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Finite element formulation of viscoelastic sandwich beams
using fractional derivative operators

A. C. Galucio, J.-F. Deü, R. Ohayon

Abstract This paper presents a finite element formulation
for transient dynamic analysis of sandwich beams with
embedded viscoelastic material using fractional derivative
constitutive equations. The sandwich configuration is
composed of a viscoelastic core (based on Timoshenko
theory) sandwiched between elastic faces (based on Euler–
Bernoulli assumptions). The viscoelastic model used to
describe the behavior of the core is a four-parameter
fractional derivative model. Concerning the parameter
identification, a strategy to estimate the fractional order of
the time derivative and the relaxation time is outlined.
Curve-fitting aspects are focused, showing a good agree-
ment with experimental data. In order to implement the
viscoelastic model into the finite element formulation, the
Grünwald definition of the fractional operator is em-
ployed. To solve the equation of motion, a direct time
integration method based on the implicit Newmark
scheme is used. One of the particularities of the proposed
algorithm lies in the storage of displacement history only,
reducing considerably the numerical efforts related to the
non-locality of fractional operators. After validations,
numerical applications are presented in order to analyze
truncation effects (fading memory phenomena) and
solution convergence aspects.

Keywords Viscoelastic damping, Fractional derivatives,
Sandwich beam, Finite element method, Transient
dynamic analysis

1
Introduction
Many investigations have demonstrated the potential of
viscoelastic materials to improve the dynamics of lightly
damped structures. There are numerous techniques to
incorporate these materials into structures. The con-
strained layer passive damping treatment is already largely
used to reduce structural vibrations, especially in con-
junction with active control [2, 13]. One of the crucial
questions is how to quantify such a material damping if

the viscoelastic solid has a weak frequency dependence on
its dynamic properties over a broad frequency range.
Classical linear viscoelastic models, using integer deriva-
tive operators, convolution integral or internal variables,
become cumbersome due to the high quantity of param-
eters needed to describe the material behavior. In order to
overcome these difficulties, fractional derivative operators
acting on both, strain and stress can be employed.

Until the beginning of the 80s, the concept of fractional
derivatives associated to viscoelasticity was regarded as a
sort of curve-fitting method. Later, Bagley and Torvik [1]
gave a physical justification of this concept in a thermo-
dynamic framework. Their fractional model has become a
reference in literature. Special interest is today dedicated
to the implementation of fractional constitutive equations
into FE formulations. In this context, the numerical
methods in the time domain are generally associated with
the Grünwald formalism for the fractional order derivative
of the stress-strain relation in conjunction with a time
discretization scheme. Padovan [7] derived several im-
plicit, explicit and predictor-corrector type algorithms.
Escobedo-Torres and Ricles [6] analyzed a numerical
procedure based on the central difference method and its
stability aspects. The FE formulation proposed by Enelund
and Josefson [5] employs a fractional calculus involving
convolution integral description with a singular kernel
function of Mittag–Leffler type. Most of these approaches
were restricted to single-degree-of-freedom systems and
bar-type structures. Recently, Schmidt and Gaul [9] pre-
sented a 3D finite element implementation of a fractional
model which requires the storage of both displacement
and stress history.

This work presents a finite element formulation for
transient dynamic analysis of sandwich beams with
embedded viscoelastic material. The four-parameter
fractional derivative model [1] is used to describe the
frequency-dependence of the viscoelastic layer. To illus-
trate this modeling capability, the master curves of a
viscoelastic material are presented, showing the agreement
between the fractional model and experimental data.
Moreover, a strategy to identify the model parameters is
discussed. In particular, it is shown that the order of the
fractional time derivative is related to the maximum value
of the mechanical loss factor, independently of the relax-
ation time. For applications to structural dynamics, the
finite element implementation of the fractional derivative
constitutive equation is firstly proposed. Next, the sand-
wich beam finite element model is presented, assuming
Euler–Bernoulli hypotheses for the elastic faces and
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Timoshenko ones for the viscoelastic core. Finally, a direct
time integration algorithm, based on the Newmark
method, is used for solving the structural dynamics
equations. For this purpose, the time-dependent terms,
arising from the viscoelastic constitutive law, are shifted to
the right-hand side of the governing equation, modifying
in this way the transient excitations. To validate and
analyze such an approach, numerical examples are carried
out. They show the effectiveness of the proposed numer-
ical treatment of the fractional order for a suitable trun-
cation of the Grünwald expansion and for small enough
time increments.

