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Abstract

This draft is the third version of a preliminary document following a work presented
at the 14th International Conference on p−adic Analysis, in Aurillac, France, July 2016.
This version is a minor update fixing a few gaps and improving the algebraic notions.
The final version of this draft is to be submitted afterwards, at a date which is difficult
to estimate due to the lack of time and support. See also:

Henri Alex Esbelin and Remy Malgouyres. Sparse convolution-based digital deriva-
tives, fast estimation for noisy signals and approximation results, in Theoretical Computer
Science 624: 2-24 (2016).
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1 Algebraic Background
This section is devoted to presenting the rings and algebras which have enough properties to
develop the subsequent theory. All the rings and algebras considered throughout the paper are
assumed to be abelian, even when not specified.

1.1 Complete Archimedean Totally Ordered Abelian Rings
Definition 1.1 We call an ordered abelian ring (R, +, ., ⪯) any abelian ring on which is defined
an order ⪯, such that

1. for r, s, t ∈ R with s ⪯ t then r + s ⪯ r + t (translation invariance).

2. for r, s, t ∈ R with 0R ⪯ r and s ⪯ t then r.s ⪯ r.t (compatibility with the product).

Such a ring is called Dedekind-complete (or Complete for short) when any subset of R with
an upper bound has a supremum and any subset of R with a lower bound has an infemum.
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1.2 Complete Archimedean Totally Ordered Algebras R. Malgouyres and H.A. Esbelin

Definition 1.2 A complete abelian ordered ring (R, ⪯R) is called Archimedean if and only if
for any positive and nonzero l ∈ R∗, we have:

R =
∪

n∈N
{r ∈ R / r ⪯R n.l} and R =

∪
n∈N

{r ∈ R / − (n.l) ⪯R r}

where n.l = (∑n
i=1 l).

Proposition 1.1 A Dedekind-complete Archimedean totally ordered abelian ring R which is
unitary (that is, the multiplication in R has a neutral element) is isomorphic (as an ordered
ring) either to the usual ordered ring Z or to the usual ordered ring R.

Proof. Using a classical result on ordered rings, we see that R is isomorphic (as an ordered ring)
to an induced sub-ring of the field R provided with the usual order. Up to this isomorphism,
we may suppose now that R is an induced ordered sub-ring of R. We consider two cases:

First, assume that inf(R∗
+) = 1. Let r in R be greater than 1. Let n0 = inf{n ∈ N / n > r}.

Then we have 0 ≤ r − (n0 − 1) < 1 so that 0 = r − (n0 − 1). This shows that R∗
+ = N so that

R = Z.
Second, assume that R∩]0; 1[ ̸= ∅. Then there exist in R some element s such that 0 < s <

1
2 . Let x be a positive real number. Consider now X = {r ∈ R; 0 ≤ r ≤ x}. It is obviously
bounded in R so that it has a supremum r0 ∈ R. Now we prove that x = r0 which, the number
x being arbitrary, will prove R = R.

The suppremum of X must be less than x, which is an upper bound for X, which means
r0 ≤ x. Now, if x > r0, then for n large enough we have sn < x − r0, so that r0 < r0 + sn < x,
yielding a contradiction. 2

1.2 Complete Archimedean Totally Ordered Algebras
In all this section, R is a unitary Dedekind-complete Archimedean totally ordered abelian ring.

Definition 1.3 An ordered algebra on R is a tuple (A, R, ⪯A), where R is a Dedekind-complete
Archimedean totally ordered abelian ring, A is an R−algebra (i.e. provided with an R−module
structure given by a product by scalars of R, and an abelian addition operation denoted by
+, and also provided with an internal product operation, denoted by ., with distributivity with
respect to +, and which is here assumed to be abelian) and ⪯ is a complete partial order, which
is compatible with the order in the ring A (Definition 1.1), and is also compatible with the
order in R, that is:
if a ∈ R and x, y ∈ A with x ⪯A y, if 0R ⪯R a then ax ⪯A ay, and if a ⪯R 0R, then ay ⪯A ax.

Definition 1.4 An ordered algebra (A, R, ⪯A) on R is called complete if and only if the order
⪯A is a Dedekind-complete.

Definition 1.5 A complete ordered algebra (A, R, ⪯A) is called Archimedean if and only if it
is Archimedean as a ring (Definition 1.2)

Remark 1.1 The lexicographic order, which is of frequent use in computer sciences, does not
define a complete ordered Archimedean algebra on the product of complete algebras.
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1.3 Multi-Archimedean Partially Ordered Algebra R. Malgouyres and H.A. Esbelin

For instance, let us consider the lexicographic order ⪯lex on the cartesian product A = R×R.
Let us denote X =

{
(1 − 1

n
, n) / n ∈ N∗

}
⊂ A. Then, (1, b) is an upper bound for X, for any

b ∈ R, but no such couple is a supremum. Besides, no couple (a, b) with a ∈ R, a < 1 and
b ∈ R is a supremum. Therefore, the subset X of R×R has no supremum. The ordered algebra
A is not Archimedean either, since R × R strictly contains∪

n∈Z
{(u, v) ∈ R × R / (u, v) ⪯lex n(0, 1)} = R− × R.

Example 1.1 Let (A1, ⪯1) and (A2, ⪯2) be two totally ordered Dedekind complete sets. If A2
has a minimum element and a maximum element, then A1 × A2 is a totally ordered Dedekind
complete set for the lexicographic order.

Indeed, let X ⊆ A1 × A2 be a non empty subset of A1 × A2. Let bm be the minimum
element of A2 and let (a, b) be an upper bound for X. Let us denote by aM the supremum

aM = sup{u1 ∈ A1 / ∃u2 ∈ A2 : (u1, u2) ∈ X}.

• If aM ∈ {u1 ∈ A1 / ∃u2 ∈ A2 : (u1, u2) ∈ X}, then let us denote bm the upper bound of
{u2 ∈ A1 / (aM , u2) ∈ X}. In that case, (aM , bm) is a supremum for X.

• If aM /∈ {u1 ∈ A1 / ∃u2 ∈ A2 : (u1, u2) ∈ X}. In that case, (aM , bm) is a supremum for
X.

The proof for infema is similar.
In order to enlarge the category of considered algebras, we now weaken the hypothesis on

the considered orders, by introducing so called multi-Archimedean partial orders.

1.3 Multi-Archimedean Partially Ordered Algebra
Throughout this section, the ring R is a unitary Dedekind-complete abelian ring, which is
partially ordered, but not necessarily totally ordered. It is important to note that the algebras
involved are not necessarily unitary.

Definition 1.6 A partially ordered algebra on R is a tuple (A, R, ⪯A), where R is a Dedekind-
complete ordered abelian ring, A is an R−algebra (with operations also denoted by +A and
×A) and ⪯A is a partial order, compatible with the order in R, that is:
if r ∈ R and x, y ∈ A with x ⪯A y, if 0R ⪯ r then rx ⪯A ry, and if r ⪯R 0R, then ry ⪯A rx.

The following definitions only need ⪯A to be a partial order on a set A.

Definition 1.7 (Tight Comparability) Let x ∈ A and y ∈ A.

1. An element y ∈ A is called a tight lower bound of x if and only if the order induced by
⪯A on the set [y, x] = {z ∈ A / y ⪯A z ⪯A x} is a total order.

2. We say that y is a tight upper bound of x if x is a tight lower bound of y.
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1.3 Multi-Archimedean Partially Ordered Algebra R. Malgouyres and H.A. Esbelin

3. We say that x and y are called tightly comparable if y is either a tight upper bound of x
or a tight lower bound of x.

Remark 1.2 On a cartesian product A = Πa∈ABa of totally ordered sets, define x ⪯ y if and
only if each coordinate xa of x is less than the corresponding coordinate ya of y. This order
is called coordinate by coordinate order. Then, thightly comparable elements in A differ by at
most one of their coordinates.

Definition 1.8 Let x and y be elements of a partially ordered set A. An element z in A is
said to be tightly between x en y if and only if:

either x ⪯A z ⪯A y or y ⪯A z ⪯A x
and
z is tightly comparable to both x and y

Definition 1.9 (Tight Strict Order) Let x and y be two elements of a partially ordered set
A.

1. We say that y is a strict upper bound of x (or simply that y is greater than x), and we
denote x ≺A y, if and only if y ̸= x and x ⪯ y.

2. We say that y is a tight strict upper bound (or y is thightly greater than x) of x if and
only if y ̸= x and y is a tight upper bound of x.

Remark 1.3 Suppose that A = Πa∈ABa is a cartesian product of totally ordered sets. Let
x, y ∈ A. Besides the notions of strict upper bound and tight upper bound from Definition 1.9
above, another notion can be defined, of a coordinate by coordinate strict ordering relation:

We say that y is a broad strict upper bound (or y is broadly greater than x), and we denote
x <A y of x if and only if ya is a strict upper bound of xa for all a ∈ A .

The notion of a broad strict upper bound, defined above in carthesian product, makes sense
in an arbitrary partially ordered algebra:

Definition 1.10 (Broad Strict Order) Let x1 and x2 be two elements in a partially ordered
algebra (A, R, ⪯A). We say that x1 is broadly strictly greater than x2 if and only if for any
strict lower bound y of x1, there exists an element in z ∈ A, with x2 ≺A z, such that z is tightly
between y and x1.

We say that x1 is broadly strictly less than x2 if the element x2 is broadly strictly greater
than x1. We say that x1 is broadly strictly positive [respectively negative] if x1 is broadly strictly
greater than [respectively less than] 0A.

Remark 1.4 Note that x1 ∈ A is broadly strictly greater than x2 ∈ A if and only if −x1 is
broadly strictly less than −x2.

The last Definition 1.10 agrees with the notion introduced in Remark 1.3 because of Remark 1.2.

Definition 1.11 (Rough Order and Rough Equality) Let λ1 and λ2 be two broadly stricly
positive elements in a Dedekind Complete partially ordered algebra A.
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1. We say that λ1 is roughly less than λ2, and we denote λ1 ≪ λ2, if there exists n ∈ N such
that λ1 ⪯A n.λ2.

2. We say that λ1 is roughly equivalent to λ2, and we denote λ1 ∼= λ2, if we have both
λ1 ≪ λ2 and λ2 ≪ λ1.

Definition 1.12 Let x ∈ A and λ be a broadly strictly positive element of A. We say that x
is upper λ−bounded [respectively lower λ−bounded] if there exists n ∈ N such that x ⪯A n.λ
[respectively −(n.λ) ⪯A x]. We say that x is λ−bounded if it is both upper λ−bounded and
lower λ−bounded.

Definition 1.13 (Multi-Archimedean partially ordered algebra) A Dedekind complete
partially ordered algebra (A, ⪯A) is called λ−multi-Archimedean if and only if any elemnt in
A is λ−bounded. In other words,

A =
∪

n∈N
{x ∈ A / x ⪯A n.λ} and A =

∪
n∈N

{x ∈ A / − (n.λ) ⪯A x}

where n.λ = (∑n
i=1 λ).

We say that A is a multi-Archimedean algebra if it is λ−multi-Archimedean for some broadly
strictly positive element λ ∈ A.

Definition 1.14 A strongly multi-Archimedean algebra is a Dedekind complete partially or-
dered algebra which contains at least one broadly strictly positive element, and which is λ−multi-
Archimedean for any broadly strictly positive element λ ∈ A.

Definition 1.15 A standard multi-Archimedean algebra is a unitary Dedekind complete par-
tially ordered algebra which is 1A−multi-Archimedean (which implies that 1A is broadly strictly
positive).

The following shows a typical example:

Proposition 1.2 Let U be any set and let R be a Dedekind-complete Archimedean totally
ordered abelian ring. Let us consider the set A = RU of maps with domain U and range R,
provided with a partially ordered algebra structure by setting f ⪯RU g if and only if for all x
in U , we have f(x) ⪯R g(x). Then,

1. the ordered set
(
RU , ⪯RU

)
is complete.

2. It is not strongly multi-Archimedean in general, but it is strongly multi-Archimedean when
U is finite.

3. For any broadly strictly positive element λ in
(
RU , ⪯RU

)
, the subset of all λ−bounded

maps in RU is λ−multi-Archimedean.

Proof. 1. We prove that any upper bounded subset B of A = RU has a supremum. By
definition, such a set B has an upper bound f0 ∈ A for the order ⪯RU , that is, the map f0 is
such that for all f in B and x in U , we have f(x) ≺R f0(x). Hence the sets {f(x) / f ∈ B}
are all bounded, and therefore have a supremum g(x). As for all f in B and for all x in U , we
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clearly have f(x) ⪯R g(x), the map g thus defined is a supremum for B. The proof for infema
is similar.

2 We first notice that a constant function on U identically equal to a strictly positive
element of R is broadly strictly positive in A. Now assume that U is finite. Let λ ∈ RU be
a broadly strictly positive element. This means, as RU is naturally a Cartesian product, that
0R ≺R λ(x). As R is totally ordered and U is finite, this implies that there exists some ε ∈ R
such that 0R ≺R ε ≺R l(x) for all x ∈ U .

Now let f ∈ RU . Since the ring R is Archimedean, this implies that there exists n ∈ N
with f(x) ⪯R n.ε for all x ∈ U . Then we have f ⪯RU n.l. By reasoning similarly to prove that
−n′.l ⪯RU f for some n′ ∈ N, we conclude that A = RU is multi-Archimedean.

3 follows directly from Point 1 and the definitions. 2

Definition 1.16 (Multi-Archimedean Ring) A unitary Dedekind-complete partially or-
dered ring is called multi-Archimedean if it is multi-Archimedean as an algebra (Definition 1.13)
over the ring Z, where the external product n.x, for n ∈ Z and x ∈ R, is defined in a natural
way by:

n.x =
(

n∑
i=1

x

)
if 0 ≤ n and n.x = −((−n).x) if n < 0

Definition 1.17 (General and Simple Complete Multi-Archimedean Algebra) We dis-
tinguish between the following kinds of algebras:

• A General [strongly,λ−] Multi-Archimedean Algebra is a Dedekind-complete [strongly,λ−]
multi-Archimedean Algebra over a multi-Archimedean Dedekind-complete partially ordered
abelian ring.

• A Simple [strongly,λ−] Multi-Archimedean Algebra is a Dedekind-complete [strongly,λ−]
multi-Archimedean Algebra over an Archimedean Dedekind-complete totally ordered abelian
ring (i.e. the ring can be only the usual oredered ring structures on either Z or R).

Remark 1.5 A General Complete Multi-Archimedean Algebra can be naturally provided with a
structure of a Simple Complete Multi-Archimedean Algebra over the ring Z, using the naturally
defined external multiplication as in Definition 1.16.

1.4 Multi-Archimedean Algebra and Cartesian Product
We proved with Proposition 1.2 that a cartesian product of a finite numbers of copies of an
Archimedean Dedekind-complete totally ordered ring is a Simple Complete Multi-Archimedean
Algebra over that same ring. In general, we consider the following construction:

Definition 1.18 (Ordered Space of Maps) Let (A, ⪯A) be a General Complete Multi-Archimedean
Algebra over a multi-Archimedean Dedekind-complete partially ordered ring (R, ⪯R). Then
the set AU of maps with domain U and range A is a partially ordered algebra by con-
sidering the value by value addition, multiplication and order between maps (i.e. setting
(f + g)(x) = f(x) + g(x) and (f.g)(x) = f(x).g(x) and, for the order f ⪯AU g if and only if
for all x in U , we have f(x) ⪯A g(x)). This provides AU with an ordered algebra structure
called the canonical ordered algebra structure, or the canonical ordered algebra, or the value by
value ordered algebra, or the product ordered algebra structure structure over AU .
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Theorem 1.1 Under the notations of Definition 1.18, then, for a finite set U , the value by
value ordered algebra structure over AU is a General Complete Strongly Multi-Archimedean
Algebra over R, as well as over A, as well as over Z, considered as a ring acting by coordinate
by coordinate addition and multiplication over AU .

Proof. We follow the lines of the proof used of Proposition 1.2. Our ordered algebra AU is
complete for the same reason: the suppremum and infemum can be constructed coordinate by
coordinate. We also notice that a constant function on U identically equal to a broadly strictly
positive element of A is broadly strictly positive in AU .

Now, let l ∈ AU be a broadly strictly positive element. This implies that l(x) is a broadly
strictly positive element of A for each x ∈ U . Then, the set U being finite and A multi-
archimedean, this implies that there exists n1 ∈ N such that 1A ≤ n1.l(x) for all x ∈ U .

Now, let f be any element in AU . As U is finite and A is multi-archimedean, this implies
that there exists an n2 ∈ N such that −(n2.1A) ≺A f(x) ≺A (n2.1A) for all x ∈ U .

For x ∈ U , we have −(n2.n1.l(x)) ≺A −(n2.1A) ≺A f(x) ≺A (n2.1A) ≺A (n2.n1).l(x). This
means that −(n2.n1).l ⪯AU f ⪯AU (n2.n1)l, which proves that AU is multi-archimedian (over
both rings R and A). 2

Theorem 1.2 Under the notations of Definition 1.18, then, for any broadly strictly positive
element λ ∈ A, the set all λ−bounded elements of A, provided with the value by value ordered
algebra structure over AU is a General Complete λ−Multi-Archimedean Algebra over R, as well
as over A, as well as over Z, considered as a ring acting by coordinate by coordinate addition
and multiplication over AU .

The proof is similar to that of Therorem 1.1.

Definition 1.19 A general multi-Archimedean Dedekind-complete partially ordered algebra A
is called discrete if the infemum

i = inf({x ∈ A / x is broadly greater that 0A})

is itself broadly greater than 0A. This notion holds in particular for a multi-Archimedean
Dedekind-complete partially ordered ring, seen as an algebra over itself.

Due to Proposition 2.2, discrete unitary multi-Archimedean algebras can be characterized as
follows:

Remark 1.6 A unitary general multi-Archimedean Dedekind-complete partially ordered alge-
bra A is discrete if any element in A which is broadly greater than 0A is greater than or equal
to 1A.

Theorem 1.3 Under the notations of Definition 1.18, let us also assume that the algebra
A is discrete. We consider the induced ordered sub-algebra of the value by value ordered
algebra structure over AU on the subset AU

1A
of bounded maps (i.e. maps f such that the set

{f(x) / x ∈ U} has an upper bound in A) Then, for any set U , this provides AU
b with a General

Complete Multi-Archimedean Algebra structure over R.

At last, we have:
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Theorem 1.4 Let A = ∏d
a=1 Ba be a cartesian product of a finite number of General Complete

Multi-Archimedean Algebras (Ba)a∈{1,...,d}. Then, A is naturally provided with a General Com-
plete Multi-Archimedean Algebra structure by considering the coordinate by coordinate sum,
product and order on A.

The proof is similar to that of Therorem 1.1.

Definition 1.20 (Product Multi-Archimedean Algebra) Under the hypothesis and no-
tations of either Therorem 1.1, Theorem 1.2, Therorem 1.3 or Therorem 1.4, the resulting
multi-Archimedean algebra is called the product multi-Archimedean algebra.

9



2.1 Suprema of Tightly Strictly Positive Elements R. Malgouyres and H.A. Esbelin

2 Separability, Classification, Integration
2.1 Suprema of Tightly Strictly Positive Elements
Lemma 2.1 Let (A, R, ⪯A) be a multi-Archimedean partially ordered algebra. If x ≺A y, then
there exists an element z which is tightly strictly greater than x and less than y.

Proof. Let λ be a broadly strictly positive element of A such that A is λ−multi-Archimedean.
The element x + λ is broadly strictly greater than x, so, for the element y which is strictly
greater than x, there exists z0 ∈ A such that z0 ≺A y and z0 is tightly between x and y. Then,
we conclude by taking z = z0 of x ≺A z0, and by taking z = y if z0 = x. 2

Proposition 2.1 Let (A, R, ⪯A) be a λ−multi-Archimedean partially ordered algebra. For any
interval [x, y] ⊂ A, there exists a totally ordered subset M ⊂ [x, y], such that x = inf(M) and
y = sup(M), and which is maximal in the sense that any element of [x, y] which is comparable
to all elements of M belong to M .

Moreover, we may assume that any z, z′ ∈ M , are tightly comparable.

Proof. We plan to use the Zorn Lemma. We define C = {z ∈ A / x ⪯A z ⪯A y}, and

P =
{

X ⊂ C

/
∀z, z′ ∈ X we have z ⪯A z′ or z′ ⪯A z
and z and z′ are tightly comparable

}

Let us prove that the ordered set (P, ⊂) is inductive. For this purpose, we consider a chain
T ⊂ P , that is, for any, X, X ′ ∈ T , we have X ⊂ X ′ or X ′ ⊂ X. Then the set XM =

∪
X∈T

X

belongs to P . Indeed, for z and z′ in XM , then there exists X ∈ T ⊂ P which contains both
z and z′. From the definition of P , we see that z and z′ are comparable in A, so that we can
conclude that XM ∈ P . From the Zorn lemma, there exists a maximal element M ∈ P for
inclusion, that is, there exists a totally ordered set M ⊂ C ⊂ A such that no other element z
of C can be comparable to all elements of M . Clearly, x = inf(M) and y = sup(M). 2

Remark 2.1 Let (A, R, ⪯A) be a λ−multi-Archimedean partially ordered algebra. Let z ∈ A
and X ∈ A such that for all x ∈ X the interval [z, x] is totally ordered. Then, the interval
[z, sup(X)] is totally ordered.

