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An extended finite element method approach for
structural-acoustic problems involving immersed

structures at arbitrary positions

Antoine Legay
Structural Mechanics and Coupled Systems Laboratory, Conservatoire National des Arts et Métiers, 

292 rue Saint-Martin, 75141 Paris Cedex 03, France

Noise reduction for passengers’ comfort in transport industry is now an important constraint to be taken into 
account during the design process. This process involves to study several configurations of the structures 
immersed in a given acoustic cavity in the context of an optimization, uncertainty, or reliability study for 
instance. The finite element method may be used to model this coupled fluid–structure problem but needs an 
interface conforming mesh for each studied configuration that may become time consuming. This work aims 
at avoiding this remeshing step by using noncompatible meshes between the fluid and the structures. The 
immersed structures are supposed to be thin shells and are localized in the fluid domain by a signed distance 
level-set. To take into account the pressure discontinuity from one side of the structures to the other one, the 
fluid pressure approximation is enriched according to the structures positions by a Heaviside function using 
a partition of unity strategy (extended finite element method). The same fluid mesh of the empty cavity is 
then used during the whole parametric study. The method is implemented for a three-dimensional fluid and 
tested on academic examples before being applied to an industrial-like case.

KEY WORDS: fluid–structure interaction; structural-acoustic; XFEM; parametric study

1. INTRODUCTION

Noise reduction of passenger acoustic compartment in transport industry is taking more and more
importance in the final characteristics of a vehicle. Undeniably, passengers expect to travel with
an increasing comfort whether it is by car, train, or plane. Therefore, this constraint has to be
taken into account by the engineers in the design process to reach the set noise level in the
passenger compartment.

It is shown in [1] that the seats in an aircraft cabin have significant influences on both the ampli-
tude of the sound pressure level and the resonant frequency shifts. To predict a realistic noise
mapping and level in the cavity, the seats and all the significant flexible and absorbing structures
have to be taken into account.

This elasto-acoustic problem can be modeled and numerically computed. The finite element
method can be used, and a mesh has then to be produced. Classically, this mesh is compatible
at the interfaces between the fluid and the structures. During the design step, several configura-
tions are tested to optimize the design, to perform an uncertainty study, or to compute a reliability
level. Moreover, a same passenger compartment could be developed into several uses: the same
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car can have back seats or not, and an aircraft can have small seats or large seats depending on
the class. For each configuration, a compatible mesh at the fluid–structure interfaces is needed.
This remeshing step may become a waste of time for the engineers if a parametric meshing
software is not available and if a large number of configurations have to be tested. Moreover,
the engineer in charge of the study may possess only the fluid mesh of the empty cavity and
so may not be able to remesh it according to the structures. A possible alternative is the use
of the boundary element method; however, it suffers the same drawback. Indeed, a new surface
mesh would have to be built for each configuration leading to an update of the corresponding
full matrices.

The aim of this work is to be able to efficiently analyze different configurations of immersed
structures in the acoustic domain and their influences on the noise level in the cavity. The basic
idea of the proposed method is to always use the same fluid mesh of the empty cavity for all
the possible configurations, assuming that the cavity’s geometry does not change. The structures
are then arbitrarily immersed within the acoustic fluid mesh. The embedded structures in the
fluid are considered to be thin shells. Therefore, the pressure is discontinuous from one side of
the structure to the other one. Although this discontinuity is naturally described in the case of a
compatible mesh, it is introduced in this work for noncompatible meshes by using a partition of
unity based approach [2] where the enrichment is a Heaviside function (XFEM, extended finite
element method).

The XFEM was first developed to model cracks [3] and inclusions [4, 5] in solid mechanics. It
has been applied to several kind of problems where an evolving discontinuity has to be taken into
account as in [6] for biofilm growth for instance. The XFEM has already been used in the context
of nonlinear fluid–structure interaction for structures embedded in a fluid flow [7–9].

Other techniques such as immersed element method-like are developed to deal with noncom-
patible meshes for a fluid–structure interaction problem [10–13]. However, these approaches
need either to have a thick solid structure or to refine the mesh around the interface to have
good results.

The structure is considered to have small displacements, so the discontinuity surface does not
evolve with time in the fluid domain. However, for a parametric study of the structure positions in
the cavity, and eventually their geometries, the discontinuities move according to the chosen param-
eters, whereas the acoustic cavity keeps the same geometry. It is assumed that there is fluid on both
sides of the structure. The case where the fluid is only on one side of the structure can be performed
using a compatible mesh with no change of the fluid mesh. If such a structure is supposed to change
its configuration, the fluid mesh has to be build a priori such that all configurations are compatible
to avoid remeshing during the parametric study.

No damping is considered in this work for simplicity reasons of implementation. Neverthe-
less, a structural-acoustic mechanical problem is closely linked to it if the final aim is to reduce
noise level in the passenger cavity. This noise level reduction can be performed by several
different techniques:

� A porous material can be added on the walls [14], and the resulting numerical problem may be
reduced by subdomain decomposition [15, 16].

� The absorbing material can be modeled as rheological devices [17–19] to simplify its numerical
treatment.

� A viscoelastic material may be put on (or inside) the structure [20], and special numerical
strategies can be used to efficiently compute the complex coupled problem [21, 22].

