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The inability to predict heterologous gene expression levels pre-
cisely hinders our ability to engineer biological systems. Using
well-characterized regulatory elements offers a potential solution
only if such elements behave predictably when combined. We
synthesized 12,563 combinations of common promoters and ribo-
some binding sites and simultaneously measured DNA, RNA, and
protein levels from the entire library. Using a simple model, we
found that RNA and protein expression were within twofold of
expected levels 80% and 64% of the time, respectively. The large
dataset allowed quantitation of global effects, such as translation
rate on mRNA stability and mRNA secondary structure on trans-
lation rate. However, the worst 5% of constructs deviated from
prediction by 13-fold on average, which could hinder large-scale
genetic engineering projects. The ease and scale this of approach
indicates that rather than relying on prediction or standardization,
we can screen synthetic libraries for desired behavior.

next-generation sequencing | synthetic biology | systems biology

Organisms can be engineered to produce chemical, material,
fuel, and medical products that are often superior to non-

biological alternatives (1). Biotechnologists have sought to dis-
cover, improve, and industrialize such products through the use
of recombinant DNA technologies (2, 3). In recent years, these
efforts have increased in complexity from expressing a few genes
at once to optimizing multicomponent circuits and pathways (4–
7). To attain desired systems-level function reliably, careful and
time-consuming optimization of individual components is re-
quired (8–11).
To mitigate this slow trial-and-error optimization, two domi-

nant approaches have taken hold. The first approach seeks to
predict expression levels by elucidating the biophysical rela-
tionships between sequence and function. For example, several
groups have modified promoters (12, 13) and ribosome binding
sites (RBSs) (14–16) to see how small sequence changes affect
transcription or translation. Such studies are fundamentally
challenging due to the vastness of sequence space. In addition,
because these approaches mostly look at either transcription or
translation individually, they are rarely able to investigate inter-
actions between these processes.
The second approach uses combinations of individually char-

acterized elements to attain desired expression without directly
considering their DNA sequences (17–25). Current efforts have
focused on approaches to limit the number of time-consuming
steps required to characterize potential interactions and on
identifying existing or engineered elements that act predictably
when used in combination (26–28). However, these studies still
suggest there are enough idiosyncratic interactions and context
effects that it will be necessary to construct and measure many
variants of a circuit to achieve desired function (29). For larger
circuits, such approaches are necessarily limited in scope due to
the difficulty in measuring large numbers of combinations (26, 27).

Here, we overcome previous limitations in generating and
measuring large numbers of regulatory elements by combining
recent advances in DNA synthesis with novel multiplexed methods
for measuring DNA, RNA, and protein levels simultaneously
using next-generation sequencing. We use the method to char-
acterize all combinations of 114 promoters and 111 RBSs and
quantify how often simple measures of promoter and RBS
strengths can accurately predict gene expression when used in
combination. In addition, because we measure both RNA and
protein levels across the library, we can quantify how translation
affects mRNA levels and how mRNA secondary structure affects
translation efficiency. Finally, the size of the characterized library
also provides a resource for researchers seeking to achieve par-
ticular expression levels. In lieu of using standardized elements
or prediction-based design, library synthesis and screening allows
precise tuning of expression in arbitrary contexts.

Results
Library Design, Construction, and Initial Characterization. To explore
the effects of regulatory element composition systematically,
we designed and synthesized all combinations of 114 promoters
with 111 RBSs (12,653 constructs in total; one combination re-
sulted in an incompatible restriction site). We used 90 promoters
from an existing library from BIOFAB: International Open Fa-
cility Advancing Biotechnology, 17 promoters from the Ander-
son promoter library on the BioBricks registry, 6 promoters from
common cloning vectors, and a spacer sequence chosen as
a negative control. From RBSs, we used 55 RBSs from the
BIOFAB library, 31 from the Anderson BioBrick library, 13
from the Salis RBS Calculator (14) expected to give a range of
expression, 12 commonly used RBSs from cloning vectors and
the BioBrick Registry, and one sequence chosen as a negative
control (reverse complement of canonical RBS sequence).
We synthesized the construct library using Agilent’s oligo library