Proposition 2.2 Let (A, R, ⪯A) be a λ−multi-Archimedean partially ordered algebra, and let
x ≺A y be two distinct ans comparable elements of A. Then we have y = sup(Z) where

Z =
{

z ∈ A
/

x ⪯A z ⪯A y and
z is tightly greater than x

}

Proof. Let s = sup(Z). Due to Lemma 2.1, if s ̸= y, there exists z0 ∈ A such that s ≺A z0
and z0 is tightly strictly greater than s.

By applying Lemma 2.1, there is a maximal totally ordered set M ⊂ [x, z0] such that
inf(M) = x and sup(M) = z0, and any z, z′ ∈ M are tightly comparable. For any z′ ∈ M with
z′ ≺A z0, we have, by considering (Remark 2.1) the infemum on z, that [x, z′] is totally ordered.
We conclude, by conidering z0 as the supremum on z′, that z0 is less than the supremum s of
a larger set. 2

Now, we can define the absolute value of a non zero element as follows.

10
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Definition 2.1 (Absolute Value) Let (A, R, ⪯A) be a multi-Archimedean partially ordered
algebra. Let x ∈ A.

1. If x is tightly comparable to 0A, then the absolute value |x| of x is defined by

|x| =
{

x if 0A ⪯A x
−x if x ⪯A 0A

2. We define the absolute value |x| of x by:

|x| = sup
({

|y|
/

0A ⪯A y ⪯A x or x ⪯A y ⪯A 0A
and y is tightly comparable to 0A

})

Proposition 2.3 Let (A, R, ⪯A) be a multi-Archimedean partially ordered algebra and x ∈ A.
Then,

1. We have x ⪯A |x|.

2. We have x = |x| if and only if 0A ⪯A x.

The only non-trivial point is that if 0A ⪯A x we have x = |x|, but this follows from Proposi-
tion 2.2.

Proposition 2.4 Let (A, R, ⪯A) be a λ−multi-Archimedean partially ordered algebra. Then,
there exists a maximal set Z ⊂ A such that for any two distinct elements z, z′ ∈ Z the elements
z and z′ are not comparable and all elements in Z are tightly strictly positive.

Moreover, any set Z0 in which all elements are tightly strictly positive any two distinct
elements are not comparable can be extended to such a maximal set Z.

Proof. Let us consider

P =
{

Z0 ⊂ X ⊂ A
/

∀z, z′ ∈ X the elements z and z′ are not comparable
all elements of X are tightly strictly positive

}

Let us prove that the ordered set (P, ⊂) is inductive. To that aim, we consider a chain T ⊂ P .
Then the set XM = ∪

X∈T X belongs to P . Indeed, for z, z′ ∈ XM , there exists X ∈ P
which contains both z and z′. This implies that z is tightly stricly positive and z, z′ are not
comparable. We conclude by the Zorn Lemma that there exists a maximal element Z in P . 2

Proposition 2.5 Under the hypothesis and notations of Proposition 2.4, we consider the
element b = sup(Z). Then the element b is broadly strictly positive. Moreover, we may choose
Z in such a way that sup(Z) = λ.

Proof. If we consider a tight strict lower bound y of b, then, from the definition of b, the
element y must be smaller than some element z ∈ Z, which is tightly stricly greater than 0A.
We have 0A ≺A z and z is tightly between y and b.

Now, for z ∈ Z, let us set

g(z) = sup
({

u ∈ A
/

u ⪯A λ and
u is tightly comparable to 0A and to z

})

Then, by Remark 2.1, g(z) is tightly comparable to 0A. Moreover, the set Z ′ = {g(z) / z ∈ Z}
is maximal in the sense of Proposition 2.4. At last, we have sup(Z ′) = λ by maximality of Z ′.
2

11
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Proposition 2.6 Under the hypothesis and notations of Proposition 2.5, given an element
0A ⪯A b0 in A, then there exists a positive element 0A ⪯A b1 in A such that b0 + b1 is broadly
strictly positive, and such that no nonzero element which is tightly strictly greater than zero is
comparable to both b0 and b1.

Proof. In a similar way to the proof of Proposition 2.4, we show that there exists a maximal set
Z0 of tightly strictly positive elements of A which are comparable to b0, and any two distinct
elements of Z0 are not comparable. Following Proposition 2.4, the set Z0 can be extended to a
set Z such that, following Proposition 2.5, the element b = sup(Z) is broadly strictly positive
in A. We conclude by setting b1 = sup(Z\Z0). 2

Proposition 2.7 Under the hypothesis and notations of Proposition 2.4, if x is tightly com-
parable to 0A, then for z ∈ A the element x.z is tightly comparable to both 0A and x.

Proof. Let n ∈ N be such that z ⪯A n.λ. Then we have x.z ⪯A n.x, but n.x is tightly
comparable to 0A and is tightly comparable to x. 2

Lemma 2.2 For z and z′ tightly comparable to 0A such that z and z′ are no comparable, we
have:

1. If 0A ⪯A z and 0A ⪯A z′, then z + z′ = sup({z, z′}).

2. If 0A ⪯A z and z′ ⪯A 0A, then z + z′ = sup({z, z′}) + inf({z, z′}).

Proof. If z and z′ are both strictly positive, clearly, sup({z, z′}) ⪯A z + z′. Now, from
Proposition 2.2 and Lemma 2.3, we have z + z′ = sup({z, z′}).

If 0A ⪯A z and z′ ⪯A 0A, then z = sup({z, 0A}) = sup({z, z′, 0A}) = sup({z, z′}). Similarly,
z′ = inf({z, z′}). 2

Proposition 2.8 Under the hypothesis and notations of Proposition 2.4, let Y1 ⊂ Z and
Y2 ⊂ Z, with Y1 ∩ Y2 = ∅ be any disjoint sets of elements tightly greater than 0A. We denote
y1 = sup(Y1) and y2 = sup(Y2). Then, we have:

y1 + y2 = sup({y1, y2}) = sup(Y1 ∪ Y2) and y1.y2 = 0A

Proof. The first relationship is due to Proposition 2.2 and from the fact that an element of A
which is strictly tightly greater than 0A cannot be both less than y1 and less than y2.

The second relationship follows from the fact that, for y1.y2 to be non zero, due to Proposi-
tion 2.2, y1 and y2 would have to be both comparable to a non zero element, which is impossible
from the definition of Z. 2

Lemma 2.3 Let z, z′ and s, such that z, z′ and s are all tightly strictly greater than 0A, and
are pairwise not comparable. Then, s is not comparable to z + z′.

12
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Proof. If z + z′ ⪯A s, then s is comparable to both z and z′, which contradicts our hypothesis.
Now, suppose by reductio ad absurdum that s ≺A z + z′. let

z0 = sup
({

u ∈ A
/

s ⪯A u ⪯A z + z′

u is tightly comparable to 0A

})

By Remark 2.1, the interval [s, z0] is totally ordered.
By applying Lemma 2.1, there is a maximal totally ordered set M ⊂ [x, z0] such that

inf(M) = 0A and sup(M) = z0, and any u, u′ ∈ M are tightly comparable. For any u′ ∈ M
with u′ ≺A z0, we have, by considering (Remark 2.1) the infemum on z, that [0A, u′] is totally
ordered. We conclude, by considering z0 as the supremum on u′, that z0 is tightly greater than
0A.

At last, z0 cannot be equal to z + z′, as in such a case z and z′ would be comparable. Now,
Lemma 2.1 contradicts the definition of z0 as a supremum. 2

Proposition 2.9 Let (A, R, ⪯A) be a λ−multi-Archimedean partially ordered algebra, and let
x ∈ A. We the following two sets:

Z =
{

z ∈ A
/

0A ⪯A z ⪯A x and
z is tightly greater than 0A

}

Z ′ =
{

z ∈ A
/

x ⪯A z ⪯A 0A and
z is tightly less than 0A

}
We set s = sup(Z) and i = inf(Z ′). Then, we have s = sup({x, 0A}) and i = inf({x, 0A}). At
last, we have: x = s + i.

Proof. Due to Proposition 2.2, applied between i and s, we get

s − i = sup
({

z ∈ A
/

0A ⪯A z ⪯A s − i and
z is tightly greater than 0A

})
= (x − 2.i)

2

Definition 2.2 (Finitely Genrated Multi-Archimedean Algebra) A general multi-Archimedean
algebra is called finitely generated if and only if any set of pairwise not comparable elements is
finite.

Definition 2.3 (Separable Multi-Archimedean Algebra) A general multi-Archimedean
algebra is called separable if and only if any set of pairwise not comparable elements is countable.

In the sequel, we assume that all the considered multi-Archimedean algebra are separable.

2.2 Ideals in a Multi-Archimedean Algebra
Till the end of this section, (A, R, ⪯A) denotes a general multi-Archimedean partially ordered
unitary algebra.

Definition 2.4 A sub-algebra or an ideal B of A is said to be closed if the order induced by
≺A on B is Dedekind-complete.

13
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We may notice that the proof of Proposition 2.4 and Proposition 2.5 also work to prove the
following:

Remark 2.2 Let C be a closed ideal of A. Then, there exists a maximal set Z ⊂ C such that
for any two elements z, z′ ∈ Z the elements z and z′ are not comparable and all elements in
Z are tightly strictly positive. Moreover, the element c = sup(Z) is broadly strictly positive in
the ordered algebra (C, R, ⪯A).

Proposition 2.10 Let C be a complete ideal of a multi-Archimedean algebra (A, R, ⪯A). As-
sume that for every x ∈ C, all elements of A which are tightly between 0A and x also belong to
C. Then we have:

1. The quotient A/C is naturally provided with an order ⪯A/C such that the projection
π : A : A/C from A to the quotient algebra A/C is increasing.

2. This order provides A/C with a π(λ)−multi-Archimedean algebra structure over R.

3. We have an ordered algebra isomorphism:

Φ : A −→ C × (A/C)

through which we can construct a supplementary closed sub-algebra S of C in A (which
we denote by A = C ⊕ S) such that A = C ⊕ S, and for every x ∈ S, all elements of A
which are tightly between 0A and x also belong to S.

4. Consequently, C is proved in turn to be multi-Archimedean.

Proof. We consider a set Z of generators which are tightly comparable to 0A and, as in
Proposition 2.5 such that sup(Z) = λ. We split the set Z into Z = ZC ∪ ZC, with ZC = Z ∩ C
and ZC = Z\ZC. Let c = sup(ZC) ∈ C and d = sup(ZC). Due to Proposition 2.8, we have
c + d = λ.

For any element u ∈ C such that 0A ⪯A u, due to Proposition 2.2, we have u.d = 0A. This
is easily extended to any u ∈ C using Proposition 2.9.

We define in Q = A/C the order ⪯Q defined by: [x] ⪯Q [y] if and only d.x ⪯A d.y. If x′ =
x + c1 and y′ = x + c2, with c1, c2 ∈ C are other representants, then we have c1.d = c2.d = 0A,
so that the order on Q is well defined.

Let us show that the ordered algebra (Q, R, ⪯Q) is a λQ−multi-Archimedean algebra, with
λQ = [d]. Let [l] ∈ Q, with l ∈ A, and let n ∈ N be such that l ⪯A n.λ = n(c + d). We have
[l] ⪯Q n.[d] = n.λQ. 2

Corollary 2.1 Under the hypothesis and notations of Proposition 2.10, if 0A ⪯A x ⪯A c and
c ∈ C, then x ∈ C.

Indeed, the projection onto A/C being increasing, the projetction of the element x is squeezed
between 0A and the projection of c, also equal to 0A.

Proposition 2.11 Assume that A is unitary. Let B be the ideal of A generated by x0. Then,
x0 is a broadly strictly positive element in the multi-Archimedean algebra B.

14
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Proof. Due to Proposition 2.8 and Proposition 2.6, there exists x1 ∈ A such that x0 + x1
is broadly strictly positive in A and x0.x1 = 0A. Let x ∈ B. The algebra A being multi-
Archimedean, there exists n ∈ N such that x ⪯A n.(x0 +x1). We have x ⪯B n.x0 since [x1] = 0
in B. We conclude (for exeample by considering x = 1B, that x0 is broadly strictly positive in
B. 2

Proposition 2.12 Assume that A is unitary. Let B be the ideal of A generated by x0, with
x0 non-zero and tightly comparable to 0A. Then, B is Archimedean, and is consequently
(Proposition 1.1) isomorphic as an ordered algebra either to the usual structure on Z or to the
usual structure on R.

Proof. Let 0B ≺B l and let x ∈ B. Due to Proposition 2.8 and Proposition 2.6, there exists
l1 ∈ A such that l + l1 is broadly strictly positive in A and l.l1 = 0A. Since x0 is tightly
comparable to 0A and l is of the form z.x0, then l is also tightly comparable to 0A and we have
[l1] = 0B. Let n ∈ N be such that x ⪯A n.(l + l1). We have x ⪯B n.l. 2

2.3 Discrete Characteristics and Morphisms
Definition 2.5 Let (A, R, ⪯A) be a multi-Archimedean unitary algebra over a ring R. Note
that the existence of a broadly strictly positive element is established in Proposition 2.5. We
define the discrete characteristics of A the element of A defined by

χ(A) = inf ({b ∈ A / b is broadly strictly positive})

Example 2.1 We consider the following product multi-Archimedean algebras.

• For A1 = Z × Z, we have χ(A1) = (1, 1).

• For A2 = R × R, we have χ(A2) = (0, 0).

• For A3 = R × Z, we have χ(A3) = (0, 1).

Remark 2.3 Let (A, R, ⪯A) be a unitary multi-Archimedean algebra and B ⊂ A be a closed
sub-algebra which contains 1A (note that we do not assume that B is an ideal) which contains
at least one broadly strictly positive element of A. Then the characteristics χ(B) ∈ B can
naturally be defined as an element of A by

χA(B) = inf ({b ∈ B / b is broadly strictly positive in A})

Furthermore, if B′ ⊂ A is another closed sub-algebra of A which contains at least one
broadly strictly positive element of A, then we have B′ ⊂ B, if and only if χ(B) ⪯A χ(B′).

Proof. If B′ ⊂ B, then we have χ(B) ⪯A χ(B′) from the very definition. Conversely, if there
exists x ∈ B′\B let us consider the ideal C generated by x. We may consider without loss
of generality that x is tightly comparable to 0A. From Proposition 2.12 and Proposition 1.1,
if x ̸∈ B, then C ∩B is isomorphic to Z and C ∩B′ is isomorphic to R, and we cannot have
χ(B) ⪯A χ(B′). 2
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Proposition 2.13 Let (A, R, ⪯A) and (B, R, ⪯A) be multi-Archimedean algebras. Let φ :
A −→ B be an isomorphism of ordered algebras. Then we must have φ(χ(A)) = χ(B).

Proposition 2.14 Let A1 [respectively A2] be two product multi-Archimedean algebras of
λ1−bounded [respectively λ2−bounded] elements in a Cartesian product of the for the form:

A1 ⊂ ZU1 × RV1 and A2 ⊂ ZU2 × RV2

where U1, V1, U2 and U3 are sets, and λ1 and λ2 are broadly strictly positive elements in
ZU1 × RV1 [respectively ZU2 × RV2]. Then, the ordered algebras (A, R, ⪯A) are isomorphic if
and only if there is both a one to one correspondence between U1 and U2 and a one to one
correspondence between V1 and V2.

Proof. We see that χ(A1) = (1U1 , 0V1) and χ(A2) = (1U2 , 0V2), where 1U denotes the function
identically equal to 1 on U and 0V denotes the function identically equal to 0 on V . The result
then follows from Proposition 2.13. 2

2.4 Classification of Multi-Archimedean Algebras
Throughout this section, that multi-Archimedean algebra A is assumed to be unitary.

Definition 2.6 Let us consider G the set of all elements of A which are either tightly strictly
positive or tightly strictly negative. We consider the relation ρ on G such that ρ(x, y) if and
only if |x| and |y| are tightly comparable.

Then ρ is easily seen to be an equivalence relation and the equivalence classes of ρ are called
the essential generators of A. The class under ρ of an element x is denoted by [x].

Proposition 2.15 Let [x] be an essential generator of A and let B = [x]∪{0A}. Then B is
the ideal in A generated by x.

Proof. We may assume w.l.o.g. that 0A ⪯A x. Let C be the ideal in A generated by x. Let
y ∈ B. If y ⪯A x, Then, from Corollary 2.1, we have y ∈ C. if x is tightly between 0A and y,
then by Proposition 2.11, there exists n ∈ N such that y ⪯A n.x, hence y ∈ C.

Conversely, if y ∈ C is non zero, then there exists z ∈ A such that y = x.z. For some n ∈ N,
we have z ⪯A n.1A so that y = x.z ⪯A n.x ∈ B and y ∈ B. 2

Remark 2.4 We have a natural identification of ZU × RV with the subset of RU∪V of maps
which send elements of U into Z.

Theorem 2.1 Any general multi-Archimedean algebra (A, R, ⪯A) is isomorphic, as an ordered
ring, to the set of all λ−bounded elements a Cartesian product of the form ZU × RV , where U
and V are two sets, λ is a broadly strictly positive element of ZU × RV , and the ordered ring
structure is defined as in Section 1.4.

Proof. Let U be the set of all essential generators β of A such that {β}∪{0A} is isomorphic
to Z. For β ∈ U , let φβ be a choice of an isomorphism from β

∪{0A} to Z. Similarly, let V be
the set of all essential generators of A such that η

∪{0A} is isomorphic to R, and for η ∈ V ,
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let φη be a choice of an isomorphism from η
∪{0A} to R. We consider the map (defined using

the identification set out in Remark 2.4):

Φ :


G −→ ZU × RV

x 7−→ Φ(x) : β 7−→


(φβ(x), 0R) if β = [x] ∈ U,
(0Z, φβ(x)) if β = [x] ∈ V,

and (0Z, 0R) otherwise

We also define Φ(0A) = (0Z, 0R). Then Φ can be prolonged to a unique one to one morphism
of ordered algebra

Φ :
{

A −→ ZU × RV

x = sup({z ∈ G
∪{0} / z ⪯A x}) 7−→ sup({Φ(z) / z ∈ G and z ⪯A x})

If A id a λA−multi-Archimedean algebra, then, by denoting λ = Φ(λA), then the image Φ(A)
is the closed sub-algebra of λ−bounded elements in ZU ×RV . Since Φ is one to one, it defines
an isomorphism onto its image. 2

Theorem 2.2 Any general multi-Archimedean algebra (A, R, ⪯A) is isomorphic, as an ordered
algebra, to the set of all λ−bounded elements a Cartesian product of the form:(

ZU × RV ,ZU0 × RV0 , ⪯
)

where U, V, U0, V0 are sets, where λ is a broadly strictly positive element of ZU × RV , and the
multi-Archimedean structure is defined as in Section 1.4.

Proof. We first define the isomorphism of an ordered ring on both A to ZU × RV and R to
ZU0 × RV0 using Theorem 2.1. Then we define the action of ZU0 × RV0 by external product on
ZU ×RV and R, by using the external product of elements of R by elements of A through the
relevant isomorphisms, so as to create an obvious commutative diagram. 2

2.5 Fixed Denominator Rational Multi-Archimedean Algebra
In this section, we consider a unitary general multi-Archimedean algebra (A, R, ⪯A).

Let l ∈ A (or possibly l ∈ R, in which case we identify l with the element l.1A of A) be a
broadly strictly positive element. For X ⊂ A, we consider the set

X/l =
{

x

l
/ x ∈ X

}

Conversely, for Y ⊂ A/l, we define l.Y =
{
x ∈ A / x

l
∈ Y

}
. The set A/l is naturally in one

to one correspondance with A through the map x 7−→ x
l
. The inverse map is the map which

to some y = x
l

∈ A/l associates l.y
def= x.

We can be naturally provide A/l with operations: (A/l, R, ⪯A/l), by setting:

• x
l

+ y
l

= x+y
l

for x, y ∈ A.

• x
l
.y = x.y

l
for x, y ∈ A.
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• x
l

⪯A/l
y
l

if and only if x ⪯A y.

There is a natural one to one inclusion map:

i∗ :
{

A −→ A/l
x 7−→ l.x

l

which allows to define an inductive limit, which is provided with and ordered algebra structure,
either based on all the sets A/ln for n ∈ N for a fixed broadly strictly positive element l.

We can also define an inductive limit, which is provided with and ordered algebra structure,
either based on all the sets A/ln for all broadly strictly positive elements l ∈ A.

Proposition 2.16 If l is invertible in A, then we have a commutative diagram

A A/l

A A/l

Multiplication by l−1

Division by l

Inclusion i∗

Identity

Note that in the case when l ∈ R, where R is a field and A = R (for example R = A = R),
then A/l can be seen as A itself, and the natural isomorphism from A to A/l can be seen as
an automorphism.

2.6 Integrals of Functions to Multi-Archimedean Algebras
In this section, we purpose to define the integral of a function from a measured space to a
multi-Archimedean partially ordered algebra. We will proceed along the lines of classical defi-
nitions for an integral, first defining integrals for measurable functions with positive values, and
generalizing to arbitrary measurable functions by decomposing them as the sum of functions
with positive and negative values.