These different techniques can be used in addition to the approach developed in this work.
The second section of the paper states the equations of the coupled fluid–structure problem. The

third section focuses on the discretization, especially the XFEM approximation. The fourth section
gives details of the algorithm as well as the numerical implementation of the method. The last
section shows the accuracy of the method by comparing the results to reference solutions and
demonstrates the efficiency of the approach to compute different configurations of an industrial-
like problem.
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2. STRONG AND WEAK FORMS OF AN ELASTO-ACOUSTIC PROBLEM

2.1. Description of the problem

A fluid–structure interaction problem is considered (Figure 1). The acoustic fluid domain and the
thin flexible structures are respectively denoted by �F and �S. The problem is studied in the
frequency domain for a permanent harmonic response at angular frequency !. The compressible
fluid domain is described using pressure (p) as primary variable, whereas displacement (uS) is used
for the structural part. Their boundaries are separated into contours of

� imposed Dirichlet boundary conditions denoted @1�F and @1�S,
� prescribed Neumann boundary conditions denoted @2�F and @2�S, and
� coupling interface between acoustic fluid and structures denoted � .

The thin structures are considered with no thickness in the fluid domain meaning that the struc-
tures are seen by the fluid as surfaces. These surfaces are described in the fluid domain by the
zero contour of a level-set �.M/ that is the signed distance to the closest structure (Figure 2). By
denoting d the distance of a point M to the structure, the level-set can be defined as

�.M/D˙d , (1)

where d is the minimal distance to the structure; the sign is determined using a conventional unit
normal vector En pointing arbitrarily outward of one side of the structure. For simplicity reasons,
only one structure is considered in the following of this section.

2.2. Strong form of the equations

2.2.1. Structure (uS). The structural domain is assumed satisfying the elastodynamic linearized
equation at angular frequency !:

div � SC!2�SuS D 0 in�S, (2)

where �S is the constant density per unit volume and � S is the Cauchy stress tensor, given by

� S D DS ".uS/ in�S, (3)

ΩS ; uS
ΩF ; p

fluid acoustic cavitythin flexible structures 

fluid-structure interface Γ

rigid wall

Figure 1. Description and notations of the elasto-acoustic interaction problem.

Figure 2. Signed distance to the thin structure.
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where DS is the classical Hooke’s linear elasticity tensor and ".uS/ is the strain tensor associated to
the displacement vector field uS, defined by

".uS/D 1

2

�
grad uSC gradT uS

�
. (4)

Prescribed displacements and forces are imposed on the external structural boundaries @1�S and
@2�S, respectively:

uS D 0 on @1�S, (5)

� S nS D fSb on @2�S, (6)

where nS is the unit normal vector pointing outward �S.

2.2.2. Compressible fluid (p). The fluid is assumed compressible and inviscid, and satisfies the
classical Helmholtz equation derived from the motion, continuity, and constitutive equations:

�pC !2

c2
0

p D 0 in�F, (7)

where c0 is the constant speed of sound in the fluid and p the pressure fluctuation scalar field. The
pressure fluctuation is named pressure in the following for simplicity reasons. The limit case where
! D 0 (static solution) is not given by Equation (7); this case is not considered in this work; more
details are given in [23].

The fluid displacement vector, denoted by uF, can be related to the pressure field using the
linearized Euler equation expressed for a harmonic solution:

gradp D !2�F uF in�F, (8)

where �F is the fluid density.
At external boundary of the acoustic fluid domain, rigid cavity conditions are imposed by setting

a free pressure field. An harmonic excitation is prescribed via an acoustic source:

uF � nF D uFb on @2�F, (9)

where nF is the unit normal vector pointing outward the fluid domain and uFb is set to zero out of
the acoustic source included in @2�F.

2.2.3. Fluid–structure coupling. At interface � between the structural domain and the acoustic
fluid, normal stress and normal displacement continuity conditions are given by

� S nS � p nF D 0 on � , (10)

.uF � uS/ � nF D 0 on � . (11)

The fluid displacement uF is related to the pressure field using Equation (8).

2.3. Weak form

The test-function method is used to derive the variational formulation of the coupled problem. For
this purpose, the spaces of sufficiently smooth functions CuS and Cp are introduced, associated to
the field variables uS and p, respectively.

� Let ıuS be the frequency-independent test function, associated to uS, belonging to the admis-
sible space C �uS D ¹ıuS 2 CuS jıuS D 0 on @1�Sº. Multiplying Equation (2) combined with
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Equation (3) by ıuS 2 C �uS , applying a Green’s formula, and taking Equations (6) and (10) into
account lead to

Z
�S

DS ".ıuS/ W ".uS/dV �!2

Z
�S

�SıuS � uS dV �
Z

�

ıuS � nF p d†D
Z

@2�S

ıuS � fSb d†.

(12)
� Let ıp be the frequency-independent test function, associated to p, belonging to the admissi-

ble space Cp . Multiplying Equation (7) by ıp 2 Cp , applying a Green’s formula, and taking
Equations (11) and (9) into account lead to

1

�F

Z
�F

gradıp�gradp dV� !2

c2
0�F

Z
�F

ıp p dV�!2

Z
�

ıp uS�nF d†D !2

Z
@2�F

ıp uFb d†.

(13)

3. DISCRETIZATION OF THE COUPLED PROBLEM

3.1. Structure

The discrete Kirchhoff triangle element [24–27] is used to model and discretize the thin shell
structure (Figure 3(a)). This element is based on the Kirchhoff–Love theory. There are six DOFs,
three translations, and three rotations in the global coordinate system. The structure DOFs are
collected in a vector US that is linked to the structural displacement uS by

uS DN SUS, (14)

where N S is the shape function matrix at the global level including a transformation matrix from
local to global coordinates. The structure stiffness matrix and mass matrix are respectively denoted
by KSS and MSS.

