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Abstract

This draft is the third version of a preliminary document following a work presented
at the 14" International Conference on p—adic Analysis, in Aurillac, France, July 2016.
This version is a minor update fixing a few gaps and improving the algebraic notions.
The final version of this draft is to be submitted afterwards, at a date which is difficult
to estimate due to the lack of time and support. See also:

Henri Alex Esbelin and Remy Malgouyres. Sparse convolution-based digital deriva-
tives, fast estimation for noisy signals and approximation results, in Theoretical Computer
Science 624: 2-24 (2016).
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1 Algebraic Background

This section is devoted to presenting the rings and algebras which have enough properties to
develop the subsequent theory. All the rings and algebras considered throughout the paper are
assumed to be abelian, even when not specified.

1.1 Complete Archimedean Totally Ordered Abelian Rings

Definition 1.1 We call an ordered abelian ring (R, +, ., =) any abelian ring on which is defined
an order =, such that

1. forr,s,t € R with s <t thenr+ s < r+1t (translation invariance).

2. forr s, t € R with 0 <1 and s 2t then r.s X r.t (compatibility with the product).

Such a ring is called Dedekind-complete (or Complete for short) when any subset of R with
an upper bound has a supremum and any subset of R with a lower bound has an infemum.
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1.2 Complete Archimedean Totally Ordered Algebras R. Malgouyres and H.A. Esbelin

Definition 1.2 A complete abelian ordered ring (R, =<g) is called Archimedean if and only if
for any positive and nonzero | € R*, we have:

R=U{reR/r=2gnllandR=J{reR/ —(nl) 2z}

neN neN

where n.d = (37, 1).

Proposition 1.1 A Dedekind-complete Archimedean totally ordered abelian ring R which is
unitary (that is, the multiplication in R has a neutral element) is isomorphic (as an ordered
ring) either to the usual ordered ring 7 or to the usual ordered ring R.

Proof. Using a classical result on ordered rings, we see that R is isomorphic (as an ordered ring)
to an induced sub-ring of the field R provided with the usual order. Up to this isomorphism,
we may suppose now that R is an induced ordered sub-ring of R. We consider two cases:

First, assume that inf(R% ) = 1. Let 7 in R be greater than 1. Let no = inf{n € N / n > r}.
Then we have 0 <7 — (ng — 1) < 1 so that 0 =7 — (np — 1). This shows that R% = N so that
R=2Z.

Second, assume that RN]0; 1[# (). Then there exist in R some element s such that 0 < s <
%. Let = be a positive real number. Consider now X = {r € R;0 < r < z}. It is obviously
bounded in R so that it has a supremum ry € R. Now we prove that x = rq which, the number
x being arbitrary, will prove R = R.

The suppremum of X must be less than x, which is an upper bound for X, which means
ro < x. Now, if © > rg, then for n large enough we have s" < x — r¢, so that rqg < rq+ s" < x,
yielding a contradiction. O

1.2 Complete Archimedean Totally Ordered Algebras

In all this section, R is a unitary Dedekind-complete Archimedean totally ordered abelian ring.

Definition 1.3 An ordered algebra on R is a tuple (A, R, < 4), where R is a Dedekind-complete
Archimedean totally ordered abelian ring, A is an R—algebra (i.e. provided with an R—module
structure given by a product by scalars of R, and an abelian addition operation denoted by
+, and also provided with an internal product operation, denoted by ., with distributivity with
respect to 4+, and which is here assumed to be abelian) and < is a complete partial order, which
is compatible with the order in the ring A (Definition , and is also compatible with the
order in 'R, that is:

ifa € R andz,y € A withx <4y, if 0 =g a then ax <4 ay, and if a g Og, then ay <4 ax.

Definition 1.4 An ordered algebra (A, R, =<4) on R is called complete if and only if the order
=4 s a Dedekind-complete.