Definition 2.7 (Borel σ−algebra) Given a general multi-Archimedean partially ordered uni-
tary algebra (A, R, ⪯A) over a Dedekind-complete multi-Archimedean abelian ring R, we shall
systematically provide the set A with the σ−algebra, which we call the Borel σ−algebra gener-
ated by open intervals, that is, generated by sets of the form

I = {x ∈ A / x1 ⪯A x ⪯A x2}

Due to our separability assumption and Proposition 2.4, easily see that interval with strict
bounds defined by regular, tight or broad inequalities (Definition 1.9 and Definition 1.10) also
belong to the Borel σ−algebra.

Given l ∈ R, with 0R ≺R l, the (see Section 2.5), the inclusion i : A −→ A/l which to x
associates l.x

l
is measurable, as well as the natural isomorphism of division by l.

Definition 2.8 (Measurable Function) Given a mseasurable σ−algebra Ω on a set X, we
say that a function f : X −→ A is measurable if and only if the pre-image of any element in
the Borel σ−algebra is an element of Ω.
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Definition 2.9 (Measure) A positive measurable function µ : X −→ R+/l, where l ∈ R,
with 0R ≺R l, is called a measure if and only if:

• µ(∅) = 0R/l;

• µ(X) is greater than or equal to 0R/l for all X ∈ Ω/l

• µ is σ−additive, that is, for any countable family (An)n∈N of pairwise disjoints sets we
have

µ

∪
i∈N

Ai

 =
∑
i∈N

µ(Ai).

The tricky point to define the intagral is that, since the range is only partially ordered, the
notion of a “positive” or “negative” valued function is not immediately clear, and we shall use
a couple of lemmas.

In the following lemma, we propose an alternative characterization of the notion of the
absolute value of an element in a General Multi-Archimedean Algebra, introduced in Defini-
tion 2.1.

Lemma 2.4 Let (A, R, ⪯A) be a General multi-Archimedean partially ordered unitary algebra.
Let x ∈ A. Then there exists u ∈ A, with OA ⪯A u such that x + |x| = 2u.

The proof follows directly from Proposition 2.9, where we have |x| = s − i and x = s + i.

Notation 2.1 Under the hypothesis and notations of Lemma 2.4, we denote x+|x|
2

def= u

Remark 2.5 Under the hypothesis and notations of Lemma 2.4, we see that any element in
A is the difference between two positive elements.

Indeed, using Notation 2.1, we have x = x+|x|
2 − (−x)+|−x|

2 .

Definition 2.10 (Integral of a Positive Function) Let (X, ΩX , µ) be a measured space and
(A, R, ⪯A) be a general multi-Archimedean partially ordered unitary algebra on a Dedekind-
complete multi-Archimedean abelian ring R. Let f be a measurable function with domain X
and range

A+ = {y ∈ A / 0A ⪯A y}

When we say that the function f is integrable when the following set S is bounded:

S =
{ ∑

i∈I

yiµ(Ai)
/

I is finite, for all i ∈ I, we have Ai ∈ ΩA and yi ∈ A
(Ai)i∈I is a partition of X, and ∀x ∈ Ai, yi ⪯A f(x)

}

If f is integrable, we set ∫
X

f(x)dµ(x) def= sup(S)

Definition 2.11 (Integrability and Integral) Let f be a function with domain A and codomain
B. Using Notation 2.1, we define measurable functions f+ and f− by:

f+(x) = f(x) + |f(x)|
2

and f−(x) = |f(x)| − f(x)
2

def= (−f(x)) + |(−f(x))|
2
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Note that we have a decomposition f = (f+ −f−), and that f+ and f− both have positive values,
so that Definition 2.10 applies to them. We say that f is integrable if and only if both f+ and
f− are integrable, and in that case we set∫

A
f(x)dµ(x) def=

∫
A

f+(x)dµ(x) −
∫

A
f−(x)dµ(x)

Proposition 2.17 If f : X −→ A is integrable and a ∈ A, then a.f is integrable and∫
A

a.f(x)dµ(x) = a
∫

A
f(x)dµ(x).

Proof. We may assume without loss of generality that f(x) is positive for all x ∈ A and
0 ⪯A a. Due to Definition 2.10, the integral

∫
A

a.f(x)dµ(x) is equal to sup(Sa) with

Sa =
{ ∑

i∈I

yiµ(Ai)
/

I is finite, for all i ∈ I, we have Ai ∈ ΩA and yi ∈ A
(Ai)i∈I is a partition of X, and ∀x ∈ Ai, yi ⪯A a.f(x)

}

On the other hand, a
∫

A
f(x)dµ(x) is equal to a. sup(S) with

S =
{ ∑

i∈I

yiµ(Ai)
/

I is finite, for all i ∈ I, we have Ai ∈ ΩA and yi ∈ A
(Ai)i∈I is a partition of X, and ∀x ∈ Ai, yi ⪯A f(x)

}

Now, due to Corollary 2.1, if yi ⪯A a.f(x), then yi belongs to the ideal generated by a, and
there exists zi ∈ A such that yi = a.zi. Hence we have sup(Sa) = a sup(S). 2

Proposition 2.18 If µ ({x ∈ A / f1(x) ̸= f2(x)}) = 0R, and f1 and f2 are integrable, then∫
A

f1(x)dµ(x) =
∫

A
f2(x)dµ(x).

Proof. By difference, it is sufficient to prove the result if f1 = 0A and 0 ⪯A f2(x) for all x ∈ A.
Let Z = {x ∈ A / 0 ≺A f2(x)}; we have µ(Z) = 0R. For any y such that 0A ≺A y and A ∈ Ω
with y ⪯A f2(x) on A we have either y = 0A or A ⊂ Z so that µ(A) = 0R. We conclude from
Definition 2.10 that the integral of f2 is zero. 2

Proposition 2.19 Let f : X −→ A be an integrable and positive function, that is, for all x

in A, we have 0A ⪯ f(x). If
∫

A
f(x)dµ(x) = 0A, then µ ({x ∈ A; f(x) ̸= 0A}) = 0A.

Proof. Let (zi)i∈N be a maximal family of pairwise non comparable elements of A (which
is countable due to our separability assumption) as set out in Proposition 2.4. Following
Proposition 2.5, we also assume that λ = sup({zi / i ∈ N}), where A is a λ−multi-Archimedean
algebra.

Let X = {x ∈ A / 0A ≺A f(x)}. For each x ∈ X, the ideal generated by f(x) is unbounded,
which means that there exists n ∈ N such that n.f(x) is not smaller than λ. From the definition
of the zi’s, this means in turn that there exists i ∈ N such that zi ⪯A n.f(x) In other words,
we have:

X ⊂
∪

n∈N

∪
i∈N

{x ∈ A / zi ⪯A n.f(x)}

If 0R ̸= µ(X), this implies by σ−additivity that there exist n ∈ N and i ∈ N such that
µ({x ∈ A / zi ⪯A nf(x)}) is non zero. We conclude that 0A ≺A µ({x ∈ A / zi ⪯A nf(x)})
and at last 0 ≺A zi.µ({x ∈ A / zi ⪯A nf(x)}) ⪯A n.

∫
A

f(x)dµ(x). 2
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Proposition 2.20 Let us consider a measured space (X, ΩX , µX), where µX is a measure with
values in R/l, for a multi-Archimedean ring R and a broadly strictly positive element l ∈ R.
Let (f1, ..., fd) be a function with X as domain and with values in a product multi-Archimedean

algebra
i=d∏
i=1

(Bi, R, ⪯Bi
), provided with the Borel σ−algebra. Then (f1, ..., fd) is integrable if and

only if every fi are integrable.

Proof. The proof is straightforward by noticing that intervals in the product multi-Archimedean
algebra are exactly the cartesian products of intervals in the ordered algebras Bi. We then fol-
low the steps for the definition of the integral, through positive functions, and we see that
everything works coordinate by coordinate. 2

Definition 2.12 (Product σ−algebra and Measure) Let (X1, ΩX1 , µX1) and (X2, A, ΩX2 , µX2)
be measured spaces, with measures taking value in R/l1 and R/l2 respectively, for the same
multi-Archimedean ring R and broadly strictly positive element l1, l2 ∈ R. Then,

• The σ−algebra ΩX1 ⊗ ΩX2 generated by the family {ω1 × ω2 / ω1 ∈ Ω1 and ω2 ∈ ΩX2} is,
classically, called the product σ−algebra on X1 × X2.

• The map which to each set ω1 × ω2, with ω1 ∈ ΩX1 and ω2 ∈ ΩX2 associates the element
µX1(ω1).µX2(ω2) of R/(l1.l2) can be extended in a unique manner to a σ−additive map
on ΩX1 ⊗ ΩX2, and this σ−additive map, which is a measure with values in R/(l1.l2).
This measure, denoted by µX1 ⊗ µX2, is called the product measure of µX1 and µX2.

These definition can clearly be extended to any cartesian product of a finite family (X1, . . . , Xd)
of measured spaces.

Remark 2.6 Under the hypothesis and notations of Definition 2.12 above, if X1 and X2 are
multi-Archimedean algebras provided with the Borel σ−algebra, then, since cartesian products
of intervals in X1 and X2 are precisely intervals for the product multi-Archimedean algebra (i.e.
provided with the coordinate by coordinate order, see Definition 1.20 and Theorem 1.4), the
Borel σ−algebra on the product multi-Archimedean algebra is the same as the product σ−algebra
σ−algebra ΩX1 ⊗ ΩX2.

Proposition 2.21 (Fubini-Tonelli theorem) Let (X1, ΩX1 , µX1) and (X2, ΩX2 , µX2) be mea-
sured spaces, with µX1 and µX2 taking values in rigs of the form Rl1 and Rl2. Let (A, R, ⪯A)
be a multi-Archimedean unitary algebra over the same ring R.
Let f : X1 × X2 −→ A be an integrable function over the cartesian product X1 × X2.
Then, the map x1 7−→

∫
X2

f(x1, x2)dµX2(y) is measurable over X1, and we have:

∫
X1×X2

f(x1, x2) (dµX1 ⊗ µX2) (x1, x2) =
∫

X1

(∫
X2

f(x1, x2)dµX2(x2)
)

dµX1(x1)

Proof. We first consider the case when f , is a constant function equal to f0 on a cartesian
product ω2 × ω2 of two measurable sets with ω1 ∈ ΩX1 and ω2 ∈ ΩX2 , and zero elsewhere. We
may assume without loss of generality that f0 ̸= 0⊣.

Then for a fixed x1 ∈ X1, we have f(x1, x2) = f0 if and only if x2 ∈ {x2 ∈ X2 / (x1, x2) ∈
ω1×ω2}, a set which in our case is equal to ω2.. Then,

∫
X2

f(x1, x2)dµX2(x2) = f0

∫
ω2

dµX2(x2) = f0µX2(ω2).
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On the other hand,
∫

X1×X2
f(x1, x2) (dµX1 ⊗ µX2) (x1, x2) = f0.µX1 ⊗ µX2(ω1 × ω2) =

f0
∫

ω2
µX1(ω1)dµX2(x2) from the definitions.

To generalize the result for a general measurable function, by linearity, this remains true
for positive fonctions ∑i∈I fωi

, where I is finite, {ωi / i ∈ I} is a partition of X1 × X2 and
Ai ∈ ΩX1 ⊗ΩX2 . From Definition 2.10, the result remains true for mesurable positive functions
on (A1 ×A2, ΩA1 ⊗ΩA2). At last, from Definition 2.11, the result remains true for an arbitrary
measurable function f . 2

2.7 Normed Multi-Archimedean Algebras, Functional Norms
Definition 2.13 We call a norm over a multi-Archimedean algebra (A, R, ⪯A) on a multi-
Archimedean ring R a function N : A −→ R/l for some broadly strictly positive l ≺R 0R with
the following properties:

1. 0R ⪯R/l N(x) for any x ∈ A;

2. N(x + y) ⪯R/l N(x) + N(y) for all x, y ∈ A;

3. N(r.x) = |r|.N(x) for all r ∈ R and x ∈ A;

4. If N(x) = 0R, then x = 0A;

The norm is said to be compatible with the order, in addition to the conditions 1. to 4. above,
we have:

5. if 0A ⪯A x ⪯A y in A then 0R ⪯R/l N(x) ⪯R/l N(y) in R

The norm is called an algebra norm if, in addition to the conditions 1. to 4. above, we have:

6. N(x.y) ⪯R/l N(x).N(y) for all x, y ∈ A;

The norm is called a multi-Archimedean norm if it is both compatible with the order and an
algebra norm, that is, if it satisfies all conditions 1. to 6.

We often denote by ||x|| the norm of an element x ∈ A, instead of a notation of the form
N(x). In that case the norm itself is denoted by ||.||.

Remark 2.7 If a subset X of A is bounded for the order, then by definition it is bounded for
any norm which is compatible with the order. The converse is also true.

Proof. Let us suppose that r in R is such that for all x in X, we have ||x|| ⪯R r. Since R
is multi-Archimedean property, there exists n ∈ N such that r ⪯R n.1R. For x ∈ X, we have
x ⪯R n.1A, which shows the X is bounded for the order. 2

Definition 2.14 Let (X , ΩX , µX) be a measurable space, where µl has values in a ring of the
form R/l, and let (A, R, ⪯A) be a multi-Archimedean algebra over the ring R. Let ||.|| be a
norm on A, and α ∈ N∗. Let f : X −→ A be a measurable function. We say that f has finite
α−norm on a measurable subset ω ⊂ X if the following integral exists and is finite:

||f ||α =
∫

X
||(f(x))α||dµl(x)

This integral is then called the 1−norm of f on X.
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Remark 2.8 From Proposition 2.19, if ||f ||α = 0R/l, then µl({x ∈ A / (f(x))α ̸= 0R/l}) =
0R/l. Using Proposition 2.2 we can see that this implies that µl({x ∈ A / f(x) ̸= 0R/l}) = 0R/l
This allows us to consider ||f ||α as a norm according to Definition 2.13, Point 4, if we consider
the space of equivalence classes of functions which are equal except possibly on a zero measure
subset of X.

Definition 2.15 Let (X , ΩX , µX) be a measurable space, where µl has values in a ring of the
form R/l, and let (A, R, ⪯A) be a multi-Archimedean algebra over the ring R. Let ||.|| be a
norm on A. Let f : X −→ A be a measurable function. We say that f has finite ∞−norm
on a measurable subset X ⊂ A if there exists a subset ω of X with zero measure such that if
x 7−→ ||f(x)|| has an upper bound on X\ω. We then denote

||f ||∞ = inf
ω⊂X,µl(ω)=0R

(
sup
X\ω

||f(x)||.
)

This defines a norm ||.||∞ according to Definition 2.13.

Notation 2.2 Let (X , ΩX , µX) be a measurable space, where µl has values in a ring of the form
R/l, and let (A, R, ⪯A) be a multi-Archimedean algebra over the ring R. Let ||.|| be a norm
on A. Let α ∈ N∗ ∪ {∞}. We denote by Lα(X, A, µl) the space of all equivalence classes of
measurable functions up to difference on a zero measure set from X to A with finite α−norm.
This space is naturally provided with the norm ||.||α.
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3 Analyzable Spaces
3.1 Definition of an Analyzable Space
Definition 3.1 An analyzable space over a multi-Archimedean ring R is a tuple, (A, R, ΩA, µl, ⪯A
), where (A, R, ⪯A) is a unitary complete multi-Archimedean algebra, ΩA is the Borel σ−algebra
on A, and µl is either a translation-invariant (R/l)−valued, or a translation-invariant R/l−valued
measure on ΩA, that is, for any ω ∈ ΩA and x ∈ A, the measure µA(ω+x) = µA({y+x / y ∈ ω})
is equal to µA(ω).

The analyzable space (A, R, ΩA, µl, ⪯A) is called standard if the measure µl is R/l−valued
(or equivalently R−valued), in which case it it a measure in the most usual sense of the word.
The analyzable space (A, R, ΩA, µl, ⪯A) is called pure if the measure µl is R/l−valued, in which
case it is not a measure in the most usual sense of the word, except of course when R = R.

The analyzable space (A, R, ΩA, µl, ⪯A) is called essential if any nontrivial ideal of A has
non-zero measure. The analyzable space is called descent if any non-trivial ideal of A has a
subset with non-zero measure.

In the sequel, all analyzable spaces are assumed to be both essential and descent.

Remark 3.1 We remind the reader (Proposition 2.12) that the ideal generated by a nonzero
element which is tightly comparable to 0A is either isomorphic to Z or to R as an ordered
algebra. In an essential and descent analyzable space, the measure on the ideal generated by
a nonzero element which is tightly comparable to 0A, as a translation-invariant measure, is
proportional (through an isomorphism) either to the usual uniform discrete measure (in the
case of Z), or to the usual Lebesgue measure (in the case of R).

Example 3.1 (Standard Analyzable Space) Let us consider the ring R = Zd, with d ∈
N∗, provided with the multi-Archimedean product structure constructed from the usual (Z,Z, ≤),
that is: coordinate by coordinate addition, multiplication, and partial order.

Let A =
(
RR

)
λ

be the space of λ−bounded maps from the discrete grid R with range R,
which is also provided with the product multi-Archimedian algebra structure, where λ : R −→ R
is a map. For r ∈ R, we consider the element α(r) of A defined by

(α(r)) (x) = r.
⌊

x

l

⌋
,

where l ∈ Zd is broadly strictly positive (i.e. all of its coordinates are positive). The map
α(r) is piecewise constant: it is constant on some rectangle parallelepipedic polytopes with edge
length equal to the la for a = 1, . . . , d. We denote v = Πd

a=1la the volume of that polytope.
For r ∈ R and f ∈ A, we consider the external product r.f ∈ A which is equal to the value

by value product α(r).f in A. This defines a multi-Archimedean algebra structure (A, R, ⪯A).
In order to define a measure on the Borel σ−algebra ΩA on A, we first define its value on

intervals for the partial order:

µl([f1, f2[) = 1
v

∫
Zd

|f2(x) − f1(x)| dp(x)

where p(x) is a bounded R−valued measure on Zd (for example a probability with an integrable
density such as a normalized Gaussian sampling), and the absolute value in A is defined
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coordinate by coordinate, which coincides with the notion set out in Definition 2.1. This
notion can be shown to extend to a σ−additive function on finite unions of intervals, and
at last to extend on ΩA to a measure with values in R/v. This defines an analyzable space
(A, R, ΩA, µv, ⪯A).

Example 3.2 (Pure Analyzable Space) Let us consider the ring R = Z×R, provided with
the multi-Archimedean product structure constructed from the usual (Z,Z, ≤) and (R,R, ≤),
that is: coordinate by coordinate addition, multiplication, and partial order.

Let A = Ud × RV , where U and V are countable sets, provided with the product multi-
Archimedian ring structure. For r = (rD, RC) ∈ R and x = (xD, xC) ∈ A, with xD ∈ ZU and
xC ∈ RV , we consider the external product r.x = (rD.xD, rC .xC).

In order to define a measure on the Borel σ−algebra ΩA on A, we first define its value on
intervals for the partial order (using the identification set out in Remark 2.4):

µl([x, y[) =

∑
β∈U

(y(β) − x(β))p({β}),
∑

β′∈V

(y(β′) − x(β′))p({β′})


where p is a positive measure with non-zero density on U ∪ V , with values in R, taking only
values in Z/l on subsets of U . The measure on the Borel σ−algebra is defined by σ−additivity.

This defines a pure analyzable space (A, R, ΩA, µv, ⪯A). In general, the first coordinate of
the measure taking values in a discrete ring, the measure of an interval [x, y[, with x ⪯ y, can
be finite only when x and y differ by a finite number of values on U .

3.2 Convolutions In Analyzable Spaces
Definition 3.2 Let (A, R, ΩA, µl, ⪯A) be an analyzable space over an ordered abelian ring
R and (B, R, ⪯B) multi-Archimedean partially ordered unitary algebra on the same ring. Let
K : A −→ B (or K : A −→ R, which can be identified to the B−valued function a 7−→ K(a).1B)
be an integrable function, and f : A −→ B be a measurable function. We define the convolution
product K ⋆ f : A 7−→ B of f by K by setting for x ∈ A:

K ⋆ f(x) =
∫

A
f(t)K(x − t)dµl(t)

3.3 Integration on Intervals
Definition 3.3 Let (A, R, ΩA, µl, ⪯A) be an analyzable space over a ring R. Let l1, l2 ∈
A ∪ {−∞, +∞}. The Interval of A between l1 and l2, denoted by [l1, l2]A (or simply [l1, l2] for
short if no confusion can arise), is defined by

[l1, l2]A = {x ∈ A / l1 ⪯A x ⪯A l2}

We define similarly broadly semi-open bounded or unbounded intervals, using the broad strict
order <A on A:

[l1, l2[A= {x ∈ A / l1 ⪯A x <A l2}
At last, we define partially open intervals using the regular strict:

[l1, l2(A= {x ∈ A / l1 ⪯A x ≺A l2}

We shall often omit the subscript A to denote [l1, l2[ when no ambiguity can arise.
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Remark 3.2 In Z2 we have ](0, 0), (1, 1)] = {(1, 0), (0, 1), (1, 1)}, however (1, 0) and (0, 1) are
not broadly strictly greater than (0, 0).