3.2. Fluid

3.2.1. Standard part of the approximation. The tridimensional fluid domain is discretized by four-
node tetrahedral elements (Figure 3(b)). The pressure fluctuation p is linked to the node pressure
vector P by

p DN F P, (15)

where N F is the shape function matrix whereas the pressure gradient is given by

gradp DBF P, (16)

3

2

1

x
(a) 3-node DKT triangle shell element

1

x1

y1

y
z

z1 1

x1

y1

y
z

z1

4

2

x
(b) 4-node tetrahedral fluid element

3

Figure 3. Fluid and structure finite elements. (a) Three-node discrete Kirchhoff triangle shell element;
(b) four-node tetrahedral fluid element.
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where BF is the discretized gradient operator. For this element, the constant discretized gradient
operator makes easier the integration through the element.

3.2.2. Enrichment of the pressure field. A thin structure placed in a fluid separates locally the fluid
into two parts, meaning that the pressure is discontinuous from one side of the structure to the other
one (Figure 4(a)). The classical discretization strategy is to make the different meshes compatible
at the interface (Figure 4(b)) where three nodes are placed at the same geometrical point: two nodes
for each fluid domain and one node for the structure. The discontinuous pressure can be represented
naturally by the fluid discretization but needs a remeshing or a mesh-moving technique for each
configuration of the structures in the fluid domain. This method is used in this work to compute
reference solutions in the application section. In the context of a parametric study of the positions
of the structures, this remeshing step can become heavy and difficult to realize.

The alternative strategy used in this work is to have the structure arbitrarily placed in the fluid
mesh of the empty cavity (Figure 4(c)): there is no need to remesh the fluid for each structure
configuration. To correctly catch the pressure jump from one side of the structure to the other
one, the pressure field approximation is enriched by a Heaviside function using a partition of unity
strategy [2], namely XFEM [3]. The pressure approximation becomes

p.M/D
X
i2F

N i
F .M/Pi C

X
i2A

N i
F .M/ i .M/Ai , (17)

where F is the set of nodes of the whole mesh, N i
F .M/ is the shape function associated to the

fluid node i , Pi is the standard nodal pressure value, A is the set of enriched nodes,  i .M/ is the
enrichment function, and Ai is the additional nodal unknown coming from the enrichment. The set
of enriched nodes are those that are connected to the elements cut by the structures (Figure 5) or, in
other words, cut by the zero contour of the level-set. The enrichment function is chosen such as

i .M/DH.�.M//, (18)

(b) Compatible mesh (c) Incompatible mesh 

structure

fluid

structure

fluid

structure, Γ

fluid

(a) Fluid divided into 2 parts by the structure

Figure 4. Different ways of meshing the interface. (a) Fluid divided into two parts by the structure;
(b) compatible mesh; (c) incompatible mesh.

enriched elements
set of enriched nodes

structure
fluid

Figure 5. Enriched elements, partition of unity support.
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whereH is the Heaviside function and �.M/ is the signed distance function. The Heaviside function
is modified to be the sign of the level-set. The pressure approximation can be written:

p.M/D
X
i2F

N i
F .M/Pi CH.�.M//

X
i2A

N i
F .M/Ai (19)

because the enrichment function is not node dependant. The full approximation containing both the
standard part and the enrichment can be written from Equation (19) as

p DN F PCN AA, (20)

where

N A.M/DH.�.M//N F .M/ˇFA. (21)

The Boolean localization matrix ˇFA is used to extract enriched set of nodes A from the set of
nodes F . The pressure value at an enriched node i 2A is then

p.Mi /D Pi CH.�.Mi //Ai . (22)

To keep the property of having p.Mi / D Pi , the enrichment may be chosen as  i .M/ D
H.�.M// � H.�.Mi //. However, this shift is not used in this work to make the integration of
an enriched element easier.

The level-set function is discretized using the fluid mesh, so �.M/ is defined as

�.M/D
X
i2F

N i
F .M/�i , (23)

where �i is the nodal value of �.M/.

3.2.3. Fluid–structure coupling. The coupling term in the structural weak form (12) is given byZ
�

ıuS � nF p d†. (24)

It is recalled that in this work, it is assumed that there is fluid on both sides of the structure.
Therefore, the interface � is decomposed into �C and ��, and a pointM� belonging to the interface
is split into M�C and M�� (Figure 6):

� �C is the structure surface in contact with the fluid domain where �.M�C/ > 0:
ı the unit normal vector is denoted by nCF (with nCS D�nCF )
ı the Heaviside function H.�.M�C// is C1

� �� is the structure surface in contact with the fluid domain where �.M��/ < 0:
ı the unit normal vector is denoted by n�F with n�F D�nCF
ı the Heaviside function H.�.M��// is �1

Figure 6. Interface coupling details.
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With the use of these notations, the coupling term is developed asZ
�

ıuS � nF p d†D ıUT
S

Z
�

N T
S nF N F d† PC ıUT

S

Z
�

H.M/N T
S nF N F d† ˇFAA

D ıUT
S

Z
�C

N T
S n

C
F N F d† PC ıUT

S

Z
�C

N T
S n

C
F N F d† ˇFAA (25)

C ıUT
S

Z
��

N T
S n�F N F d† P� ıUT

S

Z
��

N T
S n�F N F d† ˇFAA.