Definition 1.5 A complete ordered algebra (A, R, =<4) is called Archimedean if and only if it
is Archimedean as a ring (Definition )

Remark 1.1 The lexicographic order, which is of frequent use in computer sciences, does not
define a complete ordered Archimedean algebra on the product of complete algebras.
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For instance, let us consider the lexicographic order <., on the cartesian product A = RxR.
Let us denote X = {(1 — %,n) /né€ N*} C A. Then, (1,b) is an upper bound for X, for any
b € R, but no such couple is a supremum. Besides, no couple (a,b) with a € R, a < 1 and
b € R is a supremum. Therefore, the subset X of R xR has no supremum. The ordered algebra
A is not Archimedean either, since R x R strictly contains

U {(w,v) ERXR / (u,0) <pep n(0,1)} =R_ x R,

neL

Example 1.1 Let (A, =1) and (Ay, =2) be two totally ordered Dedekind complete sets. If Ay
has a minimum element and a mazximum element, then Ay X Ay is a totally ordered Dedekind
complete set for the lexicographic order.

Indeed, let X C A; x Ay be a non empty subset of A; x Ay. Let b,, be the minimum
element of Ay and let (a,b) be an upper bound for X. Let us denote by a,; the supremum

ay =sup{u; € Ay / Juy € Ay i (ug,us) € X}

o Ifay € {u € Ay / Jus € As : (ug,uz) € X}, then let us denote b, the upper bound of
{us € Ay / (apr,u2) € X}. In that case, (ap, by,) is a supremum for X.

o Ifay ¢ {us € Ay / Jug € Ay : (ug,uz) € X}. In that case, (ap,by,) is a supremum for
X.

The proof for infema is similar.
In order to enlarge the category of considered algebras, we now weaken the hypothesis on
the considered orders, by introducing so called multi-Archimedean partial orders.

1.3 Multi-Archimedean Partially Ordered Algebra

Throughout this section, the ring R is a unitary Dedekind-complete abelian ring, which is
partially ordered, but not necessarily totally ordered. It is important to note that the algebras
involved are not necessarily unitary.

Definition 1.6 A partially ordered algebra on R is a tuple (A, R, =4), where R is a Dedekind-
complete ordered abelian ring, A is an R—algebra (with operations also denoted by + 4 and
X 4) and =4 is a partial order, compatible with the order in R, that is:

ifr € R and x,y € A with x 24y, if 0O X1 then rx <4 ry, and if r <z Og, then ry <4 rx.

The following definitions only need <4 to be a partial order on a set A.

Definition 1.7 (Tight Comparability) Let x € A and y € A.

1. An element y € A is called a tight lower bound of x if and only if the order induced by
=4 on the set [y,z] ={z € A | y =42z 24z} is a total order.

2. We say that y is a tight upper bound of x if x is a tight lower bound of y.
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3. We say that x and y are called tightly comparable if y is either a tight upper bound of x
or a tight lower bound of x.

Remark 1.2 On a cartesian product A = I e aB, of totally ordered sets, define x <y if and
only if each coordinate x, of x is less than the corresponding coordinate vy, of y. This order
is called coordinate by coordinate order. Then, thightly comparable elements in A differ by at
most one of their coordinates.

Definition 1.8 Let x and y be elements of a partially ordered set A. An element z in A is
said to be tightly between x en y if and only if:

either © 242 X4y o1y 42 34T
and
z 18 tightly comparable to both x and y

Definition 1.9 (Tight Strict Order) Let x and y be two elements of a partially ordered set
A.

1. We say that y is a strict upper bound of x (or simply that y is greater than x), and we
denote x <4 vy, if and only if y # = and x < y.

2. We say that y is a tight strict upper bound (or y is thightly greater than x) of x if and
only if y # x and y is a tight upper bound of x.

Remark 1.3 Suppose that A = M,eaB, is a cartesian product of totally ordered sets. Let
x,y € A. Besides the notions of strict upper bound and tight upper bound from Definition
above, another notion can be defined, of a coordinate by coordinate strict ordering relation:

We say that y is a broad strict upper bound (ory is broadly greater than x), and we denote
x <4y of x if and only if y, is a strict upper bound of x, for alla € A .

The notion of a broad strict upper bound, defined above in carthesian product, makes sense
in an arbitrary partially ordered algebra:

Definition 1.10 (Broad Strict Order) Let zy and x5 be two elements in a partially ordered
algebra (A, R, =<4). We say that zy is broadly strictly greater than x4 if and only if for any
strict lower bound y of x1, there exists an element in z € A, with xo <4 2, such that z is tightly
between y and x.

