
xx (x) +

∞∑
n=1

εn
xx (x) cos n�, 
xx = 
0

xx (x) +
∞∑

n=1

n

xx (x) cos n�

ε�� = ε0
��(x) +

∞∑
n=1

εn
��(x) cos n�, 
�� = 
0

��(x) +
∞∑

n=1

n

��(x) cos n�

εx� = ε0
x�(x) +

∞∑
n=1

εn
x�(x) sin n�, 
x� = 
0

x�(x) +
∞∑

n=1

n

x�(x) sin n�

9



where the strain components can be rewritten, for any circumferential harmonic n, in the following
matrix form:

en = Dm

⎡
⎢⎣

un

vn

wn

⎤
⎥⎦ , jn = Db

⎡
⎢⎣

un

vn

wn

⎤
⎥⎦ (26)

with en =[εn
xx εn

�� εn
x�]T, jn =[
n

xx 
n
�� 
n

x�]T and the gradient operators

Dm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�
�x

0 0

S

R

n

R

C

R

− n

R
− S

R
+ �

�x
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Db =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 − �2

�x2

0
nC

R2

n2

R2
− S

R

�
�x

0 −2
CS

R2
+ C

R

�
�x

−2
nS

R2
+ 2

n

R

�
�x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where C = cos �, S = sin � and the subscripts m and b state for membrane and bending.

3.1.3. Degrees-of-freedom and shape functions. The displacement components associated with
each harmonic n are predicted by discretizing the shell with one-dimensional two nodes axisym-
metric elements. Each node has four degrees-of-freedom to describe axial, circumferential and
radial displacements, as well as the rotation about the circumferential axis. One element can thus
be described in terms of the following nodal degrees-of-freedom vector:

Ue
n =[un1 vn1 wn1 �n1 | un2 vn2 wn2 �n2]T (27)

where superscript e denotes an elementary quantity, and subscripts 1 and 2 correspond to nodes
bounding the element.

The longitudinal and circumferential displacements are assumed to vary linearly along the
axial co-ordinate x , while the radial displacement is described by Hermite cubic polynomial in
order to maintain C1 continuity due to the application of Kirchhoff–Love hypothesis. Thus, the
elementary middle surface displacements and rotations of the shell are given in terms of the nodal
degrees-of-freedom by

⎡
⎢⎣

ue
n

ve
n

we
n

⎤
⎥⎦ = Nd(x)Ue

n,

⎡
⎢⎣

�e
n

	e
n

0

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

−�we
n

�x
C

R
ve

n + n

R
we

n

0

⎤
⎥⎥⎥⎥⎥⎦ = Nr(x)Ue

n (28)

where the interpolation matrices are defined by

Nd =
⎡
⎢⎣

N l
1 0 0 0 N l

2 0 0 0

0 N l
1 0 0 0 N l

2 0 0

0 0 N c
1 N c

2 0 0 N c
3 N c

4

⎤
⎥⎦
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and

Nr =

⎡
⎢⎢⎢⎢⎣

0 0 −�N c
1

�x
−�N c

2

�x
0 0 −�N c

3

�x
−�N c

4

�x

0
C

R
N l

1
n

R
N c

1
n

R
N c

2 0
C

R
N l

2
n

R
N c

3
n

R
N c

4

0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

with the following linear N l
i (i = 1, 2) and cubic N c

i (i = 1 . . . 4) shape functions given in the
reference element

N l
1 = 1

2 (1 − �), N l
2 = 1

2 (1 + �)

N c
1 = 1

4
(2 − 3� + �3), N c

2 = − Le

8
(1 − � − �2 + �3)

N c
3 = 1

4
(2 + 3� − �3), N c

4 = − Le

8
(−1 − � + �2 + �3)

in which � is the elementary co-ordinate that varies from � = −1 at node 1 to � = 1 at node 2 and
Le is the length of the element.