synthesis (OLS) technology (30) and cloned at ∼50-fold coverage
into a custom medium-copy vector (pGERC), where the constructs
drive expression of superfolder GFP (31) (Fig. S1). pGERC also
contains an mCherry (32) reporter under constant expression by
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PLTetO-1 (33) to act as a control for extrinsic noise (Fig. 1A). We
grew the library to early exponential phase and characterized ex-
pression levels by flow cytometry. As expected, cells in the library
expressed constant levels of mCherry, whereas expression levels of
GFP varied over four orders of magnitude (Fig. 1B). We sequence-
verified 282 colonies and found that 154 (55%) were error-free.
We measured fluorescence levels of 144 of the unique error-free
colonies individually to act as a defined set of controls (Fig. 1C).

Multiplexed Measurements of DNA, RNA, and Protein Levels. We
grew the entire pooled library to early exponential phase and
performed multiplexed measurements of the steady-state DNA,
RNA, and protein levels. We used sequencing, DNASeq and
RNASeq, to obtain steady-state DNA and RNA levels, respec-
tively, across the library (12). For obtaining protein levels, we
used FlowSeq, which combines fluorescence-activated cell sort-
ing and high-throughput DNA sequencing and is similar in de-
sign to recently published work (34, 35). Briefly, we sorted cells
into 12 log-spaced bins of varying GFP/mCherry ratios; isolated,
amplified, and barcoded DNA from each of the bins; and then
used high-throughput sequencing to count the number of con-
structs that fell into each bin (Fig. 1 A and D). Using the read
counts from each of the bins, we reconstructed the average

expression level for each construct. Because our library contains
a mixture of perfect and imperfect constructs, we only use reads
that match the fully designed sequences perfectly, and thus filter
out the effects of synthesis error.
Using DNASeq, we detected 98.5% of constructs and there

was high concordance between technical replicates (R2 = 0.997;
Figs. S2 and S3). Most of the missing constructs and constructs
with few DNA reads (which prevented accurate RNA level
measurements) were expected to have very high expression lev-
els, indicating either growth defects or cloning issues (Figs. S4
and S5). RNA level calculations also showed high concordance
between technical replicates (R2 = 0.995; Fig. S5). Overall, RNA
levels varied by three orders of magnitude, but within a single
promoter, the coefficient of variation was only 0.63 (Fig. 2, Left
and Fig. S6). RNASeq data also allowed us to identify dominant
transcriptional start sites for most promoters (Fig. S7). Eighty-
seven percent of all promoters had one dominant start position
(>60% of all mapped reads). Two promoters (marked with
asterisks in Fig. S7) had very few uniquely mapping reads, did
not show a strong start site, and showed unrealistic translation
efficiency calculations. These observations indicated that we
were missing most of the RNA (but not protein) reads from
these promoters, possibly because of transcription starting after
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Fig. 1. Library characterization and workflow. (A) We synthesized all combinations of 114 promoters and 111 RBS sites to create a library containing 12,653
constructs. The library was then cloned into an expression plasmid to express superfolder GFP, and mCherry was also independently expressed from a con-
stitutive promoter to act as an intracellular control. The cell library was harvested for DNASeq, RNASeq, and FlowSeq to quantify DNA, RNA, and protein
levels, respectively, for each construct. In FlowSeq, cells were sorted into bins of varying GFP-to-mCherry ratios, barcoded, and sequenced to reconstruct
protein levels for each individual construct. (B) GFP expression levels for the library varied over approximately four orders of magnitude compared with
relatively constant red fluorescence (Inset). (C) One hundred forty-four sequence-verified clones were individually subjected to flow cytometry analysis to act
as controls. Displayed are GFP levels of two representative clones, P007-R065 (Left) and P081-R062 (Right), which show that individual constructs generally fall
into 2 to 3 bins. (D, Upper) Library is split into 12 log-spaced bins based on the GFP-to-RFP ratio. (D, Lower) Individual bins have large differences in the
number of cells that fall into each one.
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the end of the barcode sequence preventing unique identifica-
tion. The 222 constructs (1.7%) containing these promoters were
removed from all analyses.