We say that x1 is broadly strictly less than o if the element x4 is broadly strictly greater
than x1. We say that xy is broadly strictly positive [respectively negative] if x1 is broadly strictly
greater than [respectively less than/ 0 4.

Remark 1.4 Note that x1 € A is broadly strictly greater than xo € A if and only if —xy is
broadly strictly less than —xs.

The last Definition m agrees with the notion introduced in Remark [L.3 because of Remark .

Definition 1.11 (Rough Order and Rough Equality) Let \; and Ay be two broadly stricly
positive elements in a Dedekind Complete partially ordered algebra A.
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1. We say that Ay is roughly less than Ao, and we denote \y < Xg, if there exists n € N such
that A\ =4 n.\s.

2. We say that \1 is roughly equivalent to Ao, and we denote Ay = )Xo, if we have both
)\1 <K )\2 and )\2 < )\1.

Definition 1.12 Let x € A and X\ be a broadly strictly positive element of A. We say that x
is upper A—bounded [respectively lower \—bounded] if there exists n € N such that x <4 n.\
[respectively —(n.\) 24 x]. We say that x is \—bounded if it is both upper A—bounded and
lower A—bounded.

Definition 1.13 (Multi-Archimedean partially ordered algebra) A Dedekind complete
partially ordered algebra (A, =4) is called \—multi-Archimedean if and only if any elemnt in
A is A—bounded. In other words,

A=J{zeA/z=4nr} and A= J{z e A/ — (n)) 242}

neN neN

where n.A = (X0, A).
We say that A is a multi-Archimedean algebra if it is A—multi-Archimedean for some broadly
strictly positive element \ € A.

Definition 1.14 A strongly multi-Archimedean algebra is a Dedekind complete partially or-
dered algebra which contains at least one broadly strictly positive element, and which is A—multi-
Archimedean for any broadly strictly positive element A € A.

Definition 1.15 A standard multi-Archimedean algebra is a unitary Dedekind complete par-
tially ordered algebra which is 1 4—multi-Archimedean (which implies that 14 is broadly strictly
positive).

The following shows a typical example:

Proposition 1.2 Let U be any set and let R be a Dedekind-complete Archimedean totally
ordered abelian ring. Let us consider the set A = RY of maps with domain U and range R,
provided with a partially ordered algebra structure by setting f <gv g if and only if for all x
in U, we have f(z) =g g(z). Then,

1. the ordered set (RU, jRu) is complete.

2. It is not strongly multi-Archimedean in general, but it is strongly multi-Archimedean when
U is finite.

3. For any broadly strictly positive element \ in (RU, jRU), the subset of all A—bounded

maps in RY is A\—multi-Archimedean.

Proof. B We prove that any upper bounded subset B of A = RY has a supremum. By
definition, such a set B has an upper bound fy € A for the order <zv, that is, the map fj is
such that for all f in B and z in U, we have f(z) <g fo(z). Hence the sets {f(x) / f € B}
are all bounded, and therefore have a supremum g(z). As for all f in B and for all x in U, we
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clearly have f(x) <z g(x), the map ¢ thus defined is a supremum for B. The proof for infema
is similar.

@ We first notice that a constant function on U identically equal to a strictly positive
element of R is broadly strictly positive in A. Now assume that U is finite. Let A € RY be
a broadly strictly positive element. This means, as RV is naturally a Cartesian product, that
Or <% A(x). As R is totally ordered and U is finite, this implies that there exists some € € R
such that 0g <g ¢ <z l(z) for all x € U.

Now let f € RY. Since the ring R is Archimedean, this implies that there exists n € N
with f(z) =g n.c for all x € U. Then we have f <zv n.l. By reasoning similarly to prove that
—n'.l Zgu f for some n’ € N, we conclude that A = RY is multi-Archimedean.