Moreover, elementary extensional strains and curvatures can be expressed by

ee
n = Bm(x)Ue

n, je
n = Bb(x)Ue

n (29)

with the following discretized gradient operators:

Bm = DmNd, Bb = DbNd

Note that the third line of zeros in the Nr expression is used in order to define the products
NT

d Nr and NT
r Nd in the mass matrix defined below.

3.1.4. Elementary mass and stiffness matrices. The interpolations of displacements and strains
presented in the previous section are used to express the elementary mass and stiffness matrices
of the composite laminated shell.

The mass matrix is evaluated without neglecting rotational inertia. Using relation (13b) and
combining Equations (18), (25) and (28), the elementary mass matrix is defined, for any harmonic
n, by

Me
u = �(1 + �0n)

∫ 1

−1
[I0NT

d Nd + I1(NT
d Nr + NT

r Nd) + I2NT
r Nr]R(�)JS d�

where JS is the Jacobian determinant which is simply given by JS = Le/2, � is the Kronecker
symbol and the zero, first and second mass moments of inertia are given by

I0 =
N∑

k=1
�k

S(zk − zk−1), I1 = 1

2

N∑
k=1

�k
S(z2

k − z2
k−1), I2 = 1

3

N∑
k=1

�k
S(z3

k − z3
k−1)

11



In the same way, using definition (13a) and combining Equations (22), (26) and (29), the
elementary elastic stiffness matrix is given, for any harmonic n, by

Ke
u = �(1 + �0n)

∫ 1

−1
(BT

mABm + BT
mBBb + BT

b BBm + BT
b DBb)R(�)JS d�

The matrices A, D and B are extensional, bending and extensional–bending coupling stiffness
of the laminated composite (see for example [19]). The components of these 3 × 3 symmetric
matrices are given by

Ai j =
N∑

k=1
Q

k
i j (zk − zk−1), Bi j = 1

2

N∑
k=1

Q
k
i j (z

2
k − z2

k−1), Di j = 1

3

N∑
k=1

Q
k
i j (z

3
k − z3

k−1)

where i, j = 1, 2, 6 and Q
k
i j represent the reduced material stiffness constants for each layer k in

the global co-ordinate system deduced from the assumption of zero normal stress in the thickness
direction.

3.2. Finite element modelling of the fluid domain

The aim of this section is to introduce the finite element discretization of the fluid domain
considering the axisymmetry of the problem (see Figure 4). As for the structure displacements,
fluid pressure can be expressed in terms of Fourier series by

p(r, �, Z) = p0(r, Z) +
∞∑

n=1
pn(r, Z) cos n� (30)

where p0 and pn are, respectively, the axisymmetric and the nth harmonic component of the
pressure.

The considered fluid domain is discretized into quadrilateral elements. Each element is bounded
by four nodes and the nodal pressure is considered as the only unknown variable.

For any harmonic n, the elementary pressure pe
n(r, Z) can be expressed in terms of the vector

of nodal pressures Pe
n

pe
n(r, Z) = Np(r, Z)Pe

n (31)

where the interpolation matrix is defined by

Np = [N1 N2 N3 N4]

eZeθ

er

MF

r
Z

ΩF

Figure 4. Fluid domain: geometry and notations.
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with the following linear shape functions, given in the reference element

N1 = 1
4 (1 − )(1 − �), N2 = 1

4 (1 + )(1 − �), N3 = 1
4 (1 + )(1 + �), N4 = 1

4 (1 − )(1 + �)

From definition (13g), and using Equations (30) and (31), the elementary mass matrix of the
fluid can be expressed, for each harmonic n, by

Me
p = �(1 + �0n)

�Fc2
F

∫ 1

−1

∫ 1

−1
NT

p Npr(, �)JF d d� (32)

where JF is the Jacobian determinant of the transformation from the real to the reference element.
In order to compute the elementary stiffness matrix of the fluid, we have to evaluate the pressure

gradient, for each harmonic n, using

∇pe
n(r, Z) = Bp(r, Z)Pe

n (33)

with the following discretized gradient operators:

