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E�cient algorithms for parametric non-linear instability
analysis

Antoine Legay, Alain Combescure
LMT-Cachan, E.N.S. de Cachan, C.N.R.S., 61, avenue du Pr�esident Wilson, 94235 Cachan Cedex, France

In this paper, we describe an original method which enables the rapid calculation of the critical buckling pressure
of structures with variable parameters. This study ,ts within the framework of non-linear reliability which requires
numerous non-linear mechanical calculations with di.erent sets of parameters. Therefore, we aim for a method which
has optimum numerical e�ciency. 
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1. Introduction

This work was performed in the framework of
reliability analysis of the buckling strength of a thin
structure subjected to external pressure. The criti-
cal buckling load is the maximum load admissible
before the structure becomes unstable. We attempt
to predict how uncertainties on the geometry, the
materials or even the loading a.ect the response of
the structure.
Today, a majority of the reliability calculations

with respect to the buckling load of a structure use
a linear analysis to determine Euler’s critical load
�c (Fig. 1). Imperfections on structural parameters
are known to lower the critical buckling load from
�c to �1 or �2.

In order to take into account geometrical defects
as well as elastic–plastic constitutive relations, it is

necessary to perform a quasi-static non-linear anal-
ysis.
Several works have addressed the sensitivity of

the non-linear response to geometric defects [1–4].
The study of the sensitivity of the response to the

di.erent imperfections can be undertaken in several
di.erent ways.
The ,rst class of methods is based on the calcu-

lation of the gradients of every variable [5,6]. One
performs a mechanical calculation for each new set
of parameters.
The second class of methods tries to evaluate the

evolution of the limit point as a function of the pa-
rameters [7,8]. They consist of following the evolu-
tion of this limit point with regard to the parameters
using an augmented system (see details in Section
2.2.4).
The approach described here is half-way be-

tween the two preceding methods. It is based on
Riks’ incremental non-linear calculation algorithm
[9] (see details in Section 2.1) in which the tangent
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Fig. 1. Perfect and imperfect equilibrium paths and limit point
branches.

matrix is used to solve the equilibrium equations.
The assembly and Crout decomposition of this
matrix for each load increment represents a large
percentage of the computation time, particularly
for three-dimensional structures.
In its ,rst step, the strategy adopted consists of

reutilizing the Crout decompositions of the tangent
matrices for problems with mean values of the pa-
rameters in order to calculate the solution of the
problem with modi,ed parameters (see details in
Section 2.2.1).
In the second step, in order to calculate a mini-

mum number of points to ,nd the limit point, we
introduce the total Lagrangian formulation into the
code. This enables us to calculate the portion of the
curve preceding the critical point in a single load
step (Section 2.2.2).
Thus, the coupling with the reliability analysis is

not arbitrary, i.e. we use for a modi,ed calculation
the data previously calculated and saved for the ref-
erence values. If necessary, this reference can be
changed in the course of the reliability iterations.
In Section 3.1, we present the original ,nite el-

ements COMU and COMI which are particularly
well-adapted to non-linear buckling analysis of thin
axisymmetric structures.
Finally, we present two applications of the meth-

ods developed here: a simple ring (Section 3.2) and
a sti.ened ring (Section 3.3) under external pres-
sure.

2. Description of the method

2.1. The Riks’ method for the basic curve

The implicit updated Lagrangian algorithm based
on Riks’ method [9] involves two loops: the ,rst
to increment the loading, the second to solve the
equilibrium equations. The calculation is performed
under the assumption of quasi-static evolution.

• n designates the index of the ,rst loop,
• i designates the index of the second loop,
• U designates a displacement vector,
• � designates the Lagrange multiplier of the load-
ing,

• F is an increment,
• � designates the arc length,
• KT designates the tangent matrice.

2.1.1. Evolution loop
This part of the algorithm is used to initialize the

values for the equilibrium calculation. The external
forces are calculated on the con,guration of Step
n; they are used to obtain a “linear” estimate of the
displacement increment for the next step n+ 1.