2
Fractional derivative viscoelastic model

2.1
One-dimensional viscoelastic model
The one-dimensional constitutive equation introduced by
Bagley and Torvik [1] is adopted in this work to describe
the behavior of a viscoelastic material

rðtÞ þ sa darðtÞ
dta

¼ EoeðtÞ þ saE1
daeðtÞ

dta
ð1Þ

where r and e are the stress and the strain, Eo and E1 are
the relaxed and non-relaxed elastic moduli, and s is the
relaxation time. Moreover, the Riemann–Liouville
definition of the fractional operator is

daf ðtÞ
dta

¼ 1

Cð1� aÞ
d

dt

Z t

0

f ðsÞ
ðt � sÞa ds ð2Þ

where C is the gamma function and a the fractional order
of the time derivative 0 < a < 1ð Þ.

This four-parameter fractional derivative model has
been shown to be an effective tool to describe the weak
frequency dependence of most viscoelastic materials [1, 8].

After calculating the Fourier transform of Eq. (1), one
obtains the expression of the elastic complex modulus

E�ðxÞ ¼ r�ðxÞ
e�ðxÞ ¼

Eo þ E1ðixsÞa

1þ ðixsÞa ð3Þ

where r� and e� are the Fourier transforms of rðtÞ and
eðtÞ, respectively. Its behavior in the frequency domain is

described between two asymptotic values: the static
modulus of elasticity Eo ¼ E�ðx! 0Þ and the
high-frequency limit value of the dynamic modulus
E1 ¼ E�ðx!1Þ. The statements 0 < a < 1, s > 0 and
E1 > Eo must hold to fulfill the second law of thermo-
dynamics.

It is important to emphasize that the previous complex
modulus has successfully been used to fit experimental
data for a wide variety of materials.

2.2
Parameter identification
In order to identify the four parameters Eo, E1, s and a of
the one-dimensional constitutive equation, various
experimental procedures can be used. For isotropic
viscoelastic materials, dynamic tests (transient or
harmonic tests) allow the measurements of the complex
Young modulus (by traction-compression tests) or the
complex shear modulus (by torsion tests, for example).
Note that the following identification procedure is
restricted to the complex Young modulus since it is
supposed to be proportional to the complex shear modulus.

From Eq. (3), we can extract its real and imaginary
parts, providing the storage modulus

E0ðxÞ ¼
Eo þ ðE1 þ EoÞðxsÞa cosðpa

2 Þ þ E1ðxsÞ2a

1þ 2ðxsÞa cosðpa
2 Þ þ ðxsÞ2a

ð4Þ
and the loss modulus

E00ðxÞ ¼
ðE1 � EoÞðxsÞa sinðpa

2 Þ
1þ 2ðxsÞa cosðpa

2 Þ þ ðxsÞ2a ð5Þ

The mechanical loss factor, defined as gðxÞ ¼ E00ðxÞ=
E0ðxÞ, becomes always non-negative due to the hypotheses
previously adopted for a, s, Eo and E1.

The measured data used for building the master curves
for the 3M ISD112 material at 27 �C, in a frequency range
between 20 Hz and 5000 Hz, are the real part of the com-
plex shear modulus G0 and the loss factor g ¼ G00=G0 (see
Fig. 1). These material data were supplied by the 3M
company and previously employed in [12].

It should be noted that the Poisson ratio is supposed to
be frequency-independent. This classical assumption,

Fig. 1. Master curves of 3M
ISD112 viscoelastic material at
27�C: a Storage modulus G0 and
b loss factor g
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often adopted in literature for isotropic viscoelastic
materials, implies that the shear and Young moduli are
proportional.

Assuming the asymptotical values of the storage mod-
ulus (Eo and E1) and the maximum of the loss factor gmax

to be known, we can evaluate a as follows

a ¼ 2

p
arcsin

�
gmaxðE1 � EoÞ

�
2
ffiffiffiffiffiffiffiffiffiffiffi
EoE1
p

þ ðE1 þ EoÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

max

p
g2

maxðE1 þ EoÞ2 þ ðE1 � EoÞ2
�

ð6Þ

which does not depend on s.
The estimation of the relaxation time s can be per-

formed by minimization of the gap between theoretical
and experimental data of the complex modulus, using, for
example, a least squares method.

The procedure described above can be useful for a first
estimate of a. Its improvement should be the focus of a
future investigation.

For comparison purposes, the master curves for the
classical Zener model and the fractional one are illustrated
in Fig. 1. For given values of Eo and E1, we note that the
fractional derivative model (represented by the solid line)
is much closer to the measured data [12] than the standard
solid model (dashed line).