Lemma 3.1 Let (A, R, ΩA, µl, ⪯A) be an analyzable space.
Let l ∈ A be broadly strictly greater than 0A. Then we have the following partition of A:

A =
∪
s∈Z

[s.l, (s + 1).l[A

Notation 3.1 Let (A, R, ΩA, µl, ⪯A) be an analyzable space and (B, R, ⪯B) be a multi-Archimedean
partially ordered unitary algebra on the same ring R. Let f be a function with domain A and
codomain B.
Let I = [l1, l2[ be a (possibly unbounded) interval in A. We denote∫ l2

l1
f(x)dµl(x) =

∫
[l1,l2[

f(x)dµl(x)

3.4 Ordinary Differentiation
In this section, we consider (A, R, ΩA, µl, ⪯A) and (B, R, ΩB, µ′

l′ , ⪯B) two analyzable spaces
over a ring R.

Definition 3.4 (Integral Based Primitive Operator) Let f ∈ L1(A, B, µl). We define the
integral based primitive of f Iµl

(f) : A 7→ B, by

(Iµl
(f)) (x) =

∫
{t<Ax}

f(β)dµl(β)

Lemma 3.2 Let f ∈ L1(A, B, µl). Then, Iµl
(f) is integrable over A, so that the operator Iµl

sends L1(A, B, µl) into itself.

Proof. First we assume that f has positive values, that is, for all x ∈ A we have 0B ⪯B f(x).
Let us denote F = Iµl

(f). Since the measure µl is translation-invariant, the function F is
increasing and defined on all A, then F is bounded on any bounded subset of A From the
definition of integrable positive functions the function F is integrable on any bounded subset
of A.

Now, let us consider the following map, which is clearly integrable for the product measure
µl ⊗ µl:

G :
{

A × A −→ B/2
(x, y) 7−→ f(x)+f(y)

2

First suppose that f = f0.1ω is some constant f0 multiplied by the characteristic function
of a measurable set ω ∈ ΩA. Then, since F (x) ⪯B µl(ω), we have:∫

A
F (x)dµl(x) ⪯B f0 (µl(ω))2 ⪯B

∫
A×A

G(x)d(µl ⊗ µl)(x)

This shows that F is integrable. We can easily generalize this by linearity to measurable linear
combinations of characteristics functions, which proves our statement for a positive function
f . The general case follows immediately from the definition of the integral through integrals
for positive functions. 2
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Definition 3.5 Let Φ : L1(A, B, µl) −→ L1(A, B, µA) be a linear operator. We say that Φ
commutes with the integral based primitive operator if for any f ∈ L1(A, B, µl), we have

Iµl
(Φ(f)) = Φ (Iµl

(f))

.

Remark 3.3 Let f ∈ L1(A, B, µl). If Iµl
(f) is constant, then f is null almost everywhere.

Lemma 3.3 Let f ∈ L1(A, B, µl) and H ∈ L∞(A, B, µl). Then Iµl
(H ⋆ f) = (H ⋆ (Iµl

(f)))

Proof.

(Iµl
(H ⋆ f)) (x) =

∫
{t<Ax}

H ⋆ f(t)dµl(t) =
∫

{t<Ax}

(∫
A

H(s)f(t − s)dµl(s)
)

dµl(t)

=
∫

A
H(s)

(∫
{t<Ax}

f(t − s)dµl(t)
)

dµl(s)

=
∫

A
H(s)

(∫
{t<Ax−s}

f(t)dµl(t)
)

dµl(s) = (H ⋆ (Iµl
(f))) (x)

2

Definition 3.6 (Ordinary Differentiation Operator) Let δ : Iµl
(L1(A, B, µl)) 7−→ L1(A, B, µl)

be a linear operator. We say that δ is an ordinary differentation operator if

δ ◦ Iµl
= IdIµl

(L1(A,B,µl)) and δ ◦ Iµl
= IdL1(A,B,µl)

Proposition 3.1 Let δ : Iµl
(L1(A, B, µl)) 7−→ L1(A, B, µl) be a differentiation operator. Then

δ(f) is the zero function if and only if f is constant on A almost anywhere.

Proof. Let f be a constant function. Then we have Iµl
(δ(f)) = δ(Iµl

(f)) = f . So Iµl
(δ(f))

is constant, which implies (Proposition 2.19) that δ(f) is zero almost anywhere. Conversely, if
δ(f) is zero almost anywhere, obviously, Iµl

(δ(f)) is equal to 0B. 2

Lemma 3.4 Let Φ : Iµl
(L1(A, B, µl)) 7−→ L1(A, B, µl) be a linear operator which commutes

with the integral based primitive operator and is zero for functions for the form Iµl
(φ). Then Φ

is zero on L1(A, B, µl). In other words, for all f ∈ L1(A, B, µl), we have µl ({x ∈ A; Φ(f)(x) ̸= 0B}) =
0R.

Proof. Let us suppose by reductio ad absurdum that for some f ∈ L1(A, B, µl), we have
µl ({x ∈ A / Φ(f)(x) ̸= 0B}) ̸= 0R. Then Φ(Iµl

(f)) = Iµl
(Φ(f)) is not a constant function.

This shows Φ (Iµl
(f)) not almost anywhere zero, which contradicts our hypothesis on Φ. 2

As a direct application of Lemma 3.4, we obtain:

Proposition 3.2 (Uniqueness of The Ordinary Differentiation Operator) If δ1 and δ2
are two differentiation operators on Iµl

(L1(A, B, µl)), then they are almost equal in the follow-
ing sense: for all f ∈ L1(A, B, µl), we have µl ({x ∈ A / Φ1(f)(x) ̸= Φ2(f)(x)}) = 0R.
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Definition 3.7 (Canonical System of Generators) Assume that A ⊂ ZU × RV and B ⊂
ZU ′×RV ′ are products multi-Archimedean algebra in the sense of Definition 1.20. For β ∈ U∪V ,
we consider eβ the element of A which is defined (using the identification set out in Remark 2.4)
depending on two cases:

1. If β ∈ U , then the map eβ sends sends all element of U onto 0Z except β which is sent
onto 1Z, and sends all elements of V onto 0R.

2. If β ∈ V , then the map eβ sends sends all element of U onto 0Z, and sends all elements
of V onto 0R, except u which is sent onto 1R.

The family (eβ)β∈U∪V of elements of A is called the canonical family of generators of A. We
can of course define similarly the canonical family (e′

β′)β′∈U ′∪V ′ of generators of B.

We use the notations eβ and e′
β′ from Definition 3.7 throughout the remainder of this section.

Definition 3.8 (Canonical Projections) Assume that A ⊂ ZU × RV is a product multi-
Archimedean algebra in the sense of Definition 1.20. Let us consider β ∈ U ∪ V . Then there
exists a unique algebra morphism pβ : A −→ A, which sends 1A on eβ, and such that for r ∈ R
we have pβ(r.β) = r.β (i.e. which lets eβ invariant). Note that this morphism can be expressed
as the multiplication by eβ.

Proposition 3.3 Assume that A = RV and B = RV ′ is a product multi-Archimedean algebra
in the sense of Definition 1.20. We remind the reader that we assume A separable, which
implies that V is countable.

Consider a function F : A −→ B, and, for β ∈ V and β′ ∈ V ′, define

fβ,β′ :
{

R{β} ⊂ A −→ R
x 7−→ pβ′ (f(x))

Then F belongs to Iµl
(L1(A, B, µl)) if and only if each of the functions fβ,β′ belong to

Iµ (L1((R,R, µ)), where µ is the usual Lebesgue measure on R. In other words, the functions
fβ,β′ have bounded variations.

As a corollary, there exists a ordinary differentiation operator on Iµl
(L1(A, B, µl)), which

if given by the gradient operator in the usual sense in R, for each coordinate β′ ∈ V ′ in the
range.

Proof. Follows directly from the definitions. 2

Proposition 3.4 Assume that A = ZU and B = ZU ′ × RV ′ are products multi-Archimedean
algebra in the sense of Definition 1.20. We remind the reader that we assume A separable,
which implies that U is countable. By removing a zero-measure ideal if necessary, we may
assume that for each i ∈ U , the measure of µf

(
Z{i}

)
on each copy of Z is non-zero, which

implies by translation invariance that it is proportional to the usual discrete measure on Z.
Consider a function F : A −→ B, and, for β ∈ U and β′ ∈ U ′ ∪ V ′, define

fβ,β′ :
{

Z{β} ⊂ A −→ R
x 7−→ pβ′ (f(x))
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Then F belongs to Iµl
(L1(A, B, µl)) if and only if each of the functions fβ,β′ belong to

Iµ (L1((Z,R, µ)), where µ is the usual discrete measure on Z. In other words, the functions
fβ,β′ can be any sequence, either from Z to R, or from Z to Z, depending on whether β′ ∈ U ′

or β′ ∈ V ′.
As a corollary, there exists a ordinary differentiation operator on Iµl

(L1(A, B, µl)), which
if given by the gradient operator in the sense of finite differences in Z. In other words,
(δ(F )) (x) = F (x) − F (x − 1A).

Proof. Follows directly from the definitions. 2

We remind the reader that, from Theorem 2.2, any separable multi-Archimedean algebra is
isomorphic to the set of λ−bounded a product of the form ZU × RV , where U and V are
countable.

Proposition 3.5 (Existence of a Ordinary Differentiation Operator) There exists an
ordinary differentiation operator on Iµl

(L1(A, B, µl)).

Proof. This result follows directly from Proposition 2.19, which shows that Iµl
is one to one on

L1(A, B, µl), so that, for any F ∈ Iµl
(L1(A, B, µl)) we can define a unique δ(F ) ∈ L1(A, B, µl)

such that Iµl
(δ(F )) = F . 2

Definition 3.9 A map f : A −→ B is said to be derivable if it belongs to Iµl
(L1(A, B, µl)).

3.5 Symmetric Derivative Operator
We assume in this section that there exists an ordinary differentiation operator for A to B.

Notation 3.2 Given a map f ∈ L1(A, B, µl) and x, x0 ∈ A, we call mirror of f at x0, and we
denote by f̂x0 the function defined by f̂x0(x) = f(2.x0 − x).

Definition 3.10 (Derivative Operator) We call the symmetric derivative operator, or sim-
ply derivative operator for short, the linear operator define by:

δS :


Iµl

(L1(A, B, µl)) −→ L1(A, B/2, µl)

f −→ δS(f) :

 A −→ B/2
x0 7−→ (δS(f)) (x0) = (δ(f))(x0)−δ(f̂x0)(x0)

2

Proposition 3.6 Under the hypothesis and notation of Proposition 3.3, namely: A = RU

and B = RV ′ is a product multi-Archimedean algebra in the sense of Definition 1.20, then, we
have δS = δ. In other words, in purely continuous multi-Archimedean algebras, the derivative
operator coincides with the ordinary differentiation operator, which coincides with the usual
gradient of functions with bounded variations.

Proof. Indeed, we know that the ordinary differentiation operator δ is the usual derivative on
each coordinate. So, we have

(
δf̂x0

)
(x0) = −δf (x0), so that (δS(f)) (x0) = (δf)(x0)+(δf)(x0)

2 =
(δf) (x0). 2
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Proposition 3.7 Under the hypothesis and notation of Proposition 3.4, namely: A = ZU and
B = ZU ′ ∪ ZV ′ is a product multi-Archimedean algebra in the sense of Definition 1.20. Then
we have:

(δS(f)) (x0) = f(x0 + 1A) − f(x0 − 1A)
2

Proof. Indeed, we know that the ordinary differentiation operator δ is the usual finite difference
on each coordinate. So, we have

(
δf̂x0

)
(x0) = f(x0 + 1A) − f(x0), so that (δS(f)) (x0) =

f(x0+1A)−f(x0−1A)
2 . 2

3.6 Polynomials and Power Functions in Analyzable Spaces
In the remainder of this section, we consider (A, R, ΩA, µl, ⪯A) and (B, R, ΩB, µ′

l′ , ⪯B) two
analyzable spaces over a ring R. We assume (up to an isomorphism) that A = ZU × RV and
B = ZU ′ × RV ′ .
We use the notations eβ and e′

β′ from Definition 3.7 throughout the remainder of this section.

Definition 3.11 (Canonical Morphisms from A to B) Under the hypothesis and nota-
tions of Definition 3.7, let us consider β ∈ U ∪ V and β′ ∈ U ′ ∪ V ′, such that either β ∈ U or
β′ ∈ V ′. Then, there exists a unique algebra morphism which sends 1A on β′, and such that
for r ∈ R we have Xβ,β′(r.β) = r.β′ (i.e. which sends eβ onto e′

β′).
This morphism can be expressed using the projections introduced in Definition 3.8:

Xβ,β′ :
{

A ⊂ RU∪V −→ B
x 7−→ ((pβ(x)) (β)) .β′

Note that for x ∈ A, we have (pβ(x)) (β) ∈ Z or (pβ(x)) (β) ∈ R, depending on whether β ∈ U
or β ∈ V .

Definition 3.12 (Formal Monomial from A to B) Let NU∪V
c be the set of maps σ : U ∪

V −→ N with finite support, that is, such that the set

supp (σ) = {β ∈ U ∪ V / σ(β) ̸= 0N}

A formal monomial m from A to B is a choice, for each range axis β′ ∈ U ′ ∪ V ′, of an element
of m(β′) ∈ NU∪V

c , the support of which is contained in U when β′ ∈ U ′. In other words, a map:

m :


U ′ ∪ V ′ −→ NU∪V

c

β′ 7−→ m(β′) : U ∪ V −→ N such that
if β′ ∈ U ′, then supp (m(β′)) ⊂ U

The degree of the monomial m on a coordinate β′ ∈ U ′ ∪ V ′ is the maximum of the map m(β′)
over its finite support.

Definition 3.13 (Monomial Map Associated to a Formal Monomial) Let m be a for-
mal monomial from A to B. We define (using the identification set out in Remark 2.4) the
monomial map πm associated to m by:

πm :


A = ZU × RV −→ B = ZU ′ × RV ′

x 7−→ πm(x) :


U ′ ∪ V ′ −→ R

β′ 7−→
∏

β∈supp(m(β′))
(Xβ,β′(x))m(β′)
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Notation 3.3 Let m be a formal monomial from A to B. The monomial map can be denoted
by:

πm =
∑

β′∈U ′∪V ′

∏
β∈U∪V

X
m(β′)
β,β′ (1)

using the convention that the product by elements of the form X
m(β′)
β,β′ when m(β′) = 0N leave the

result unchanged, so that each product in Equation (1) has in fact a finite number of factors.
Moreover, the sum in Equation (1), which has potentially an infinite number of terms, takes
place in disjoint ideals (generated by each of the e′

β′), so that it is weel defined without any
problem of convergence.

Definition 3.14 (Polynomial maps from A to B) The B−valued polynomial functions with
degree K ∈ NU ′∪V ′ over A are the linear combinations of the monomial maps with degrees less
than or equal to K, as introduced in Definition 3.13.

Definition 3.15 (Power Functions on Positive Elements) Let α ∈ A be a broadly strictly
positive element. Let 0A ⪯A x. We identify, through the classification theorem, the elements
α and x with elements of ZU × RV . we denote by x[α] the element of A = RU∪V obtained by
composing the map x by the map “α’s power” on each image of canonical generator in A.
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4 Digital Differentiation
In the sequel of this section, we consider the following structures. Let d ∈ N and, for a =
1, . . . , d, let Aa be an analyzable space over a ring R. We denote

M =
d∏

a=1
Aa and M′ ⊂ ZU ′ × RV ′

For a ∈ {1, . . . , d}, we consider ea the element of M, the ith coordinate of which is 1Ai
if

i = a, and 0Ai
otherwise. We denote by Zd the sub-algebra of M generated by the ea’s, for

a = 1, . . . , d.
We assume that M′ is the set of all λ′−bounded elements of ZU ′ × RV ′ for some broadly

strictly positive element λ′ ∈ ZU ′ ×RV ′ . For β′ ∈ U ′ ∪V ′, we consider e′
β′ the canonical element

of M′, as defined in Definition 3.7.
For the sake of simplicity, we assume that R is either the ring Z or the ring R. Moreover,

we assume that the analyzable space M is finitely generated, so that we assume without loss
of generality that either Aa = Z or Aa = R for a = 1, . . . , d. Generalized statements in the
case of general separable analizable spaces are given in Section 8, and the corresponding proofs
are left to the reader.

4.1 Rapidely Decreasing and Moderately Increasing Multi-sequences
Definition 4.1 Let u be a multi-sequence in M′Zd. We say that u is rapidly decreasing if and
only if for any polynomial function πZd −→ M′, the function I 7−→ π(I)u(I) is bounded. We
denote by D[Zd, M′] the set of rapidly decreasing multi-sequences in M′Zd.

Remark 4.1 The space D[Zd, M′] of rapidly decreasing multi-sequences is stable under inner
addition, inner multiplication, and stable under multiplication by a polynomial function.

Lemma 4.1 Let u a rapidly decreasing multi-sequence and let π be an M′−valued polynomial
function on M. For I ∈ Zd−1 and i ∈ Ad, let us denote by u(I, i) [resp. π(I, i)] the image
under u [resp. under π] of the concatenation of I and (i). Then the multi-sequence defined on
Zd−1 by

sd(I) =
∑

i∈Ad

|u(I, i)||π(I, i)|

is well defined and bounded on Zd−1.

Proof. It is sufficient to prove this property when π is a monomial and, due to Remark 4.1, it
is sufficient to prove it for polynomials of degree 0. In other words, we just need to show that
the sum of the values of the multi-sequence u itself is absolutely convergent.

First we prove that for d ≥ 1, the sum:

sd(I) =
∑

i∈Ad

u(I, i)

is well defined for I ∈ Zd−1, and that the multi-sequence sd itself is rapidly decreasing on Zd−1.
Since u is rapidly decreasing, we can find K > 0M′ such that for I ∈ Zd−1 and i ∈ Ad, we have
u(I, i) ⪯ K and i2u(I, i) ⪯ K. For N ∈ N∗, we have

(N !)2∑N
i=1 |u(I, i)| ⪯ (N !)2|u(I, 1)| +∑N

i=2 i2|u(I, i)|. (N !)21M′
i2

⪯ (N !) (K + K.2)
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Note that the expression N !
i2 1M′ denotes a well defined element of the algebra M′ over the ring

R. Indeed, by expanding the expression of (N !)2 and simplifying by i2 to get an integer value,
which is then multiplied by 1M′ in the algebra M′.

Hence, we get ∑i∈N∗ |u(I, i)| is well defined and bounded by 3K. By a similar argument
for i < 0, we get that ∑i∈Ad

|u(I, i)| is well defined and bounded on Zd−1. 2

Lemma 4.2 Let us consider the multi-sequence v defined on Zd−1 by v(I) = ∑
i∈Ad

u(I, i),
which is well-defined due to from Lemma 4.1, Then, v is a rapidly decreasing multi-sequence.

Proof. Let π be a polynomial function on Zd−1. Then, by considering π as a function
on Zd (which does not depend on the dth coordinate), we get by Remark 4.1 that the multi-
sequence I 7−→ π(I)u(I) is rapidly decreasing. From Lemma 4.1, we get that the multi-sequence
I 7−→ π(I)v(I) on Zd−1 is bounded, which proves that v is rapidly decreasing. 2

Lemma 4.3 For any rapidly decreasing multi-sequence u and any polynomial π on Zd, the
following series is absolutely convergent: ∑

I∈Zd

π(I)u(I)

In particular, the multi-sequence uπ is bounded.

The proof follows immediately by induction using Lemma 4.1 and Lemma 4.2.

Proposition 4.1 For any rapidly decreasing multi-sequence u and any polynomial π on Zd,
the multi-sequence uπ is rapidly decreasing.

Definition 4.2 Let I be a sub-algebra of M containing Zd (typically, I = Zd or I = M).
Let u be a function in M′I. We say that u is moderately increasing if and only if there
exist a bounded subset B of I and a polynomial π on I such that for any I ∈ I\B we have
|u(I)| ⪯ |π(I)|. We denote by P[I, M′] the set of moderately increasing multi-sequences in
M′I.

Remark 4.2 The product of a rapidly decreasing multi-sequence by a moderately increasing
multi-sequence is rapidly decreasing.

Remark 4.3 The space P [I, M′] of M′−valued moderately increasing multi-sequences over a
sub-algebra I of M is stable under inner addition, inner multiplication, and multiplication by
a polynomial.

4.2 Digital Differentiation, Tensor Products
First, we introduce a few notations about multi-indices.

Notation 4.1 Let P = ∏d
a=1 Ba be a Cartesian product of d analyzable spaces (e.g. the

Cartesian product P can be Zd or Zd over the ring Z, or possibly M or an ideal I over the
ring R). Let (I(a))a=1,...,d ∈ P be a multi-index. We shall use the following notations:

1. For a ∈ {1, . . . , d} and for j ∈ Z or j ∈ R or j ∈ Ba, we denote by L(a, j) the element
in P, all coordinates of which are zero, except the a’s coordinate which is equal to j.1Ba.
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2. For v ∈ P, for a ∈ {1, . . . , d} and j ∈ Z or j ∈ R or j ∈ Ba, we denote v(a,j) = v+L(a, j)
the element obtained from v by adding j.1Ba to the a’s coordinate.

3. For ua ∈ Ba, we denote by ua1P the product of the unit element 1P of P with the element
of P, identified with ua, all coordinates of which are the unit element, except for the a’s
coordinate which is equal to ua. If no ambiguity can occur, we shall omit the unit 1P and
simply denote by ua this element of P.

