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Abstract. The starting point of the present work is the observation of possible analogies, both at the
phenomenological and at the methodological level, between the subcritical transition to turbulence and
the glass transition. Having recalled the phenomenology of the subcritical transition to turbulence, we
review the theories of the glass transition at a very basic level, focusing on the history of their development
as well as on the concepts they have elaborated. Doing so, we aim at attracting the attention on the above
mentioned analogies, which we believe could inspire new developments in the theory of the subcritical
transition to turbulence. We then briefly describe a model inspired by one of the simplest and most inspiring
model of the glass transition, the so-called Random Energy Model, as a first step in that direction.

PACS. 47.27.Cn Transition to turbulence – 47.27.eb Statistical theories and models – 64.70.P- Glass
transitions of specific systems

1 Introduction

In a recent work [20], we discussed possible analogies be-
tween the subcritical transition to turbulence in shear
flows and the glass transition in supercooled liquids. While
no precise mapping between the glass transition and the
transition to turbulence should be expected, there are sim-
ilarities at the phenomenological and methodological lev-
els, which suggest that inspiring cross-fertilization could
arise from a closer inspection of both phenomenologies as
well as from the history of the glass transition theories,
which have developed a lot in the last half-century.

The aim of [20] was to call the attention of the statis-
tical physics community on the old standing problem of
the transition to turbulence. Accordingly, we presented a
rather complete review of the experimental results of the
subcritical transition, focusing on the recent surge of in-
terest regarding the statistics of the turbulent lifetimes,
while assuming a minimal knowledge of the glass transi-
tion. Here, we shall follow the opposite viewpoint. We aim
at providing a basic introduction to the glass transition
and its theories, focusing on the history of its develop-
ment as well as on the concepts it has elaborated. Our
motivation is to answer those hydrodynamicist colleagues
and friends, who, after our oral presentation at the collo-
quium in honor of Paul Manneville [present special issue of
EPJE], had some doubts about the possibility to enter the
meanders of the glass transition literature without some
guidebook. Accordingly, we have deliberately adopted a
narrative style, emphasizing ideas and concepts, and re-

ferring to the original publications for the more technically
involved discussions.

The paper is organized as follows. After a brief re-
view of the phenomenology of the subcritical transition
to turbulence and a few remarks about its theoretical un-
derstanding, we come to our pedagogical introduction to
the theory of the glass transition. One serious difficulty is
that there is no general agreement on what is the theory
of the glass transition. Another one is that none of the
present authors has a complete view of the field, with all
its subtleties and related debates which make the scien-
tific meetings in that community so vivid. We thus have
chosen to tell a simple but inevitably partial story, which
reflects our own understanding. The good counterpart is
that there is a chance that it will be accessible to those who
are not already familiar with it. And we hope that it will
be complete enough to draw some lines along which, we
believe, some conceptual progress could be done regarding
the subcritical transition to turbulence. We finally recast
the elements and the results of a very simple model in-
spired by the so-called Random Energy Model [26], which
we have proposed as a first step along this (long) path [20].

2 Subcritical transition to turbulence

The subcritical transition to turbulence occurs in flow
regimes lacking linear instability and referred to as glob-
ally subcritical [40,38,22]. Plane Couette flow (pCf), driven
by two plane walls moving parallel to each other in oppo-
site directions, is linearly stable at all Reynolds number
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and as such is the epitome of globally subcritical transi-
tions [50,30]. Circular Poiseuille flow (cPf), the flow driven
by a pressure gradient in an axisymmetric pipe, is believed
to share the same property, though this, to date, has not
been formally proven.

2.1 A brief review of the phenomenology

The essential features of the subcritical transition to tur-
bulence are as follow.

– Subcriticality : Finite amplitude perturbations of the
flow may yield an abrupt transition, although the lam-
inar state is stable against infinitesimal perturbations.
A critical amplitude of perturbation can thus be de-
fined, meaning that the flow is globally subcritical.
Such finite amplitude perturbations may however lead
to very different states of the flow. At the same Reynolds
number, one observes either a relaxation to the lam-
inar state, or a sustained disordered flow, composed
of coexisting laminar and turbulent domains. The lat-
ter case is observed in particular by suddenly lowering
the Reynolds number from a value where the flow is
fully turbulent to a value in the transitional regime (a
procedure called a “quench” in the following).