Because n�F D�nCF , the coupling term becomesZ
�

ıuS � nF p d†D ıUT
S 2

Z
�

N T
S nCF N F d† ˇFAA. (26)

The coupling between fluid and structure is only carried out by the fluid pressure enrichment; the
coupling matrix CSA is defined by

CSA D 2
Z

�

N T
S n

C
F N F d† ˇFA. (27)

The coupling term in the fluid weak form is similar and gives the transpose matrix multiplied
by !2.

3.3. Discretized weak form

By replacing the continuous pressure field as well as the structure displacements by their
approximations in Equations (12) and (13), the following discretized system is obtained:0

@
2
4 KFF KFA 0

KT
FA KAA 0

0 �CSA KSS

3
5�!2

2
4 MFF MFA 0

MT
FA MAA CT

SA

0 0 MSS

3
5
1
A

2
4 P

A
US

3
5D

2
4 !2UFb

0

FS

3
5 , (28)

where KSS and MSS are respectively the stiffness and mass matrices of the structure, FS is the
discretized external load on the structure, UFb is the discretized acoustic source, and the other
matrices are defined as

KFF D 1

�f

Z
�F

BT
F BF dV , (29)

MFF D 1

�f c
2
0

Z
�F

N T
F N F dV , (30)

KAA D ˇT
FA KFF ˇFA, (31)

MAA D ˇT
FAMFF ˇFA, (32)

KFA D 1

�f

Z
�F

H.�.M//BT
F BF dV ˇFA, (33)

MFA D 1

�f c
2
0

Z
�F

H.�.M//N T
F N F dV ˇFA, (34)

CSA D 2
Z

�

N T
S nCN F d† ˇFA. (35)

This nonsymmetric formulation can be made symmetric for a solving in the frequency domain by
dividing the acoustic equations (first and second lines of the system) by !2 (! ¤ 0).
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3.4. Integration of the enriched elements

To compute the elemental enriched matrices KFA and MFA, an analytical solution is used
following the formulas given in [28] for a Heaviside enrichment combined with four-node
tetrahedral elements.

Because BF is constant in a four-node tetrahedral element, the elemental expression of KFA in
an enriched element e becomes

Ke
FA D

1

�f

BF
T BF

Z
�e

F

H.�.M//dV . (36)

The integral of the Heaviside function gives the following simple expression:Z
�e

F

H.�.M//dV D �
vCe � v�e

� Ve

vCe C v�e
D Ve

�
12vCe � 1

�
, (37)

where the volumes of the positive and negative parent elemental domains are respectively vCe and v�e
(Figure 7) and Ve is the total physical volume of the element. The expression is simplified because
the total parent elemental volume is ve D vCe C v�e D 1=6.

The elemental expression of MFA in an enriched element e is

Me
FA D

1

�f c
2
0

Z
�e

F

H.�.M//N F
T N F dV . (38)

The integration is carried out by using two quadrature points in the parent element, one at the center
of each domain noted GC and G�:

Me
FA D

1

�f c
2
0

Ve

�
6vCe N T

F jGCN F jGC �
�
1� 6vCe

�
N T

F jG�N F jG�
�

. (39)

A tetrahedron can be cut by the zero contour of the level-set in two ways as mentioned in Figure 7
in the parent element with coordinate system .r , s, t /: case 1-3 where one node is one on side and
three nodes are on the other side; case 2-2 where two nodes are on each side. Ventura [28] gives
only the formulas for the first case (1-3), whereas nothing is mentioned for the second case (2-2).
The analytical formulas are recalled for the first case and developed for the second in the following.

The first case is supposed to have node 4 in domain �C where � > 0 and nodes 1, 2 and 3
in domain �� where � < 0. The opposite situation according to the signed of � is obtained by
switching vCe and v�e . With the notations defined in Figure 7(a), the parent volume of the positive
side vCe is simply the volume of a subtetrahedron domain bounded by the four following points:

.0, 0, 0/ , .r0, 0, 0/ , .0, s0, 0/ , .0, 0, t0/ ,

(a) Case 1-3 (b) Case 2-2

Figure 7. Tetrahedral finite element in the parent domain cut by the zero contour of the level-set.
(a) Case 1-3; (b) case 2-2.
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Table I. Subdecomposition of the positive domain for case 2-2 into three subtetrahedra.

Four tetrahedron vertices Tetrahedron volume

.0, 0, 0/ , .1, 0, 0/ , .0, s0, 0/ , .0, 0, t0/ v1 D s0t0
6

.1, 0, 0/ , .0, s0, 0/ , .0, 0, t0/ ,
�
1�

p
2

2 u0, 0,
p

2
2 u0

�
v2 D

p
2

12 s0u0.1� t0/
.1, 0, 0/ , .0, s0, 0/ ,

�
1�

p
2

2 u0, 0,
p

2
2 u0

�
,

�
1�

p
2

2 v0,
p

2
2 v0, 0

�
v3 D u0v0.1�s0/

12

where r0, s0, and t0 are defined such that �.r0, 0, 0/ D �.0, s0, 0/ D �.0, 0, t0/ D 0. For this
situation, as mentioned in [28], the vCe volume is

vCe D
r0s0t0

6
. (40)

Coordinates in the parent element of the center points GC and G� are given by

GC W
�
r0

4
,
s0

4
,
t0

4

�
and G� W

�
1� r2

0 s0t0

4.1� r0s0t0/ ,
1� r0s2

0 t0

4.1� r0s0t0/ ,
1� r0s0t20
4.1� r0s0t0/

�
.

