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Abstract — Solving the 3-D elastodynamic equations using traditional boundary element meth-
ods (BEMs) is greatly hindered by the fully-populated nature of the BEM matrix. In a previous
study limited to homogeneous media, we have established that the Fast Multipole (FM) method
reduces the complexity of a 3-D elastodynamic BEM to N logN per GMRES iteration. Here, the
methodology is extented to piecewise-homogeneous domains using a FM-accelerated multi-region
BE-BE coupling. Numerical examples, and a simple preconditioning approach, are presented.

Keywords — Fast Multipole Method, Multi-region problems, Elastodynamics.

1 Introduction

Numerical methods proposed to date for computing seismic wave propagation in alluvial basins
exploit series expansions, multipolar expansions of wave functions, finite elements, finite differ-
ences, spectral elements, or boundary elements, each approach having specific advantages and
limitations. The main advantage of the boundary element method (BEM) is that only the domain
boundaries (and possibly interfaces) are discretized, leading to a reduction of the number of de-
grees of freedom (DOFs), and avoiding cumulative effects of grid dispersion. However, the stan-
dard BEM leads to fully-populated matrices, which results in high computational costs in CPU
time (O(N2) per iteration using an iterative solver such as GMRES) and memory requirements
(O(N2)), where N denotes the number of DOFs of the BEM model. The appearance of accel-
erated boundary element (BE) methodologies, and especially the rapid development of the Fast
Multipole Method (FMM) over the last 10-15 years, has dramatically improved the capabilities
of BEMs for many areas of application through solution speedup, memory requirement reduction,
and model size increase. To date, only few studies on the FMM in elastodynamics (including [5]
for the frequency-domain case) are available. In [1], the FMM for homogeneous semi-infinite
elastic propagation domains is improved by incorporating recent advances of FMM implemen-
tations for Maxwell equations [3], allowing to run BEM models of size up to N = O(106) on a
single-processor PC. The present contribution aims at extending the formulation of [1] to multi-
domain situations, with emphasis on alluvial-basin configurations, by developing a FMM-based
BE-BE coupling approach suitable for 3-D piecewise-homogeneous media.
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2 Standard and fast multipole accelerated boundary element method

Single-region boundary element method. Let Ω denote a region of space occupied by an
isotropic elastic solid characterized by µ (shear modulus), ν (Poisson’s ratio) and ρ (mass density).
A time-harmonic motion with circular frequency ω is assumed, and the implicit factor e−iωt will
be systematically omitted. Assuming the absence of body forces, the displacement u is governed
by the well-known boundary integral equation (BIE)

cik(x)ui(x)+ (P.V.)
Z

∂Ω

ui(y)T k
i (x,y;ω)dSy−

Z
∂Ω

ti(y)Uk
i (x,y;ω)dSy = 0 (1)

where t is the traction vector on the boundary ∂Ω with outward unit normal n(y), (P.V.) indi-
cates a Cauchy principal value (CPV) singular integral, Uk

i (x,y;ω) and T k
i (x,y;ω) denote the i-th

components of the elastodynamic fundamental solution, i.e. of the displacement and traction,
respectively, generated at y ∈ R3 by a unit point force applied at x ∈ R3 along the direction k:

Uk
i (x,y;ω) =

1
4πk2

Sµ

(
(δqsδik−δqkδis)

∂

∂xq

∂

∂ys
G(|y−x|;kS)+

∂

∂xi

∂

∂yk
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)
,

T k
i (x,y;ω) = µ

[ 2ν

1−2ν
δi jδk` +δikδ j` +δ jkδi`

]
∂

∂y`
Uk

h (x,y;ω)n j(y), (2)

k2
S = ρω

2/µ, 2(1−ν)k2
P = (1−2ν)k2

S

in which G(r;k) = exp(ikr)/(4πr) is the free-space Green’s function for the Helmholtz equation
with wavenumber k corresponding to either P or S elastic waves, and the free-term cik(x) is equal
to 0.5δik in the usual case where ∂Ω is smooth at x. The numerical solution of BIE (1) is based
on a boundary element (BE) discretization of the surface ∂Ω and boundary traces (u, t), leading to
the system:

[K]{v}= { f}, (3)

where the N-vector {v} collects the unknown degrees of freedom (DOFs).