– Spatiotemporal intermittency : The turbulent patches
forming the disordered flow are observed to move, grow
and decay, split and merge, leading to a coexistence dy-
namics called spatiotemporal intermittency, in which
turbulent (“active”) regions invade laminar (“absorb-
ing”) ones where turbulence cannot emerge in a spon-
taneous way.

– Transients and metastability : There are two ways to
prepare the system in a non laminar state. Either one
sets the Reynolds number in the transitional regime
and creates a turbulent patch from a finite amplitude
localized perturbation, or one quenches the flow from a
homogeneous turbulent state prepared at high Reynolds
number. In the first case, one measures the lifetime of
a single turbulent patch. In the second case, one mea-
sures the lifetime of the spatially extended disordered
state. In the cPf, only the first procedure has been fol-
lowed; both were used in the pCf case. The distribu-
tions of these lifetimes (obtained by repeating many
times the same experiment) are exponential and in
both cases, the corresponding characteristic time τ in-
creases with Reynolds number. An open issue, which is
still a matter of debate, is to know whether τ diverges
or not at a finite value Rg of the Reynolds number.
Note that below a value Ru, the flow relaxes rapidly
to the laminar state.

– Unstable states: Numerous unstable solutions appear
in phase space when the lifetime of the disordered
flow becomes large. All, or nearly all, of these unstable
states that are known for these flows are periodic or-
bits. Some of them have been identified as edge states
separating the other ones from the laminar state.

A standard way to characterize the subcritical transi-
tion to turbulence is to determine the average turbulent

fraction of the flow as a function of the Reynolds number
R, following either a localized perturbation or a quench in
R.

For R > Rg, the turbulent fraction of the flow fluc-
tuates around a given value, which remains non-zero on
experimental timescales. For R < Ru, the turbulent frac-
tion rapidly converges to zero, without displaying any long
transient regime. Between these two values, for Ru <
R < Rg, the turbulent fraction first decays to a finite
value after the perturbation, before entering a long quasi-
stationary regime in which it fluctuates around a well-
defined non-zero value, until eventually a large fluctua-
tion makes it decay to zero. As mentioned above, the life-
time of the disordered flow is exponentially distributed,
with a mean value τ . Whether τ diverges for some finite
value of the Reynolds number is still a matter of debate.
A review of the numerous experimental and numerical
studies addressing this question is presented in [20]. Typ-
ically three functional forms have been proposed to de-
scribe the experimental data (1) τ/τ0 = exp(R/R0), (2)

τ/τ0 =
(

Rc

Rc−R

)α
, α > 0, (3) ln(τ/τ0) = λ exp(R/R0).

For the sake of ”completeness”, and because it is relevant
in the context of the glass transition, where it is known
as the Vogel-Fulcher-Tamman fit [43], we have proposed

a fourth one: (4) ln(τ/τ0) = λ
(

Rc

Rc−R

)α
, α > 0. At first

sight, one could think that such different functional depen-
dencies could be easily discriminated from experimental
data. However, as shown in [20], even experimental data
with up to five decades of timescales do not offer a clear
distinction between the various functional forms, apart for
the simple exponential one, which can be discarded.

In a recent work, Avila et al [3] report the super-
exponential increase of the lifetimes of a single turbulent
patch. They then contrast it with the decrease of the typ-
ical time needed for one turbulent patch to split into two.
These two time scales thus intersect at a given Reynolds
number. On average, below this Reynolds number patches
relax before splitting and the turbulent state eventually
relaxes towards the laminar flow. Above this Reynolds
number patch splitting is strong enough to maintain the
disordered flow on asymptotically long times. The authors
thus conclude to the existence of a critical Reynolds num-
ber, while the timescale for the local relaxation has not di-
verged. In this view, it is the spatial coupling of transiently
turbulent regions which gives rise to sustained turbulence.