Bfollows directly from Point B and the definitions. O

Definition 1.16 (Multi-Archimedean Ring) A wunitary Dedekind-complete partially or-
dered ring is called multi-Archimedean if it is multi-Archimedean as an algebra (Definition )
over the ring Z, where the external product n.x, for n € Z and x € R, is defined in a natural
way by:

n.r = (ix) if0<n and n.x = —((—n).x) ifn <0
i=1

Definition 1.17 (General and Simple Complete Multi-Archimedean Algebra) We dis-
tinguish between the following kinds of algebras:

e A General [strongly,\—] Multi-Archimedean Algebra is a Dedekind-complete [strongly,\—]
multi- Archimedean Algebra over a multi-Archimedean Dedekind-complete partially ordered
abelian ring.

o A Simple [strongly,\—] Multi-Archimedean Algebra is a Dedekind-complete [strongly,\—]
multi-Archimedean Algebra over an Archimedean Dedekind-complete totally ordered abelian
ring (i.e. the ring can be only the usual oredered ring structures on either Z or R).

Remark 1.5 A General Complete Multi-Archimedean Algebra can be naturally provided with a
structure of a Simple Complete Multi-Archimedean Algebra over the ring Z, using the naturally
defined external multiplication as in Definition .

1.4 Multi-Archimedean Algebra and Cartesian Product

We proved with Proposition @ that a cartesian product of a finite numbers of copies of an
Archimedean Dedekind-complete totally ordered ring is a Simple Complete Multi-Archimedean
Algebra over that same ring. In general, we consider the following construction:

Definition 1.18 (Ordered Space of Maps) Let (A, <4) be a General Complete Multi-Archimedean
Algebra over a multi-Archimedean Dedekind-complete partially ordered ring (R,=g). Then

the set AY of maps with domain U and range A is a partially ordered algebra by con-
sidering the value by wvalue addition, multiplication and order between maps (i.e. setting
(f+9)(x) = f(x)+ g(x) and (f.9)(x) = f(x).g(x) and, for the order f <, v g if and only if

for all x in U, we have f(x) =4 g(z)). This provides AV with an ordered algebra structure

called the canonical ordered algebra structure, or the canonical ordered algebra, or the value by

value ordered algebra, or the product ordered algebra structure structure over AY.

7
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Theorem 1.1 Under the notations of Definition , then, for a finite set U, the value by
value ordered algebra structure over AV is a General Complete Strongly Multi-Archimedean
Algebra over R, as well as over A, as well as over Z, considered as a ring acting by coordinate
by coordinate addition and multiplication over AY.

Proof. We follow the lines of the proof used of Proposition . Our ordered algebra AY is
complete for the same reason: the suppremum and infemum can be constructed coordinate by
coordinate. We also notice that a constant function on U identically equal to a broadly strictly
positive element of A is broadly strictly positive in AY.

Now, let [ € AY be a broadly strictly positive element. This implies that I(z) is a broadly
strictly positive element of A for each x € U. Then, the set U being finite and A multi-
archimedean, this implies that there exists ny € N such that 14 < ny.l(z) for all z € U.

Now, let f be any element in AY. As U is finite and A is multi-archimedean, this implies
that there exists an ny € N such that —(ng.14) <4 f(z) <4 (no.14) for all z € U.

For z € U, we have —(no.ni.l(z)) <4 —(ne.1a) <4 f(x) <4 (n2.14) <4 (n2.nq).l(x). This
means that —(ng.ny).l < v f <4v (ng.ny)l, which proves that AY is multi-archimedian (over

both rings R and A). O

Theorem 1.2 Under the notations of Definition , then, for any broadly strictly positive
element X € A, the set all \A—bounded elements of A, provided with the value by value ordered
algebra structure over AV is a General Complete \— Multi- Archimedean Algebra over R, as well
as over A, as well as over Z, considered as a ring acting by coordinate by coordinate addition
and multiplication over AY.

The proof is similar to that of Therorem .

Definition 1.19 A general multi-Archimedean Dedekind-complete partially ordered algebra A
is called discrete if the infemum

i =1inf({z € A/ x is broadly greater that 04})

is itself broadly greater than 04. This notion holds in particular for a multi-Archimedean
Dedekind-complete partially ordered ring, seen as an algebra over itself.