2.3
Approximation for the fractional derivatives
The fractional operator da=dta, appearing in the constit-
utive equation (1), can be approximated by several
methods. One of them is the Grünwald definition, which is
often adopted in literature since it is valid for all values of
a and easy to implement numerically. The finite difference
approximation of the Grünwald definition is given by

daf ðtÞ
dta

�
� t

N

��aXNt

j¼0

Ajþ1 f
�
t � j

t

N

�
ð7Þ

where t=N can be chosen equal to the time step increment
Dt of the numerical scheme. The upper limit of the sum Nt

is strictly lower than N , and Ajþ1 represents the Grünwald
coefficients given either in terms of the gamma function
or by the recurrence formulae

Ajþ1 ¼
Cðj� aÞ

Cð�aÞCðjþ 1Þ or Ajþ1 ¼
j� a� 1

j
Aj

Let us introduce the internal variable as a strain function

�e ¼ e� r
E1

ð8Þ

such that the constitutive equation (1) can be rewritten as

�eþ sa da�e
dta
¼ E1 � Eo

E1
e ð9Þ

This variable change implies that Eq. (9) contains only one
fractional derivative term instead of two as in (1). Using
the Grünwald approximation (7) with t=N ¼ Dt and not-
ing that A1 ¼ 1, relation (9) takes the following discretized
form

�enþ1 ¼ ð1� cÞE1 � Eo

E1
enþ1 � c

XNt

j¼1

Ajþ1�e
nþ1�j ð10Þ

where c is a dimensionless constant given by

c ¼ sa

sa þ Dta

It should be stated that the Grünwald coefficients in
Eq. (10), which are strictly decreasing when j increases,
describe the fading memory phenomena. In other words,
the behavior of the viscoelastic material at a given time
step depends more strongly on the recent time history
than on the distant one.

3
Finite element formulation

3.1
Kinematic assumptions
Consider a sandwich beam made of two elastic faces and a
viscoelastic core. Euler–Bernoulli assumptions are con-
sidered for the faces, whereas the core is based on the
Timoshenko theory. All layers are assumed perfectly
bonded and in plane stress state. The kinematics of the
sandwich beam can be clearly interpreted in Fig. 2. The
mechanical displacement field within the ith layer can be
written as

Fig. 2. Sandwich beam kinematics
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uxiðx; z; tÞ ¼ uiðx; tÞ � ðz� ziÞhiðx; tÞ ð11Þ
uziðx; z; tÞ ¼ wðx; tÞ ð12Þ
where the subscript i ¼ a; b; c stands for upper, lower and
middle layers, respectively, uxi and uzi are the axial and
transverse displacements of each layer, ui and hi are the
axial displacement of the center line and the fiber rotation
of each layer and w is the transverse displacement.

Let us introduce the mean and relative axial
displacements given by

�u ¼ ua þ ub

2
and ~u ¼ ua � ub

Using Euler–Bernoulli hypotheses for the faces (hf ¼ w0

for f ¼ a; b with ð�Þ0 ¼ @ð�Þ=@x) and displacement conti-
nuity conditions between layers (uxa ¼ uxc at z ¼ hc=2 and
uxb ¼ uxc at z ¼ �hc=2), axial displacements of the cen-
terlines and rotations of each layer can be written in terms
of w0 and the above defined variables �u and ~u

ua ¼ �uþ ~u

2
; ub ¼ �u� ~u

2
; uc ¼ �uþ

~h

4
w0 ð13Þ

ha ¼ w0; hb ¼ w0; hc ¼ �
~uþ �hw0

hc
ð14Þ

where �h and ~h are defined by

�h ¼ ha þ hb

2
; ~h ¼ ha � hb

Notice that these displacement fields have already been
used in [13].

3.2
Strain-displacement relations
From (11) and (12), and taking the hypothesis of plane
stress state into account, we can write the axial strain of the
ith layer e1i and the shear strain of the core e5c as follows

e1i ¼ �i þ ðz� ziÞji ð15Þ
e5c ¼ cc ð16Þ
where the membrane strain �i and the curvature ji of the
ith layer, and the shear strain of the core cc, are defined by

�a ¼ �u0 þ ~u0

2
; �b ¼ �u0 � ~u0

2
; �c ¼ �u0 þ

~h

4
w00 ð17Þ

ja ¼ �w00; jb ¼ �w00; jc ¼
~u0 þ �hw00

hc
ð18Þ

cc ¼
~u

hc
þ 1þ

�h

hc

� 	
w0 ð19Þ

Without covering face layers (i.e., ha ¼ hb ¼ 0), the pre-
vious generalized strain quantities of the core correspond
to those of a single Timoshenko beam.