2.1.2. Equilibrium solution
The resolution of the equilibrium equations is

based on a linear prediction of the displacement
increment corrected by a non-linear increment [10].
The load and displacement increments are steered

according to an arc-length type strategy [11]. The
equations which must be veri,ed are

FUi+1
n+1 =F�i+1

n+1U
linear
n+1︸ ︷︷ ︸

linear part

+ FUi+1
NL︸ ︷︷ ︸

non-linear part

;

FUi+1
n+1FUn=F�; (1)

with

FUi+1
NL =FUi

NL +K−1
T Ri (2)

and

Ri =Fi
internal − Fi

external: (3)

In Eq. (2), which increments the non-linear part
with the residual, the notation K−1

T is symbolic: it
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means that one actually solves the system by Crout
decomposition. System (1) has the exact solution:

F�i+1
n+1 =

F�in+1

2
+

F�
2U linear

n+1 FUn
− FUT

n FUi+1
NL

2U linear
n+1 FUn

;

FUi+1
n+1 =F�i+1

n+1U
linear
n+1 +FUi+1

NL :

The internal and external forces are calculated in
updated Lagrangian mode on the con,guration of
the previous iteration i.
The arc-length increment is given by the variable

F�. It is initialized using the linear part of the ,rst
calculation step.

F�=U linearT
1 U linear

1 :

This value is then increased or reduced automat-
ically taking into account the number of itera-
tions performed until convergence. Convergence
is reached as soon as the residual ||Ri|| becomes
small enough.
We apply to the structure a geometric imperfec-

tion of the same shape as the buckling mode. This
imperfection allows us to take into account the geo-
metric defects of the structure and to follow the
post-buckling bifurcated branch easily.

2.2. The calculation of one modi=ed curve

2.2.1. Calculation of one point on the modi=ed
curve
The response of a modi,ed structure is usually

little di.erent from that of the reference structure.
Furthermore, the tangent matrix used in the

resolution of the equilibrium equations can be
approximate because it is not used in the con-
vergence criterion for the equilibrium. These two
remarks inspire us to reutilize for all modi,ed cal-
culations the Crout decompositions of the tangent
matrices previously stored during the reference
calculation (Fig. 2). Thus, we obtain the modi,ed
curve without assembling or inverting any system
of equations. On the other hand, the number of iter-
ations to reach convergence in the equilibrium loop
is larger. The choice of the matrix to use for each
loading step is based on the cumulated arc-length

KT
-1

KT
-1

refererence

reference

modified structure:

Use of

λload
reference structure

displacement

Fig. 2. Choice of the reference matrix to be used.

of the calculation. One seeks the step of the refer-
ence calculation whose cumulated arc length value
is closest to that of the current modi,ed calculation
step.

2.2.2. Calculation of a portion of the modi=ed
non-linear curve
Within the framework of reliability, it is not nec-

essary to know the complete response of the struc-
ture: we are interested only in the limit point. In
order to save computation time, our approach is
to begin the modi,ed calculation at an arbitrary
point on the reference curve. For this ,rst point,
we calculate the internal and external forces in total
Lagrangian mode with respect to the undeformed
modi,ed structure (see Fig. 3).
Once the starting point on the reference curve has

been chosen, we steer the algorithm di.erently in
order to converge toward a point on the modi,ed
curve. The choice of the starting point on the refer-
ence curve is detailed in Section 2.2.3. We use the
following notations:

• N : index of the starting point on the reference
curve

• UN
r : total displacement of the reference structure

at the starting point
• FUN

r : displacement increment of the reference
structure at the starting point

• �Nr : loading parameter of the reference structure
at the starting point

• V : total displacement of the modi,ed structure
• FV : displacement increment to get from the ref-
erence structure to the modi,ed structure
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Fig. 3. Relation between the reference and modi,ed calculations.