2.2 Spatiotemporal intermittency scenario

The phenomenology reported above, and the importance
of the spatial coupling had been emphasized, well be-
fore the aforementioned work, in the context of the study
of spatiotemporal intermittency [41,16,15]. In a class of
model systems called coupled map lattices, individual maps
on a lattice, each of them exhibiting only transient chaos,
still exhibit a phase transition towards a state with a non
zero fraction of chaotic sites when the coupling among
the maps is strong enough. Analogies to fluid flows had
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been already pointed out [19,10,8]. Also, the first author
of this paper actually started his PhD thesis with Paul
Manneville, studying the plane Couette flow as a proto-
type to investigate spatiotemporal intermittency, follow-
ing a suggestion by Yves Pomeau [48], in order to see
whether it enters the universality class of directed per-
colation [36]. From that point of view the scenario of a
transition to turbulence via spatiotemporal intermittency
was considered as granted and there was no debate about
the existence of an infinite lifetime turbulent state. Con-
versely, it is fair to say that whether this scenario applies
to real flow had never been seriously questioned. At least
the recent debate about the finite lifetimes of turbulence
in shear flows has motivated the aforementioned work by
Avila et al [3] and the one by Manneville et al [44,47],
where system size effects have been investigated in details
in the case of plane Couette flow.

All is well then? Not really. While it is reasonable, in
the light of those recent works, to believe that the sub-
critical transition to turbulence enters the general class
of transition via spatiotemporal intermittency, it remains
that (i) the transition via spatiotemporal intermittency
has itself no very solid theoretical grounds, (ii) the map-
ping of real flows on coupled map lattices remains a diffi-
cult task, which requires a lot of simplifications [4]. From a
theoretical point of view, one would like at least to answer
a few questions such as :

– What is the nature of the transition? Are there univer-
sal scaling properties to be expected, such as in other
out-of-equilibrium phase transitions [39]?

– Is there a timescale that could be measured and which
would diverge at the transition? If yes, what correla-
tion length (if any) is it associated to?

– What is the nature of the spatial coupling invoked in
the spatiotemporal intermittency scenario? Are they
local, diffusive-like, as in most coupled map lattice
models, or global, as the pressure field is?

– The low Reynolds number flows are reminiscent of the
unstable finite amplitude solutions captured in exper-
iments [21,9] or in numerical simulations [46,18,17].
Together with their stable and unstable manifolds they
form the skeleton of the disordered flow. At the transi-
tion the chaotic repellor associated with these solutions
turns into a chaotic attractor. How is the transition re-
lated to the density and to the stability properties of
these states in phase space? What is specific to the so-
called edge-states [53,23,31,52,51], which separate the
chaotic region in phase space from the laminar state?

2.3 Complex phase-space picture and glass analogy

As already mentioned above, the physics of glasses and
of supercooled liquids shares interesting similarities with
part of the phenomenology of the subcritical transition
to turbulence; some of the questions raised are also quite
similar in both fields. For example, the fast increase of the
relaxation time of a supercooled liquid, by many orders of
magnitude, close to the glass transition temperature is of-
ten understood in the glass physics community as resulting

from the wandering in a complex energy landscape of the
phase-space point representing the system [11], this com-
plex landscape being mostly composed of unstable fixed
points [2,12,37].

Turning to real-space dynamics, another similarity be-
tween the glass transition and the transition to turbulence
can be pointed out, namely the heterogeneity of the dy-
namics. In glasses, slowly evolving regions coexist with
rapidly relaxing ones according to a complex spatiotempo-
ral dynamics [54]. Similarly, subcritical transitional flows
also follow a complicated spatiotemporal dynamics, where
fluctuating turbulent domains coexist with quiet laminar
regions. Interestingly, some of the one-dimensional mod-
els of glassy dynamics, called kinetically constrained mod-
els [14,49], form spatiotemporal patterns that are reminis-
cent of those observed in one-dimensional models exhibit-
ing spatiotemporal intermittency [16,4]. This analogy can
even be made quantitative in some cases, in the sense
that for some kinetically constrained models, the zero-
temperature critical point belongs to the directed perco-
lation class [14].

Beyond these analogies, let us also outline some im-
portant differences between the subcritical transition to
turbulence and the glass transition. A first clear distinc-
tion is that supercooled liquids are at equilibrium, whereas
flows are maintained in a nonequilibrium state by an ex-
ternal driving. A second important difference is that in
subcritical flows, the laminar state is an absorbing state,
from which turbulence cannot spontaneously emerge, and
the turbulence lifetime is defined as the time to relax to
this absorbing state. In contrast, the relaxation time in
supercooled liquids is determined from the relaxation of
stresses or density correlations and involves no absorb-
ing state –although one could think of the crystal as such
a state. Given these important differences, it is clear that
one should not hope for a precise mapping between glasses
and subcritical flows. Rather, the goal of the present work
is to consider the field of glasses and supercooled liquids,
which is already well-developed at the methodological and
theoretical levels, as a possible source of inspiration in the
study of the subcritical transition to turbulence, given the
similarities between some of the conceptual difficulties en-
countered in both fields.