Bp(r, Z) =
[

�
�r

n

r

�
�Z

]T

Np(r, Z) (34)

From Equations (13f), (30) and (33), and after transforming the discretized gradient operator
in the reference co-ordinate system, the elementary stiffness matrix of the fluid can be expressed,
for each harmonic n, by

Ke
p = �(1 + �0n)

�F

∫ 1

−1

∫ 1

−1
BT

pBpr(, �)JF d d� (35)

3.3. Elementary fluid–structure coupling matrix

Using the appropriate interface conditions at the common boundary between the fluid and the
structure, the coupled fluid–structure matrix is derived. In first approach, a compatible mesh is
considered at the interface so that the axisymmetric interface element can be easily defined. The
interface element is bounded by two nodes, each having two degrees-of-freedom to describe, for
any harmonic n, the normal structure displacement we

n and the fluid pressure pe
n .

The elementary normal displacement we
n is discretized by cubic shape functions and can be

written, in terms of the nodal structure degrees-of-freedom, by

we
n =[0 0 N c

1 N c
2 0 0 N c

3 N c
4 ]Ue

n = NwUe
n (36)

The elementary pressure pe
n is discretized by linear shape functions and can be written, in terms

of fluid pressure in nodes located at the interface, by

pe
n =[N l

1 N l
2]

[
pn1
pn2

]
= Npi

[
pn1
pn2

]
(37)

Thus, the elementary 8 × 2 coupling matrix can be written as

Ce
up = �(1 + �0n)

∫ 1

−1
NT

wNpi R(�)JS d� (38)
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3.4. Extension to piezoelectric conical shell

In this section, we present an extension of the laminated composite conical shell to the case of
piezoelectric layers with radial polarization. The chosen multilayer model combines an equivalent
single-layer assumption for the mechanical displacement and a layerwise representation of the
transverse electric potential (the electric potential is assumed to vary linearly in the thickness of
each piezoelectric layer). The advantages of this mixed laminate theory are linked to its effectiveness
to model thin composite shells and to capture the through-thickness electric heterogeneity induced
by the piezoelectric layers [20, 21].

From the previous electric potential assumption and neglecting the in-plane components, the
electric field is defined, for each piezoelectric layer k, by its transverse component

Ek =−V k/hk (39)

where V k is the electrical potential difference between top and bottom surfaces (V k =�k −�k−1)
and hk is the layer thickness (hk = zk − zk−1).

Instead of describing the electric state by the electric potentials �k , we use in the finite element
discretization the electric potential differences V k . Moreover, as for the displacement and pressure
fields, the potential difference is developed in Fourier series by

V k(x, �) = V k
0 (x) +

∞∑
n=1

V k
n (x) cos n� (40)

Thus, the degrees-of-freedom of the axisymmetric shell element described in the previous section
are augmented by the electric potential difference (voltage) of each layer. For a circumferential
wave number n, the electric field of one multilayer piezoelectric shell element can be written in
the following form:

Ee
n = − B�U

e
n (41)

with Ee
n =[E1

n . . . Ek
n . . . E N

n ]T, Ue
n =[V 1

n . . . V k
n . . . V N

n ]T, and

B� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

h1
0 · · · · · · 0

0
. . . 0

...
...

... 0
1

hk
0

...

...
... 0

. . . 0

0 · · · · · · 0
1

hN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(42)

where N is the total number of layers.
With these considerations, the elementary electromechanical coupling stiffness matrix, given by

Equation (13c), can be written, for each circumferential wave number n, by

Ce
u� = �(1 + �0n)

∫ 1

−1
(BT

mFB� + BT
b GB�)R(�)JS d� (43)
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F and G being the membrane-electric and bending-electric coupling matrices, defined by