• F�: loading increment to go from the reference
structure to the modi,ed structure

We initialize the calculation as follows

• displacement: V =UN
r and FV 0 = 0

• loading: �= �Nr and F�0 = 0
• tangent matrix: K−1

T =K−1N

Tref

• geometry: �0 =�0
modi,ed

We seek a displacement correction FV as well as
a loading parameter correction F� such that the
cumulated arc-length of the new displacement is the

same as that of Step N of the reference calculation:

||V ||= ||UN
r ||:

Thus, the steering during the ,rst total Lagrangian
calculation step can be summarized as

FV i+1 =F�i+1V linear
0︸ ︷︷ ︸

linear part

+ FV i+1
NL︸ ︷︷ ︸

nonlinear part

;

||UN
r +FV i+1||= ||UN

r ||: (4)

The system of equations (4) is a ,rst-degree
equation in FV i+1 and second-degree equation
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in F�i+1:

F�2V linear2
0 + 2F�V linear

0 (UN
r +FV i+1

NL )

+2FV i+1
NL U

N
r +FV i+12

NL =0:

There are two solutions to this second-degree
equation, of which we always choose the smaller.
The non-linear part of the displacement is de,ned
by

FV i+1
NL =FV i

NL +K−1
T Ri: (5)

We need to calculate the internal and external
forces on the undeformed con,guration of the
modi,ed structure �0

m by the total Lagrangian
approach. Then, we can calculate the residual
Ri

V =UN
r +FV i; (6)

�= �Nr +F�i;

Ri =Fi
internal(V; �)− Fi

external(V; �): (7)

It ensures convergence of the equilibrium point
once the residual ||Ri|| gets small enough.
We can summarize this in the following algo-

rithm:

initializations:
V =UN

r
FV 0 = 0
�= �Nr
F�0 = 0
K−1

T =K−1
T

N
ref

WHILE ||Ri|| is too big DO
compute F�i

compute FV i

compute the new displacement: V =UN
r +

FV i

compute the new loading: �= �Nr +F�i

compute Fi
internal(V; �)

compute Fi
external(V; �)

compute the residual: Ri =Fi
internal(V; �) −

Fi
external(V; �)

compute the new non-linear part
FV i+1

NL =FV i
NL +K−1

T Ri

END WHILE

Fig. 4. Complete calculation of the modi,ed curve.

Fig. 5. Calculation of a portion of the modi,ed curve.

2.2.3. A general strategy to =nd the buckling
point on the modi=ed curve
The search for the critical buckling point on the

modi,ed curve can be performed in several ways.

2.2.3.1. Complete calculation of the modi=ed
curve. We use the method in Section 2.2.1 and
test at the end of each step whether the load param-
eter is decreasing. The calculation is interrupted
as soon as unloading is detected (Fig. 4). This
simple and numerically reliable method is still
calculation-intensive because we recalculate the
whole modi,ed curve.

2.2.3.2. Calculation of a portion of the modi=ed
curve. Since the method proposed in Section 2.2.2
allows us to begin the calculation at an arbitrary
point on the modi,ed curve, we are looking only
for the peak (Fig. 5). How do we manage to begin
the calculation before the limit point?

2.2.3.3. Approximate search for the peak. We
calculate by dichotomy the three highest points of
the curve with 3 di.erent starting points on the ref-
erence curve (Fig. 6). This gives only an approxi-
mation of the maximum, but this can be su�cient
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Fig. 6. Approximate search for the peak.

Fig. 7. Exact search for the peak.

for ,rst reliability calculations where an error on
the mechanical calculation is acceptable.

2.2.3.4. Exact search for the peak. We can im-
prove the previous method by using the point cal-
culated in total Lagrangian mode which is located
just before the maximum, then continuing the cal-
culation in updated Lagrangian steps (Fig. 7).

2.2.4. Application to elastic–plastic buckling
cases and comparison with Erikson’s and
Cochelin’s methods
The methods developed by Erikson et al. in [7]

and by Cochelin in [8] consist of identifying the
limit point of the mean value problem, then follow-
ing the path of this limit point in function of the
parameters using an augmented system:

u: displacement
�: loading
X : parameters

G(u; �; X )

=




F(u; �; X ) equilibrium equation

g(u; �; X ) limit point criterion

N (u; �; X ) steering




=0:

The method in [7] is based on a classical ,nite el-
ement calculation, whereas [8] uses an asymptotic
numerical calculation (see [12]).
Both methods are e�cient for buckling in the

elastic domain. Their drawback is that they do not
take the loading history into account and, therefore,
they cannot be used for plastic buckling.
Moreover, these two methods developed necessi-

tates to develop the analytical derivation of the ma-
trices with respect to every variables. This is very
heavy to develop. Our method does not need such
a development.