Fast Multipole Method: principle. BEM matrix equations such as (3) are here solved itera-
tively using GMRES. The influence matrix [K] is fully-populated. Each GMRES iteration requires
one evaluation of [K]{v} for given {v}, a task requiring a computing time of order O(N2) using tra-
ditional BEM techniques. To lower this O(N2) complexity, unacceptable for large BEM models,
fast BEM solutions techniques such as the Fast Multipole Method (FMM) must be employed.

In general terms, the FMM exploits a reformulation of the fundamental solutions in terms
of products of functions of x and of y, so that (unlike in the traditional BEM) integrations with
respect to y can be reused when the collocation point x is changed. Using the so-called multi-
level FMM allows to reduce the complexity of a GMRES iteration to O(N Log N); moreover,
the governing BEM matrix is never explicitly formed, which leads to a storage requirement well
below the O(N2) memory required for holding it. The reader is referred to [1] for details on the
FMM and its implementation for single-domain elastodynamic problems.

3 FM-accelerated BE-BE coupling

Continuous BEM formulations for seismic wave propagation. This formulation, and its present
implementation based on the multi-domain FM-accelerated BEM, are geared towards geometrical
configurations involving a semi-infinite homogeneous reference medium with topographic irregu-
larities and alluvial deposits (henceforth generically referred to as irregularities, Fig. 1).

In the following, ΩF denotes the free half-space {x = (x1,x2,x3) | x3 < 0} bounded by the
infinite traction-free surface ΓF = {x | x3 = 0}. Configurations treated in this article are pertur-
bations of the free half-space ΩF , where irregularities occur only in a region of finite size. For
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Figure 1: Propagation of seismic waves in complex geological structures (alluvial deposits, basins): vari-
ous geometries and related notations.

such configurations, the displacement vector u is split into u = uF + uS, where uF characterizes
the free-field, a known seismic wave in the reference free half-space ΩF composed of the incident
waves and those reflected from the planar free surface ΓF , so that tF = 0 on ΓF . The scattered
displacement uS then arises due to the presence of irregularities. On any non-planar part of the
free surface, one has tS + tF = 0.

The governing equation for the total field in Ω1 (using shorthand notations Uk
i and T k

i instead
of Uk

i (x,y;ω) and T k
i (x,y;ω) for convenience) is:

cik(x)ui(x)+
Z

Γ1∪Γ(D)
u1

i (y)T k(1)
i dSy +

n

∑
m=2

(Z
Γ1m

u1m
i (y)T k(1)

i dSy

)
−

Z
Γ1

t1
i (y)Uk(1)

i dSy

−
n

∑
m=2

(Z
Γ1m

t1m
i (y)Uk(1)

i dSy

)
= cF

ik(x)uF
i (x)+

Z
ΓF (D)

uF
i (y)T k(1)

i dSy, ∀x ∈ ∂Ω1 (4)

while the total field in subdomain Ω` (` > 1) is governed by the integral equation:

cik(x)ui(x)+
Z

Γ`

u`
i (y)T k(`)

i dSy +
`−1

∑
m=2

Z
Γ`m

(
um`

i (y)T k(`)
i + tm`

i (y)Uk(`)
i

)
dSy

+
n

∑
m=`+1

Z
Γ`m

(
u`m

i (y)T k(`)
i − t`m

i (y)Uk(`)
i

)
dSy = 0, ∀x ∈ ∂Ω`, (2≤ `≤ n) (5)

In equations (4) and (5), Uk(`)
i and T k(`)

i denote the fundamental solutions defined in terms of the
material parameters of Ω`, and ui(x) in the free-term stands for either u`

i (x) or u`m
i (x), according

to whether the collocation point x lies on Γ` or Γ`m. Moreover, use has been made of the free
surface condition on Γ` and the perfect-bonding transmission conditions u`m = um`, t`m = −tm`

to establish equations (5) [2].
The coupled BE-BE formulation to be presented next will then be based on combining discrete

versions of equation (4) and equations (5) written for each subregion Ω` (`≥ 2). It is similar to the
one used for two subdomains in [5], but more general as (i) it is applicable to an arbitrary number
of subdomains and (ii) it accomodates irregularities going above or through the free surface.