F =

⎡
⎢⎢⎣

h1e1
31 · · · hkek

31 · · · hN eN
31

h1e1
32 · · · hkek

32 · · · hN eN
32

h1e1
36 · · · hkek

36 · · · hN eN
36

⎤
⎥⎥⎦ (44)

and

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

z2
1 − z2

0

2
e1

31 · · · z2
k − z2

k−1

2
ek

31 · · · z2
N − z2

N−1

2
eN

31

z2
1 − z2

0

2
e1

32 · · · z2
k − z2

k−1

2
ek

32 · · · z2
N − z2

N−1

2
eN

32

z2
1 − z2

0

2
e1

36 · · · z2
k − z2

k−1

2
ek

36 · · · z2
N − z2

N−1

2
eN

36

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(45)

where ek
3 j ( j = 1, 2, 6) are the reduced piezoelectric constants for each layer k in the global

co-ordinate system deduced from the assumption of zero normal stress in the thickness direction.
The previously defined matrices are derived from the global constitutive equations of the lami-

nate, which connect, for any harmonic n, the resultant in-plane forces Nn and bending moments
Mn , to the middle surface extensional strains en and curvatures jn , and electric field En[

Nn

Mn

]
=

[
A B

B D

][
en

jn

]
−

[
F

G

]
En (46)

Finally, from Equation (13h), the electric matrix Ke
� is given, for each harmonic n, by

Ke
� = �(1 + �0n)

∫ 1

−1
BT

�HB�R(�)JS d� (47)

where H is defined by

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1d
1
33 0 · · · · · · 0

0
. . . 0

...
...

... 0 hkd
k
33 0

...

...
... 0

. . . 0

0 · · · · · · 0 hN d
N
33

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(48)

with d
k
33 the dielectric permittivity in the thickness direction.

The matrix H is derived by integrating the transverse electric displacement Dk over the thickness
of each layer such that

Qn = − FTen − GTjn − HEn (49)
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where the electric displacement resultant vector Qn is defined by

Qn =
[∫ z1

z0

D1 dz · · ·
∫ zk

zk−1

Dk dz · · ·
∫ zN

zN−1

DN dz

]T

(50)

and where Dk is given for each layer in the global co-ordinate system by

Dk = ek
31εxx + ek

32ε�� + 2ek
36εx� + d

k
33Ek (51)

4. NUMERICAL RESULTS

In this last section, numerical results, obtained with a Matlab program developed by the authors,
are proposed in order to validate and analyse the previously described formulation.

Section 4.1 presents the performances of the composite shell finite element for elastic or piezo-
electric structures without internal fluid. Section 4.2 concerns elastic and piezoelectric cylindrical
shells coupled with an internal compressible fluid.

4.1. Free vibration of shells without internal fluid

4.1.1. Isotropic conical shell. Consider an isotropic single-layer conical shell of length L = 7.5 m,
slope angle � = �/6, thickness h = 0.05 m, and radius at its large edge R2 = 5 m. The isotropic ma-
terial used in this first example is aluminium, with Young’s modulus E = 69 000 MPa, Poisson ratio
� = 0.3, and mass density �= 2700 kg m−3. Moreover, the shell is discretized with 50 axisymmetric
elements.

Table I presents a comparison of the non-dimensional frequency parameter �=�R2
√

�(1−�2)/E
for various set of boundary conditions at both the base and top of the cone: free–free (F–F), simply
supported–simply supported (SS–SS) v =w = 0, and clamped–clamped (C–C) u = v =w = �= 0.
Moreover, the results are compared with those given by Shu [22] using a generalized differential
quadrature technique, and those obtained by the finite element code Nastran using quadrangular
shell elements. In this example, the circumferential wave number n ranges from 1 to 9. An
excellent agreement can be observed for all modes. From this comparison, it can be concluded

Table I. Frequency parameter �=�R2
√

�(1 − �2)/E of an isotropic conical shell for n = 1−9.