Using FlowSeq, we were able to reconstruct expected protein
levels for 94% of the constructs (Fig. 2, Right). As expected,
individual constructs mostly fell into one to three contiguous
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Fig. 2. RNA and protein level grids. The RNA (Left) and protein (Right) levels for all 12,653 constructs are plotted on a grid according to the identity of construct’s
promoter (y axis) and RBS (x axis). Promoters and RBSs are sorted by average RNA and protein abundance, respectively. Gray boxes indicate constructs that were
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B

C D Fig. 3. Library measurements vs. individual colony and spike-
in controls. (A) Protein levels for 141 sequence-verified con-
structs characterized by at least two flow cytometry measure-
ments plotted against their FlowSeq-estimated protein levels.
One construct of 142 is missing because it had insufficient reads
in the FlowSeq analysis. (B) RNA levels for 41 constructs as
measured in our library plotted against control constructs
spiked into a separate library. One construct of 42 is missing
because it had no reads in the spike-in data. (C) Protein levels
for 42 control constructs spiked into a separate library plotted
against protein levels for those same constructs measured at
least twice by flow cytometry. (D) Protein levels for 42 control
constructs spiked into a separate library are plotted against
protein level measurements as measured in our promoter +
RBS library. (All R2 values for linear regressions pass an F test
with a P value <2.2e-16.). RFU, relative fluorescent units.
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flow-sorted bins (Fig. S8). The average protein expression levels
displayed a large range and were highly correlated with the in-
dependently characterized constructs (R2 = 0.94; Fig. 3A and
Fig. S9). Due to the boundaries of our sorted bins, we deter-
mined that accurate quantitation was limited within a maximum
and minimum range; 6.5% of the constructs were above and
14% were below this range (Fig. S9). Again, most constructs with
missing measurements (insufficient or zero reads) contained
combinations of strong promoters and RBSs. We calculated
average promoter and RBS strengths by averaging transcription
levels and translation efficiency (protein/RNA), respectively
(Datasets S1 and S2). Promoters and RBSs were ordered and
named based on their relative deviation from the average ele-
ment (SI Materials and Methods).
Finally, we spiked 42 of the individual clones into a separate

library (not analyzed here) and performed DNASeq, RNASeq,
and FlowSeq to test reproducibility in biological replicates. Once
again, protein levels were highly correlated with the individual
measurements (R2 = 0.91; Fig. 3C). Reconstructed values for
RNA and protein levels also matched well between independent
runs (R2 = 0.89 and R2 = 0.90, respectively; Fig. 3 B and D).

Composability of Gene Expression. Our large dataset allows us to
measure the extent to which combining regulatory elements led
to predictable outcomes. Using a simple model for gene expres-
sion, where promoter strengths determine RNA levels and RBS
strengths determine translation efficiencies, we reconstructed ex-
pected expression across all constructs and compared them with
measurements (Fig. 4). We find that 80% of RNA levels and 64% of
protein levels fall within twofold of the model predictions, and had
R2 = 0.92 and R2 = 0.76 for RNA and protein, respectively (Fig.
S10 A and B).
When unexpected levels of expression do occur, they can be

quite large; the largest 5% of protein model deviations are off by
an average of 13-fold. Such unpredictability makes precise en-
gineering of large systems intractable. The ease and scale of
these measurements indicate that rather than using prediction
or standardization to construct a single design, we can construct
a library to screen for desired expression levels when optimizing
large genetic systems. Desired RNA and protein levels for an
entire pathway of genes could be chosen from measurements
across subsets of promoters and RBSs for each gene. For exam-
ple, given a desired protein level, we can choose from many se-
quence-divergent promoter and RBS combinations that achieve
desired transcription and translation strengths of GFP (Table 1).