4. We denote |I| = ∑
i=1,...,i |I(a)| (with |I(a)| = I(a) if I(a) ≥ 0 and |I(a)| = −I(a) if

I(a) < 0), which is called the order of I.

5. Given α ∈ Zd, following Definition 3.15, we denote Iα = ∏d
a=1 ((I(a))αa1P), which is

called the α’s power of I (possibly in a sub-ring of the product of the fields of fractions
over the ring Ba).

6. Given α ∈ Rd, following Definition 3.15, we denote by I [α], which is called the coordinate
by coordinate α’s power of I the vector, the coordinates of which (possibly in a sub-ring of
the product of the fields of fractions over the ring Ba) are given by I [α] = ∏d

a=1 ((I(a))αa).

7. we denote I! = ∏d
a=1 (I(a)!), where I(a)! = ∏

i∈N,i.1Aa⪯I(a)
(i.1P) The element I! ∈ P is

called the factorial of I.

8. If (J(a))a=1,...,d is another multi-index, we denote by ((IJ)(a))a=1,...,d the multi-sequence
with (IJ)(a) = I(a)J(a), which is called the product of I and J .

9. If, for a = 1, . . . , d, the algebra Ba is provided with an analyzable space structure and
⪯a is the order underlying this analyzable space structure, and if (J(a))a=1,...,d is another
multi-index, we denote by ⪯ the binary relation, which is a partial order, such that I ⪯ J
if and only if for a = 1 . . . , d we have I(a) ⪯a J(a). In Section 1.3, we called this partial
order the coordinate by coordinate order.

10. If (J(a))a=1,...,d is another multi-index, we denote by ≺ the binary relation such that I ≺ J
if and only if for I ⪯ J and I ̸= J . In Section 1.3, we said in that case that I is a strict
lower bound of J .

11. If (J(a))a=1,...,d is another multi-index, we denote by < the binary relation such that I < J
if and only if for all a = 1 . . . , d we have I(a) < J(a) (i.e. the element I(a) is broadly
strictly less than J(a) in Aa, Definition 1.10). In Section 1.3, we said in that case that
I is a broad strict lower bound of J .

12. We denote by 0 the multi-sequence with d coordinates equal to 0, and by 1 the multi-
sequence with d coordinates equal to d. Note that the dimension d of these vectors can be
omitted as, due to the context, no ambiguity will arise in practice.

13. If (J(a))a=1,...,d is another multi-index with J ⪯ I, we denote by
(

I
J

)
the element of the

ring R defined by: (
I

J

)
=

d∏
a=1

(
I(a)
J(a)

)
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where
(

I(a)
J(a)

)
is the binomial coefficient defined as usual using the Pascal induction formula:

(
I(a)
J(a)

)
= 1 if (I(a) = J(a) or J(a) = 0Ba),

(
I(a)
J(a)

)
= 0 if (I(a) < J(a) or J(a) < 0Ba),

and
(

I(a)
J(a)

)
=
(

I(a) − 1Ba

J(a) − 1Ba

)
+
(

I(a) − 1Ba

J(a)

)
otherwise

The element
(

I
J

)
is called the multi-dimensional binomial coefficient of J from I.

Remark 4.4 (Multidimensional Pascal Formula) Using Notation 4.1, we get for a =
1, . . . , d the following multi-dimensional version of the Pascal Formula:(

I

J

)
=
(

I(a,−1)

J (a,−1)

)
+
(

I(a,−1)

J

)

4.2.1 Digital Differentiation Masks and their Tensor Products

We now introduce a notion of digital differentiations.

Definition 4.3 (Digital differentiation Mask) Let ω ∈ Nd. A (d−dimensional) digital
ω−differentiation mask is a multi-sequence u = (u(I))I∈Zd

∈ M′Zd with finite support, satis-
fying the following properties:

1. For all k ∈ Nd with 0 ⪯ ka ⪯ ωa and k ̸= ω, we have:

∑
I∈Zd

(
d∏

a=1
(I(a))ka

)
u(I) = 0M′ (2)

2. ∑
I∈Zd

(
d∏

a=1
(I(a))ωa

)
u(I) =

d∏
a=1

((−1M′)ωaωa!) (3)

Remark 4.5 Using Notation 4.1, we can rewrite Definition 4.3 above saying that u is a
(d−dimensional) digital ω−differentiation mask if and only if we have:∑

I∈Zd

Iku(I) = 0M′ for 0 ⪯ k ≺ ω (4)

and ∑
I∈Zd

Iωu(I) = (−1M′)ωω! (5)

Definition 4.4 (Extended Digital differentiation Mask) Let ω ∈ Nd. An extended
(d−dimensional) digital ω−differentiation mask is a rapidly decreasing multi-sequence u =
(u(I))I∈Zd

∈ M′Zd with finite support, satisfying Formula (4) and Formula (5).
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In the sequel, unless otherwise specified, we shall say an ω−differentiation mask as a shorthand
for an extended (d−dimensional) digital ω−differentiation mask.

Definition 4.5 (Tensor Product of Masks or Functions) For a ∈ {1, . . . , d}, let Ia be a
sub-algebra of Ma which contains 1AaAa (typically Ia = 1AaAa or Ia = Aa), and let ua =
(ua(I))I∈Ia ∈ M′Ia be a sequence with a one-dimensional domain Ia. We denote I = ∏d

a=1 Ia

and u = (u(I))I∈I ∈ M′I the multi-sequence defined by

u(I) =
d∏

a=1
ua(I(a))

The function u is called the tensor product of the function ua for a = 1, . . . , d. We denote by
d⊗

a=1
ua ∈ M′I the tensor product u.

Definition 4.6 (Isotropic Multi-Sequence) Let us consider a multi-sequence u = (u(I))I∈Zd
∈

M′Zd. Let a1 ∈ {1 . . . , d}. For I ∈ Zd and i1 ∈ Aa1, we consider

(τa1(I, i1)) (a) =
{

I(a) if a ̸= a1
i1 if a = a1

thus defining an element τa1(I, i1) in M′Zd. The multi-sequence u is called isotropic if and
only if for any I ∈ Zd, any a1 ∈ {1 . . . , d}, any i1 ∈ Aa1, we have:

u (τa1(I, J(a1))) u (τa1(J, I(a1))) = u (I) u (J)

Proposition 4.2 Let u = (u(I))I∈Zd
∈ M′Zd be a multi-sequence. If u is a tensor product of

one-dimensional sequences, that is, there exist ua = (ua(I))I∈Aa ∈ M′Aa such that u =
d⊗

a=1
ua.

Then, it is isotropic.

Proof. Assume that u =
d⊗

a=1
ua and consider I ∈ Zd and a1 ∈ {1 . . . , d}.

u (τa1(I, J(a1))) u (τa1(J, I(a1)))
=
(∏d

a=1 ua (τa1(I, J(a1))(a))
) (∏d

a=1 ua (τa1(J, I(a1))(a))
)

= ua1(J(a1))
(∏

a ̸=a1 ua(I(a))
)

ua1(I(a1))
(∏

a ̸=a1 ua(J(a)))
)

=
(∏d

a=1 ua(I(a))
) (∏d

a=1 ua(J(a))
)

= u(I)u(J)

2

Theorem 4.1 A multi-sequence u = (u(I))I∈Zd
∈ M′Zd is an isotropic digital ω−differentiation

mask if and only if, for a = 1, . . . , d, there exist one-dimensional ωa−differentiation masks

ua = (ua(I))I∈Z1 ∈ M′Z1 such that u =
d⊗

a=1
ua.
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Proof. Let us first prove by induction that a tensor product of d one-dimensional ωa−differentiation
masks is an isotropic differentiation mask. We already know from Proposition 4.2 that a tensor
product of d one-dimensional masks is isotropic. We prove the result by induction on d. For
d = 1, there is nothing to prove. Let us assume the result true for d − 1 one-dimensional
ωa−differentiation masks, and consider, for a = 1, . . . , d, a one-dimensional ωa−differentiation
mask ua = (ua(I))I∈Z1 ∈ M′Z1 . Let k ∈ Nd with 0 ⪯ ka ⪯ ωa and k ̸= ω. We have:
∑

I∈Zd

(∏d
a=1(I(a))ka

)
u(I) = ∑

I∈Zd

(∏d
a=1(I(a))ka

) (∏d
a=1 ua(I(a))

)
= ∑

i∈Ad

∑
I∈Zd−1

(
ikd
∏d−1

a=1(I(a))ka

) (
ud(i)∏d−1

a=1 ua(I(a))
)

=
(∑

i∈Ad
(ikdud(i))

) (∑
I∈Zd−1

(∏d−1
a=1(I(a))ka

(⊗d−1
a=1 ua

)
(I)
))

= 0M′

The last equality follows from our induction hypothesis, either applied to the one-dimensional
ωd−differentiation mask ud, either to the (d − 1)−dimensional differentiation mask ⊗d−1

a=1 ua,
depending on which of the coordinates of k differs form the corresponding coordinate of ω.
Similarly,
∑

I∈Zd

(∏d
a=1(I(a))ωa

)
u(I) = ∑

I∈Zd

(∏d
a=1(I(a))ωa

) (∏d
a=1 ua(I(a))

)
=

(∑
i∈Ad

(iωdud(i))
) (∑

I∈Zd−1

(∏d−1
a=1(I(a))ωa

(⊗d−1
a=1 ua

)
(I)
))

= ∏d−1
a=1 ((−1M′)ωaωa!) ((−1M′)ωdωd!) = ∏d−1

a=1 ((−1M′)ωaωa!)

Conversely, let us consider an isotropic digital ω−differentiation mask u = (u(I))I∈Zd
. Again,

we prove the result by induction. If d = 1 there is nothing to prove. Assume the result true
for a (d − 1)−dimensional isotropic mask. For I ∈ Zd−1 and i ∈ Ad, we set u(I, i) the value of
the d−dimensional multi-sequence u evaluated on (I(1), . . . , I(d − 1), i). For i ∈ Ad, we set:

ud(i) =
∑

I∈Zd−1

( ∏d−1
a=1(I(a))ωa∏d−1

a=1(−1)ωaωa!
u(I, i)

)

and, for I ∈ Zd−1,

u(d−1)(I) =
∑

i∈Ad

(
iωdu(I, i)
(−1)ωdωd!

)

Both multi-sequences ud and u(d−1) are clearly isotropic. We show that u = u(d−1) ⊗ ud, that
is: u(d−1)(J)ud(j) = u(J, j). Indeed,

u(d−1)(J)ud(j) =
(∑

i∈Ad

(
iωd u(J,i)

(−1)ωd ωd!

)) (∑
I∈Zd−1

( ∏d−1
a=1(I(a))ωa∏d−1

a=1(−1)ωa ωa!
u(I, j)

))
= ∑

i∈Ad

∑
I∈Zd−1

( ∏d

a=1(I(a))ωa∏d

a=1(−1)ωa ωa!
u(J, i)u(I, j)

)
= ∑

i∈Ad

∑
I∈Zd−1

( ∏d

a=1(I(a))ωa∏d

a=1(−1)ωa ωa!
(u(J, j)u(I, i))

)
= u(J, j)∑i∈Ad

∑
I∈Zd−1

( ∏d

a=1(I(a))ωa∏d

a=1(−1)ωa ωa!
u(I, i)

)
= u(J, j)

Let us now prove that, ud is a one-dimensional differentiation mask. Let us set ka = ωa for
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a = 1, . . . , d − 1. Let 0 ⪯ kd < ωd, we have:

∑
i∈Ad

ikdud(i) = ∑
i∈Ad

ikd

(∑
I∈Zd−1

( ∏d−1
a=1(I(a))ωa∏d−1

a=1(−1)ωa ωa!

)
u(I, i)

)
= 1∏d−1

a=1(−1)ωa ωa!

∑
I∈Zd

(∏d
a=1(I(a))ka

)
u(I)

= 0M ′

Similarly, ∑
i∈Ad

iωdud(i) = ∑
i∈Ad

iωd

(∑
I∈Zd−1

( ∏d−1
a=1(I(a))ωa∏d−1

a=1(−1)ωa ωa!

)
u(I, i)

)
= 1∏d−1

a=1(−1)ωa ωa!

∑
I∈Zd

(∏d
a=1(I(a))ωa

)
u(I)

= (−1)ωdωd!

Now we prove that that, if we set ω(d−1) = (ω1, . . . , ωd−1), u(d−1) is a (d − 1)−dimensionnal
ω(d−1)−differentiation mask. The result then follows from our induction hypothesis. Let k ∈
Nd−1 with 0 ⪯ ka ⪯ ω(d−1)

a for a = 1, . . . , d − 1 and k ̸= ω(d−1). We have
∑

I∈Zd−1

(∏d−1
a=1(I(a))ka

)
u(d−1)(I) = ∑

I∈Zd−1

(∏d−1
a=1(I(a))ka

)∑
i∈Ad

(
iωd u(I,i)

(−1)ωd ωd!

)
= ∑

I∈Zd

(∏d
a=1(I(a))ka

)
u(I)

= 0M′

Similarly,
∑

I∈Zd−1

(∏d−1
a=1(I(a))ωa

)
u(d−1)(I) = ∑

I∈Zd−1

(∏d−1
a=1(I(a))ωa

)∑
i∈Ad

(
iωd u(I,i)

(−1)ωd ωd!

)
= 1

(−1)ωd ωd!
∑

I∈Zd

(∏d
a=1(I(a))ωa

)
= ∏d−1

a=1 ((−1M′)ωaωa!)

2

In the sequel of this paper, all the considered differentiation masks are assumed to be
isotropic.

4.2.2 Convolution and Differentiation Operators

Definition 4.7 (Convolution Product) Let u be a multi-sequence in M′Zd. Let I be a
sub-algebra of M which contains Zd (typically, I = Zd or I = M) and v : I −→ M′ be a
function. We say that u and v are convolvable if the following sum is absolutely convergent for
any N ∈ I:

(u ⋆ v)(N) =
∑

I∈Zd

u(I)v(N − I)

The multi-sequence u ⋆ v thus defined is then called the convolution product of u and v.

Proposition 4.3 For i = 1 . . . , m, let ui and vi be two multi-sequences on a network Z(m) in
a Cartesian product of analyzable spaces M(m), with values in M′. Then, we have(

m⊗
i=1

ui

)
⋆

(
m⊗

i=1
vi

)
=

m⊗
i=1

(ui ⋆ vi)
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Proof. We prove the result for m = 2 and, by associativity of the tensor product and of the
convolution product, the result follows by an immediate induction.
((u1 ⊗ u2) ⋆ (v1 ⊗ v2))(n1, n2) = ∑

(i1,i2)∈Z(m1)×Z(m2)(u1 ⊗ u2)(i1, i2)(v1 ⊗ v2)((n1, n2) − (i1, i2))
= ∑

(i1,i2)∈Z(m1)×Z(m2)(u1(i1)u2(i2)v1(n1 − i1)v2(n2 − i2))
= ∑

(i1,i2)∈Z(m1)×Z(m2)(u1(i1)v1(n1 − i1))(u2(i2)v2(n2 − i2))
= ∑

i1∈Z(m1)(u1(i1)v1(n1 − i1))
∑

i2∈Z(m2)(u2(i2)v2(n2 − i2))
= ((u1 ⋆ v1) ⊗ (u2 ⋆ v2))(n1, n2)

2

Proposition 4.4 For i = 1 . . . , m, let ui be a multi-sequence on a network Z(i) in a Cartesian
product of analyzable spaces M(i), with values in M′. Then,

1. Suppose that for i = 1, . . . , m, the multi-sequence is an ω(i)−differentiation mask. Then,
the tensor product ⊗m

i=1 ui is an ω−differentiation mask, where ω is the concatenation of
the vectors ωi for i = 1 . . . , m.

2. Conversely, if we assume that u = ⊗m
i=1 ui is an ω−differentiation mask on Z =∏m

i=1 Z(i), where ω is the concatenation of the vectors ωi for i = 1 . . . , m. then ui is
an ω(i)−differentiation mask for each i ∈ {1, . . . , m}.

Proof. 1) We prove the first part of the result for m = 2 and, by associativity of the
tensor product and vector concatenation, the result follows by an immediate induction. Let
ω(1) = (ω(1)

1 , . . . , ω
(1)
d1

) and ω(2) = (ω(2)
1 , . . . , ω

(2)
d2

). Let k1 ∈ Nd1 and k2 ∈ Nd2 Let k be the
concatenation of k1 and k2.∑

I∈Zd

(∏d1+d2
a=1 (I(a))ka

)
(u1 ⊗ u2)(I)

= ∑
I∈Zd1 ×Zd2

(∏d1+d2
a=1 (I(a))ka

)
u1(I1)u2(I2)(I)

=
(∑

I1∈Zd1

(∏d1
a=1(I1(a))ka

)
u1(I1)

) (∑
I2∈Zd2

(∏d2
a=1(I2(a))ka

)
u2(I2)(I)

)
Then, depending on whether k = ω or not, we get Equation (2) or Equation (3).
2) To prove the converse, observe that u is not identically zero. Let I ∈ Z be such that
u(I) ̸= 0M′ and let i ∈ {1, . . . , m}. By restricting u(I) to the elements I ∈ Z of the product Z
in which only the ith coordinate varies, we obtain a multi-sequence on Z(i) which is proportional
to ui. Then, Definition 4.4 applied to this restriction of u immediately yields Equation 2 and
Equation 3 for ui. 2

Definition 4.8 (Differentiation Operator) Let u be a differentiation mask with finite sup-
port. Let I be a sub-algebra of M with contains Zd. The ω-differentiation operator associated
to u over MI is the function ∆u with domain M′I and co-domain RI defined by

∆u :
{

M′I −→ M′I

v 7−→ ∆u(v) = u ⋆ v

Definition 4.9 (Extended Differentiation Operator) Let u be a rapidly decreasing differ-
entiation mask. Let I be a sub-algebra of M with contains Zd. The (extended) ω-differentiation
operator associated to u over the space of moderately increasing functions P [I, M′], with co-
domain P [I, M′], is defined by

∆u :
{

P [I, M′] −→ P [I, M′]
v 7−→ ∆u(v) = u ⋆ v
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Remark 4.6 Note that the fact that the image ∆u(v) with a rapidly decreasing sequence u
and a moderately increasing function v lies in P[I, M′] requires a justification, which is given
in Proposition 4.7 shown below.

In the sequel, if no ambiguity can arise, we shall assume without mentioning this hypothesis,
either that differentiation masks have finite support, or the differentiation masks are rapidly
decreasing and the corresponding differentiation operators are applied only to moderately in-
creasing functions.

Proposition 4.5 Let u = (u(I))i∈Zd
be an ω-derivative mask and v = (v(I))i∈Zd

be an ω′-
derivative mask. Then u ⋆ v is an ω + ω′-derivative mask.

Proof. We prove the one-dimensional case. The general case follows from Theorem 4.1 and
Proposition 4.4.

Let 0 ⪯ k ⪯ ω. Then∑
n∈Z

nk(u ⋆ v)(n) = ∑
n∈Z(i + (n − i))k ∑

i∈Z u(i)v(n − i)

= ∑
n∈Z

∑
i∈Z

∑k
p=0

(
k
p

)
ip(n − i)k−pu(i)v(n − i)

= ∑k
p=0

(
k
p

) (∑
n∈Z

∑
i∈Z ipu(i)(n − i)k−pv(n − i)

)
= ∑k

p=0

(
k
p

)∑
j∈Z

∑
i∈Z ipu(i)jk−pv(j)

= ∑k
p=0

(
k
p

) (∑
j∈Z jk−pv(j)

)
(∑i∈Z ipu(i))

This is zero except if k = ω + ω′ and in this case all the terms are zero except if p = ω and
in this case the sum is

(
ω+ω′

ω′

)
(−1)ωω!(−1)ω′

ω′! = (−1)ω+ω′(ω + ω′)! 2

4.3 Differential Operators and Polynomials
We consider the monomial and polynomial maps as defined in Definition 3.13 and Defini-
tion 3.14, and we introduce here some simplified notations in our case when M′ is finitely
generated.

Definition 4.10 (Canonical Monomials Xa,β′ from Aa to M′) For a ∈ {1, . . . , d}, and
for each canonical generator e′

β′ of M′, we consider Xa,β′ the canonical morphism (Defini-
tion 3.11) from Aa to M′ such that the image of the unit element 1Aa in Aa is the unit element
e′

β′ in M′.
The maps pk,β′, for k ∈ Nd with ∑d

a=1 ka ⪯ δ, defined by:

pk,β′ =
d∏

a=1
Xka

a,β′ (6)

The arbitrary linear combinations of such monomials pk,β′, for a potentially infinite number
different coordinates β′ ∈ U ′ ∪ V ′ of the range M′, are called monomial maps from Aa to M′.

Definition 4.11 The M′−valued polynomial functions with degree δ ∈ N over M are the
linear combinations of the monomials pk introduced in Definition 4.10.
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In other words, using Notation 4.1, any M′−valued polynomial p with degree δ function over
M is of the form

P (x) =
∑

β′∈U ′∪V ′

∑
k∈Nd,|k|⪯δ

λkXk
β′(x) (7)

where λk ∈ M′, and Xβ′ =
d⊗

a=1
Xa,β′ . The λk’s, for |k| ⪯ δ are called the coefficients of the

polynomial p for the basis of the pk.