3 Glass transition: key theories and concepts

Trying to get inspiration from a field at least as complex
as the one, one is searching inspiration for, may seem a
bit hazardous. At the same time, it might be the minimal
condition to avoid too simplistic descriptions, inherited
from low-dimensional dynamical systems. As a matter of
fact, one sees from the above considerations, that deal-
ing with spatially extended, fluctuating and disordered
systems, most certainly requires some form of statistical
analysis. As we shall see now, by introducing the reader to
(some of) the theories of the glass transition, this is pre-
cisely the kind of situation such theories try to cope with.
As already stated the reader should not expect that we
will cover such a broad topic here. There are a number of
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review papers which do it in a very detailed way (see [34,
25,29,24,13,6,5], to quote only a few) among which we
particularly recommend [24,13] to start with, and [6,5]
for the most recent developments. The goal of the next
section is rather to give some entrance points, a taste of
the concepts developed in that field, and to call attention
to the way progress has been made.

3.1 What is a glass?

When a liquid is cooled down fast enough, in such a way
that crystallization is avoided, it enters the so-called su-
percooled regime, which is a metastable state –in the sense
that the crystal (when it exists) is the only thermody-
namically stable state–, although it is equilibrated in the
sense that time translational invariance holds. Decreas-
ing further temperature, the viscosity, or equivalently the
relaxation time of the liquid increases by more than ten
orders of magnitude, while temperature is only decreased
by a factor of two or three. At some point, the relaxation
time exceeds the experimental timescale and the liquid
falls out of equilibrium, namely time translational invari-
ance is broken. The system ages: it has become a glass.

At the glass transition, one experimentally observes
a sharp drop of the constant pressure specific heat, to
a value very close to that of the crystalline phase. The
above observation can be interpreted as the fact that in a
glass, particles vibrate around their (disordered) equilib-
rium positions, with almost no structural rearrangement
exactly as they would do around their ordered (equilib-
rium) positions in a crystal. In that sense, the glass is an
”amorphous crystal”. The specific heat counts the degrees
of freedom explored by the system : its drop indicates that
some translational degrees of freedom have been lost and
ergodicity is broken.

Leaving the glass, we now come back to the equi-
librated supercooled liquids. For the so-called ”strong”
glass formers, the relaxation time increases exponentially
with the inverse temperature β = 1/T , following a sim-
ple Arrhenius behavior and the supercooled liquid can be
considered simply as a highly viscous liquid. But many
glass formers –the so-called ”fragile” ones– experience a
much faster growth of the relaxation time, suggesting that
something more dramatic happens when approaching the
glass transition. A more direct evidence of this qualita-
tive change of the dynamical properties of the liquid is
provided by the behavior of dynamic correlation func-
tions such as the shear relaxation function –the integral
of which is precisely the viscosity– or the temporal cor-
relation of density fluctuations. A remarkable feature is
that the qualitative shape of such dynamic correlation
functions changes significantly approaching the glass tran-
sition. In the high temperature liquid the relaxation is
purely exponential with a single relaxation time. When
lowering the temperature one observes the formation of
a plateau, when plotting the correlation function versus
the logarithm of time. A similar time separation is ob-
served when monitoring the mean square displacement of
the particles composing the liquid. At high temperature,

it crosses over from the short time ballistic regime, to the
long time diffusive regime. On the approach to the glass
transition a plateau also develops, during which the mean
square displacement remains constant, before eventually
entering the diffusive regime. This phenomena has sug-
gested the image of the particles being trapped or caged
by their neighbors. However, at the same time the struc-
ture of the supercooled liquid is strikingly similar to that
of the high temperature liquid, at least as one can judge
from standard static correlation functions, such as the pair
correlation function. Then why are the particles trapped
at low temperature and not at larger ones? Where does
the increase in timescale, and the separation of timescales
comes from, if it is not related to the structure? Or is it re-
lated to it, but in a very complicated way? The fact that
the glass is as amorphous as the liquid, at least at first
sight, makes it very difficult to answer these questions.
Most theories of glasses try, with different perspectives,
to address the above issues, and in particular to identify
the proper length scale(s) associated with the qualitative
change in the dynamical correlation functions.