Due to Proposition @, discrete unitary multi-Archimedean algebras can be characterized as
follows:

Remark 1.6 A unitary general multi-Archimedean Dedekind-complete partially ordered alge-
bra A is discrete if any element in A which is broadly greater than 04 is greater than or equal
to 1.4-

Theorem 1.3 Under the notations of Definition , let us also assume that the algebra
A is discrete.  We consider the induced ordered sub-algebra of the wvalue by value ordered
algebra structure over AV on the subset AI{A of bounded maps (i.e. maps [ such that the set
{f(z) / x € U} has an upper bound in A) Then, for any set U, this provides AY with a General
Complete Multi-Archimedean Algebra structure over R.

At last, we have:
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Theorem 1.4 Let A = [[¢_, B, be a cartesian product of a finite number of General Complete

.....

plete Multi-Archimedean Algebra structure by considering the coordinate by coordinate sum,
product and order on A.

The proof is similar to that of Therorem .

Definition 1.20 (Product_Multi-Archimedean Algebra) Under the hypothesis and no-
tations of either Therorem , Theorem , Therorem or Therorem , the resulting
multi-Archimedean algebra is called the product multi-Archimedean algebra.
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2 Separability, Classification, Integration

2.1 Suprema of Tightly Strictly Positive Elements

Lemma 2.1 Let (A, R, =<4) be a multi-Archimedean partially ordered algebra. If v <4 vy, then
there exists an element z which is tightly strictly greater than x and less than y.

Proof. Let A be a broadly strictly positive element of A such that A4 is A—multi-Archimedean.
The element x + A is broadly strictly greater than z, so, for the element y which is strictly
greater than x, there exists 2y € A such that zyg <4 y and 2z is tightly between x and y. Then,
we conclude by taking z = zg of © <4 29, and by taking z =y if zg = x. O

Proposition 2.1 Let (A, R, <4) be a A—multi-Archimedean partially ordered algebra. For any
interval [x,y] C A, there exists a totally ordered subset M C [z,y], such that x = inf(M) and
y = sup(M), and which is maximal in the sense that any element of [x,y| which is comparable
to all elements of M belong to M.

Moreover, we may assume that any z,z" € M, are tightly comparable.

Proof. We plan to use the Zorn Lemma. We define C ={z€ A / x <4 z <4 y}, and

B Vz,2 € X we have 2 <4 2/ or 2/ <4 2
P= {X cc / and z and 2’ are tightly comparable }

Let us prove that the ordered set (P, C) is inductive. For this purpose, we consider a chain

T C P, that is, for any, X, X’ € T, we have X C X’ or X’ C X. Then the set X, = U X
XeT
belongs to P. Indeed, for z and 2z’ in X, then there exists X € T' C P which contains both

z and 2. From the definition of P, we see that z and 2’ are comparable in A, so that we can
conclude that X,; € P. From the Zorn lemma, there exists a maximal element M € P for
inclusion, that is, there exists a totally ordered set M C C' C A such that no other element z
of C can be comparable to all elements of M. Clearly, x = inf(M) and y = sup(M). O

Remark 2.1 Let (A, R,=4) be a A—multi-Archimedean partially ordered algebra. Let z € A
and X € A such that for all x € X the interval |z, x] is totally ordered. Then, the interval
[z, sup(X)] is totally ordered.

Proposition 2.2 Let (A, R, =<4) be a A—multi-Archimedean partially ordered algebra, and let
x <4y be two distinct ans comparable elements of A. Then we have y = sup(Z) where

B r =422y and
Z = { 2€A / z 1s tightly greater than x

Proof. Let s = sup(Z). Due to Lemma @, if s = y, there exists zy € A such that s <4 2
and zq is tightly strictly greater than s.

By applying Lemmag@, there is a maximal totally ordered set M C [z, z| such that
inf(M) = z and sup(M) = 2o, and any z, 2 € M are tightly comparable. For any 2z’ € M with
2’ <4 2o, we have, by considering (Remark R.1)) the infemum on z, that [x, 2] is totally ordered.
We conclude, by conidering 2y as the supremum on 2/, that z, is less than the supremum s of
a larger set. O

Now, we can define the absolute value of a non zero element as follows.