The second case is supposed to have nodes 1 and 4 in domain �C where � > 0 and nodes 2
and 3 in domain �� where � < 0. With the notations defined in Figure 7(a), the parent volume
of the positive side vCe is the volume of three assembled subtetrahedra domains. The two vari-
ables s0 and t0 go from 0 to 1 and are defined such that �.0, s0, 0/ D �.0, 0, t0/ D 0. The two
variables u0 and v0 go from 0 to

p
2 and are defined such that �

�
1�p2=2u0, 0,

p
2=2u0

�
D

�
�
1�p2=2v0,

p
2=2v0, 0

�
D 0. The coordinates of the four vertices of each tetrahedron as well

as their volumes are given in Table I.
The parent volume of the positive side vCe is given by

vCe D v1 C v2 C v3 D 1

12

�
2s0t0 C

p
2s0u0 �

p
2s0u0t0 C u0v0 � u0v0s0

�
. (41)

The center points GC and G� are given by their coordinate vectors using the following
barycentric equations:

OGC D 1

vCe
.v1OG 1 C v2OG 2 C v3OG 3/, (42)

OG� D 1

1� 6vCe
.OG � 6vCe OGC/, (43)

where OG i denotes the coordinate vector of the center of the subtetrahedron number i assuming
that point O is localized at .0, 0, 0/.

4. STRATEGY FOR A PARAMETRIC STUDY OF SEVERAL IMMERSED STRUCTURES

The discretized system to be solved for a configuration of the coupled fluid–structure system is given
by Equation (28). This system can be extended to n immersed structures as

.K �w2M/X D F (44)
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with

K D

2
666666666666666664

KFF KFA1 0 KFA2 0
... KFAn 0

KT
FA1

KA1A1 0 0 0
... 0 0

0 �CS1A1 KS1S1 0 0
... 0 0

KT
FA2

0 0 KA2A2 0
... 0 0

0 0 0 �CS2A2 KS2S2

... 0 0

: : : : : : : : : : : : : : : : : : : : : : : :

KT
FAn

0 0 0 0
... KAnAn 0

0 0 0 0 0
... �CSnAn KSnSn

3
777777777777777775

, (45)

M D

2
666666666666666664

MFF MFA1 0 MFA2 0
... MFAn 0

MT
FA1

MA1A1 CT
S1A1

0 0
... 0 0

0 0 MS1S1 0 0
... 0 0

MT
FA2

0 0 MA2A2 CT
S2A2

... 0 0

0 0 0 0 MS2S2

... 0 0

: : : : : : : : : : : : : : : : : : : : : : : :

MT
FAn

0 0 0 0
... MAnAn CT

SnAn

0 0 0 0 0
... 0 MSnSn

3
777777777777777775

, (46)

X D

2
66666666664

P
A1

US1

A2

US2

...
An

USn

3
77777777775

, F D

2
66666666664

!2UFb

0

FS1

0

FS2

...
0

FSn

3
77777777775

, (47)

where subscripts 1 to n denote the n different structures. It is supposed in this work that the
structures are far enough from each other to not share enriched nodes. With this assumption, only
one level-set can be used to localize several structures in the fluid domain.

In system (44), matricesKFF andMFF are those corresponding to the empty fluid cavity, meaning
that they do not need to be recomputed when the structures are placed differently. Matrices KAiAi

and MAiAi do not need to be recomputed because they can be computed from KFF and MFF by
using the localization matrix ˇFAi

(Equations 31 and 32). Matrices KSiSi and MSiSi are those
corresponding to the structures with no fluid; again, they do not need to be recomputed for each
configuration unless the geometry of the structure itself is changed. Finally, when many structures
are placed arbitrarily in the fluid, the only matrices to be computed in the parametric study are the
coupling matrices between the standard part and the enrichment of the pressure (KFAi , MFAi) and
the coupling matrices between the fluid enrichment and the structures CSiAi .

The algorithm used to compute frequency response functions during a parametric study is

� Compute KFF and MFF from the given empty cavity mesh
� Compute KSiSi and MSiSi for each structure
� Loop over the parameters:
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ı Loop over the structures that have been modified:
- Update structure position.
- If the structure geometry has changed, compute KSiSi and MSiSi .
- Compute the level-set �.M/.
- Compute ˇFAi

matrix; in other words, get the set of enriched nodes Ai .
- Compute the fluid-enrichment coupling matrices KFAi and MFAi .
- Compute the structure-enrichment coupling matrix CSiAi .

ı Form the system as in Equation (44).
ı Compute the frequency response function for this configuration.

The algorithm could be simplified by considering all structures as one, avoiding the structure
loop. However, it may become difficult to modify one specific structure.

The implementation has been carried out with Python for the main program at the global level
and using Fortran functions at the elemental level. This Python–Fortran coupling takes benefit of
the two different languages: speed of Fortran compiled functions and ease of Python to manipulate
large sparse matrices. Geometry, meshes, and results viewing are performed with Gmsh [29]. This
implementation strategy allows to deal with quite large number of degrees of freedom.

5. VALIDATION AND APPLICATIONS

5.1. Validation on a parallelipipedic cavity

A parallelipipedic cavity divided into two parts by a plane flexible structure is considered (Figure 8).
The data of the problem are given in Table II. The structure is simply supported on its four edges; a
harmonic load of amplitude 1 N is applied to point A in the normal direction of the plane structure.
The position of point A is chosen such that it cannot be a vibration node of the structure (Figure 8).
The studied frequency range is 10 to 600 Hz.

5.1.1. Analysis of the problem. Because the air is a light fluid compared with the structure, the
modes are almost decoupled; therefore, a separate modal analysis of the fluid and the structure is
carried out to verify the convergence of the numerical results obtained by the coupled system.