Table 1. Lookup table of regulatory elements for given RNA and protein levels

Protein levels Low RNA, 0.5 ± 0.13 Medium RNA, 2.1 ± 0.53 High RNA, 6.9 ± 1.73

Low protein: 7,393 ± 1,848 107
P041-R034, P051-R032, P042-R013

69
P084-R002, P070-R006, P061-R040

23
P092-R022, P095-R002, P097-R039

Med protein: 39,450 ± 9,863 95
P055-R032, P017-R107, P022-R096

178
P070-R031, P035-R107, P060-R089

157
P086-R028, P109-R015, P094-R006

High protein: 152,484 ± 38,121 3
P018-R110, P029-R108, P031-R102

252
P055-R055, P049-R090, P056-R086

338
P089-R052, P077-R100, P086-R055

We chose three levels of low (17th percentile), medium (50th percentile), and high (83th percentile) RNA and protein levels and determined how many
promoter and RBS combinations fall within 25% of those desired levels. The total number of combinations that fall within each range is shown in boldface,
along with three examples from each group. RNA levels are given as the measured RNA/DNA ratio, and protein levels are given in relative fluorescence units.
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Interactions between RNA and Protein Levels.We conducted a more
detailed ANOVA (27), where both RNA and protein levels are
independently determined by both promoter and RBS identity.
This model is able to take into account effects such as the de-
pendency of RNA levels on the translation rate. We found that
the model resulted in a modestly better fit (RNA R2 = 0.96,
protein R2 = 0.82; Fig. S10 C and D). Analysis of explained
variance showed that 92% of the RNA levels can be explained by
the promoter choice, whereas only 4% can be explained by the
RBS choice and the remaining 4% are unexplained (Fig. 5A).
For protein levels, both promoter choice (54% explained varia-
tion) and RBS choice (30%) are important, but a larger portion
remains unexplained (16.7%).
To understand better how factors such as RBS choice can

affect RNA levels, we examined interactions between RNA and
protein levels. For example, several previous studies in Escherichia
coli and Bacillus subtilis have shown that for particular model
transcripts, increased ribosome binding or occupancy may en-
hance mRNA stability (36–42). Such studies have been hard
to interpret due to the complex interactions between the ribo-
some, RNA degradation machinery, and transcript. We indeed
find a significant and prevalent correlation between mRNA sta-
bility and RBS strength across all promoters. Given the size and
sequence diversity of our library, it is likely that RBS strength
is responsible for increased mRNA levels. Overall, we find

that an ∼10-fold increase in translation efficiency correlates to an
approximately threefold increase in RNA abundance (Fig. 5B).
However, the effect is limited at the extremes; the difference
between the weakest and strongest RBSs (an 87-fold increase in
translation efficiency) corresponds to only an ∼4.3-fold increase
in mRNA. As another example, many groups have found that
secondary structure across the 5′ UTR and initial coding se-
quence can hinder effective translation (14, 43–46). In our data,
we find that the correlation between secondary structure free
energy across the UTR/GFP interface is significant (Fig. 5C).
However, this metric of secondary structure is neither necessary
nor sufficient, because many sequences with high secondary
structure do not display reductions in expected expression, and
vice versa. Improved models for how secondary structure inter-
acts with ribosome binding could increase this correlation (14).

Discussion
We developed a method to characterize transcription and trans-
lation rates of thousands of synthetic regulatory elements simul-
taneously. We used this method to characterize the extent to which
promoters and RBSs can be independently composed. This large
RBS-promoter pair library can be used to titrate recombinant
protein expression in E. coli, and the expression data can be used
to refine models of how sequence composition determines levels
of gene expression.
We do not examine how expression is altered by a gene’s

amino acid composition and codon use, which are known to have
large effects (26, 43–46). In follow-up work, we explore the in-
fluence of these two factors across a matrix of coding sequences,
promoters, and RBSs. Another limitation of our current ap-
proach is that we do not examine how expression affects cellular
growth rate. Highly expressed constructs might impair the
growth rate and decrease steady-state dilution of cellular con-
tents, which would lead to an overestimation of transcription and
translation strengths. We analyze only promoter and RBS pair-
ings here, but future studies can test large numbers of any
composable genetic designs to assess their effectiveness on
a broad basis (26, 28).
The methods developed here should be extendable to any

organism that is amenable to fluorescence-activated cell sorting
and RNASeq, such as other bacteria, yeast, and mammalian cell
lines. In addition, our methods can used to optimize more com-
plex phenomena, including inducible expression, gene circuits,
and time-dependent responses. Finally, improvements in the
quality and length of synthetic oligo pools can also extend such
analyses to the characterization of regulatory protein variants or
longer range interactions.