Proposition 4.6 Let p M′−valued polynomial function over M as defined in Equation (6).

Let u =
m⊗

a=1
ua be an ω−differentiation operator, with ω ∈ Nd. Then, we have

(∆u(p)) =
δ∑

i=0

∑
k∈Nd

k1+...+kd=i

(
λk

d∏
a=1

(
ka

ka − ωa

))
d∏

a=1
Xka−ωa

a,β′ (8)

In other words, differentiation operators act on polynomial functions like usual partial
derivative operators on (say) usual polynomials over Rd.

Remark 4.7 Equation (8) can be rewritten using Notation 4.1 to obtain:

(∆u(p)) (n) =
∑

k∈Nd,|k|⪯δ

λk

(
k

k − ω

)
Xk−ω

β (9)

Moreover, in the latter sum, only the multi-indices k such that ω ⪯ k contribute with a non-zero
term.

Proof. Due to Proposition 4.3, the definition of monomials as tensor products of 1D monomials,
and Proposition 4.4, it is sufficient to prove the result for d = 1. By linearity, it is also sufficient
to prove it for a monomial p = nk Then,

(∆u(p)) (n) = ∑
i∈Aa

u(i)(n − i)k

= ∑
i∈Aa

u(i)∑k
l=0

(
k
l

)
nl(−i)k−l

= ∑k
l=0

(
k
l

) (∑
i∈Aa

u(i)(−i)k−l
)

nl

Now, from Definition 4.4, the sum ∑
i∈Aa

u(i)(−i)k−l is equal to 0M′ if k − l < ω1, and equal
to ((−1)ω1ω1!) if k − l = ω1. Hence, for k ⪯ ω1, (∆u(p)) (n) =

(
k

k−ω1

)
((−1)ω1ω1!)nk−ω1 .

At last, we prove the result for any k > ω1 by induction. Suppose it is true for k − 1, and
set v = (v(n))n∈Z1 , with v(n) = ∑

s⪯n u(s). Then we have u = ∆− ⋆ v, where ∆− is a finite
difference (1)−differentiation mask (specifically: ∆− ⋆ v(n) = v(n) − v(n − 1) = u(n)). It can
be seen that the mask v is an ω1 −1 differentiation mask. Furthermore, the differential ∆u(p),
which is a (1)−differential differentiation mask applied to the (ω −1)−differential ∆v(p) which
is constant (equal either to ((−1)ω1ω1!)n0 if k − 1 = ω1 or, by induction hypothesis, identically
zero otherwise), is also zero. 2
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Lemma 4.4 Let u be a rapidly decreasing function in M′Aa, with a ∈ {1, . . . , d}. Let p be
a polynomial with degree k on a sub-algebra Ia of Aa containing 1AaAa. Then, there exists a
polynomial function π over Ia with degree k such that:

u ⋆ p = π

Proof. It is sufficient to prove the result for the monomial with degree k in p. Hence we may
assume w.l.o.g. that p(i) = ik. We have: u ⋆ p(n) = ∑

i∈Aa
u(i)(n − i)k. Now,

∑
i∈Aa

u(i)(n − i)k = ∑
i∈Aa

u(i)∑k
l=0

(
k
l

)
nl(−i)k−l

= ∑k
l=0

(
k
l

) (∑
i∈Aa

(−i)k−lu(i)
)

nl

Due to Lemma 4.3, if we set π(n) = ∑k
l=0

(
k
l

) (∑
i∈Aa

(−i)k−lu(i)
)

nl, the value π(n) is well
defined. The function π thus defined is a polynomial function of n, and we have u ⋆ p ⪯ π. 2

Lemma 4.5 Let u = ⊗d
a=1 ui be a rapidly decreasing function in M′Zd, with a ∈ {1, . . . , d}.

Let p be a polynomial with degree δ ∈ N over a sub-algebra I of M containing Zd. Then, there
exists a polynomial function π over I with degree δ over Zd such that:

u ⋆ p = π

Proof. Follows directly from Proposition 4.3, Remark 4.8, and Lemma 4.4. 2

Remark 4.8 Let u = ⊗d
a=1 ua ∈ M′Zd be a tensor product of non identically zero sequences.

Then, u is rapidly decreasing if and only if ua’s is rapidly decreasing for each a ∈ {1, . . . , d}.

Proof. The “if part” is an immediate consequence of Lemma 4.5. The “only if” part is easily
proved by distinguishing between the case when u is identically zero, in which case the result
is obvious, and the case when u is not identically zero, in which case a restriction of u to a
subset of Zd where only one coordinate varies, which is proportional to ua, is seen to be rapidly
decreasing. 2

Similarly, we see:

Remark 4.9 Let u = ⊗d
a=1 ua ∈ M′Zd be a tensor product of non identically zero sequences.

Then, u is moderately increasing if and only if ua’s is moderately increasing for each a ∈
{1, . . . , d}.

Hence we have the following:

Proposition 4.7 Let u = ⊗d
a=1 ua be a rapidly decreasing multi-sequence in M′Zd, with

a ∈ {1, . . . , d}. The convolution product u with a moderately increasing function over a sub-
algebra I of M containing Zd is always defined and is moderately increasing on I.
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5 Multigrid Convergence for Differentials
5.1 Taylor Formula With Multiple Integral Remainder
The purpose of this section is to provide upper bounds for the difference between a digital
derivative of a sampled (and quantized) signal, with possible errors on the values. We shall
need a specific form of the Taylor Formula, in which we have an explicit form for the remainder,
as in the integral form for the remainder. However, the formula we prove and use does not
require that all partial derivatives of a given order be available or bounded. Instead, we assume
that partial derivatives exist at different orders on the different variables, as, for example, in
the tensor product of a C2 function by a C1 function, for which the differential of order (2, 1)
exists and is continuous, but neither the differential of order (1, 2), nor the differential of order
(2, 2) exist in general.

5.2 Notations
Definition 5.1 Let x(1) ⪯ x(2) be two element of M. We denote by [x(1), x(2)[ the interval for
the broad strict order, which is defined as set of all T ∈ M such that x(1) ⪯M T <M x(2) (i.e.
each cordinate Ta of T is greater than or equal to x(1)

a and (broadly strictly) less than x(2)
a ).

Let X ∈ {1, . . . , d} be a set of indices. We denote X = {1, . . . , d}\X the complement of X.
We consider the following subsets of M:

MX =
∏

a∈X

Aa and MX =
∏

a∈X

Aa

CX(x(1), x(2)) =
∏

a∈X

[x(1)
a , x(2)

a [ and CX(x(1), x(2)) =
∏

a∈X

[x(1)
a , x(2)

a [

We have a clear identification through a natural isomorphism: IdX : MX × MX −→ M. We
denote by TX and [respectively TX ] the projections of an element T ∈ M onto MX [respectively
MX ]. In that way, a function f : [x(1), x(2)[ 7−→ M′ can also be identified to a function

fX :
{

CX(x(1), x(2)) × CX(x(1), x(2)) 7−→ M′

(T, U) −→ f(IdX(T, U)) = f(T + U)

The sets CX(x(1), x(2)) [respectively CX(x(1), x(2))] is called the X−face of the cube [x(1), x(2)[
[respectively the X−face of the cube [x(1), x(2)[ ].

For each a ∈ {1, . . . , d}, we consider dta the measure on Aa underlying the analyzable space

structure. We consider dTX =
d⊗

a=1
dta the product measure on MX . At last, we consider the

operator

IntX :
{

L1([x(1)
a , x(2)

a [, M′) 7−→ L1(CX , M′)
f 7−→ IntX(f)

with, for f ∈ L1([x(1), x(2)[, M′) and U ∈ CX ,

(IntX(f)) (U) =
∫

CX(x(1),x(2))
f(TX + U)dTX

The function IntX(f) is called the partial integral of f over the X−slices of the cube [x(1), x(2)[.
By convention, if X = ∅, the integral

∫
CX(x(1),x(2))

fX(TX , U)dTX is defined equal to f(U), so
that Int∅(f) = f .
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Notation 5.1 Let X ⊂ {1, . . . , d}. We denote by 1X ∈ Nd the vector such that for a = 1, . . . , d,
the coordinate (1X)a is equal to 1N if a ∈ X, and is equal to 0N otherwise.

5.3 Taylor Formula with Multiple Integral Remainder in Rd

We assume in this section that Aa = R for a = 1, . . . , d, so that M = Rd.

Theorem 5.1 (Purely Continuous Taylor Formula with Multiple Integral Remainder)
Let f : M −→ M′ be a map and let ω ∈ Nd. We assume that the partial differentials f (J)

of the map f exist and are continuous for all J ∈ Nd with 0 ⪯ J ⪯ ω + 1Nd. Then, using
Notation 4.1, we have the following identity, for x and x(0) in M:

f(x) =
∑

X⊂{1,...,d}

∑
J∈{ωX}×[0,ω

X
]

∫
CX(x(0),x)

f (J+1X)
(
TX + x

(0)
X

) (x − x
(0)
X

− TX

)J

J !
dTX (10)

where, in accordance with Definition 5.1, the set {ωX} × [0, ωX ] denotes the set of all J ∈ Nd

such that 0 ⪯ J ⪯ ω and such that Ja = ωa for all a ∈ X. This identity is called the Purely
Continuous Taylor formula with multiple integral form for the remainder.

Proof. We prove the result by induction on d. For d = 1, there are two possible subsets
X ⊂ {1, . . . , d}: X = ∅ and X = {1}.
The term for X = ∅ yields

∑
J∈[0,(ω1)]

f (J+1∅)
(
x

(0)
{1}

) (x − x
(0)
{1}

)J

J !
=

ω1∑
j=0

f (j)(x(0))(x − x(0))j

j!

The term for X = {1} yields

∑
J∈{ω1}

∫
C{1}(x(0),x)

f (J+1{1})
(
T{1}

) (x − T{1})
)J

J !
dT{1} =

∫ x

x(0)
f (ω1+1)(T )(x − T )ω1

ω1!
dT

Hence Equation (10) corresponds for d = 1 to the usual Taylor Theorem with Integral Re-
mainder in 1D

f(x) =
ω1∑

j=0
f (j)(x(0))(x − x(0))j

j!
+
∫ x

x(0)
f (ω1+1)(T )(x − T )ω1

ω1!
dT

which is proved as usual.
Now, assume that the result is true in dimension d − 1, with d ≥ 2. We consider the

element x{1,...,d−1} + x
(0)
{d} of M, all coordinates of which are equal to those of x, except the dth

coordinate which is equal to x
(0)
d

From the 1D case, dealt with above, applied to the value of f(x) = f
(
x{1,...,d−1} + x{d}

)
expressed through the Taylor development of f at the point x{1,...,d−1} + x

(0)
{d}, we get:

f
(
x{1,...,d−1} + x{d}

)
=

ωd∑
j=0

f (j1{d})
(
x{1,...,d−1} + x

(0)
{d}

) (x{1,...,d−1} + x{d} − x
(0)
{d}

)j1{d}

j!

+
∫ x{d}

x
(0)
{d}

f ((ωd+1)1{d})(x{1,...,d−1} + T{d})

(
x{1,...,d−1} + x{d} − T{d}

)ωd1{d}

ωd!
dT{d}
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From our induction hypothesis applied, for j = 1, . . . , ωd + 1, to the function

gj :
{

M{1,...,d−1} −→ M′

y 7−→ f (j1{d})
(
y + x

(0)
{d}

)
we have:

f (j1{d})
(
x{1,...,d−1} + x

(0)
{d}

)
=

∑
X⊂{1,...,d−1}

∑
J∈{ωX}×[0,ω

X
]

∫
CX

(
x

(0)
{1,...,d−1},x{1,...,d−1}

)
f (J+1X+j1{d})

(
TX + x

(0)
X

+ x
(0)
{d}

) (x{1,...,d−1} − x
(0)
X

− TX)
)J

J !
dTX

Note that, as opposed to our statement in Equation (10), in the latest formula, X denotes
the complement of X in {1, . . . , d − 1}, as it is an application of our induction hypothesis in
dimension d − 1. By substituting the latest expression for f (j1{d})

(
x{1,...,d−1} + x

(0)
{d}

)
(substitu-

tion which is also valid, by changing x
(0)
{d} for T{d}, to evaluate f ((ωd+1)1{d})

(
x{1,...,d−1} + T{d}

)
),

into the expression of f(x) = f
(
x{1,...,d−1} + x{d}

)
above, we obtain:

f(x) =

 ωd∑
j=0

∑
X⊂{1,...,d−1}

∑
J∈{ωX}×[0,ω

X
]

∫
CX

(
x

(0)
{1,...,d−1},x{1,...,d−1}

) f (J+1X+j1{d})
(
TX + x

(0)
X

+ x
(0)
{d}

)
(
x{1,...,d−1} − x

(0)
X

− TX

)J

J !

(
x{1,...,d−1} + x{d} − x

(0)
{d}

)j1{d}

j!
dTX


+

 ∑
X⊂{1,...,d},d∈X

∑
J∈{ωX}×[0,ω

X
]

∫
CX(x(0),x{1,...,d−1}+x

(0)
{d})

∫ xd

x
(0)
d

f (J+1X+(ωd+1)1{d})
(
T{d} + TX + x

(0)
X

+ x
(0)
{d}

) (x{1,...,d−1} − x
(0)
X

− TX)
)J

J !(
x{1,...,d−1} + x{d} − T{d}

)ωd1{d}

ωd!
dT{d}dTX


=

∑
X⊂{1,...,d}

∑
J∈{ωX}×[0,ω

X
]

∫
CX(x(0),x)

f (J+1X)
(
TX + x

(0)
X

) (x − x
(0)
X

− TX)
)J

J !
dTX

In the latest expression, X now denotes the complement of X in {1, . . . , d}, and not in
{1, . . . , d − 1} as previously. 2

5.4 Digitization, Quantization, Noise Models
In the sequel of this section, we consider a map f : M 7−→ M′, and a map Γ : Zd 7−→ M′

on the discrete network Zd. We shall make extensive use of Notation 4.1 for exponentiation
notations, as well as orders in M and M′.

Let h = (ha)a∈{1,...,d} ∈ M, with 0Aa < ha, be a strictly positive vector representing some
digitization step in the domain of f . For K = (ka)a=1,...,d ∈ Rd, we consider the element
h[K] ∈ M. As in the definition of monomials (Definition 4.10) let (h′)[K]

a ∈ M′ the image of
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h[K]
a by the unique morphism of algebra sending 1Aa to 1M′ . Since ha > 0Aa , we also have

(h′)[K]
a > 0M′ . At last, we denote h′ = (h′)[1], corresponding to the case when ka = 1 for all

a ∈ {1, . . . , d}.
By abuse, we shall write h instead of h′ in some formulas, having in mind that, when

considered as an element of M′, a monomial function has been applied to the element h ∈ M.

Definition 5.2 We say that the map Γ is a digitization of f with error εh,h′ : Zd −→ M′ if
for any N ∈ Zd, setting as usual (N.h)(a) = N(a)ha, and considering the element (h′Γ(N)) =(∏d

a=1 h′
a

)
(Γ(N)) of M′, we have:

h′Γ(N) = f(N.h) + εh,h′(N) (11)

Definition 5.3 (Vector Valued Infinite Norm for Functions) Let X ⊂ M and let g :
X −→ M′ be a bounded function. The infinte norm of g, denoted by ∥g∥∞ the vector in M′

is defined as follows. For a′ ∈ {1, . . . , d′}, we denote Na′ = supx∈X (|(g(x))a′ |) the upper bound
of the (a′)th coordinate of g(x) in M′. Now, we set

∥g∥∞ = (Na′)a′=1,...,d′

We consider the following particular models for the errors εh,h′ on the values:

• Exact Values: In this model, the values are known exactly:

εh,h′ ≡ 0M ′

Note that, although this model has been the most widely used in approximation theory,
this value error model is not very realistic from an Information Sciences point of view.

• Uniform Noise (or Uniform Bias) on Values: In this model, the error εh,h′ on the values is
uniformly bounded by some constant which depends on the quantization step h′. In our
model, however, this bound can be asymptotically greater that h′. Namely we assume
here that (see Notation 4.1 for the coordinates by coordinates exponentiation, denoted
with brackets notation)

0 ⪯ |εh,h′(I)| ⪯ K(h′)[α]

where α ∈ Rd with 0 < αa ⪯ 1 for all a ∈ {1, . . . , d}, and K is a positive constant.
Note that this error can also have some bias, in the sense that the average noise value
(or expected value) could be non-zero.

• Quantization of Values: In this model, the errors εh,h′ on the values is uniformly bounded
by 1

2h′. This is a particular case of uniform noise with α = 1, and corresponds to
the case when some basic quantization has been obtained by rounding-off the exactly
known values of the function, for example for digital storage. This case is equivalent to
Γ(I) =

[
f(Ih)

h′

]
. A variant is when quantization has been obtained by an integer part

(floor case): 0 ⪯ εh,h′(I) < h′ , which is equivalent to Γ(I) = ⌊f(Ih)
h′ ⌋.

• Stochastic Noise on Values: In this model, the errors εh,h′(I) on the different values for
I ∈ Zd are independent random variables with expected value 0 and standard deviation
σ(h′), converging to 0 along with h′. In that case, Equation 11 implies that the values
Γ(I), for I ∈ Zd also are defined as independent random variables.
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5.5 Basic Error Decomposition and Upper Bounds
5.5.1 Errors Related to Sampling and to Input Values

In order to show that the digital ω−differentiation of a digitization Γ of a real function f
provides an estimate for the continuous derivative f (ω) of f , we would like to evaluate, at each
sample point N ∈ Zd, the difference between the digital differentiation 1

(h′)[ω−1] (∆
ω
u ⋆ Γ)(N)

(where, as usual in this context, the product [resp. exponentiation] between two d−dimensional
vectors is a coordinate by coordinate product [resp. exponentiation]) of the digitized signal
and the value of the usual ωth partial derivative f (ω)(Nh) of f . This difference may easily be
decomposed from Equation (11) and Definition 4.4 into the sum

1
(h′)[ω−1] (∆

ω
u ⋆ Γ)(N) − f (ω)(Nh) = ESω(f, h, h′, Γ, u, N) + EVω(f, h, h′, Γ, u, N) (12)

where

ESω(f, h, h′, Γ, u, N) =

 1
(h′)[ω]

∑
I∈Zd

u(I)f ((N − I)h)

− f (ω)(Nh) (13)

is called the sampling error, and

EVω(f, h, h′, Γ, u, N) = 1
(h′)[ω]

∑
I∈Zd

u(I)εh,h′(N − I) (14)

is called the (input) values error. As their names imply, the sampling error is due to the fact
that we only know about the values of f at some grid points, and the values error is due to
the fact that we do not know the exact values of f at sample points.

The sampling error is a real values sequence. Under the uniform bias hypothesis, the values
error is also a real valued sequence, but under the stochastic hypothesis, the values error is a
sequence of random variable.

5.5.2 Upper Bound for the Sampling Error

In the following lemma, we show that the sampling error can be bounded independently from
the error on input values, using the mask values, the norm of the partial derivatives of f with
order higher than ωth, and a the digitization step. The immediate consequences are some
convergence results in the case when exact values of the function at sample points are known.
Lemma 5.1 Let us assume that the partial derivative f (K) exists and is continuous on M,
for every K = (ka)a=1,...,d ∈ Nd with ka ≥ 1 + ωa for a = 1, . . . , d. Let u be a digital
ω−differentiation mask with convergence order ρ. Let S = (s1, . . . , sd) with sa = max{ωa, 1 +
ρa} for a = 1, . . . , d. Let Γ be a digitization of f with error εh,h′ : Zd −→ M′. Suppose that
f (s) is bounded on R. Then for all N ∈ Zd,

ESω(f, h, h′, Γ, u, N) ⪯
∑

X⊂{1,...,d},X ̸=∅
||f (ω+1X)||∞

∑
I∈(Zd)X

|IωX+1X u(IX)| h1X

ωX !
(15)

Moreover, if we consider a lowest order approximation when all coordinates of h tend to
zero at the same speed (e.g. constant ratio), the error can be approximated by the sum for X
with cardinality 1, which yields:

ESω(f, h, h′, Γ, u, N) = O

 d∑
a=1

ha ||f (ω+1{a})||∞
∑

I∈Aa

|Iωa+1 u(IX)|

 (16)
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Proof. From the Taylor formula with Integral Remainder (see Theorem 5.1, the sum involved
in Equation (13) can be written∑

I∈Zd
u(I)f ((N − I)h) = ∑

I∈Zd
u(I)

[∑
X⊂{1,...,d}

∑
J∈{ωX}×[0,ω

X
]
∫

CX(Nh,(N−I)h)

f (J+1X) (TX + (Nh)X) ((N−I)h−(Nh)
X

−TX))J

J ! dTX

]
Now, for X ⊂ {1, . . . , d} and J ∈ {ωX} × [0, ωX , we have

((N−I)h−(Nh)
X

−TX))J

J ! = (((N−I)h)X−TX))JX

JX !
(((N−I)h)

X
−(Nh)

X
))J

X

J
X

!

= (((N−I)h)X−TX))JX

JX !
(−I

X)J
X h

J
X

X

J
X

!