Figure 8. Parallelipipedic cavity divided into two parts by a flexible structure.

Table II. Data of the parallelipipedic cavity cut by a plane structure.

Geometry Fluid Structure

L (m) 1 c0 (m�s�1) 340 E (Pa) 70,000�106

l (m) 0.6 �F (kg�m�3) 1.2 � 0.27
h (m) 0.4 �S (kg�m�3) 2700
a (m) 0.75 e, thickness (m) 4�10�3
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Table III. Eigenfrequencies of the two
parallelipipedic fluid cavities.

i j k f (Hz)

Large cavity, Lx D a
1 0 0 226.7
0 1 0 283.3
1 1 0 362.8
0 0 1 325
2 0 0 353.3
1 0 1 381.7
0 1 1 510.8
2 1 0 533.6
1 1 1 558.8
0 2 0 566.7

Small cavity, Lx D L� a
0 1 0 283.3
0 0 1 325
0 1 1 510.8
0 2 0 566.7

In the case of a rigid structure, the two cavities are decoupled. The analytical eigenmodes pŒijk�

and eigenfrequencies fŒijk� of the fluid cavities are given by

pŒijk�.x,y, ´/D cos
i x

Lx

cos
j y

l
cos

k ´

h
, (48)

fŒijk� D c

2

�
i2

L2
x

C j 2

l2
C k2

h2

� 1
2

, (49)

where i , j , and k are integers and Lx is the length of the cavity along x direction (Lx D a for the
large cavity and Lx D L � a for the small one). Table III gives the eigenfrequencies of the two
cavities up to 600 Hz.

The analytical eigenmodes and eigenfrequencies of the four-edge simply supported structure are
given by

wŒij �.x,y/D sin
i y

l
sin

j ´

h
, (50)

fŒij � D
s

Ee2

12.1� �2/�S

�
i2 2

l2
C j 2 2

h2

�
, (51)

where i and j are integers and wŒij � is the transverse displacement. Table IV gives the analytical
eigenfrequencies of the structure up to 600 Hz.

5.1.2. Frequency analysis. The frequency response function is computed using the present
approach based on XFEM as well as using a conforming mesh between fluid and structure at the
interface to validate the results. The two meshes are presented in Figure 9. Table V shows the number
of nodes and elements used for each computation. The number of enriched nodes (set of nodes A ) is
1129, and there are 3067 enriched elements for the XFEM computation. The sound level indicator is
the mean quadrature pressure, expressed in dB, and computed according to the following definition:

Lp D 10 log10

R
�F
p2 dV

p2
0

R
�F

dV
, (52)

where p0 D 20 	Pa is the reference sound pressure in the air.
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Table IV. Eigenfrequencies of
the plane structure.

i j f (Hz)

1 1 86.6
2 1 166.5
1 2 266.3
3 1 299.7
2 2 336.3
3 2 379.6
3 1 386.2
1 3 566.2

Figure 9. The two meshes of the parallelipipedic cavity: left, compatible; right, noncompatible for XFEM.

Table V. Mesh characteristics of the parallelipipedic cavity.

Compatible mesh XFEM mesh

Fluid mesh Structure mesh Fluid mesh Structure mesh

Nodes Elements Nodes Elements Nodes Elements Nodes Elements

44,643 263,274 1232 2334 21,089 120,306 1243 2356
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Figure 10. Frequency response function of the parallelipipedic cavity separated by a plane flexible structure.

The comparison of the frequency response functions is shown in Figure 10. On this figure, the
decoupled analytical eigenfrequencies of the two cavities as well as those of the structure are
mentioned as vertical lines. The coupled problem eigenfrequencies corresponding to the resonances
of the FRF are close to these vertical lines. The results are compared for four frequencies close to
the four first resonances of the frequency response function in Figure 11; the structure is placed
above the fluid cavity to visualize it. The XFEM results show a discontinuous jump at the inter-
face because the plot routine does not take into account the Heaviside enrichment in an element,
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(a) Reference, f = 92Hz (b) XFEM, f = 92Hz (c) Reference, f = 164Hz (d) XFEM, f = 164Hz

(e) Reference, f = 228Hz (f) XFEM, f = 228Hz (g) Reference, f = 263Hz (h) XFEM, f = 263Hz

Figure 11. Results at different frequencies close to resonances of the coupled system. (a) Reference,
f D 92 Hz; (b) XFEM, f D 92 Hz; (c) Reference, f D 164 Hz; (d) XFEM, f D 164 Hz; (e) Reference,

f D 228 Hz; (f) XFEM, f D 228 Hz; (g) Reference, f D 263 Hz; (h) XFEM, f D 263 Hz.
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Figure 12. dB difference between the compatible and the XFEM results for the parallelipipedic cavity.

whereas the enrichment is used to compute the real pressure at an enriched node according to
Equation (22). The plots show the good ability of the method to correctly catch the pressure jump
through the structure.

A dB difference error between the two results obtained by the two methods is computed in
Figure 12. This error is more a qualitative tool than a quantitative tool for two main reasons:

� The compatible mesh has been made smaller to have a good reference solution, so the error
contains the discretization error as well as an error coming from the XFEM method itself.

� There is no damping in this problem, so the solution becomes highly singular at resonances;
the value has thus no signification close to a resonance.
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For these reasons, the error is not a relative error (it would add more uncertainty in the value), and the
error is arbitrarily cut up to a value of 5 dB. However, the difference is less than 1 dB up to 225 Hz
and globally increases to less than 2 dB away from the resonances, which represents approximately
2% in terms of relative error.