F–F SS–SS C–C

n Nastran Present Nastran Present Shu [22] Nastran Present Shu [22]
1 — — 0.679 0.679 0.695 0.752 0.753 0.752
2 0.014 0.015 0.358 0.358 0.359 0.466 0.466 0.466
3 0.037 0.037 0.210 0.211 0.212 0.315 0.316 0.315
4 0.065 0.066 0.190 0.190 0.181 0.260 0.260 0.261
5 0.096 0.096 0.216 0.216 0.216 0.264 0.265 0.265
6 0.132 0.132 0.252 0.253 0.254 0.293 0.294 0.293
7 0.173 0.174 0.298 0.298 0.298 0.334 0.335 0.335
8 0.221 0.222 0.351 0.352 0.353 0.385 0.387 0.387
9 0.275 0.276 0.413 0.415 0.414 0.446 0.448 0.448
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Table II. Mechanical and geometrical data of an elastic laminated
cylinder [23].

Material properties Geometric data

E1 = 19 GPa, E1/E2 = 2.5 Inner layer thickness = h/3
G12 = 4.1 GPa Middle layer thickness = h/3
�12 = 0.26 Outer layer thickness = h/3
�= 1643 kg m−3 h/R = 0.002

Table III. Frequency parameter � =�
√

�R2/E2 of a composite cylinder.

L/R = 1 L/R = 10

n Present Lam and Loy [23] Zhang [24] Present Lam and Loy [23] Zhang [24]
1 1.061284 1.061284 1.061283 0.083910 0.083908 0.083908
2 0.804055 0.804054 0.804052 0.030011 0.030009 0.030008
3 0.598332 0.598331 0.598328 0.015194 0.015193 0.015191
4 0.450145 0.450144 0.450140 0.012177 0.012176 0.012174
5 0.345254 0.345253 0.345248 0.015232 0.015231 0.015230
6 0.270755 0.270754 0.270747 0.021179 0.021179 0.021178

that the present axisymmetric two-node shell element is numerically accurate and computationally
efficient for thin isotropic conical shells.

4.1.2. Laminated composite cylinder. This example gives a comparison of the frequency parameter
� =�R

√
�/E2 for a three-layer cross-ply [0, �/2, 0] cylindrical shell with simply supported (SS–

SS) boundary conditions. The mechanical and geometrical shell parameters are given in Table II.
Moreover, 100 finite elements are used for the discretization of the cylinder.

The results presented in Table III show the excellent performance of our finite element model
compared to the analytical solution proposed by Lam and Loy [23] and the wave propagation
approach used by Zhang [24]. It can be observed that for shells with small length-to-radius ratios,
as in the case L/R = 1, the minimum frequency occurs for the larger n. Nevertheless, for L/R = 10,
the natural frequencies decrease when n varies from 1 to 4, and increase for n larger than 4.

4.1.3. Laminated composite conical shell. In order to validate our finite element model for com-
posite non-cylindrical structures, the natural frequencies of a three-layer [0, �/2, 0] conical shell
are compared with those given by Nastran with quadrangular composite shell elements. The geo-
metrical data, boundary conditions and spatial discretization are the same as those given for the
isotropic conical shell example (see Section 4.1.1). Here, the thickness of each layer is h/3 and a
graphite-epoxy material is used (see Table IV).

As in the previous case, a very good agreement between the frequencies can be observed in
Table V, thus validating our composite conical shell element. It is also observed that the influence
of boundary conditions on the variation of frequency with circumferential wave number n is
significant. For the F–F conical shell, the frequencies increase as the circumferential wave number
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Table IV. Properties of graphite-epoxy and PZT-5H materials.

Properties Graphite-epoxy PZT-5H

c11 (GPa) 183.443 126
c12 (GPa) 4.363 79.5
c13 (GPa) 4.363 84.1
c22 (GPa) 11.662 126
c23 (GPa) 3.918 84.1
c33 (GPa) 11.662 117
c44 (GPa) 2.87 23
c55 (GPa) 7.17 23
c66 (GPa) 7.17 23.3
e15 (C m−2) 0 17
e24 (C m−2) 0 17
e31 (C m−2) 0 −6.5
e32 (C m−2) 0 −6.5
e33 (C m−2) 0 23.3
d11 (10−10 F m−1) 153 150.3
d22 (10−10 F m−1) 153 150.3
d33 (10−10 F m−1) 153 130
� (kg m−3) 1590 7500

Table V. Frequencies (Hz) of a laminated [0, �/2, 0] conical shell.