3.2 A brief and partial history

The ”main-stream” theories of the glass transition can be
organized chronologically in the following way. In 1948,
Kauzmann [42] has proposed a thermodynamic interpreta-
tion to the glass transition. It is followed ten years later by
the Adam-Gibbs-DiMarzio phenomenological model [32,
1], which, on the basis of real space considerations, pro-
poses a relation between thermodynamical and dynamical
quantities. Later, in 1969, Goldstein [33] introduced the
concept of energy landscape, that is a phase space view
of the transition. One then has to wait until 1984 to see
the first attempt to derive a theory from first principles.
This is what the Mode Coupling Theory [35] aims at, but
at the price of highly technical calculations and pretty
much uncontrolled approximations. Mode Coupling is in
essence computing dynamical quantities from the static
properties of the system. In parallel, in the early 80s, spin-
glass theories [45] were developed within a rather different
community. Spin-glasses have a priori little to do with su-
percooled liquids. They notably have quenched disorder,
while liquids do not. Still, the question of possible analo-
gies was pending. In 1987, soon after a class of mean-field
spin-glass models exhibiting a discontinuous glass transi-
tion was introduced –notably the Random Energy Model
(REM), the p-spin model and the Potts spin-glass model–
, Kirkpatrick and Wolynes noted the correspondence be-
tween the dynamic spin-glass theory and the Mode Cou-
pling theory for liquids. Finally in 1989, the same authors
proposed the so-called mosaic theory, (also known as the
Random First Order Theory –RFOT), which aimed at
reintroducing the real space in the mean-field picture of
the p-spin, in the same way one introduces nucleation to
describe first order transitions beyond mean-field. Since
then, important developments have occurred both in the
direction of a more rigorous formulation of the theory and
in the search of the relevant length scales, both static [7]
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and dynamic [54], which could be experimentally and nu-
merically measured, in order to put some constraints on
the theory. These last developments and a critical assess-
ment of RFOT can be found in [6].

3.3 A hand-waving sketch of the glass transition

Let us start by the low temperature regime, close to the
glass transition, where the supercooled liquid falls off-
equilibrium. The commonly accepted picture is the one
proposed by Goldstein [33], of an energy landscape with
many local minima, corresponding to different amorphous
structures. The dynamics is dominated by activation pro-
cesses, the system jumping over the barriers to explore
the phase space in an ergodic manner. The correspond-
ing image in real space is that the system rearranges lo-
cally the configuration of a small number n of particles.
Within this picture it is easy to figure out two relaxation
times, a short one corresponding to vibrations around the
frozen amorphous structures and a long one correspond-
ing to the exploration of the different minima of the en-
ergy landscape. The large relaxation time τ then obeys
the Ahrrenius law τ ∼ exp(∆/kBT ), where the height
of the barrier ∆ is, say, proportional to the number of
particles n concerned by one local rearrangement. An es-
timation of n can be obtained, following the Adam-Gibbs-
DiMarzio argument [32,1], which goes as follows. It is as-
sumed that the n particles have a constant number ω of lo-
cal configurations, independent of n. Then the total num-
ber of configurations of the whole system of N particles is
Ω ∼ ωN/n, where N/n is the number of independent re-
gions containing n particles. The so-called configurational
entropy reads sconf = N−1 logΩ ∼ n−1 logω. Hence the
height of the barrier, assumed to be proportional to n, is
inversely proportional to the configurational entropy. In
the energy landscape picture, this configurational entropy
counts the number of minima. If at some finite tempera-
ture, referred to as the Kauzmann temperature TK , the
number of minima becomes small in the sense that the
configurational entropy sconf vanishes in the limit of large
N and a phase transition takes place at TK , character-
ized by sconf(TK) = 0. At the transition, the height of the
barriers, and thereby the relaxation time, diverge. Under
some assumptions, an estimation of the configurational
entropy can be obtained from experimental data on the
temperature-dependence of the heat capacity, leading to
sconf(T ) ∼ (T − TK)/TK . Inserting this dependence in
the Arrhenius law for the relaxation time, one obtains the
so-called Vogel-Fulcher-Tammann law, one of the fit pro-
posed to describe the relaxation time at low temperature
(see also the discussion about fitting the turbulent life-
times in [20]).