2.2.5. E>ciency considerations
The time saved for the complete calculation of

the modi,ed curve is on the order of 50% for struc-
tures with many degrees of freedom. It is about 70%
if one calculates only the peak of the curve (see
Section 3.3.5). The number of iterations to obtain
a point on the modi,ed curve starting from the ref-
erence curve is approximately equal to that needed
to get from one point to the next in the updated
Lagrangian scheme.
However, this is very dependent on the structure

studied: the more non-linear the portion of the curve
preceding the limit point, the higher the gain.

3. Application to axisymmetric structures with
non-axisymmetric initial imperfections

3.1. The COMU and COMI =nite elements

These two ,nite elements are general conical
axisymmetric shell elements. They were developed
to predict the non-linear response of axisymmet-
ric shells subjected to any type of loading (ax-
isymmetric or not) and either geometric initial
imperfections or non-axisymmetric thickness initial
imperfections. These elements have been proved
to be very e�cient if the initial imperfection can
easily be decomposed into a few Fourier harmonics
(say 5–8). When the imperfection is highly local-
ized, a 3D shell representation is more e�cient.
We will now brieOy describe the formulation of
the elements. Both elements are conical Mindlin
shell elements with two nodes. The displacement
,eld is decomposed into a Fourier series. For the
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Fig. 8. Ring under external pressure.

COMI element, the geometry is assumed to be im-
perfect in terms of coordinates (the mean radius is
non-constant around the circumference) as well as
thickness [13]. For the COMU element [14], the
initial imperfection is decomposed into a Fourier
series. For the COMI element, the imperfections
(for the geometry as well as for the thickness) are
assumed to be given for each element on a set
of points — designated by �i — around the cir-
cumference. In principle, the COMI element can
handle any type of imperfect axisymmetric struc-
ture and, therefore, should enable one to avoid any
3D computation at all for axisymmetric structures.
However, when the imperfections or the loads are
localized, the e�ciency of the element is poor
compared to a full 3D shell analysis due to the
Fourier decomposition of the displacement ,eld.

3.1.1. Formulation
3.1.1.1. Notations and reference frames. Let us
introduce a cylindrical coordinate system: each
point M of the shell has three coordinates (r; �; z).
The local reference frame at point M is de,ned
by (̃n; s̃; t̃), where ñ is the normal to the shell, s̃ is
the tangent along the meridian direction and t̃ the
tangent along the circumferential direction. In this
local system, the displacement vector will be rep-
resented by a 4-degrees-of-freedom vector U with
3 translations (w; u; v) and one rotation � around
direction t̃.

U =



w
u
v
�


 : (8)
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Let us designate by � the angle (−̃z; s̃). As usual
for axisymmetric structures, we decompose the dis-
placement ,eld U into a Fourier series.

3.1.1.2. Strains. We will now express the strains
in the local reference frame as a function of the dis-
placement ,eld in the same frame. For a conical
shell with no initial imperfections, the linear strains
are, as usual, separated into membrane (�lm), bend-
ing (�lb) and shear (�s) strains given by

�lm =



�lmss =

@u
@s

�lm�� =
1
r (

@v
@� + w cos�+ u sin�)

�lms� =
1
2[

1
r (

@u
@� − v sin�) + @v

@s ]


 ;

(9)

�lb =




�lbss=− @2w
@s2

�lb��=
1
r2 (− @2w

@� 2 − r sin�@w
@� + cos�@v

@�)

�lbs�=
1
2r2 [− 2r @2w

@s@� + 2r cos�@v
@s

− v cos� sin�+ sin�@w
@� ]



;

(10)