5.1.3. Parametric study. To show the ability of the proposed approach to perform a parametric
study according to the structure position, the plane flexible structure is arbitrarily placed at four
different positions (a D 0.5, a D 0.55, a D 0.65, and a D 0.75), whereas the fluid mesh remains
to be the same. The fluid and structure meshes used for this parametric study are the same as those
used in the previous section for the XFEM noncompatible case. The number of enriched nodes vary
from one configuration to an other because the zero-contour level-set is placed differently in the
fluid mesh: 1062 enriched nodes for a D 0.5, 1047 enriched nodes for a D 0.55, 1082 enriched
nodes for a D 0.65, and 1129 enriched nodes for a D 0.75. The different frequency response
functions are plotted in Figure 13. Because the first two resonances correspond to structure eigen-
frequencies, these are not shifted whereas all the cavity resonances are shifted according to the a
value. The limit case a D 0.5 is where the two cavities have exactly the same size, meaning that
their eigenfrequencies overlap.

5.1.4. Validation of the proposed approach. This application shows that the method can reproduce
a pressure discontinuity in a noncompatible mesh. The dB difference error between a reference
solution and the XFEM approach is small, even if the mesh used with the XFEM method contains
less elements. A parametric study of the position of a structure in the fixed fluid mesh of the empty
cavity is easy to perform and gives accurate results.
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Figure 13. Parametric study results for the parallelipipedic cavity separated by a structure.

R

L

F

L

h

Figure 14. One-fourth of a circular structure ring immersed in a thin cavity.
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Table VI. Data of the circular structure ring immersed in a
thin cavity.

Fluid Structure

L (m) 1 E (Pa) 70,000�106

h (m) 0.03 � 0.27
�S (kg�m�3) 2700

c0 (m�s�1) 340 e, thickness (m) 6�10�3

�F (kg�m�3) 1.2 R, radius (m) 0.8
F , harmonic load (N) 1

Table VII. Parameters and results of the convergence study for the immersed
circular ring.

Mesh a b c d e

Fluid elements 216 726 2646 10,086 196,830
Fluid nodes 98 288 968 3528 40,344
Element length 0.16 0.09 0.05 0.025 0.012
Mean dB difference 7.73 3.41 1.37 0.45 0.21

(d) Mesh d

(b) Mesh b

(c) Mesh c

(a) Mesh a

Figure 15. Iso-contours of the level-set for the immersed circular ring. (a) Mesh a; (b) mesh b; (c) mesh c;
(d) mesh d.
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5.2. Convergence study on an immersed circular ring structure

The accuracy of the method is principally based on the interface discretization. This discretization
depends on the fluid element length compared with the structure curvature. To study this effect on
the convergence, one-fourth of a circular ring structure is immersed in a thin square cavity of thick-
ness denoted by h (Figure 14 and Table VI). Boundary conditions as well as load are chosen such
that the solution of the problem is two dimensional.

One side of the structure is clamped; a harmonic load of amplitude 1 N is applied on the other
side. A reference solution is obtained by using a compatible mesh: 1018 nodes and 1676 elements
for the structure; 123,748 nodes and 631,012 elements for the fluid.

The structure mesh is chosen to be the same as for the reference solution. Five different structured
fluid meshes are used; their characteristics are shown in Table VII. The fluid mesh as well as the
level-set projections are shown for the first four meshes in Figure 15. It can be visually observed
that meshes a and b gives a quite inaccurate representation of the level-set, specially around the
circle center. The enriched elements are plotted in Figure 16 for the first four meshes: meshes a and
b have large partition of unity supports around the interface, leading to a poor approximation of the
Heaviside function enrichment.

The frequency response function is computed for these five fluid meshes and are compared with
the reference solution (Figure 17(a) and 17(b)). The frequency response function for mesh e is
not plotted because the difference with the reference solution cannot be observed visually. A dB
difference with the reference solution is computed for each mesh and for each frequency. This dB
difference is plotted in Figure 17(c) for meshes c and e because it is too large for meshes a and b;

(b) Mesh b

(d) Mesh d

(a) Mesh a

(c) Mesh c

Figure 16. Enriched elements for the immersed circular ring. (a) Mesh a; (b) mesh b; (c) mesh c;
(d) mesh d.
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(a) Frequency response function, mesh a and b (b) Frequency response function, mesh c and d

(c) dB difference with the reference solution (d) Mean dB difference

Figure 17. Results of the immersed circular ring. (a) Frequency response function, meshes a and b;
(b) frequency response function, meshes c and d; (c) dB difference with the reference solution; (d) mean

dB difference.

it is arbitrarily cut up to a value of 5 dB. To quantify the influence of the mesh size, a mean dB
difference (denoted by 
) is computed for each mesh using the following simple formulae;


 D
P

dB difference
Number of frequency steps

. (53)

This mean dB difference (Table VII) is compared with the relative characteristic fluid mesh size to
the radius of the circular structure in Figure 17(d). This last plot is more qualitative than quantita-
tive; however, it gives a trend on how the fluid mesh size has to be compared with the curvature to
give enough accurate results:

� The fluid element length has to be less than 1=20 of the radius to have less than an average of
2 dB difference (c, d , and e meshes).

� A fluid element length larger than around 1=5 gives inaccurate results (a mesh).

The fluid mesh has thus to be prepared before the parametric study such that it is fine enough in the
area where large structure curvatures are supposed to be.