F–F SS–SS C–C

n Nastran Present Nastran Present Nastran Present

1 — — 93.531 93.562 95.536 95.636
2 1.485 1.538 53.452 53.456 59.639 59.786
3 3.936 3.970 35.277 35.291 42.951 43.090
4 7.175 7.199 28.422 28.451 35.612 35.721
5 10.870 10.892 28.519 28.560 34.345 34.438
6 14.852 14.880 31.610 31.667 36.758 36.880
7 19.292 19.332 35.995 36.085 41.151 41.337
8 24.325 24.386 41.428 41.570 46.883 47.156
9 29.988 30.079 47.822 48.036 53.701 54.089

10 36.289 36.421 55.094 55.405 61.453 61.985

n increases. For the SS–SS and C–C conical shells, the frequencies decrease for circumferential
wave number from n = 1 to 4 and increase from n = 5 to 9.

For illustration purpose, the mode shapes are presented in Figure 5. These three-dimensional
deformations have been constructed from the one-dimensional element and using the Fourier series
expansion of the displacement field in the circumferential direction.

4.1.4. Piezoelectric cylindrical shell. In order to validate the formulation for piezoelectric shells,
we present in this example a comparative study for a simply supported (SS–SS) piezoelectric
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(a)

(b)

(c)

f=1.538 Hz f=3.970 Hz f=7.199 Hz f=10.892 Hz f=14.880 Hz

f=93.562 Hz f=53.456 Hz f=35.291 Hz f=28.451 Hz f=28.560 Hz

f=95.636 Hz f=59.786 Hz f=43.090 Hz f=35.721 Hz f=34.438 Hz

Figure 5. The five first mode shapes of composite conical shell: (a) free-free; (b) simply supported-simply
supported; and (c) clamped-clamped.

Table VI. Frequencies (Hz) of a piezoelectric cylindrical shell.

Short circuited Open circuited

n m Present Exact Error % Present Exact Error %

1 1 87.806 88.231 0.482 93.370 93.790 0.448
2 216.127 216.260 0.062 228.162 228.227 0.028
0 278.711 275.956 −0.998 278.711 275.956 −0.998
3 312.564 311.647 −0.294 331.697 330.649 −0.317
4 368.995 366.968 −0.553 383.703 392.134 2.150

2 1 36.705 37.316 1.639 39.489 40.109 1.546
2 113.540 114.210 0.587 121.979 122.677 0.569
3 193.357 193.791 0.224 207.472 207.916 0.213
4 259.388 259.346 −0.016 278.508 278.434 −0.027
5 308.942 308.464 −0.155 332.121 331.551 −0.172

cylindrical shell. The geometrical properties are L = 5 m, R = 1 m and h = 0.02 m. Moreover, the
piezoelectric material is the PZT-5H (see Table IV).

Table VI presents the frequencies calculated by our method and those given by an exact three-
dimensional solution proposed by Deü and Larbi [4]. This exact solution is based on a mixed
state-space approach previously developed for the free vibration analysis of laminated piezoelectric
plates actuated by transverse shear mechanisms [25]. In this table, the modes are classified, for
two values of circumferential harmonic (n), in order of increasing frequency. To specify the mode
type, the corresponding axial wave number (m) obtained with the exact solution is also given.
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Table VII. Frequencies of a cylindrical shell coupled with a compressible fluid.

m, n Rigid cavity Empty shell Empty shell [1] Coupled pb Coupled pb [1]
1,2 651.04 12.17 12.17 4.77 4.93
1,3 822.10 19.62 19.61 8.53 8.94
2,3 953.94 23.45 23.28 10.24 10.64
2,2 701.41 27.72 28.06 10.93 11.48
3,3 955.90 32.46 31.98 14.25 14.66
1,4 934.42 36.44 36.47 17.21 18.26
2,4 1192.97 37.42 37.37 17.72 18.73
3,4 1194.38 40.09 39.78 19.08 19.96