10
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Definition 2.1 (Absolute Value) Let (A, R, =<4) be a multi-Archimedean partially ordered
algebra. Let x € A.

1. If © is tightly comparable to 04, then the absolute value |x| of x is defined by

’33|_ xr Zf OAjAZE
Sl 7 i v 2404

2. We define the absolute value |x| of x by:
- OuSaySavore 24y 240y
o] = sup ({M / and y is tightly comparable to 04

Proposition 2.3 Let (A, R, <4) be a multi-Archimedean partially ordered algebra and x € A.
Then,

1. We have x <4 |x|.
2. We have x = |z| if and only if 04 <4 .

The only non-trivial point is that if 04 <4 2 we have x = |z|, but this follows from Proposi-
tion R.2.

Proposition 2.4 Let (A, R, =<4) be a A—multi-Archimedean partially ordered algebra. Then,
there exists a maximal set Z C A such that for any two distinct elements z,z' € Z the elements
z and z' are not comparable and all elements in Z are tightly strictly positive.

Moreover, any set Zy in which all elements are tightly strictly positive any two distinct
elements are not comparable can be extended to such a maximal set Z .

Proof. Let us consider

P=lz cXxXcA Vz, 7z € X the elements z and 2’ are not comparable
B 0 all elements of X are tightly strictly positive

Let us prove that the ordered set (P, C) is inductive. To that aim, we consider a chain 7' C P.
Then the set Xy, = Uxer X belongs to P. Indeed, for z,2" € X, there exists X € P
which contains both z and z’. This implies that z is tightly stricly positive and z, 2’ are not
comparable. We conclude by the Zorn Lemma that there exists a maximal element Z in P. O

Proposition 2.5 Under the hypothesis and notations of Proposition , we consider the
element b = sup(Z). Then the element b is broadly strictly positive. Moreover, we may choose
Z in such a way that sup(Z) = .

Proof. If we consider a tight strict lower bound y of b, then, from the definition of b, the
element y must be smaller than some element z € Z, which is tightly stricly greater than 0 4.
We have 04 <4 2 and z is tightly between y and b.

Now, for z € Z, let us set

() = c A u =4 A and
g\z) =sup | y U u is tightly comparable to 04 and to z

Then, by Remark El!, g(z) is tightly comparable to 04. Moreover, the set Z' = {g(z) / z € Z}
is maximal in the sense of Proposition R.4. At last, we have sup(Z’) = A by maximality of Z’.
O
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Proposition 2.6 Under the hypothesis and notations of Proposition @, given an element
04 =4 by in A, then there exists a positive element 04 <4 by in A such that by + by is broadly
strictly positive, and such that no nonzero element which is tightly strictly greater than zero is
comparable to both by and b;.

Proof. In a similar way to the proof of Proposition @, we show that there exists a maximal set
Zy of tightly strictly positive elements of A which are comparable to by, and any two distinct
elements of Z; are not comparable. Following Proposition R.4, the set Z; can be extended to a
set Z such that, following Proposition .5, the element b = sup(Z) is broadly strictly positive
in A. We conclude by setting b; = sup(Z\Zy). O

Proposition 2.7 Under the hypothesis and notations of Proposition , if © is tightly com-
parable to 04, then for z € A the element x.z is tightly comparable to both 04 and x.

Proof. Let n € N be such that z <4 n.A\. Then we have x.z <4 n.z, but n.x is tightly
comparable to 04 and is tightly comparable to x. O

Lemma 2.2 For z and z' tightly comparable to 04 such that z and z' are no comparable, we
have:

1. If 04 24 2z and 04 <4 2/, then z 4+ 2/ = sup({z, 2'}).
2. If 04 24z and 2" 24 04, then z+ 2/ =sup({z, 2'}) + inf({z, 2'}).

Proof. 1If z and 2’ are both strictly positive, clearly, sup({z,z'}) =4 z + 2. Now, from
Proposition R.2 and Lemma P.3, we have z 4+ 2’ = sup({z, #'}).