Materials and Methods
Strains, Library Construction, and Growth Conditions. We used E. coli MG1655
(Yale Coli Genetic Stock Center no. 6300) for all experiments. The oligo li-
brary was constructed by Agilent Technologies using the OLS process (30).
The design of pGERC is based on the synthetic plasmid pZS-123 (33), which
allows independent expression from three promoters, and it was synthe-
sized by DNA2.0, Inc. The amplified OLS pool was subcloned into
5α-electrocompetent E. coli (New England Biolabs) (giving an initial library
size of ∼600,000 colonies), purified, and retransformed into MG1655, and
several aliquots were frozen. Overnight cultures from both pooled experi-
ments and individual clones were first diluted 1,000-fold grown at 30 °C in
LB–Miller media shaking at 250 rpm (Infors HT Multitron) for 2–3 h until
reaching an OD600 of 0.15–0.25. Detailed information can be found in SI
Materials and Methods.

DNASeq and RNASeq. From a single 300-mL culture of the library, pellets from
four 50-mL aliquots of culture were frozen in liquid nitrogen, with the
remaining culture saved for FlowSeq. Two technical replicates of DNA and
RNA were isolated using Qiagen DNA and RNA Midiprep Kits. Ribosomal
RNA was removed by means of a Ribo-Zero rRNA removal kit for meta-
bacteria (Epicentre). The 5′ triphosphates were monophosphorylated by 5′
polyphosphatase (Epicentre) and then ligated to an RNA adaptor using T4
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Fig. 5. ANOVA explained variance and composition effects of promoter
and RBS pairs. (A) Explained variance (as percentages of the sum of squared
deviations) for RNA and protein measurements using ANOVA. One pie chart
shows partitioned variance for RNA measurements (Left), whereas the other
chart shows partitioned variance for protein measurements (Right). “Re-
sidual” indicates the unexplained variance in the model. (B) Deviation from
expected RNA level is correlated with RBS strength. RBSs are partitioned into
five groups based on increasing average translation strength. (C) Free en-
ergy of a transcript’s 5′ secondary structure (transcription start site to +30 of
superfolder GFP) is correlated with average deviation from the expected
protein level. Average deviations are partitioned into six equal ranges.
Brackets at the top indicate two-sample Student t tests with P values <2e-5
(**) and <0.02 (*). The box plot displays the median, with hinges indicating
the first and third quartiles. Whiskers extend to farthest point within 1.5-
fold of the interquartile range, with outliers shown as points.
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RNA Ligase (Epicentre). First-strand cDNA was made from a specific primer
in superfolder GFP. Both DNA and cDNA were amplified and monitored by
real-time PCR to prevent overamplification. Illumina adaptors and barc-
odes were then added, and sequencing was performed on a HiSeq 2000 in
two separate PE100 lanes. A separate library that contained spike-ins from
the 42 colonies underwent the same procedure. Detailed information can
be found in SI Materials and Methods.

FlowSeq. We used 50 mL of the library culture as prepared above for analysis
by FlowSeq. We flow-sorted the cells into 12 log-spaced bins in three se-
quential runs sorting 4 bins each. Cells were then grown overnight to satu-
ration and plasmid-prepped using a Qiagen Miniprep kit. A small aliquot was
diluted, regrown, and subjected toflow cytometry to verify proper sorting. All
data from library measurements are reported in GFP/RFP ratio units, which
range from 1 to 255,000. The 12 minipreps were amplified again by real-time
PCR, barcoded, and sequenced on a single-lane PE100 using a HiSeq 2000.
Detailed information can be found in SI Materials and Methods.

Data Analysis. Reads from all experiments were first aligned using SeqPrep
(47) to form paired-end contigs for improved accuracy. Custom software was
written to identify unique contigs and map them to library members using
Bowtie (48) and grep (global search with the regular expression and printing
all matching lines). DNASeq and RNASeq contigs were counted, where reads
mapped uniquely and contained less than three mismatches. In addition,
DNA contamination from RNASeq reads was identified and removed. Statis-
tics, graphs, and tables were all generated using custom software written in
Python, R, and the ggplot2 package (49). Detailed information can be found in
SI Materials and Methods. All values used in intermediate and final calculations
are enumerated in Dataset S3.
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