Hence∑
I∈Zd

u(I)f ((N − I)h) = ∑
X⊂{1,...,d}

∑
J∈{ωX}×[0,ω

X
] h

J
X

X

[∑
I∈Zd

u(I)(−I
X)J

X

J
X

!∫
CX(Nh,(N−I)h) f (J+1X) (TX + (Nh)X) (((N−I)h)X−TX)JX

JX ! dTX

]
Yet, since u is a tensor product due to Theorem 4.1, for X ⊂ {1, . . . , d}, we have u(I) =
u(IX)u(IX), where IX(a) = I(a) if a ∈ X and IX(a) = 1Aa otherwise (and similarly for
IX). Furthermore, due to IX 7→ u(IX) is an ωX−differentiation mask, and IX 7→ u(IX) is an
ωX−differentiation mask. Therefore,

∑
I∈Zd

u(I)f ((N − I)h) = ∑
X⊂{1,...,d}

∑
J∈{ωX}×[0,ω

X
] h

J
X

X

[∑
I∈Zd

u(IX)u(IX)(−I
X)J

X

J
X

!∫
CX(Nh,(N−I)h) f (J+1X) (TX + (Nh)X) (((N−I)h)X−TX)JX

JX ! dTX

]
= ∑

X⊂{1,...,d}
∑

J∈{ωX}×[0,ω
X

] h
J

X

X

[∑
I∈(Zd)

X
u(IX)(−I

X)J
X

J
X

!

]
[∑

I∈(Zd)X
u(IX)

∫
CX(Nh,(N−I)h) f (J+1X) (TX + (Nh)X)

(((N−I)h)X−TX)JX

JX ! dTX

]
= ∑

X⊂{1,...,d} hX
ω

X
∑

I∈(Zd)X
u(IX)∫

CX(Nh,(N−I)h) f (ω+1X) (TX + (Nh)X) (((N−I)h)X−TX)ωX

ωX ! dTX

The last equality comes from the fact that, due to the fact that IX 7→ u(IX) is an ωX−differentiation
mask (hence satisfies Equation (4) and Equation (5), all terms of the sums over I ∈ (Zd)X

between brackets are zero except for the term with JX = ωX , form which Equation (5) holds.
Finally,
Now, using the expression for the sampling error (Equation 13), the term of the latest sum
corresponding to X = ∅ cancels out with −f (ω)(Nh), and we provide an upper bound for the
remaining sum for X ̸= ∅:

ESω(f, h, h′, Γ, u, N) ⪯
∑

X⊂{1,...,d},X ̸=∅
||f (ω+1X)||∞

∑
I∈(Zd)X

|IωX+1X u(IX)|
hωX+1X

X h
(h′)ωω

X

X

ωX !

from which the result follows by simplification by (h′)ω. 2
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Remark 5.1 Lemma 5.1 shows that the sampling error tends to zero along with h for a fixed
function and a fixed differentiation mask.

5.5.3 Upper Bound for the Input Values Error

The following lemma gives an upper bound for the error related to uniform noise or uniform
bias on the values at sample points (see Section 5.4).

Lemma 5.2 Let u be a digital ω−differentiation mask with convergence order ρ. Let us assume
that Γ is a digitization of f with errors on input values εh,h′ such that ∥εh,h′∥∞ ⪯ K(h′)[α] with
0 < αa ⪯ 1 for a = 1, . . . , d, which satisfies the uniform noise/bias error model. Then, for all
N ∈ Zd,

|EVω(f, h, h′, Γ, u, N)| ⪯ K

(h′)[ω−α]

∑
I∈Zd

|u(I)|


Proof. We derive an upper bound for the values error from its expression in Equation (14):

|EVω(f, h, h′, Γ, u, N)| ⪯ ∥εh,h′∥∞

(h′)[ω]

∑
I∈Zd

|u(I)| ⪯ K

(h′)[ω−α]

∑
I∈Zd

|u(I)|


2

The following lemma gives an upper bound for the error related to statistic noise with
expected values 0 on the values at sample points.

Lemma 5.3 Let u be a digital ω−differentiation mask. Assume that Γ is a digitization of
f with error on input values εh,h′ following the stochastic noise model. In other words, the
εh,h′(N)’s for all N ∈ Zd are independent random variable with expected value 0 and standard
deviation σ(h, h′).

Then for all N ∈ Zd, the random variable 1
(h′)[ω−1] (∆

ω
u ⋆ Γ)(N) − f (ω)(Nh), defined after

the independent random variables Γ(N), has expected value ESω(f, h, h′, Γ, u, n) and standard
deviation σ(h,h′)

(h′)[ω]

(∑
I∈Zd

(u(I))2
) 1

2 .

In other words, and roughly speaking, the global error is in this case statistically close to
the sampling error.
Proof. From Equation (12) and Equation (14), for a fixed N ∈ Zd, the random vari-
able 1

(h′)[ω−1] (∆
ω
u ⋆ Γ)(N) − f (ω)(Nh) is equal to the sum of the constant random variable

ESω(f, h, h′, Γ, u, N) and the random variable defined by

EVω(f, h, h′, Γ, u, N) = 1
(h′)[ω]

∑
I∈Zd

uIεh,h′(N − I).

By linearity of expected values, its expected value is ESω(f, h, h′, Γ, u, N), which shows the
first part of the statement.

Since the random variables εh,h′(N − I) are assumed to be independent, and the series∑
I∈Zd

ui is assumed to be absolutely convergent, the variance of EVω(f, h, h′, Γ, u, N) is equal
to the sum for I ∈ Zd of the variances of u(I)

(h′)[ω] εh,h′(N − I) which, for standard the deviation,

yields
(

|u(I)|
(h′)[ω] σ(h, h′)

)2
. 2
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Remark 5.2 Note that for a fixed mask, the values error (or its standard deviation) generally
does not converge to zero when h′ converges to 0. We shall propose below a way to make it
tend to zero by adapting the mask to the digitization step (see Theorem 5.2 and Theorem 5.3
below).

5.6 Skipping Masks: Cheap Multigrid Convergence
The idea is to adapt the mask to the step of digitization, in order to get 1

(h′)[ω−α]

(∑
I∈Zd

|u(I)|
)

converging to zero along with h. For limiting the complexity of computation, we set the number
of non zero coefficients of the mask fixed.

Definition 5.4 Let L = (la)a=1,...,d ∈
(
R∗

+

)d
be a vector with d coordinates which are strictly

positive elements of the base ring. We consider the following map: M −→ M/L = ∏d
a=1 (Aa/la)

(ta)a=1,...,d 7−→ (ta/la)a=1,...,d

Then, this map is an of analyzable spaces isomorphism, and is called called the division by L
operation.

In the sequel of this section, L = (la)a=1,...,d ∈ (Zd)d with each coordinate la > 0M and la
multiple of 1M. We call the vector L the skipping step for our masks.

Definition 5.5 (Skipping Masks) Let u be an ω−differentiation mask. The corresponding
ω−differentiation L−skipping mask uL is defined by ul(I) = 1

L[ω] u( I
L

) if for all a ∈ {1, . . . , d}
the coordinate la divides I(a), and equal to 0 in all other cases.

Remark 5.3 For K ∈ Nd, we have∑
I∈Zd

IKuL(I) = L[K−ω] ∑
I∈Zd

IKu(I).

Therefore, the mask uL is an ω−differentiation mask as well as u.
We also have ∑

I∈Zd

|uL(I)| = 1
L[ω]

∑
I∈Zd

|u(I)|.

This allows a convenient choice of L, depending on h, which yields a values error which
converges to zero, either using Lemma 5.2 or Lemma 5.3. This is formalized in the following
theorems, which specify the skipping step L(h) to use as a function of the sampling step.

5.6.1 Uniform Multigrid Convergence with Uniform Noise or Bias

Theorem 5.2 Let u be an ω−differentiation mask with and uL the corresponding ω−differentiation
L−skipping mask with skips of length L. Suppose that f : M −→ M′ is a Cω+1 (we remind the
reader that (ω + 1)a = ωa + 1 for all a) function. This means that the partial derivatives f (J)

exist and are continuous for all 0 ⪯ J ⪯ ω + 1, and f (ω+1X) is bounded for any X ∈ {1, . . . , d}.

50



5.6 Skipping Masks: Cheap Multigrid Convergence R. Malgouyres and H.A. Esbelin

Let α ∈]0, 1]d, K ∈ R∗
+ and let h and h′ be defined as at the beginning of Section 5.4.

Suppose Γ : Zd −→ Zd is such that |h′Γ(I) − f(hI)| ⪯ Kh[α] for all I ∈ Zd (which corresponds
to our uniform noise/bias input values errors model).
Then, using the skipping steps L(h) =

⌊
h[−1+ ωα

ω+1 ]
⌋
, we have:

∣∣∣∣∣
(

1
(h′)[ω−1] ∆uL(h) ⋆ Γ

)
(N) − f (ω)(Nh)

∣∣∣∣∣ ∈ O(h[ α
ω+1 ])

Proof. First, we give an upper bound for the values error. From Lemma 5.2 and definitions, we
have

∣∣∣EV (f, h, h′, Γ, uL(h), n)
∣∣∣ ⪯ K

(L(h))[ω](h′)[ω−α]
∑

I∈Zd
|u(I)|. If L(h) =

⌊
h[−1+ α

ω+1 ]
⌋
, it is easy to

check that 1
(L(h))[ω](h′)[ω−α] ⪯ h[α− ωα

ω+1 ]

1 − h[ω− ωα
ω+1 ] , which is O(h[ α

ω+1 ]).

We now turn to the sampling error. Let us consider the upper bounds provided by Lemma 5.1.
We could use Equation (15) for a more explicit bound for the error, but we chose for the sake
of simplicity to use Equation (16) instead. Also using Remark 5.3 we get:

ES(f, h, h′, Γ, ul(h), n) = O

(
d∑

a=1
ha (L(h))(ωa+1)−ω

a

)

Now, with L(h) =
⌊
h[−1+ ωα

ω+1 ]
⌋
, we obtain ES(f, h, h′, Γ, ul(h), n) = O

(
h[ α

ω+1 ]
)
2

5.6.2 Stochastic Multigrid Convergence with Stochastic Noise

Theorem 5.3 Let u be a ω-differentiation mask and let uL be the corresponding ω−differentiation
L−skipping mask. Suppose that f : M −→ M′ is a Cω+1 function, and f (ω+1X) is bounded for
all X ⊂ {1, . . . , d} Let α ∈]0, 1]d, let K ∈ M′, with K > 0M′, and let h and h′ be defined as
at the beginning of Section 5.4. Let Γ be a digitization of f with step h and a stochastic noise
εh,h′ with expected value 0M′, and standard deviation σ(h, h′) ⪯ Kh[α].

Then for skipping steps L(h) =
⌊
h[1− α

ω+1
⌋
, and for N ∈ Zd, the random variable

(
1

(h′)[ω−1] ∆uL(h) ⋆ Γ
)

(N) − f (ω)(Nh)

has an expected value and a standard deviation which are O(h[ α
ω+1 ]).

The proof is similar to that of Theorem 5.2, but using Lemma 5.3 instead of Lemma 5.2.
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6 Locally Analytical Functions
All along this section, we consider again the notations R, Aa, M and M′ defined in Section 4.
Moreover, I denotes a sub-algebra of M containing Zd (typically I = Zd or I = M). At last
∆ is a differentiation operator on functions from I to M′.

We shall also use the following notions and notations concerning shift in vectors and func-
tions, as well as division by positive vectors:

Definition 6.1 Let Φ : I −→ M′ be a function. Given L = (la)a=1,...,d ∈ Rd a vector with
d coordinates which are elements of the base ring. We identify the vector L with the element
(la.1Aa)a=1,...,d of M. We thus define τL(Φ) the L−shift of Φ which to T ∈ I associates(

τL(Φ)
)

(T ) = Φ(T + L)

We remind the reader of Definition 5.4, in which the definition of the (coordinate by co-
ordinate) division by a vector L = (la)a=1,...,d ∈

(
R∗

+

)d
is presented. In the sequel of this

section, L = (la)a=1,...,d ∈
(
R∗

+

)d
denotes a vector with d coordinates which are strictly positive

elements of the base ring.

Definition 6.2 For a ∈ 1, . . . , d, let ∆a be a differentiation operator over the analyzable space
Aa, with values in M′. For any function f : M −→ M′, if for T = (ta)a=1,...,d the function
fa,T : Aa −→ M′ which to t ∈ Aa associates f(T (a,t−ta) is differentiable relatively to ∆a, we
denote

∂

∂ta

(T ) = (∆a (fa,T )) (T )

Moreover, this value is called the partial derivative of f with respect to (the ath coordinate) ta

at the point T .

6.1 Definition of Differential B−Splines Families
Definition 6.3 Let us consider a family D = (DI,S,P,R,L) of functions from I/L to M′/LR,
where, roughly speaking,

• S = (sa)a=1,...,d ∈ Zd is a shift factor, through which the parameter T = (ta)a=1,...,d of
functions is translated.

• L = (la)a=1,...,d ∈
(
R∗

+

)d
denotes a vector with d coordinates which are strictly positive

elements of the base ring, and determines a partition of I into intervals [S.L, (S + 1)L[.

• R = (ra)a=1,...,d ∈ Nd is a blunder order, or smoothing order, which determines the
regularity of elements of D, as functions on I.

• P = (pa)a=1,...,d ∈ Nd denotes the primitive order, which represents the number of times the
primitive operator was applied, in the respective dimensions, relative to the differentiation
operator ∆, on the corresponding function with P = 0.

• δR = (δR,a)a=1,...,d denotes the dimension of the space D = (DI,0,0,R,L)0⪯I⪯δR
, of the

functions in the family D for a fixed L. The index L is omitted in the notation δR

because, in the families we present in this paper, the dimension δR does not depend on L.
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Now defining precisely, using Notation 4.1, we say that the family D is a Differential B−spline
Family of functions with respect to ∆ if and only if it satisfies the four following properties,
valid for all S ∈ Zd, P ∈ Nd, R ∈ Nd and any vector L ∈

(
R∗

+

)d
with d coordinates which are

strictly positive:

1. Differential Property: for T = (ta)a=1,...,d, we have

∂

∂ta

(DI,S,P (a,1),R,L)(T ) = (pa + 1)DI,S,P,R,L(T )

2. Commutation with Finite Differences Property:

DI,S,P,R(a,1),L = 1
la(pa + 1)(ra + 1)

(DI,S,P (a,1),R,L − DI,S(a,1),P (a,1),R,L)

3. Shift Property:
DI,S(a,−1),P,R,L = τL(a,la) (DI,S,P,R,L)

4. Partition of Unity Property: For all T ∈ I and for P = 0,
∑

S∈Zd

∑
0⪯I⪯δR

DI,S,0,R,L(T ) = 1M′

L[R]

6.2 Generic Construction from Partitions of Unity
Definition 6.4 A function F : I −→ M′ is said to be eventually zero when the coordinates
tend to −∞ if there exists U ∈ I such that F (T ) = 0M′ for T ⪯ U .

Let us consider a family D = (DI,0,0,0,1) of functions from I to M′ such that: For all T ∈ I,
we have the partition of unity property:∑

S∈Zd

∑
0⪯I⪯δO

DI,0,0,0,1(T ) = 1M′

We extend the family D to a complete family (also denoted by D = (DI,S,P,R,L)) as follows.

1. For L = (la)a=1,...,d ∈
(
R∗

+

)d
a vector with d coordinates which are strictly positive

elements of the base ring, we set:

DI,S,0,0,L(T ) = 1
L[R] DI,0,0,0,1(

T

L
− S)

2. We define by induction on P = (pa)a=1,...,d ∈ Nd the function DI,S,P,0,L, by setting for
T = (ta)a=1,...,d:

DI,S,P (a,1),0,L(T ) =
∫ ta

−∞
DI,S,P,0,L

(
T (a,u−ta)

)
du

Note that the integral is well defined for a function which is eventually zero when the
coordinates tend to −∞. Furthermore, if DI,S,0,0,L is eventually zero when the coordinates
tend to −∞, then so is DI,S,P,0,L for any P ∈ Nd.
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3. At last we define by induction on R = (ra)a=1,...,d ∈ Nd the function DI,S,P,R,L, by setting:

DI,S,P,R(a,1),L = 1
la(pa + 1)(ra + 1)

(DI,S,P (a,1),R,L − DI,S(a,1),P (a,1),R,L)

Then, we have the following result, which follows from the definition by a straightforward
induction:

Proposition 6.1 The family D = (DI,S,P,R,L) is a Differential B−spline family.

6.3 Generalized Cox-de-Boor Formula
Theorem 6.1 (Generalized Cox-de-Boor Relation) Let D = (DI,S,P,R,L)) is be a differ-
ential B−spline family. For all S ∈ Zd, R ∈ Nd, for any vector L ∈

(
R∗

+

)d
with d coordinates

which are strictly positive, for any a ∈ {1, . . . , d} and for any T ∈ I, we have:

DI,S,0,R(a,1),L(T ) = ta − sa

la(ra + 1)
DI,S,0,R,L (T ) + sa + ra − ta

la(ra + 1)
DI,S(a,1),0,R,L (T )

Proof. We prove the result by induction on R. For R = 0 and any PNd, we have

DI,S,P,R(a,1),L(T ) = 1
la(pa+1)(ra+1)

(
DI,S,P (a,1),R,L (T ) − DI,S(a,1),P (a,1),R,L (T )

)
= 1

la(ra+1)

(∫ ta
−∞ DI,S,P,R,L

(
T (a,ua−ta)

)
dua −

∫ ta
−∞ DI,S(a,1),P,R,L

(
T (a,ua−ta)

)
dua

)
= 1

la(ra+1)

([
(ua − sa)DI,S,P,R,L(T (a,ua−ta))

]ua=ta

ua=−∞

−
[
(ua − ra − sa)DI,S(a,1),P,R,L(T (a,ua−ta))

]ua=ta

ua=−∞

)
− 1

la(ra+1)

(∫ ta
−∞(ua − sa) ∂

∂ua
(DI,S,P,R,L)

(
T (a,ua−ta)

)
dua

−
∫ ta

−∞(ua − ra − sa) ∂
∂ua

(
DI,S(a,1),P,R,L

(
T (a,ua−ta)

))
dua

)
= ta−sa

la(ra+1)DI,S,P,R,L (T ) + sa−ra−ta

la(ra+1) DI,S(a,1),P,R,L (T )
+ 1

la(ra+1)
∫ ta

−∞

(
(ua − sa)DI,S,P (a,−1),R,L(T (a,ua−ta))

+ (sa + ra − ua)DI,S(a,1),P (a,−1),R,L(T (a,ua−ta))
)

dua

Now, for P = 0 as in our statement, we have DI,S,P (a,−1),R,L ≡ 0M′ and DI,S(a,1),P (a,−1),R,L ≡ 0M′

due to the differential property in Definition 6.3, which completes the proof. 2

6.4 Generalized Power Series and Analytical Functions
Note on the draft version. The remainder of this section is somewhat sketch for lack of
time. The final version of this draft ought to contain more about generalized power series,
especially as solutions to linear partial differential equations.

Let D = (DI,S,P,R,L) be a differential B−spline family with respect to a differentiation
operator ∆ over M, which is obtained by tensor product of differentiation operators ∆a for
a = 1, . . . , d. For ω = (ωa)a=1,...,d ∈ Nd, we denote by ∆(ω) the partial derivative of order ωa

using ∆a on Aa.
For the sake of simplicity, we assume that the functions DI,0,0,R,L have bounded support,

namely that supp(DI,0,0,R,L) ⊂ [−m(R), m(R)] for some positive element m(R) ∈ I. We also
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assume that DI,0,0,R,L(T ) > 0M′ for all T ∈ I, which implies, from the partition of unity
property, that ||DI,0,0,R,L||∞ ⪯ 1

L[R] .
Note, however, that the content of this paper regarding analytical functions and their

applications might work also for such functions families of functions with rapidly decreasing
derivatives of all orders, such as constructed as in Section 6.2 using partitions of unity, as well
as for some families of non positive functions.

Lemma 6.1 For P ∈ Nd and b > 0I, the suppremum M of ||DI,S,P,R,L(T )||∞ for x element of
an interval [−b, b] ⊂ I is less that or equal to

(|S| + 2m(R))[P ]

Proof. Let T be an element of an interval [A, B] ⊂ I. Since ||DI,0,0,R,L||∞ ⪯ 1, the result is
true for P = 0. We then show the result by induction on P . Assuming it is true for P , we
see that ||DI,S,P (a,+1),R,L(T )||∞ = ||

∫ T

S
DI,S,P,R,L(U)||∞dU ⪯

∫ |S|+2m(R)

0
(|S| + 2m(R))[P ]dU =

(|s| + 2m(R))[P (a,+1)]. 2

Lemma 6.2 Let c = (cI,S,P ), for 0 ⪯ I ⪯ δR, S ∈ Zd, and P ∈ Nd be a family of elements of
R such that ∑

S∈Zd

∑
0⪯P ⪯N

∑
0⪯I⪯δR

||cI,S,P ||A(|S| + 2m(R))P (17)

is absolutely convergent when all coordinates of N ∈ Nd tend +∞. Then for any R ∈ N and
S ∈ Zd, the sum

Sc,D,N(T ) =
∑

S∈Zd

∑
0ă⪯P ⪯N

∑
0⪯I⪯δR

cI,S,P DI,S,P,R,L(T ) (18)

also converges when all coordinated of N → +∞.