The above scenario however breaks down when ther-
mal energy becomes of the order of the heights of the
energy barriers. It should also correspond to the situation
where local rearrangements become less and less indepen-
dent, an implicit hypothesis in the above estimate of the
relaxation time. A naive thought would be that at such
temperature, say Tx, the system simply crosses over to a

standard liquid. This is however not the case: at the tem-
perature where the above scenario breaks down, the liquid
is still deeply supercooled, its viscosity being still 104 to
105 larger than that of the standard liquid, and most im-
portantly the dynamical correlation functions still exhibit
a significant plateau with two relaxation steps.

The Mode Coupling theory precisely describes this high
temperature regime. We shall certainly not enter the de-
tails of it, and it will be sufficient here to say that it pre-
dicts quantitatively well the shape of the dynamical cor-
relations, but also that it predicts a divergence of the re-
laxation time in the form τ ∼ (T −TMCT )−γ , with TMCT

significantly larger than the glass transition temperature.
This divergence is clearly not observed experimentally, but
it is remarkable that TMCT coincides pretty well with the
crossover temperature Tx.

The nature of this crossover was unveiled when the
connection was made with the spin-glass models. Once it
was established that the dynamical equation of the p-spin
and the Mode Coupling ones were formally identical, one
could take advantage of mean-field spin-glass models to
compute many properties of the phase space, in particu-
lar the depth and the stiffness of the minima in the energy
landscape. It was then established that the crossover tem-
perature corresponds in phase space to a topological tran-
sition where minima turn into saddles. Since the model is
mean-field, the energy barriers are infinite in the thermo-
dynamics limit and the transition corresponds to a strict
ergodicity breaking.

The final step is to come back to real liquids in finite
dimension. One expects that here also the saddles and
the minima control the dynamics. In this case, identify-
ing minima and saddles of the potential energy landscape
is a difficult but possible task, leading to interesting in-
sights [2,12,37]. Finally one would like to identify in real
space these ”local” rearrangements. Are they purely dy-
namical events, or do they have a structural counterpart?
We shall refer to the most recent literature [6] for those
who are interested in this issue, and now comment on what
we have learnt from this short introduction to the theories
of the glass transition.

We see three points of interest. First, the reader may
have noticed the similarity of the issue, between the glass
transition and the subcritical transition to turbulence, re-
garding the existence of a divergence of the relaxation time
–even if relaxation means conceptually different things in
both situations. Glass physicists have tried for many years
to fit experimental data with the same kind of laws as
those we have introduced above (apart from the simple ex-
ponential which here also could be discarded). Second, in
the glass transition also, it is the structure of phase space
which governs the relaxation time. The spectrum of the
saddles and the properties of the minima are key elements
of the theories. Finally, and from our perspective it is the
most important remark, the most significant progresses
did not come from brute force calculations, starting from
the Hamiltonian of the liquid. On the contrary, our un-
derstanding of the glass transition has greatly benefited
from the study of oversimplified models, like the p-spin
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model or the Random Energy Model [27,28], which de-
scribe the statistical behavior of a system evolving in a
random energy landscape.

In the next section, we briefly recall how we have tried
in Ref. [20] to transpose the Random Energy Model to the
context of the subcritical transition to turbulence, with
the hope to gain insight into some possible underlying
mechanisms of statistical nature which could play a role
in this transition.

4 A model inspired by the Random Energy
Model

Inspired by the analogy with glasses, the first step is to
characterize the statistical properties of the energy land-
scape, in terms of the number of unstable solutions as a
function of the turbulent energy density, for any Reynolds
number. Denoting V the volume of the flow, the num-
ber of unstable solutions at a given energy density ε =
E/V is assumed to scale exponentially with the volume,
ΩV (ε,R) ∼ eV s(ε,R), leading to the definition of an en-
tropy density s(ε,R).