As it can be observed from this table, there is a good agreement between finite element (with 100
conical shell elements) and exact solutions for different electric boundary conditions corresponding
to short-circuited (� = 0) or open-circuited (D = 0) piezoelectric materials. As expected, the natural
frequencies are higher in the open-circuit case than in the closed-circuit one. It is noted that the
error committed by the finite element approximation is lower than 3%. This comparison enables
us to validate the piezoelectric aspect of the shell. It is important to note that this validation is
restricted to the first modes, i.e. when a linear piezoelectric potential along the thickness of the
piezoelectric layer is sufficient.

4.2. Free vibration of cylindrical shells filled with a compressible fluid

4.2.1. Elastic case: comparison with a wave propagation approach. In order to validate the
proposed formulation in a fluid–structure case, we consider an elastic isotropic cylinder filled with
compressible fluid. The shell is clamped at both ends and has the following properties: length
L = 20 m, radius R = 1 m, thickness h = 0.01 m, Young’s modulus E = 210 GPa, Poisson ratio
� = 0.3, and mass density �S = 7850 kg m−3. The considered fluid is a liquid with a mass density
�F = 1000 kg m−3 and a speed of sound cF = 1500 m s−1. Moreover, 40 conical shell elements and
200 quadrangular axisymmetric fluid elements are used in the simulations.

Table VII gives the frequencies of (i) the fluid in rigid cavity, (ii) the empty shell, and (iii)
the fluid–structure-coupled system. The structural frequencies in the coupled and uncoupled cases
are compared to those obtained with a wave propagation method [1]. This comparison enables
us to check the validity of the fluid–structure proposed formulation. It can be observed that the
coupled frequencies correspond to half of the empty shell frequencies. This is due to the added
mass effect of the fluid which is, in this particular case of a liquid, quasi-incompressible for the
first low-frequency modes. In order to illustrate the results in the coupled case, the mode shapes,
in terms of fluid pressure and structure displacement, are presented in Figure 6.

4.2.2. Elastic case: comparison with an exact state-space solution. In our second fluid–structure
example, we consider a simply supported isotropic cylindrical shell containing a compressible
fluid. The shell has the following geometrical and material properties: length L = 20 m, radius
R = 1 m, thickness h = 0.002 m, Young’s modulus E = 2.07788 GPa, Poisson ratio � = 0.317756
and mass density �S = 8166 kg m−3. The considered fluid and the finite element discretization are
the same as in the preceding example.
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(1,2) (2,2) (1,3) (2,3)

(3,3) (1,4) (2,4) (3,4)

Figure 6. Fluid–structure-coupled modes: fluid pressure and shell total displacement.

Table VIII. Frequencies (Hz) of an empty cylindrical shell for n
varying from 1 to 10.

n FE Exact [4] Loy et al. [26]
1 13.587 13.561 13.548
2 4.637 4.595 4.592
3 4.288 4.257 4.263
4 7.234 7.211 7.225
5 11.546 11.519 11.542
6 16.899 16.863 16.897
7 23.245 23.197 23.244
8 30.574 30.511 30.573
9 38.882 38.802 38.881

10 48.168 48.069 48.168

In the case where the fluid is not taken into account, Table VIII shows a comparison, for n
varying from 1 to 10, between our finite element results, an exact state-space solution based on
the three-dimensional theory of elasticity [4], and the results given by Loy et al. [26] using a
Love shell theory and a Ritz method. A very good agreement between the three approaches can
be observed.
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Table IX. Frequencies (Hz) of an elastic cylindrical shell filled with a compressible
fluid: comparison with an exact state-space solution [4].

n = 1 n = 2 n = 3 n = 4

m FE Exact FE Exact FE Exact FE Exact

1 2.408 2.441 0.899 0.912 0.947 0.968 1.779 1.839
2 9.073 9.179 3.409 3.453 2.040 2.068 2.142 2.193
3 18.633 18.817 7.484 7.559 4.243 4.280 3.254 3.290
4 29.547 29.849 12.902 12.987 7.357 7.391 5.144 5.155
5 40.536 41.147 19.405 19.470 11.283 11.283 7.701 7.666
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Figure 7. Variation of frequency with: (a) circumferential wave number n and (b) axial wave number m.