Definition 6.5 Under the assumptions of Lemma 6.2, the coefficients c = (cI,S,P ) are said
to define a convergent generalized power series relative to ∆ and D Moreover, the limit for
n → +∞ for the sums considered in Equation (18) is called the sum of the generalized power
series relative to ∆ and D with coefficients (cI,S,P ), with scaling factor L, with blending order
R

Sc,D(T ) =
∑

S∈Zd

∑
0⪯P

∑
0⪯I⪯δR

cI,S,P DI,S,P,R,L(T ) (19)

Definition 6.6 A function f from I to M′ is called a generalized analytical function relative
to ∆ and D if is can be expressed as a generalized power series relative to ∆ and D for some
coefficients (cI,S,P ), with scaling factor L, with blending order R

Proposition 6.2 (Differentiation of Generalized Analytical Functions) Let R ≥ 1d
N,

let c = (cI,S,P ), for 0 ⪯ I ⪯ δR, S ∈ Zd, and P ∈ Nd be a family of elements of R which
define a convergent generalized power series relative to ∆ and D. Then the function Sc,D is
differentiable for ∆ (i.e. ∆(Sc,D) exists) and we have:

∆a (Sc,D) (T ) =
∑

S∈Zd

∑
0⪯P =0

∑
0⪯I⪯δR

cI,S,P (a,+1)DI,S,P,R,L(T ) (20)
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Proof. From the differential property of the differential B−spline family D, we get for N ∈ Nd

that the sum Sc,D,N(T ) defined in Equation (18), as a function of T ∈ I, is derivable for ∆
and its derivative is

∆a (Sc,D,N) (T ) =
∑

S∈Zd

∑
0⪯P ⪯N

∑
0⪯I⪯δR

ci,s,p+1DI,S,P,R,L(T )

Furthermore, we see that the coefficients a′ = (ci,s,p+1) for 0 ⪯ I ⪯ δR, S ∈ Zd, and
P ∈ Nd defines a convergent generalized power series relative to ∆ and D, that is, the series∑
D∈Zd

∑
0⪯P ⪯N

∑
0⪯I⪯δR

||cI,S,P (a,1) ||∞(|s| + 2m(R))[P ] converges. Hence the series of Equation (20)

above converges when all coordinates of N tend to → +∞, and, using the continuity of the
operator ∆, by taking the limit when N → +∞ we get our result. 2

By an immediate induction on Proposition 6.2, we get the following

Theorem 6.2 Let R ≥ 1d
N, Let c = (cI,S,P ), for 0 ⪯ I ⪯ δR, S ∈ Zd, and P ∈ Nd be a family

of elements of R which define a convergent generalized power series relative to ∆ and D. Then,
for any ω ∈ N d, the function Sc,D is ω−differentiable for ∆ (i.e. ∆ω(Sc,D) exists) and we
have:

∆ω(Sc,D)(T ) =
∑
s∈Z

+∞∑
p=0

∑
0⪯I⪯δR

cI,S,P +ωDI,S,P,R,L(T ) (21)

6.5 Solutions of Linear Differential Equations
Le us consider a linear partial differential equation of the form:∑

0⪯J⪯K

αJ(T )
(
∆(J)(f)

)
(T ) = 0 (22)

where K ∈ Nd. Let us look for generalized analytical functions which are solutions.
So, as in Section 6.4, let D = (DI,S,P,R,L) be a differential B−spline family with respect

to a differentiation operator ∆ over M. We assume, as has been proven for some differential
B−spline families in section 6.4, that Definition 6.5 holds, as well as Theorem 6.2.

Let c = (cI,S,P ), for some R ≥ 1Nd , let 0 ⪯ I ⪯ δR, S ∈ Zd, and P ∈ Nd be a family of
elements of R which define a convergent generalized power series relative to ∆ and D. From
Theorem 6.2, it is sufficient that the coefficients (cI,S,P ) satisfy the following linear equations,
for every T = (ta)a=1,...,d: ∑

0⪯J⪯K

αj(T )cI,S,P +JDI,S,P,R,L(T ) = 0 (23)

Example 6.1 In the one dimensional case (d = 1) real case R = M = M′ = R. Let us
consider the equation ∆(f) = f (which is classically solved to get the exponential function
T → eT ). Equation (23) yields:

cI,S,P +1 = cI,S,P

We therefore get the following family of solutions, for any given P ∈ N and L > 0:

expN(T ) def=
∑
S∈Z

+∞∑
P =0

c0,S,0N0,S,P,R,L(T )

Where (c0,S,0)S∈Z is an arbitrary sequence. This example was implemented, to get the results
presented on Figure 1.
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Figure 1: The results of a partial sum (for a finite N) of B−splines obtained as in Example 6.1.
The graph superimposes perfectly with the usual exponential ex.

The final version of the paper ought to provide more about linear partial differential equa-
tions, as how to choose solutions of the linear equations in Equation (23) to obtain an integer
only and drift-free solution.
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7 Bernstein-Based Differential B−Splines
7.1 Bézier Functions and Bernstein polynomials Basics
Note that the following definition uses multidimensional binomial coefficients and exponents
following Notation 4.1, as well as polynomial functions introduced in Section 4.3.

Definition 7.1 Let R ∈ Nd. For I ∈ Nd with 0 ⪯ I ⪯ R, we consider the M′−valued
polynomial with degree R which defines for T ∈ I the element

BI,R(T ) =
(

R

I

)
(T I1M′) (1M′ − T1M′)R−I

These (in the framework of R−vector spaces well-known) polynomials are called the Bernstein
polynomials with degree R from I to M′.

In the sequel, unless otherwise specified, we shall say Bernstein polynomials or Bernstein
functions as a shorthand for Bernstein polynomials from I to M′. The Bernstein polynomials
with degree R constitute, as formal polynomials, a basis of the vector space of polynomials
with degree less than or equal to R. We shall often omit the 1M′ factors if no ambiguity can
arise, thus writing:

BI,R(T ) =
(

R

I

)
T I (1M′ − T )R−I

Remark 7.1 (Partition of Unity Property) By developing (T+(1−T ))R we obtain∑0⪯I⪯R BI,R(T ) =
1 for all T ∈∈ I

From the Pascal formula (remark 4.4) for binomial coefficients, we derive a similar formula
about Bernstein polynomials:

Proposition 7.1

BI,R(T ) = (1M′ − ta1M′)BI,R(a,−1)(T ) + (ta1M′)BI(a,−1),R(a,−1)(T ) (24)

By omitting the unit 1M′ , we can equivalently write:

BI,R(T ) = (1Aa − ta)BI,R(a,−1)(T ) + taBI(a,−1),R(a,−1)(T ) (25)

Proof.

BI,R(T ) =
(

R
I

)
T I (1M′ − T )R−I

=
[(

R(a,−1)

I(a,−1)

)
+
(

R(a,−1)

I

)]
T I (1M′ − T )R−I

= ta

(
R(a,−1)

I(a,−1)

)
T I(a,−1) (1M′ − T )R(a,−1)−I(a,−1)

+ (1M′ − ta)
(

R(a,−1)

I

)
T I (1M′ − T )R(a,−1)−I

= (1M′ − ta1M′)BI,R(a,−1)(T ) + (ta1M′)BI(a,−1),R(a,−1)(T )

2
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Definition 7.2 Let R ∈ Nd. Let P = (PI)0⪯I⪯R be a multi-sequence of points in M′. We
define, for T = (ta)a=1,...,d ∈ I, the image of T under the Bézier function BP : I −→ M′ with
control points P by

BP(T ) =
∑

0⪯I⪯R

PIBI,R(T )

Now, if we wan to compute partial differentials for Bernstein polynomials, we consider the
(in Rd classical) formula for Bernstein polynomials are concerned. For T = (ta)a=1,...,d, we have:

∂

∂ta

BI,R(T ) = ra(BI(a,−1),R(a,−1)(T ) − BI,R(a,−1)(T )) (26)

Proposition 7.2 As in the usual case of Bézier functions over R, the partial derivative of a
Bézier function from I to M′ BP : I −→ M′ with control points (PI)0⪯I⪯R can be expressed
as follows, denoting T = (ta)a=1,...,d:

∂

∂ta

BP(T ) = ra

∑
0⪯I⪯R(a,−1)

(PI(a,1) − PI)BI,R(a,−1)(T )

which is the Bézier function with control points (P ′
I)0⪯I⪯R(a,−1), where P ′

I = ra(PI(a,1) − PI).

Proof.
∂

∂ta
BP(T ) = ra

∑
0⪯I⪯R PI

(
BI(a,−1),R(a,−1)(T ) − BI,R(a,−1)(T )

)
= ra

(∑
0⪯I⪯R PI BI(a,−1),R(a,−1)(T ) −∑

0⪯I⪯R PI BI,R(a,−1)(T )
)

= ra
∑

0⪯I⪯R(a,−1)(PI(a,1) − PI)BI,R(a,−1)(T )

2

7.2 Scaled Bézier Function Associated to a Sequence
Notation 7.1 Let u be an element of M/L (see Definition 5.4). We consider the floor of u,
denoted by ⌊u⌋, which is the greatest element (considering the coordinate by coordinate partial
order on M) of Zd such that L

(
⌊u⌋
L

)
is less than or equal to L

(
u
L

)
in M/L (considering the

coordinate by coordinate partial order on M/L).

Definition 7.3 Let L ∈
(
R∗

+

)d
be a vector with d coordinates which are strictly positive

elements of the base ring. Let S ∈ Zd. For R ∈ Nd and I ∈ Nd with 0 ⪯ I ⪯ R, we introduce
the S−shifted L−scaled Bernstein polynomials with degree R, with values in M′/LR, by:

BI,S,R,L(T ) =
{

BI,R

(
T
L

− S
)

if T
L

∈ [S, S + 1M[
0 otherwise.

In other words, the value BI,S,R,L(T ) can be non-zero only for S =
⌊

T
L

⌋
. Using the caracteristics

function of an interval, we can also write BI,S,R,L(T ) = BI,R

(
T
L

− S
)
1[s, s+1ăM [.

Remark 7.2 (Shift Property)(
τL(a,la) (BI,S,R,L)

)
(T ) = BI,S,R,L(T (a,la)) = BI,S(a,−1),R,L(T )
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In the remainder of this section (Γ(S))S∈Zd
is a multi-sequence with values in M′, and

L = (la)a=1,...,d is an element of
(
R∗

+

)d
.

Definition 7.4 For R ∈ Nd, the L−scaled (piecewise) Bézier function with degree R associated
to Γ is defined for T ∈ M by:(

B(0)
L,R(Γ)

)
(T ) =

∑
S∈Zd

∑
0⪯I⪯R

Γ (L(I − S)) BI,S,R,L(T )

Note that in the previous definition, due to the definition of BI,S,R,L, for a given value of I,
only one value of S (namely S =

⌊
T
L

⌋
) contributes to the double sum

(
B(0)

L,R(Γ)
)

(T ), so that,
in fact, at most (|R| + d) terms are non-zero for a given T .

Proposition 7.3 (Commutation with the Shift) For R ∈ Nd and I ∈ Nd with 0 ⪯ I ⪯ R,
for T = (ta)a=1,...,d ∈ M, we have:(

B(0)
L,R(Γ)

)
(τL(a,la)(T )) =

(
B(0)

L,R(τ−L(a,la)(Γ))
)

(T )

Proof. (
B(0)

L,R(Γ)
)

(τL(a,l)(T )) = ∑
S∈Zd

∑
0⪯I⪯R Γ (L(I − S)) BI,S,R,L(T (a,la))

= ∑
S∈Zd

∑
0⪯I⪯R Γ (L(I − S)) BI,S(a,−1),R,L(T )

= ∑
S∈Zd

∑
0⪯I⪯R Γ

(
L(I − S(a,1))

)
BI,S,R,L(T )

= ∑
S∈Zd

∑
0⪯I⪯R Γ

(
L(S − I) − 0(a,la))

)
BI,S,R,L(T )

=
(
B(0)

L,R(τ−L(a,la)(Γ))
)

(T )

2

Proposition 7.4 (De Casteljau Property on Sequences) Using the elements L(a, j) for
a = 1, . . . , d and j ∈ Aa, as well as R(a,−1) ∈ Nd, defined in Notation 4.1, we have for
T = (ta)a=1,...,d:
(
B(0)

L,R(Γ)
)

(T ) =
(

1 −
(

ta

la
−
⌊

ta

la

⌋)) (
B(0)

L,R(a,−1)(Γ)
)

(T )+
(

ta

la
−
⌊

ta

la

⌋) (
B(0)

L,R(a,−1)(τL(a,la)(Γ))
)

(T )

In the equation, we omitted 1M′ when multiplying M′−valued polynomials by
(

ta

la
−
⌊

ta

la

⌋)
1M

or
(
1Aa −

(
ta

la
−
⌊

ta

la

⌋)
)
)

1M, seen as degree zero monomials (Definition 4.10). This notation is
also valid for R = 0 if we use the convention that B(0)

L,R(a,j) = 0 if ra + j < 0.

Proof.(
B(0)

L,R(Γ)
)

(T ) = ∑
S∈Zd

∑
0⪯I⪯R Γ (L(I − S)) BI,R(T

L
− S)1[S,S+1M[

(
T
L

)
= ∑

S∈Zd

∑
0⪯I⪯R Γ (L(I − S))

.
[(

1Aa −
(

ta

la
− sa

))
BI,R(a,−1)(T

L
− S)

+
(

ta

la
− sa

)
BI(a,−1),R(a,−1)(T

L
− S)

]
.1[S,S+1[

(
T
L

)
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The last equality follows from Equation 25. Now, taking into account that the only value of
S for which T

L
∈ [S, S + 1[, which implies that ta

la
− sa = ta

la
−
⌊

ta

la

⌋
, and then by changing the

index I to I(a,−1) in the sum, we get:(
B(0)

L,R(Γ)
)

(T ) =
(
1Aa − ta

la
+
⌊

ta

la

⌋
)
)∑

S∈Zd

∑
0⪯I⪯R Γ (L(I − S)) BI,S,R(a,−1),L(T )

+
(

ta

la
−
⌊

ta

la

⌋)∑
S∈Zd

∑
0(a,−1)⪯I⪯R(a,−1) Γ

(
L(I(a,1) − S)

)
BI,S,R(a,−1),L(T )

=
(
1Aa − ta

la
+
⌊

ta

la

⌋
)
) (

B(0)
L,R(a,−1)(Γ)

)
(T ) +

(
ta

la
−
⌊

ta

la

⌋) (
B(0)

L,R(a,−1)(τ (a,la)(Γ))
)

(T )

The indices I = 0(a,−1) and I = R yielding a zero term because out of range for the Bernstein
polynomials. 2

Now, we derive the following from Proposition 7.3 and Proposition 7.4:

Proposition 7.5 (De Casteljau Property on Functions) We have for T = (ta)a=1,...,d:
(
B(0)

L,R(Γ)
)

(T ) =
(

1 −
(

ta

la
−
⌊

ta

la

⌋)
)
)(

B(0)
L,R(a,−1)(Γ)

)
(T )+

(
ta

la
−
⌊

ta

la

⌋) (
τ−L(a,la)(B(0)

L,R(a,−1)(Γ))
)

(T )

7.2.1 Derivative of the Scaled Bézier Function

As far as Bernstein polynomials are concerned, we get the partial differential form Euqation 26.
We derive from this that, for s = ⌊t⌋, we have

∂

∂ta

BI,S,R,L(T ) = 1
la

∂

∂ta

BI,R(T

L
− S) = ra

la

(
BI(a,−1),S,R(a,−1),L(T ) − BI,S,R(a,−1),L(T )

)
(27)

so that

Proposition 7.6 (Differentiation and Finite Differences of Sequences) For 0 ⪯ R =
(ra)a=1,...,d, the function B(0)

L,R(Γ) is CR−1 on M and we have:

∂

∂ta

(
B(0)

l,r (Γ)
)

(T ) = ra

la

[(
B(0)

L,R(a,−1)(τ (a,−la)(Γ))
)

(T ) −
(
B(0)

L,R(a,−1)(Γ)
)

(T )
]

Proof. First we prove the result for all t ∈ M\Zd, on which the curve B(0)
l,r (Γ) is easily seen to

be polynomial, hence infinitely differentiable.

∂
∂ta

(
B(0)

L,R(Γ)
)

(T ) = ∑
S∈Zd

∑
0⪯I⪯R Γ (L(S − I)) ∂

∂ta
BI,S,L,R(T )

= ∑
S∈Zd

∑
0⪯I⪯R Γ (L(S − I)) ra

la

(
BI(a,−1),S,R(a,−1),L(T ) − BI,S,R(a,−1),L(T )

)
= ∑

S∈Zd

∑
0(a,−1)⪯I⪯R(a,−1) Γ

(
L(S − I(a,1))

)
ra

la

(
BI,S,R(a,−1),L(T )

)
−∑

S∈Zd

∑
0⪯I⪯R Γ (L(S − I)) ra

la

(
BI,S,R(a,−1),L(T )

)
= ∑

S∈Zd

∑
0⪯I⪯R(a,−1) Γ

(
L(S − I) − 0(a,la)

)
ra

la

(
BI,S,R(a,−1),L(T )

)
−∑

S∈Zd

∑
0⪯I⪯R Γ (L(S − I)) ra

la

(
BI,S,R(a,−1),L(T )

)
= ra

la

[(
B(0)

L,R(a,−1)(τ (a,−la)(Γ))
)

(T ) −
(
B(0)

L,R(a,−1)(Γ)
)

(T )
]

Now, for R = 0, we have B
(0)
L,R(T ) = ∑

s∈Zd
Γ(−LS)1[SL,(SL+L)[(T ). Consequently, B

(0)
L,1(Γ) is

C0 (we remind the reader that the vector 1 is here considered as having all its coordinates
equal to 1. The result follows by induction on 1 ⪯ R. 2
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Proposition 7.7 (Differentiation and Finite Differences of Functions) For 0 ⪯ R =
(ra)a=1,...,d, the curve B(0)

L,R(Γ) is CR on M and we have:

∂

∂ta

(
B(0)

L,R(Γ)
)

(T ) = ra

la

[(
τ (a,la)

(
B(0)

L,R(a,−1)(Γ)
))

(T ) −
(
B(0)

L,R(a,−1)(Γ)
)

(T )
]

Definition 7.5 Let Φ : Z −→ E be a sequence, or Φ : R −→ E be a function. We define the
finite difference masks:

•
(
∆(a,l)

− (Φ)
)

(S) = 1
l
(Φ(S) − Φ(S(a,−l)));

•
(
∆(a,l)

+ (Φ)
)

(S) = 1
l
(Φ(S(a,l)) − Φ(S)).

Notation 7.2 For ω ∈ N with 0 ⪯ ω ⪯ R, we denote by B(ω)
L,R(Γ) the function on M defined

as the differential of order ω of B(0)
L,R(Γ):

B(ω)
L,R(Γ) =

(
B(0)

l,r−ω(Γ)
)(ω)

Therefore, Proposition 7.6 and Proposition 7.7 can be restated as:

Proposition 7.8 The first order partial derivatives of Bl,r(Γ) can be computed in two ways
through finite differences:

• On the sequence by ∂
∂ta

(BL,R(Γ)) (T ) = −ra

(
B(0)

L,R(a,−1)(∆(a,la)
− (Γ)

)
(T );

• On the function by ∂
∂ta

(BL,R(Γ)) (T ) = ra∆(a,la)
+

(
B(0)

L,R(a,−1)(Γ)
)

(T )

The following immediately follows by induction:

Proposition 7.9 for R ≥ 0 and ω ∈ Nd with ω ⪯ R, we can compute the differential with
order ω of BL,R(Γ), by applying an ω−differentiation mask either to the sequence Γ by

(
B(ω)

L,R(Γ)
)

= R!
(R − ω)!

B(0)
L,Rω

(
(−1M′)|ω| ∆ω

−(Γ)
)

or to the function BL,R(Γ) itself by
(
B(ω)

L,R(Γ)
)

= R!
(R − ω)!

(
∆ω

+

) (
B(0)

L,R−ω(Γ)
)

7.3 Bernstein Based Differential B−Splines Family
Definition 7.6 We consider, for P ∈ Nd, for I ∈ Zd, for S ∈ Zd, for R ∈ Nd, a function
BI,S,P,R,L ∈ M′M, based on the function BI,S,R,L defined in Definition 7.3, by the following
inductive definition:

• BI,S,0,R,L = 1
L[R] BI,S,R,L

• For P ≥ 0 and T = (ta)a=1,...,d, we set:

DI,S,P (a,1),R,L(T ) = (pa + 1)
∫ ta

∞
DI,S,P,R,L(T (a,u−ta))du
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The family of piecewise polynomial functions thus defined is called the Bernstein-based differ-
ential B−spline family.

Theorem 7.1 Bernstein-based differential B−spline family is a differential B−spline family
as defined through Definition 6.3.

The proof follows directly

• from Definition 7.6 which yields the differential property;

• from Equation (27), which can be integrated, and generalized for all P ∈ Nd gives us the
commutation with the finite differences property;

• from Remark 7.2 which gives us the shift property;

• and from Remark 7.1 which gives us the partition of unity property.
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