3.3
Sandwich beam element
The finite element formulation of the elastic three layers
sandwich beam is described in this section. The general-
ized displacements de ¼ ½�u w ~u�T are discretized with

linear (axial displacement) and cubic (deflection) shape
functions. They are related to the elementary degrees-

of-freedom vector qe ¼ ½�u1 w1 w01 ~u1j �u2 w2 w02 ~u2�T by
de ¼ Hqe, where the interpolation matrix H is defined as
follows

H ¼
H1 0 0 0
0 H3 H4 0
0 0 0 H1

H2 0 0 0
0 H5 H6 0
0 0 0 H2









2
4

3
5

with

H1¼ 1� x

Le
; H3¼ 1�3x2

L2
e

þ2x3

L3
e

; H5¼
x2

L2
e

3�2x

Le

� 	

H2¼
x

Le
; H4¼ x 1� x

Le

� 	2

; H6¼
x2

Le

x

Le
�1

� 	

Moreover, the strain operators are written in terms of their
membrane, bending and shear components

Bmi ¼ H0xi; Bbi ¼ H0ri and Bsc ¼ Hrc � Hrf

where the interpolation vectors related to axial displace-
ments Hx, transverse displacements Hz and rotations Hr ,
for faces f ¼ aðþÞ; bð�Þ and core (c), are defined by

Hxf ¼ ½H1 0 0 � 1
2H1



 H2 0 0 � 1
2 H2 �

Hxc¼ ½H1
~h
4 H03

~h
4 H04 0



 H2
~h
4 H05

~h
4 H06 0 �

Hz¼ ½0 H3 H4 0


 0 H5 H6 0 �

Hrf ¼ ½0 �H03 �H04 0


 0 �H05 �H06 0 �

Hrc¼ ½0 �h
hc

H03
�h

hc
H04

1
hc

H1



 0
�h

hc
H05

�h
hc

H06
1
hc

H2 �
Thus, for each layer (i ¼ a; b; c), axial and transverse
displacements and rotations are

ui ¼ Hxiq; w ¼ Hzq; hi ¼ Hriq ð20Þ
and membrane, bending and shear strains can be
expressed by

�i ¼ Bmiq; ji ¼ Bbiq; cc ¼ Bscq ð21Þ
Using the previous discretization, the governing equation
is written as

ðMe
a þMe

b þMe
cÞ€qe

nþ1 þ ðKe
a þ Ke

bÞqe
nþ1

þ
Z

Xe
c

BT
c rnþ1

c dX

¼ Fe
nþ1 ð22Þ

where F is the external load vector, Mi (i ¼ a; b; c) the
mass matrix of each layer and Kf (f ¼ a; b) the stiffness
matrix of the elastic faces and where superscript e stands
for elementary quantities.

The element mass matrix of each layer is given by

Me
i ¼

ZLe

0

qi½Ai HT
xiHxi þHT

z Hz

� �

þ IiH
T
riHri�dx for i ¼ a; b; c ð23Þ
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and the element stiffness matrix of the elastic faces (Ke
f ) is

decomposed into a membrane and a bending term

Ke
f ¼ Ef

�
Af

ZLe

0

BT
mf Bmf dx

þ If

ZLe

0

BT
bf Bbf dx

�
for f ¼ a; b ð24Þ

The third term on the left-hand side of (22) is defined byZ

Xe
c

BT
c rnþ1

c dX ¼
Z

Xe
c

ðBT
1cr

nþ1
1c þ BT

5cr
nþ1
5c ÞdX ð25Þ

where B1c ¼ Bmc þ zBbc and B5c ¼ Bsc.
The crucial step in this finite element formulation,

which is addressed in the following section, is the com-
putation of the integral expression (25) using the fractional
derivative constitutive equation. We recall that if the core
is elastic, such an expression corresponds toZ

Xe
c

BT
c rnþ1

c dX ¼ Ke
cq

with

Ke
c ¼ Ec

�
Ac

ZLe

0

BT
mcBmc dxþ Ic

ZLe

0

BT
bcBbc dx

�

þ kcGcAc

ZLe

0

BT
scBsc dx ð26Þ

where Gc and kc are the shear modulus and the shear
correction factor, respectively.