Table X. Frequencies (Hz) of a piezoelectric cylindrical shell filled with a compressible
fluid: comparison with an exact solution [4].

Short circuited Open circuited

n m Present Exact Error % Present Exact Error %

1 1 45.445 44.760 −1.531 49.491 48.271 −2.528
2 108.920 107.390 −1.424 115.311 115.614 0.263
3 154.565 154.131 −0.281 166.237 166.065 −0.103
4 191.016 189.327 −0.892 209.635 204.211 −2.656
5 220.018 217.190 −1.302 236.253 234.469 −0.761

2 1 19.637 19.916 1.404 21.001 21.464 2.157
2 62.497 62.597 0.159 66.928 67.623 1.027
3 108.109 108.575 0.430 116.416 117.248 0.710
4 148.610 149.022 0.276 161.251 160.912 −0.211
5 182.892 182.817 −0.041 197.330 197.400 0.036

Table IX presents the natural frequencies for the fluid–structure-coupled problem. As can be
seen in this table, the coupled frequencies obtained with our finite element approach agree
very well with those obtained from the exact solution [27] for different values of circumferential
(n = 1–4) and axial (m = 1–5) harmonics. It is also observed in Figure 7(a) that for all axial
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wave number m, the frequencies decrease as the circumferential wave number n increases except
for m = 1. Moreover, Figure 7(b) shows, for all circumferential wave number n, that the frequencies
increase as the axial wave number m increases.

4.2.3. Piezoelectric case: comparison with a state-space exact solution. In this last example, the
piezoelectric cylinder studied in Section 4.1.4 is filled with a compressible fluid characterized
by �F = 1000 kg m−3 and cF = 1500 m s−1. Table X presents the eigenfrequencies of the coupled
system computed by our finite element method and those given by the exact state-space approach
[4]. The results, given for the two first circumferential harmonics, show a good agreement between
the two methods. However, as previously mentioned, the difference between exact and finite
element solutions can increase for higher modes, in particular due to the linearity assumption of
the electric potential.

5. CONCLUSIONS

This paper concerns variational formulation and the finite element implementation of the fluid/

piezoelectric structure vibration problems. The coupled system consists of a piezoelectric structure
(described by its displacement field and its electric potential) containing a compressible fluid
(described by its pressure field). With this description, the variational formulation of the coupled
problem is established and the corresponding matrix equations are presented. This formulation
is then applied to the vibration of axisymmetric conical elastic/piezoelectric composite shells
coupled with an internal fluid. The piezoelectric shell is based on Kirchhoff–Love theory and
is supposed to be polarized in thickness direction. The associated finite element formulation
combines an equivalent single-layer approach for the mechanical behaviour with a layerwise
representation of the electric potential in the thickness direction. The fluid is modelled by the
Helmholtz equation in terms of pressure. The particular geometry of the structure is used to
reduce the dimensions of the problem through a semi-analytical procedure whereby variables
are expanded as Fourier series. Following these considerations, the shell is discretized by a one-
dimensional element with two nodes, and the fluid by a quadrilateral axisymmetric element with
four nodes. Moreover, an appropriate interface element is developed to ensure the interaction
between fluid and structure. Finally, numerical examples are presented validating the development
of the composite axisymmetric shell element, the piezoelectric aspect and the fluid–structure finite
element implementation. In this paper, we have used a non-symmetric fluid/piezoelectric structure
formulation. The symmetrization can be carried out using procedures as described in [16] and will
be the purpose of a further publication.
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