5.3. Application to an industrial-like problem: an aircraft cabin

A cavity containing one or two separate flexible structures is considered. The geometry and the
dimensions of the cavity and the structures are described in Figure 18 and in Table VIII. This case
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L2

L1

loaded point A

Figure 18. Aircraft cabin geometry.

Table VIII. Data of the aircraft cabin.

Fluid Structure

L1 (m) 3 E (Pa) 70000�106

L2 (m) 2.7 � 0.27
H (m) 2 �S (kg�m�3) 2700
R 1=2

q
H2 CL2

2 e, thickness (m) 6�10�3

c0 (m�s�1) 340 r (m) 0.6
�F (kg�m�3) 1.2 l1 (m) 1.6

l2 (m) 0.5

(a) Fluid mesh, 121789 tetrahedra and
20832 nodes

(b) Structure mesh, 2228
triangles and 1168 nodes

Figure 19. Fluid and structure meshes of the aircraft cabin. (a) Fluid mesh, 121,789 tetrahedra and 20,832
nodes; (b) structure mesh, 2228 triangles and 1168 nodes.

aims at being representative of an aircraft cabin with seats. The structures are simply supported
(three fixed translations) on their bottom edges. One structure is loaded by an harmonic force of
amplitude 1 in the three directions (total norm is

p
3) at point A. The frequency range is 30 to

100 Hz. Three configurations are studied:

� Configuration a: one structure, aD 0.6 m.
� Configuration b: one structure, aD 0.2 m.
� Configuration c: two opposite symmetric structures, aD 0.6 m and b D 0.6 m.

The used meshes for the fluid and the structures are shown in Figure 19. For each configuration,
the enriched elements are plotted in Figure 20, which shows that the restriction on the fluid element
length around the structure (see Section 5.2) is fulfilled.
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(a) Configuration a (b) Configuration b (c) Configuration c

Figure 20. Enriched elements for the three configurations of the aircraft cabin. (a) Configuration a;
(b) configuration b; (c) configuration c.

(a) FRF, configuration a (b) FRF, configuration b

(c) FRF, configuration c (d) dB difference

Figure 21. Frequency response function of the aircraft cabin. (a) FRF, configuration a; (b) FRF, configura-
tion b; (c) FRF, configuration c; (d) dB difference.

The frequency response for each configuration as well as the dB difference with a reference solu-
tion obtained with a compatible mesh are plotted in Figure 21(a), 21(b), and 21(c) for configurations
a, b, and c, respectively. The dB difference is less than 0.5 dB in this frequency range for the three
configurations apart around the resonances.

For each configuration, a representation of the pressure field and the structural displacement is
plotted in Figure 22 for frequencies close to resonances. For configuration c at the 86.3 Hz reso-
nance (Figure 22(f)), whereas only one structure is loaded by an external force, the second structure
vibrates at the same displacement level as the first one: the coupling between the two structures is
realized by the acoustic fluid.
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(e) Configuration c, fluid pressure, 86.3Hz (f) Configuration c, structure displacement,
86.3Hz

(a) Configuration a, fluid pressure, 50.4Hz (b) Configuration a, structure displace-
ment, 50.4Hz

(c) Configuration b, fluid pressure, 88.7Hz (d) Configuration b, structure displace-
ment, 88.7Hz

Figure 22. Pressure field and structure displacement for the three configurations close to a chosen reso-
nance. (a) Configuration a, fluid pressure, 50.4 Hz; (b) configuration a, structure displacement, 50.4 Hz;
(c) configuration b, fluid pressure, 88.7 Hz; (d) configuration b, structure displacement, 88.7 Hz;

(e) configuration c, fluid pressure, 86.3 Hz; (f) configuration c, structure displacement, 86.3 Hz.

This last case demonstrates the ability and the flexibility of the method to deal with more complex
problems where one or several structures are placed arbitrarily in an acoustic cavity.

6. CONCLUSIONS

The proposed method aims at avoiding remeshing process when performing a parametric study of
different structure positions in an acoustic cavity. The structures are considered with no thickness in
the fluid domain, and the fluid is supposed to be present on both sides of the structures. Therefore,
the structures introduce pressure discontinuities through the fluid–structure interfaces. The XFEM
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is used because it is well suited to model such discontinuities inside elements, allowing to keep the
same fluid mesh for all the structure positions in the cavity. The pressure enrichment is chosen as
the Heaviside function on the basis of the signed distance to the structures.

The implementation is carried out in three dimension using four-node tetrahedral elements for
the fluid and three-node discrete Kirchhoff triangle shell elements for the thin structures. A first
application involving a plane structure in a parallelipipedic cavity shows the good ability of the
method to deal with a plane surface of discontinuity. Moreover, several positions of the structures
are computed, keeping the same fluid mesh for the whole parametric study.

A second case, made of a circular structure immersed in a thin squared fluid domain, enables
studying the convergence of the method in terms of number of elements needed to represent cor-
rectly the fluid–structure interface. It turns out that the length of a fluid element has to be smaller
than 1=10 of the curvature radius of the structure around the interface. The fluid mesh has then to be
built a priori with this condition according to the possible positions of the structures in the paramet-
ric study. A classical compatible mesh method would have the same restriction, but a mesh would
have to be made for each configuration. This restriction could be less severe if the used fluid ele-
ment approximation was be quadratic (10-node tetrahedral elements for instance), but for simplicity
reasons, it has not been tested in this first work.

Finally, an industrial-like problem is studied, taking care of the previous recommendations for the
fluid mesh. Three structure configurations are computed involving one or two structures. Results are
in good agreement with reference solutions, showing that the developed approach is well suited for
complex problems close to industrial applications.
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