4
Finite element formulation of the viscoelastic core
Taking into account the assumptions made in the beam
theory, and using the hypothesis of proportionality
between G and E (since m is supposed frequency-inde-
pendent), we can rearrange Eq. (8) considering the
discretized form of the aneslastic strain (10). Therefore,
the stress components can be written in terms of axial
and shear strains as (for i ¼ 1; 5)

rnþ1
ic ¼ E1ðenþ1

ic � �enþ1
ic Þ

¼ ni 1þ c
E1 � Eo

Eo

� 	
enþ1

ic

�

þc
E1
Eo

XNt

j¼1

Ajþ1�e
nþ1�j
ic

#
ð27Þ

where the constants ni can be written in terms of Eo

(relaxed modulus) and m (Poisson ratio) as

n1 ¼ Ec ¼ Eo and n5 ¼ Gc ¼ Go ¼
Eo

2ð1þ mÞ
Recall that axial and shear strains are defined by (15) and
(16). Their discretization is given by enþ1

ic ¼ Bicqe
nþ1, with

B1c ¼ Bmc þ zBbc and B5c ¼ Bsc. Let us extend this

discretization to the internal variable �e (i.e., the anelastic
strain) such that �enþ1

ic ¼ Bic�q
e
nþ1. Consequently, Eq. (27)

becomes

rnþ1
ic ¼ niBic 1þ c

E1 � Eo

Eo

� 	
qe

nþ1

�

þc
E1
Eo

XNt

j¼1

Ajþ1�qe
nþ1�j

#
ð28Þ

By abuse of language, we shall denote the discretized
unknowns �qe

nþ1, associated with �e, by ‘‘anelastic displace-
ments’’. These unknowns depend on the displacement
memory and are updated using the following equation

�qe
nþ1 ¼ ð1� cÞE1 � Eo

E1
qe

nþ1 � c
XNt

j¼1

Ajþ1�qe
nþ1�j ð29Þ

Substituting Eq. (28) into (25), one obtainsZ

Xe
c

BT
c rnþ1

c dX¼ 1þ c
E1 � Eo

Eo

� 	
Ke

cqe
nþ1

þ c
E1
Eo

Ke
c

XNt

j¼1

Ajþ1�qe
nþ1�j ð30Þ

so that the elementary semidiscrete equation of motion
can be rewritten as follows

Me€qe
nþ1 þ ðKe þ �Ke

cÞqe
nþ1 ¼ Fe

nþ1 þ �Fe
nþ1 ð31Þ

where Me ¼ Me
a þMe

b þMe
c and Ke ¼ Ke

a þ Ke
b þ Ke

c and
where the modified stiffness matrix �Ke

c and loading vector
�Fe

nþ1, arising from the viscoelastic behavior of the core, are
given by

�Ke
c ¼ c

E1 � Eo

Eo
Ke

c ð32Þ

�Fe
nþ1 ¼ �c

E1
Eo

Ke
c

XNt

j¼1

Ajþ1�qe
nþ1�j ð33Þ

It is worthwhile to notice that all the time history
dependent terms were shifted to the right-hand side of the
governing equation.

Remarks:

(a) For an elastic material, �Ke
c and �Fe

nþ1 vanish (since the
constant c is zero) and consequently, classical
equations of motion are obtained.

(b) Assuming a ¼ 1, i.e. Zener or standard solid model,
and introducing another anelastic strain ~e ¼ ðr� EoeÞ=
ðE1 � EoÞ, the equation of motion (31) keeps the same

form, with the modified stiffness matrix and loading

vector defined by

~Ke
c ¼ d

E1 � Eo

Eo
Ke

c ð34Þ

~Fe
nþ1 ¼

E1 � Eo

Eo
Ke

c dqe
n � 1� d

Dt

s

� 	
~qe

n

� �
ð35Þ

where ~qe is the anelastic displacement vector, associated
with ~e, and updated using

~qe
nþ1 ¼ dðqe

nþ1 � qe
nÞ þ 1� d

Dt

s

� 	
~qe

n ð36Þ
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Such a formulation can be derived from the fractional one,
taking into account the fact that the only non-zero
Grünwald coefficient of the series in (33) is A2 ¼ �1. It
could also be obtained directly from a backward-Euler
discretization of the standard solid model. In this case, the
constant is

d ¼ s
sþ Dt

Eq. (34), (35), and (36) reduce to those derived from the
integration algorithm of viscoelastic solids proposed by
Taylor et al. [11]. This formulation, which is uncondi-
tionally stable and second-order accurate, requires the
evaluation of the convolution integral arising from the
solution of the viscoelastic constitutive equation, over a
time step ½tn ; tnþ1�, in this particular case

d ¼ 1� expð�Dt=sÞ
Dt=s

4.1
Algorithm implementation
The Newmark scheme is adopted here due to its versatility
for implementation in structural dynamics. Some modifi-
cations are carried out in the classical algorithm to obtain
a modified scheme (see the scheme below) that is suitable
to achieve the transient responses of a sandwich beam with
a viscoelastic core in fractional calculus [4]. The Newmark
parameters b ¼ 1=4 and c ¼ 1=2 are chosen in order to
obtain an unconditionally stable and second order
accurate scheme.