As no unstable states exist for R < Ru, the entropy
s(ε,R) is equal to zero in this regime. In the opposite case
R > Ru, unstable states are assumed to exist only in the
energy interval (εmin, εmax), implying that the entropy is
assumed to be nonzero only over an interval εmin(R) <
ε < εmax(R). From a dynamical viewpoint, experimental
and numerical observations indicate that the turbulent
flow spends a significant fraction of time in the vicinity
of unstable solutions. At a coarse-grained level, the evo-
lution of the flow can thus be represented as transitions
between unstable solutions. Altogether, the dynamics can
be modeled as a diffusive process in energy space, biased
by the entropy s(ε,R) to take into account the influence
of the number of unstable states (see [20] for details). Fi-
nally the presence of the absorbing laminar state is taken
into account by assuming that when the flow ends up in
the laminar state, the evolution stops until an external
perturbation is imposed.

To study the behavior of the model, we proceed in
two steps. We first assume that the number of paths from
the unstable states to the laminar one is small enough, so
that the system essentially equilibrates within the unsta-
ble states before reaching the laminar state. A first step
is thus to determine the equilibrium distribution in the
absence of laminar state. The resulting equilibrium state
exhibits a transition similar to the glass transition the
REM. Defining the turbulent lifetime as the mean time
to reach the laminar state after a sudden quench from a
higher Reynolds number value, where turbulence is estab-
lished, the second step consists in computing the mean
first passage time at the absorbing boundary ε = εmin.

Technically, the model is described by a Langevin equa-
tion for the energy ε, and by the associated Fokker-Planck
equation describing the evolution of the probability dis-
tribution P (ε,R, t). Assuming reflecting boundary condi-
tions at εmin and εmax to ensure the existence of an equi-

Fig. 1. (Color online) Schematic representation of the entropy
s(ε,R), shifted by the value s0 = s(εmin(R), R). The color code
on the surface, as well as the four black lines, indicate constant
values of the Reynolds number. From a graphical viewpoint,
solving Eq. (2) requires to find a point on one of the constant
Reynolds curves (for instance, one of the black lines) with a
slope equal to β(R). A solution can only be found when β(R) <
β0(R), where β0(R) is the slope at the bottom of the surface
(green line). The physically observed solution when varying R
is given by the blue line, which ends up at the value Rg defined
by β(Rg) = β0(Rg).

librium state, the stationary distribution reads

P (ε,R) =
1

Z
exp[V (s(ε,R)− β(R)ε)] (1)

where β(R) is a phenomenological parameter, akin to an
inverse temperature, which characterizes the balance be-
tween energy injection and dissipation.

Fixing the Reynolds number, P (ε,R) is dominated at
large V by the energy ε̄(R) maximizing the expression
s(ε,R)− β(R)ε. Two cases can then be distinguished: ei-
ther ε̄(R) falls between εmin(R) and εmax(R), in which
case ε̄(R) is solution of

s′(ε̄(R), R)− β(R) = 0, (2)

or ε̄(R) lies outside this interval. In this last case, assum-
ing the entropy s(ε,R) to be concave with respect to ε
(see figure 1), its derivative s(ε,R) with respect to ε is
maximum for ε = εmin(R). One of the key assumptions
of the model, by analogy with the Random Energy Model
[27,28], is that the derivative s′(ε,R) takes a finite value
β0(R) in the limit ε → εmin(R) –see [20] for a physical
discussion of this assumptions.

If β(R) < β0(R), one sees from Eq. (2) that ε̄(R) >
εmin(R). In the opposite case, when β(R) > β0(R), no so-
lution of Eq. (2) can be found in the interval εmin(R) <
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ε < εmax(R) and s(ε,R)−β(R)ε takes its maximum value
for ε = εmin(R), around which the probability distribu-
tion P (ε,R) concentrates. Assuming that β(R) decreases
and that there exists a Reynolds number Rg such that
β(Rg) = β0(Rg), one has ε̄(R) > εmin(R) for R > Rg,
while ε̄(R) = εmin(R) for R < Rg, meaning that in this
last case the dynamics concentrates in the unstable states
of lowest energy.