�s =
1
2
(�+

@w
@s

): (11)

The quadratic membrane strains �q(U;U ) used in
large displacement analysis as well as in buckling
analysis are given by

�q =




�qss=( @w@s )
2 + ( @u@s )

2 + ( @v@s )
2

�q��=
1
r2 [(

@w
@� − v cos�)2

+ ( @u@� − v sin�)2

+ ( @v@� + w cos�+ u sin�)2]

�qs�=
1
r [(

@w
@� − v cos�)

@w
@s + ( @u@� − v sin�) @u@s + ( @v@� + w cos�

+ u sin�) @v@s ]




:

(12)

3.1.1.3. Strains for the geometrically imperfect
shell element. We now introduce a geometric ini-
tial imperfection represented by the displacement
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Fig. 10. Approximation of the peak of the modi,ed curve.

vector d0 from the perfect structure to the imper-
fect one. The displacement ,eld can be discretized
either by its expression in a Fourier basis for the
COMU element or on the set of discrete points �i
for the COMI element. The strain ,eld is now

�lm(d0; U )= �lm(U ) + �q(d0; U ); (13)

�lb(d0; U )= �lb(U ); (14)

�q(d0; U )= �q(U;U ): (15)

In this expression, �q(d0; U ) is obtained simply by
replacing one of the vectors U by d0 in the expres-
sion of the quadratic strains.

3.1.1.4. Stress–strain law. We simply use
Hooke’s plane stress law to deduce the mem-
brane and bending stresses from the corresponding
strains. The shear stress is obtained by

 s = 5
6G�

s; (16)

where G is the shear modulus. In the elastic–plastic
case, an Illiushin “global” model is chosen [15].

3.1.2. The COMU and COMI =nite elements
3.1.2.1. Geometry. The element is a two-node
conical element. The discretization of the geomet-
rical imperfection di.ers between the two ,nite el-
ements: for the COMU element, the imperfection
is given as coe�cients of the Fourier series at each
node, whereas for the COMI element it is given at
each node as a set of local displacements for each
point �i. For the COMI element, the thickness ,eld
is also de,ned on the set of points �i. In the case
of large displacement analysis, the geometry is up-
dated at each load increment.

3.1.2.2. Degrees of freedom. At each node, the
displacement ,eld U has four components for each
Fourier mode chosen. It is expressed in the cylin-
drical reference frame.

3.1.2.3. Shape functions. The shape functions
are linear for each of the four degrees of freedom.
The shear energy is used to connect the rotation
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Fig. 11. Sti.ened ring: geometry.

with the derivative of the normal displacement w
with respect to s.

3.1.2.4. Integrations and derivations. Numerical
integration with one Gauss point at the center of the
element is used along the meridian direction. The
integration around the circumference is analytical
in the case of the COMU element and numerical
(using Simpson’s rule) for the COMI element. The
derivation along the circumferential direction (co-
ordinate �) is analytical for the COMU element
and numerical for the imperfection ,eld and for the
COMI element.

3.1.3. Non-linear calculations
The geometrically non-linear strategy is simply

the updated Lagrangian technique. Riks’ arc-length
control [16] is used to proceed beyond snap-through
or bifurcation points.

3.2. Example of the parametric non-linear
buckling of a ring under external pressure

3.2.1. De=nition of the problem
The characteristics of the ring are (Fig. 8):

• radius R=100 mm,
• thickness h=1 mm,
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Fig. 12. Sti.ened ring: material behavior.

• buckling mode studied n=2,
• amplitude of the defect on mode n: "=0:1 mm,
• Young’s modulus E=200 000 MPa,
• Poisson’s ratio $=0:28,
• yield stress 500 MPa,
• Euler’s critical pressure: h3E(n2 − 1)=12$R3.