1. Enter data

a) integration parameters: b, c, Dt
b) model parameters: Eo, E1, s, a, m
c) assembled matrices: M, Kc, K� ¼ Kþ �Kc

2. Initialize at t ¼ 0:

q0; _q0; €q0 ¼ M�1ðF0 � K�q0Þ; �q0 ¼ ð1� cÞE1 � Eo

E1
q0

3. Enter time step loop, assuming that at tn the state is
completely known:

qn; _qn; €qn; �qn

a) Predict displacement and velocity

q
pred
nþ1 ¼ qn þ Dt _qn þ ð0:5� bÞDt2€qn

_q
pred
nþ1 ¼ _qn þ ð1� cÞDt€qn

b) Calculate the modified loading

�Fnþ1 ¼ �c
E1
Eo

Kc

XNt

j¼1

Ajþ1�qnþ1�j

c) Form residual

Rnþ1 ¼ F�nþ1 � K�q
pred
nþ1 where F�nþ1 ¼ Fnþ1 þ �Fnþ1

d) Evaluate acceleration by solving the following linear
system

ðMþ bDt2K�Þ€qnþ1 ¼ Rnþ1 where K� ¼ Kþ �Kc

e) Correct displacement and velocity

qnþ1 ¼ q
pred
nþ1 þ bDt2€qnþ1

_qnþ1 ¼ _q
pred
nþ1 þ cDt€qnþ1

f) Evaluate the anelastic displacements history

�qnþ1 ¼ ð1� cÞE1 � Eo

E1
qnþ1 � c

XNt

j¼1

Ajþ1�qnþ1�j

4. Update time step and return to 3.

n nþ 1:

Recall that for a constant time step, the stiffness matrix is
evaluated once. It is important to note that evaluation of
the modified loading (step 3b in the algorithm) is relatively
simple because only the anelastic displacement history
needs to be stored at each time step (see step 3f). We shall
observe in the following examples that it is not necessary
to store the whole time history but only the most recent
one. This approach of truncating the history is accurate
and has low numerical costs when dynamical oscillating
responses are considered. However, if creep processes are
examined, the whole history has to be taken under
consideration. Hence, in this case, the truncation of the
history will result in noticable errors [10].

4.2
Energy conservartion aspects
It is well known that the unconditional stability of the
Newmark scheme leads to the conservation of the total
energy of the system during the computation of its motion,
such that

d

dt
ðT þ U þ UdÞ ¼ Pþ �P ð37Þ

where T, U and Ud are the kinetic energy, the stored elastic
energy and the left-hand component of the dissipated
energy

T ¼ 1

2
_qTM _q; U ¼ 1

2
qTKq and Ud ¼

1

2
qT �Kcq

ð38Þ
and where the powers P and �P, associated to the external
and modified loads, are given by P ¼ _qTF and �P ¼ _qT�F. In
the following, their corresponding energies are written W
and Wd, respectively.

Integrating (37) over a time step ½tn; tnþ1�, we can
rewrite the dissipated energies as

�
Ud

�tnþ1

tn
¼ 1

2
ðqnþ1 � qnÞ

T �Kcðqnþ1 � qnÞ ð39Þ

and�
Wd

�tnþ1

tn
¼
Ztnþ1

tn

�Pdt � 1

2
ðqnþ1 � qnÞ

Tð�Fnþ1 þ �FnÞ ð40Þ

These two quantities are such that the total dissipated
energy is defined by D ¼ Ud �Wd. It should be worth-
while to note that the approximation for the work of the
dissipation forces over one time step (40) results from the
integration operator of the Newmark algorithm.
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5
Results and analysis

5.1
Validation
Two examples taken from literature are chosen in this sec-
tion in order to validate the fractional derivative algorithm
and the sandwich beam model. The first one was extracted
from [5] in which the fractional viscoelastic model is based
on a convolution integral description with a singular
memory kernel of Mittag–Leffler type. In the second
example, our solution is compared to the hybrid Laplace
transform/finite element method proposed by [3] for a
Timoshenko beam with a classical Zener model. In this case,
the relaxation modulus is expressed in form of Prony series.