BE-BE coupling strategy. The present discrete coupled BE-BE formulation results from com-
bining discrete versions of equation (4) and equations (5) written for each subregion Ω` (`≥ 2). It
is similar to the one used for two subdomains in [5], but more general as (i) it is applicable to an ar-
bitrary number of subdomains and (ii) it accomodates irregularities going above or through the free
surface. Its present implementation is based on three-noded triangular BEs, piecewise-linear inter-
polation of displacements, and piecewise-constant interpolation of tractions. Since only Neumann
or transmission boundary conditions are considered here, the displacement is unknown at all mesh
nodes, while the traction is unknown on each interfacial element. The chosen "element-based"
traction interpolation permits traction discontinuities across edges. This is particularly convenient
when the latter involve "triple points" shared by three (or more) subregions, whereas "node-based"
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traction modelling would entail cumbersome adjustments due to the multiplicity of tractions from
adjacent faces at such points. The proposed BE-BE coupling formulation is designed so as to
invoke single-region FM-BEM computations in "black-box" fashion (here using the single-region
elastodynamic FM-BEM of [1]). To this end, a boundary integral equation is formulated for each
subregion Ωi (with material properties assumed homogeneous in each Ωi), and discrete BE equa-
tions are generated by using (i) all displacement nodes and (ii) all interfacial element centers as
collocation points ((i) and (ii) will subsequently be referred to as "nodal collocation" and "element
collocation", respectively). Each subregion is treated separately, using a separate octree for FMM
computations. The matrix-vector products arising in each of these integral equations can thus be
evaluated using the FM-BEM procedure for homogeneous media of [1].

The BE-BE coupling does not, however, just consist of concatenating all single-region BE
equations into one global system of equations, as the latter would be overdetermined as a result.
To ensure that the present BE-BE coupling yields a square global system of equations, judiciously
chosen linear combinations of BE equations generated at the subregion level, arising from collo-
cation at (a) interfacial element centers relative to either subregion adjacent to that element and
(b) displacement nodes shared by more than one subregion, are defined (see [2] for details). This
treatment is done externally to the FM-BEM computations, and handles easily cases of multiple
displacement nodes (e.g. triple points in the case of a two-layered basin).

4 Propagation and amplification of seismic waves in alluvial basins

In [1], the single-domain elastodynamic FMM has been compared to the results of [6] for the scat-
tering by an irregular homogeneous half-space of a plane vertical P-wave at normalized frequency
kPa/π = 0.25 (with ν = 0.25), and then applied to the same configuration at a higher frequency
(kPa/π = 5). Here, the present multi-domain implementation is applied to an example where a
plane vertically-incident P-wave of unit amplitude is scattered by a semi-spherical alluvial basin.
This example has been run on a single-processor PC (RAM: 3GB, CPU frequency: 3.40 GHz). As
in [6], we investigate the motion at the surface of the alluvial basin Ω2, for the following values of
the material parameters: µ(2) = 0.3µ(1), ρ(2) = 0.6ρ(1), ν(1) = 0.25 and ν(2) = 0.3. The normalized
frequency is defined by k(1)

P a/π in terms of the properties of the elastic semi-infinite medium Ω1.
The radius of the discretized free surface is set to D = 5a.

The surface displacements computed with the present multi-domain FMM are presented, along
with corresponding results from [6] (using series expansion method) and [4] (using spectral ele-
ment method), for k(1)

P a/π = 0.5 (Fig. 3a). All results are seen to be in good agreement. Addi-
tionally, the FMM allowed to perform computations at higher frequency k(1)

P a/π = 2 (Fig. 3b),
for which no published results are available for comparison purposes. The number of DOFs, the
size of the leaf cells and the leaf level ¯̀i in each subdomain Ωi are given in the table below for
the meshes used, together with the CPU time per iteration recorded. The iteration count is seen
to significantly impact the computational efficiency for problem sizes for which the CPU time per
iteration and the memory requirements are still moderate. An efficient preconditioning strategy is
clearly needed.

k(1)
P a/π N dmin/λS l̄1; l̄2 CPU (s) / iter nb iter.
0.5 17,502 0.15 3;3 8 28
2 190,299 0.30 5;4 79 325