The ring is meshed simply with a COMU element
on a Fourier basis decomposed on modes (0,2,4).
The perturbations applied in the calculation of the
modi,ed curve are −10% on the Young’s modulus,
the thickness, the amplitude of the defect and the
yield stress.
This example has been treated by several au-

thors. Wang [17] calculated a ring with a circum-
ferential hinge. He showed that the critical buckling
load drops signi,cantly compared to the con,gura-
tion without hinge. Fu and Waas [18] studied a ring
made of a composite material. More recently, Hud-
dleston and Sivaselvan [19] analyzed the buckling
of a compressible ring.

3.2.2. Complete modi=ed curve
Fig. 9 shows the result obtained by calculating

the modi,ed curve completely with the method in
Section 2.2.1.

3.2.3. Part of the modi=ed curve
We applied the method in Section 2.2.2. Only

nine points su�ce to ,nd the limit point of the mod-
i,ed curve (Fig. 10).

3.3. Buckling of a stiBened cylinder

3.3.1. De=nition of the problem
The results presented here were calculated on

a sti.ened ring (see Figs. 11 and 12), a structure
whose non-linear behavior is more complex. This
example was carried out by Bourinet et al. [20]. The
mesh comprises 80 COMU elements (see Section
3.1). The Fourier basis chosen is (0,2,4,6,8). The
geometric defect is de,ned on the second harmonic,
its amplitude is 9:952 mm. The geometry and the
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Fig. 13. Sti.ened ring: complete modi,ed curve.

elastic–plastic constitutive law of the material are
de,ned on Figs. 11 and 12. The young’s modulus
is E=200 000 MPa, the conventionnal yield stress
is  y =160 MPa.

3.3.2. Complete modi=ed curve
The perturbation is introduced on the exterior

thickness: −17%. Fig. 13 shows, on the example of
the sti.ened ring, the shape of the total radial dis-
placement of the shell node.

3.3.3. Portion of the modi=ed curve
Fig. 14 shows the shape of the total radial dis-

placement after a total Lagrangian calculation of
the ,rst step (see Section 2.2.2).

3.3.4. Quality of the response
As can be seen from the curves, the results of the

calculation with the e�cient method are identical
to those of the direct calculation of the modi,ed

curve. One can thus appreciate the quality of the
method when applied to this example.

3.3.5. E>ciency
On this example, there is saving of time on the

order of 40% when the modi,ed curve is calculated
by the method given in Section 2.2.1. When only
the upper part of the curve is calculated in order to
obtain the limit point, the gain is 60%. The order
of magnitude of the reference computation time for
this example is 5–10 min.

4. Conclusion and perspectives

We have introduced an original method of para-
metric non-linear calculation in order to provide,
with reliability analysis in mind, a capability to per-
form successive calculations for di.erent, but sim-
ilar, sets of parameters.
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Fig. 14. Sti.ened ring: approximation of the peak of the modi,ed curve.

The key to this method is the reutilization of in-
verted tangent matrices saved from the mean value
problem. We have also introduced the possibility
of using a total Lagrangian formulation in perform-
ing the ,rst step of the calculation of the modi,ed
curve.
These ideas are inapplicable if the responses of

the reference structure and of the modi,ed structure
are very di.erent, particularly in cases where the
primary buckling modes have di.erent shape. If so,
one can simply change reference calculation.
For plastic buckling, the most e�cient method,

i.e. calculation of the peak only, cannot be used
because the non-linear path depends on the loading
history. One must choose a starting point on the
reference curve such that the target point on the
modi,ed structure is only very slightly plastic.
The use of COMU and COMI elements enables

one to mesh axisymmetric structures and to seek the
displacement in a given, non-axisymmetric Fourier
basis. The geometric defect is given in the Fourier
basis (COMU) or point-by-point on the circum-

ference (COMI). By using these elements one can
achieve a further gain in e�ciency for modal de-
fects.
In certain cases these coupled methods allow

a gain of more than an order of magnitude in
the computation time in non-linear buckling com-
pared to a conventional ,nite element code with
three-dimensional shell elements. This evaluation
is in progress.
The e�cient method developed here can be ap-

plied directly to the three-dimensional cases where
elements COMU and COMI cannot be used. It
should prove particularly advantageous because the
weight of the calculation and triangulation of the
tangent matrix is, in this case, very important.
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