5.1.1
Viscoelastic bar
Consider a viscoelastic fixed-free bar of length L ¼ 500 mm,
width b ¼ 50 mm and thickness h ¼ 50 mm, discretized
with 10 finite elements. The material data of the viscoelastic
material (fictitious polymer) is q ¼ 1000 kg/m3,
Eo ¼ 7 MPa, E1 ¼ 10 MPa and s ¼ 20 ms. The structure is
subjected to a unit step load FðtÞ ¼ 1 HðtÞN at its free end
(where HðtÞ is the Heaviside function). We note T the
observation time and Dt the time step.

The dynamic responses at the free end of the bar are
plotted in Fig. 3. These results are in good agreement with
those obtained by Enelund et al. [5], thus validating our
numerical approach in a traction-compression case. In
Fig. 3 (a), we note the influence of the fractional order of
the time derivative. When a tends to 1 (solid line), the
solution with the fractional derivative algorithm is quite
close to that one obtained with the integration method
proposed by Taylor et al. [11] for the classical Zener model
(line with the sign + at each data point). The case where
a ¼ 1 could also be computed by taking only the two first
terms A1 and A2 in the Grünwald series. To carry out this
calculation, we have chosen a time step slightly smaller than
0:5Dtc, where Dtc is the critical time step defined in [5].

In Fig. 3 (b), the time step adopted is greater than Dtc.
In this way, contrary to the explicit time integration
method used by Enelund et al. [5], our numerical
procedure avoids time step limitations due to stability
considerations.

5.1.2
Viscoelastic beam
An example with a viscoelastic simply supported beam [3]
was chosen to validate our formulation for a Timoshenko
beam (sandwich beam without external faces). The length,
width and thickness of the beam are L ¼ 10 m, b ¼ 2 m
and h ¼ 0:5 m. The shear correction factor adopted is
defined by kc ¼ 10ð1þ mÞ=ð12þ 11mÞ. The beam is mod-
eled by 10 finite elements, with a uniform step function
load of 10 HðtÞN/m acting all over the beam. The material
properties are q ¼ 500 kg/m3, m ¼ 0:3, Eo ¼ 19:6 MPa,
E1 ¼ 98 MPa and s ¼ 2:24 s. Figure 4 shows the time-
dependent displacements at the center of the beam for a
standard solid model (a ¼ 1) and for a fractional deriva-
tive one (a ¼ 0:75 and a ¼ 0:5). For a ¼ 1, our solution is
in good agreement with that one taken as reference [3].
This demonstrates that our sandwich model without faces
degenerates into a standard Timoshenko beam. As
expected, for a decreasing fractional order of the time
derivative, damping and the time required to reach the
quasi-static long time solution increase considerably.

5.2
Results
In this section, we present the example of a cantilevered
sandwich beam with viscoelastic core and symmetrical
faces, discretized along its length with 5 finite elements.

Fig. 3. Normalized tip dis-
placement w� bhEo=FL versus
non-dimensional time t=s.
a T ¼ 100 ms and Dt ¼ 0:25 ms
for various values of a; b
T ¼ 400 ms and Dt ¼ 1 ms for
a ¼ 0:5

Fig. 4. Comparison of time-dependent displacement at center of
the beam for various values of a
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The beam is subjected to a transverse triangular impulse at
its free end (see Fig. 5) and the transient response is
computed with the implicit time integration scheme
described in paragraph 4.1.

The geometry (see Fig. 5) consists of the following data:
length L ¼ 200 mm, width b ¼ 10 mm, thickness of top
and bottom beams ha ¼ hb ¼ 1 mm and thickness of the
core hc ¼ 0:2 mm. The shear coefficient value is kc ¼ 5=6.
The external faces are elastic (aluminum) and the core is
viscoelastic (ISD112 at 27 �C).

The mechanical characteristics for the elastic faces are
q ¼ 2690 kg/m3, m ¼ 0:345 and E ¼ 70:3� 103 MPa. The
volumic mass density and Poisson ratio of the viscoelastic
core are q ¼ 1600 kg/m3 and m ¼ 0:5. Finally, the
parameters of the fractional derivative model previously
identified (see paragraph 2.2) are Eo ¼ 1:5 MPa,
E1 ¼ 69:9495 MPa, a ¼ 0:7915 and s ¼ 1:4052� 10�2 ms.

To study the influence of computational model
parameters on the structural behavior of the sandwich
beam, we present some numerical results.

Firstly, the influence of the time step (Dt ¼ 0:50;
0:25; and; 0:01 ms) on the dynamic tip displacement
response of the structure is shown in Fig. 6. Taking the
whole history of the anelastic displacements (i.e., Nt ¼ 500,
1000, and 2500 terms), we note that the solutions are quite
close. This result shows that the solution converges for a
decreasing time step, proving the consistency of the
present algorithm.