5 Preconditionning strategy

The main limiting factor for the size of the studied examples was the very high iteration counts
reached, rather than the CPU time per iteration or the memory requirement. A preconditioning
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Figure 2: Propagation of an incident plane P-wave in a semi-spherical alluvial basin: notations.
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Figure 3: Propagation of an incident plane P-wave in a semi-spherical alluvial basin: surface displace-
ment at (a) k(1)

P a/π = 0.5 and comparisons with [6] and [4] and (b) k(1)
P a/π = 2.

strategy is clearly needed to improve convergence properties for the larger models.
A feature of the FMM is that the complete system matrix is not explicitly assemblied, the only

explicitly available matrix being the matrix Knear into which the near contributions are assembled.
In a first step towards the development of an efficient preconditioning strategy, a nested GMRES
solver has been implemented, where the preconditioning linear system based on M = Knear used as
right preconditioner is solved by the inner GMRES. Since the sparse matrix Knear is precomputed
and stored, this preconditioning strategy is efficient in terms of CPU time.

The efficiency of this preconditioning strategy has been tested on various problems involving
the scattering of plane waves by canyons or alluvial basins. One such example considers the
scattering of an oblique (θ = 30◦) incident plane P–wave by a semi-spherical basin of radius a
(with mechanical parameters given by ν(1) = 0.25, µ(2) = 0.3µ(1), ρ(2) = 0.6ρ(1), ν(2) = 0.3). The
free surface lies inside a disk of radius D = 5a and the mesh features N = 190,299 DOFs. The
non-dimensional frequency is set to k(1)

P a/π = 2. The relative tolerance is set to εinner = 10−1 for
the inner solver and εouter = 10−3 for the outer solver. The number of outer iterations is found to
be greatly reduced (from 388 to 26). The preconditioning strategy additionally involves 231 inner
iterations, which also influence the overall efficiency as they occur only in the preconditioned
version. The cumulative CPU time was found to be reduced from 7h59′27′′ to 2h30′54′′.

6 Diffraction of a vertical incident plane P–wave by an Alpine valley

The numerical efficiency of the present FM-BEM has been shown on canonical examples. Now,
the method is applied to a more realistic seismological application, namely the diffraction of a
vertical incident plane P–wave by an Alpine valley (Grenoble). In the bedrock, denoted Ω1, the P–
and S–velocities and mass density are set to c(1)

P = 5,600 m.s−1, c(1)
S = 3,200 m.s−1 and ρ(1) =

2,720 kg.m−3. The sedimentary basin Ω2 is modelled here with just one single homogeneous
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layer, with c(2)
P = 1,988 m.s−1, c(2)

S = 526 m.s−1 and ρ(2) = 2,206 kg.m−3.

Figure 4: Propagation of a vertical incident plane P–
wave in the Alpine valley: modulus of the z- compo-
nent of displacement for frequency f = 0.6 Hz.

The diffraction of a vertical incident
plane P–wave by the valley is considered for
f = 0.6 Hz. For this example, the number
of DOFs is N = 141,288, the leaf levels are
¯̀1 = 5 and ¯̀2 = 6. The CPU time per iter-
ation (without preconditioning) is 77 s, the
number of iterations is 747 and the cumu-
lative CPU time (with preconditioning strat-
egy) is 75h45′44′′. In Figure 4, the modulus
of the z- surface displacement component is
displayed. This example shows the possibil-
ity of very high amplifications inside the al-
luvial basin. It also underlines the current
limitation of the present FM-BEM to deal
with basin problems featuring a high veloc-
ity contrast between two layers, with a loss
of efficiency caused by highly non-uniform
meshes.

7 Conclusion

In this communication, a multi-domain fast multipole formulation has been proposed, based on
a previous single-region FMM [1] and a BE-BE coupling strategy. Comparisons with previously
published numerical results demonstrate the accuracy of the present implementation. The anal-
ysis of seismic wave propagation in canonical basins, for frequencies higher than in previously
published results, show the numerical efficiency of the method and its suitability for dealing with
realistic seismological applications. A simple and efficient preconditioning strategy has been pro-
posed, and its efficiency shown on basin problems. Further study is expected to bring improve-
ments on this issue. Other ongoing work deals with the formulation of multipole expansions of
the half-space fundamental solutions and with the FMM for attenuating media.
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