If04 <4 zand 2 <4 04, then z = sup({z,04}) = sup({z, 2/, 04}) = sup({z, z'}). Similarly,
2 =inf({z,2'}). O

Proposition 2.8 Under the hypothesis and notations of Proposition , let Yy C Z and
Yo C Z, with Y1 NYy, = 0 be any disjoint sets of elements tightly greater than 04. We denote
y1 = sup(Yy) and yo = sup(Ys). Then, we have:

Y1+ y2 = sup({y1, v2}) = sup(Y1 U Y2) and y1.y2 = 04

Proof. The first relationship is due to Proposition @ and from the fact that an element of A
which is strictly tightly greater than 04 cannot be both less than y; and less than ys,.

The second relationship follows from the fact that, for y;.y2 to be non zero, due to Proposi-
tion 2.2, y; and ys would have to be both comparable to a non zero element, which is impossible
from the definition of Z. O

Lemma 2.3 Let 2,2 and s, such that z, 2" and s are all tightly strictly greater than 04, and
are pairwise not comparable. Then, s is not comparable to z + 2.
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Proof. If z+ 2" <4 s, then s is comparable to both z and z’, which contradicts our hypothesis.
Now, suppose by reductio ad absurdum that s <4 z + 2'. let

B s =qu=y z2+72
Zo = sup ({u €A / u is tightly comparable to 04 })

By Remark El!, the interval [s, 2] is totally ordered.

By applying Lemma PR.1|, there is a maximal totally ordered set M C [z, z] such that
inf(M) = 04 and sup(M) = zp, and any u,u’ € M are tightly comparable. For any v € M
with v’ <4 29, we have, by considering (Remark R.1|) the infemum on z, that [04,u/] is totally
ordered. We conclude, by considering zy as the supremum on ', that zj is tightly greater than
04.

At last, 2y cannot be equal to z + 2/, as in such a case z and 2z’ would be comparable. Now,
Lemma @ contradicts the definition of zy as a supremum. O

Proposition 2.9 Let (A, R, =<4) be a A—multi-Archimedean partially ordered algebra, and let
x € A. We the following two sets:

- 04 =4 2=42 and
7 = { ze A / 2 is tightly greater than 04

- r=42=404 and
7= { z€A / 2 is tightly less than 04

We set s = sup(Z) and i = inf(Z'). Then, we have s = sup({x,04}) and i = inf({z,04}). At
last, we have: x = s+ 1.

Proof. Due to Proposition @, applied between ¢ and s, we get

o 04 =42=48—17and o
§T1=sup <{Z€A/ z is tightly greater than 04 = (@=21)

O

Definition 2.2 (Finitely Genrated Multi-Archimedean Algebra) A general multi-Archimedean
algebra is called finitely generated if and only if any set of pairwise not comparable elements is
finite.

Definition 2.3 (Separable Multi-Archimedean Algebra) A general multi-Archimedean
algebra is called separable if and only if any set of pairwise not comparable elements is countable.

In the sequel, we assume that all the considered multi-Archimedean algebra are separable.

2.2 Ideals in a Multi-Archimedean Algebra

Till the end of this section, (A, R, <4) denotes a general multi-Archimedean partially ordered
unitary algebra.

Definition 2.4 A sub-algebra or an ideal B of A is said to be closed if the order induced by
<4 on B is Dedekind-complete.
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We may notice that the proof of Proposition @ and Proposition @ also work to prove the
following:

Remark 2.2 Let C be a closed ideal of A. Then, there exists a maximal set Z C C such that
for any two elements z,z" € Z the elements z and z' are not comparable and all elements in
Z are tightly strictly positive. Moreover, the element ¢ = sup(Z) is broadly strictly positive in
the ordered algebra (C, R, =4).

Proposition 2.10 Let C be a complete ideal of a multi-Archimedean algebra (A, R,=4). As-
sume that for every x € C, all elements of A which are tightly between 04 and x also belong to
C. Then we have:

1. The quotient A/C is naturally provided with an order =4)c such that the projection
7:A: A/C from A to the quotient algebra A/C is increasing.