From a numerical point of view, an investigation on
the total energy conservation of the system is proposed
in Fig. 7 for Dt ¼ 0:5 ms and 500 terms in the Grünwald
series. As already discussed in paragraph 4.1, the energy
balance is strictly zero (see dotted line in Fig. 7 (a))
since the integration scheme has no supplementary
numerical damping. It can be observed that the work
done by the external force W increases quickly up to
4 ms and remains constant after. This value of 4 ms is
that in the end of the triangular impulse (see Fig. 5)

applied to the beam. The sum of the kinetic and elastic
energies T þ U , which also reaches its maximum value at
4 ms, decreases with time. At about 200 ms, this sum
vanishes, and the total dissipated energy Ud �Wd

remains constant and equals W .
In Fig. 7 (b), the two components of the total dissipated

energy are plotted. We note that the major contribution to
the total energy dissipated in the system arises from the
time history dependent term Wd, except in the beginning,
when Ud is important. This can be explained by the action
of the external load, since Ud depends on the displacement
variation over the most recent time step.

It should be pointed out that U and Ud have always the
same shape (see Eq. (38)), however, for a given time step,
their amplitudes are different. In fact, the amplitude of Ud

increases when the time step decreases since �Kc is in-
versely proportional to Dta.

In order to demonstrate that it is not necessary to take a
large number of terms in the Grünwald series, a more
detailed study of the numerical parameters is carried out
below. In Fig. 8 (a), we plot the error of total dissipated
energy versus the number of terms in the Grünwald
expansion of the fractional operator approximation for
various values of Dt. The error is expressed by
k Dref � D k=k Dref k, where Dref is the total dissipated
energy associated to the reference solution. The so called
reference solution is a priori a very accurate solution with
a fine time discretization (Dt ¼ 0:1 ms, i.e. 2500 time
steps) and the whole history in the Grünwald expansion
(2500 terms).

The basic idea of this strategy consists of choosing, for a
given time step, the truncation corresponding to the first
local minimum of each curve in Fig. 8 (a). For example,
taking a rough time step (Dt ¼ 1 ms or 250 time steps) and
13 terms in the history, an error of about 7% is observed.
This error slightly increases when more than 13 terms are
retained. Taking 500 time steps (Dt ¼ 0:5 ms), we obtain
an error lower than 2% with only 26 terms in the series.
Moreover, the first local minimum in Fig. 8 (a) is also the
global one and the curves are plotted up to 100 terms in
the Grünwald expansion since the error values after this
point are quasi-constant even through some small
oscillations appear.

The above results lead us to think that there is a trun-
cation time corresponding to each of these minima, where
the recent history needs to be stored. In this way,
Fig. 8 (b) shows that we must only store the time history
over a truncation time in order to obtain the most accurate
solution. In this example, the truncation time is quasi-
constant (�13 ms) for various values of Dt. Moreover,
refining the time step means decreasing the error but
increasing the numerical cost. This might justify to work
with an implicit scheme.

Fig. 5. Geometrical properties of the
viscoelastic sandwich beam and
corresponding loading

Fig. 6. Tip displacement versus time for various values of Dt
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6
Conclusion
A finite element formulation for transient dynamic anal-
ysis of sandwich beams with embedded viscoelastic
material is proposed. The three-layer sandwich model is
built assuming Euler–Bernoulli hypotheses for the elastic
faces and Timoshenko ones for the viscoelastic core. The
four-parameter fractional derivative model is used to de-
scribe the frequency-dependence of the viscoelastic layer,
and a strategy to identify the model parameters is dis-
cussed. The master curves of a viscoelastic material shows
good agreement between the fractional model and exper-
imental data.

A numerical scheme to obtain the dynamic response of
the viscoelastic sandwich beam is presented. This direct
time integration method is based on the implicit Newmark
algorithm in conjunction with the Grünwald approxima-
tion for the fractional order derivative of the constitutive
equations. The time dependent terms, arising from the
viscoelastic model, are shifted to the right-hand side of the
equations of motion, modifying in this way the transient
excitation. Moreover, only the anelastic displacement
history is stored in the algorithm calculation. This implies
a substantial reduction of the numerical efforts related to
the non-locality of fractional operators. Numerical appli-
cations are presented and analyzed. They show the effec-
tiveness of the proposed numerical treatment of fractional
order for a suitable truncation of the Grünwald approxi-
mation (fading memory phenomena) and for small enough
time increments.
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