We thus see that under the equilibrium assumption
(that is, neglecting the presence of the laminar state), a
phase transition similar to the glass transition of the REM
takes place. Now taking into account the existence of the
laminar state, one can compute the turbulence lifetime us-
ing first passage time techniques, modeling the presence
of the laminar state by an absorbing boundary condition
at εmin. A natural question is then to know whether the
equilibrium, REM-like transition has consequences on the
turbulent lifetime. To model a quench from a highly turbu-
lent state, we choose as initial condition ε(t = 0) = εmax.
In some linear approximation for the form of the entropy
(see [20] for details), one obtains an explicit formula for
the turbulent lifetime:

τ =
V

D0
(∆ε)2 f

(
V (βg − β)∆ε

)
(3)

with the notations βg = β(Rg) and ∆ε = εmax− εmin; the
function f(x) is defined as f(x) = (ex − 1− x)/x2. When
βg 6= β, or equivalently R 6= Rg, one can use for large V
the asymptotic behavior of f(x) when x → ±∞, which
is given by f(x) ∼ 1/|x| for x → −∞ and f(x) ∼ ex/x2

for x → +∞. As a result, τ takes for βg < β the simple
expression

τ ∼ ∆ε

D0(β − βg)
, (4)

which is seen to be independent of the volume V . One
thus finds a power-law divergence of τ as a function of the
Reynolds number close to (but below) Rg,

τ ∼ τ0
Rg −R

. (5)

For a large but finite volume V , the divergence is smoothed
very close to Rg, and the expression of τ crosses over to
an exponential form, obtained for R > Rg,

τ ∼ eV (βg−β)∆ε

D0V (βg − β)2
. (6)

At odds with Eq. (4), the volume V does not disappear
from the expression (6) of τ . Only for an infinite volume V
does one recover a pure power-law divergence for R < Rg.

5 Conclusion

The first goal of the present paper was to introduce hy-
drodynamicists to the physics of the glass transition, be-
ing motivated by the similarities we had noticed between

the physics of the supercooled liquids and the one of the
subcritical transition to turbulence.

As already stressed, those similarities rather sit, to
some extent, at the conceptual level than at the phe-
nomenological level. It seemed to us that some of the tools
and concepts of the statistical physics of disordered sys-
tems, such as those developed in the context of the study
of the glass transition, could be of interest to those inter-
ested in the subcritical transition to turbulence.

Being aware that the theories of the glass transition
are a vast, and sometime opaque field of research, we have
tried to bring our colleagues a very schematic presenta-
tion of both the history and the main concepts underlying
the development of this field. The price to pay for such a
partial presentation is obviously to remain at a superficial
level of description. This is why we have tried to provide,
within the bibliography, both original papers and reviews,
which could help the interested reader to enter deeper into
this fascinating topic.

Finally, we have summarized the main ingredients and
findings of a model inspired by the Random Energy Model,
which we had recently proposed. This simplistic model
leads to an estimate of the turbulence lifetime as a func-
tion of the Reynolds number close to the transition, an
estimate which qualitatively agrees amazingly well with
the observed phenomenology. We hope that our results
will motivate more involved studies in that same spirit.

References

1. G Adam and J H Gibbs. On the Temperature Dependence
of Cooperative Relaxation Properties in Glass-Forming
Liquids. The Journal of Chemical Physics, 43:139, 1965.

2. L. Angelani, R. Di Leonardo, G. Ruocco, A. Scala, and
F. Sciortino. Saddles in the Energy Landscape Probed
by Supercooled Liquids. Phys. Rev. Lett., 85:5356–5359,
December 2000.

3. Kerstin Avila, David Moxey, Alberto de Lozar, Marc Avila,
Dwight Barkley, and Björn Hof. The Onset of Turbulence
in Pipe Flow. Science, 333(6039):192–196, 2011.

4. Dwight Barkley. Simplifying the complexity of pipe flow.
Physical Review E, 84:16309, 2011.

5. L Berthier and Giulio Biroli. Theoretical perspective on
the glass transition and amorphous materials. Review of
Modern Physics, 83(2):587, 2011.

6. Giulio Biroli and Jean-Philippe Bouchaud. The Random
First-Order Transition Theory of Glasses: a critical as-
sessment. In P. G. Wolynes and V. Lubchenko, editors,
Structural Glasses and Supercooled Liquids: Theory, Ex-
periment, and Applications. Wiley-Blackwell, 2010.

7. Giulio Biroli, Smarajit Karmakar, and Itamar Procaccia.
Comparison of static length-scales characterizing the glass
transition. arXiv preprint arXiv:1307.1205, 2013.
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