2. This order provides A/C with a m(\)—multi-Archimedean algebra structure over R.

3. We have an ordered algebra isomorphism:
d: A—Cx(A/C)

through which we can construct a supplementary closed sub-algebra S of C in A (which
we denote by A =C @ S) such that A=C S, and for every x € S, all elements of A
which are tightly between 04 and x also belong to S.

4. Consequently, C is proved in turn to be multi-Archimedean.

Proof. We _consider a set Z of generators which are tightly comparable to 04 and, as in
Proposition @ such that sup(Z) = X\. We split the set Z into Z = Zo U Z¢, with Zo = ZNC
and Ze = Z\Zc. Let ¢ = sup(Z¢) € C and d = sup(Z¢). Due to Proposition P.§, we have
c+d= A\

For any element u € C such that 04 =<4 u, due to Proposition @, we have u.d = 04. This
is easily extended to any u € C using Proposition R.9.

We define in Q@ = A/C the order <g defined by: [z] <¢ [y] if and only d.x <4 d.y. If 2/ =
x+c; and iy = x + ¢, with ¢q, ¢y € C are other representants, then we have ¢;.d = c.d = O 4,
so that the order on Q9 is well defined.

Let us show that the ordered algebra (Q, R, <g) is a A\g—multi-Archimedean algebra, with
Ao = [d]. Let [I] € Q, with [ € A, and let n € N be such that [ <4 n.A = n(c+ d). We have
] 2o n.[d] =nAg. O

Corollary 2.1 Under the hypothesis and notations of Proposition , if 04 =4 =4 cand
c€C, then x € C.

Indeed, the projection onto .A/C being increasing, the projetction of the element x is squeezed
between 04 and the projection of ¢, also equal to 04.

Proposition 2.11 Assume that A is unitary. Let B be the ideal of A generated by xo. Then,
xo 1S a broadly strictly positive element in the multi-Archimedean algebra B.
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Proof. Due to Proposition @ and Proposition @, there exists x; € A such that xg + 1
is broadly strictly positive in A and zg.z; = 04. Let © € B. The algebra A being multi-
Archimedean, there exists n € N such that x <4 n.(zo+x1). We have z <5 n.xq since [x1] =0
in B. We conclude (for exeample by considering x = 15, that x¢ is broadly strictly positive in

B. O

Proposition 2.12 Assume that A is unitary. Let B be the ideal of A generated by xq, with
xo non-zero and tightly comparable to 04. Then, B is Archimedean, and is consequently
(Proposition ) isomorphic as an ordered algebra either to the usual structure on Z or to the
usual structure on R.

Proof. Let Og < [ and let z € B. Due to Proposition @ and Proposition @, there exists
l; € A such that [ + [; is broadly strictly positive in A and [.l; = 04. Since z is tightly
comparable to 04 and [ is of the form z.zq, then [ is also tightly comparable to 04 and we have
[l1] = 0g. Let n € N be such that x <4 n.(l + ;). We have x <gn.l. O

2.3 Discrete Characteristics and Morphisms

Definition 2.5 Let (A, R, <4) be a multi-Archimedean unitary algebra over a ring R. Note
that the existence of a broadly strictly positive element is established in Proposition . We
define the discrete characteristics of A the element of A defined by

X(A) =inf ({b € A / b is broadly strictly positive})
Example 2.1 We consider the following product multi-Archimedean algebras.
e For Ay =7Z x Z, we have x(A;) = (1,1).
e For Ay =R xR, we have x(Az) = (0,0).
e For A3 =R X Z, we have x(As) = (0,1).

Remark 2.3 Let (A, R,=4) be a unitary multi-Archimedean algebra and B C A be a closed
sub-algebra which contains 14 (note that we do not assume that B is an ideal) which contains
at least one broadly strictly positive element of A. Then the characteristics x(B) € B can
naturally be defined as an element of A by

xa(B) =inf ({b € B / b is broadly strictly positive in A})

Furthermore, if B' C A is another closed sub-algebra of A which contains at least one
broadly strictly positive element of A, then we have B' C B, if and only if x(B) =<4 x(B').

Proof. Tf B' C B, then we have x(B) <4 x(B') from the very definition. Conversely, if there
exists x € B'\B let us consider the ideal C generated by z. 