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Abstract — Since it generates amultitude of interacting cracks, the computational modeling
of fragmentation requires special attention. The discontinuous Galerkin formulation provides an
efficient scalable framework to simulate non-linear dynamics of spatially discontinuous structures.
Cracks can initiate at any element boundary and evolve driven by a cohesive law. A DG-cohesive
weak formulation is derived, implemented into a parallel finite element code, and applied to the
fragmentation of a three-dimensional plate submitted to biaxial tension.
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1 Introduction

In the recent years,discontinuous Galerkin (DG) methods have received considerable attention
both for problems in which advection and diffusion terms are present, and more recently for prob-
lems allowing physical discontinuities. They are the result of a century work during which math-
ematicians and physicians have improved their formulations [12]. The name of Discontinuous
Galerkin (DG) seems to appear first in a paper by Lesaint and Raviart [5] who defined a method
to link separate domains in a weak manner. An approximation is computed independently in each
domain, weakly connected to the others afterwards. Other theories have been derived to link such
separate domains, among which the method of domain decomposition [3]. It adds Lagrange mul-
tiplier functions at contiguous interfaces of the various domains in such a manner that the number
of unknown variables increases. The essence of the DG method lies in the elimination of the
Lagrange multiplier functions so that the total number of unknown variables does not depend on
the interfaces. An obvious way to accomplish this elimination is the direct substitution. Nitsche
derived a mathematical theory of elimination in the variational principle [7]. He also discovered
that his process could lead to numerical singularities. Hence, he added a further constraint of
least-square type, to avoid numerical indefiniteness. The parameter that he introduced can be seen
as a stabilization term.

Practical applications of the DG method range several fields. It has been classically employed
for the computation of fluid flow [1] and more recently in solid mechanics. For instance, approxi-
mate solutions of problems involving cracks [6], beams and plates [2], shells [4], and constitutive
models that include spatial gradients [11], have been computed in quasi statics. A recent effort
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has also been made to use the DG method in dynamic problems involving large deformation and
plasticity [8, 9]. In the present paper, as exposed in [8, 9], we apply the DG method to dy-
namic fragmentation of brittle materials. Fragmentation is the breakage of a structure into several
pieces. In dynamics, an explosive loading generates many fragments. During the process, multiple
micro-cracks appear simultaneously at seemingly random locations, interact through stress waves,
propagate, coalesce and eventually form macro-cracks. A complex network of stress waves takes
place within the structure, which makes the dynamics highly non-linear. An efficient parallelizable
numerical framework is thus required. The DG method has been shown to be accurate and scal-
able for such problems [9]. It deals with the bulk solution while cohesive interfaces address the
problem of crack opening and crack closure [10]. In addition, we include microstructural hetero-
geneities in the numerical framework to account for the effect of bulk defects. Defects are known
to determine the initiation of the cracks and a fortiori the evolution of the dynamic behavior. In
practice, they are included by setting a distribution of cohesive properties.

The paper is organized as follows. In the first section, we derive the discontinuous Galerkin
(DG) framework in the elasto-dynamic context for large deformations. Then, we allow for cracks
to initiate and propagate using the cohesive methodology, which leads to a natural hybrid DG-
cohesive formulation. In the last section, we present preliminary results of the fragmentation of a
heterogeneous plate, submitted to biaxial tension.

2 Formulation of the boundary value problem

This section is a summary of the rigorous derivation of the DG theory detailed in [8]. We first
review the strong form of the boundary value problem of large dynamic deformations of an elastic
bodyΩ0. Then, we divide the initial body into two subbodiesΩ1

0 andΩ2
0 such thatΩ0 = Ω1

0∪Ω2
0

and∂IΩ0 = Ω1
0∩Ω2

0 (fig.1). Stresses and displacements can be discontinuous across the surface
∂IΩ0, which can either model a physical boundary or be a fictitious numerical interface. The weak
DG formulation provides an efficient mean to handle this discontinuous interface. Finally, we
generalize the one-interface equation to a finite number of interfaces and couple the method to a
dynamic finite element framework.

Figure 1: Partition of the initial body
and boundary surfaces

Figure 2: Duplication of all the nodes
from the original mesh

2.1 Strong formulation of the continuous problem

Let us consider the dynamic motion of a body which reference configuration isΩ0 at timet0. At
any time t inT = [t0, t f ], the positionx of the material pointX is described by the deformation
mapping:

x = ϕ(X, t) ∀X ∈ Ω0,∀t ∈ T (1)

Its boundary surface∂Ω0 is partitioned into a Dirichlet part∂DΩ0 and a Neumann part∂NΩ0

such that∂Ω0 = ∂DΩ0∪∂NΩ0 and∂DΩ0∩∂NΩ0 = /0. Considering that no body force applies, the
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continuum equations are:

ρ0ϕ̈ = ∇0P ∀X ∈ Ω0,∀t ∈ T (2)

ϕ = ϕ̄ ∀X ∈ ∂DΩ0,∀t ∈ T (3)

P·N = T̄ ∀X ∈ ∂NΩ0,∀t ∈ T (4)

whereρ0 is the initial densityfunction, •̇ refers to the partial differentiation with respect to time,
P is the first Piola-Kirchhoff stress tensor, andN is the unit normal to the reference configuration.
The system of equations has a solution if initial conditions are provided. We consider the case of
hyperelastic materials for which a strain density functionW exists and is such that:

P =
∂W

∂(∇0ϕ)
(5)

2.2 Insertion of aninterface and DG formulation

Integration over the body in the reference configuration, multiplied by a suitable test function,
leads to the usual weak Galerkin formulation. Let us add an inside boundary∂IΩ0. Equations 1 to
5 are independently valid inΩ1

0 andΩ2
0. The interface allows for jumps betweenΩ1

0 andΩ2
0. The

jump [•] and theaverage 〈•〉 operators are respectively defined by:

[•] = •2−•1 〈•〉 =
•2 +•1

2
(6)

We noteN the normalvector to∂IΩ0 pointing from 2 to 1 (N = N21 = −N12). The DG method
relaxes the equilibrium conditions of the interface∂IΩ0 and enforces weakly the compatibility
equation:

[ϕ] = 0 ∀ϕ ∈ ∂IΩ0 (7)

Besides the usual terms of the Galerkin continuous equation, the DG formulation involves an
interface term which fields are discontinuous across∂IΩ0. The DG problem consists in defining
the suitable spaces BX , BP, B0

X (one may refer to [8] for more details), and in findingϕ ∈ BX and
P∈ BP such that:

Z

Ω0

(ρ0 ϕ̈ δϕ+P : ∇0δϕ)dV −
Z

∂IΩ0

[Pδϕ]N dS =
Z

∂NΩ0

T̄ δϕ dS ∀δϕ ∈ B0
X ,∀t ∈ T (8)

We simplify the equation 8 by using the relation[Pδϕ] = [P]〈δϕ〉+ 〈P〉 [δϕ], and by considering
that only the compatibility of the displacements needs to be enforced. Finally, in addition to
its weak enforcement, the equation of compatibility must be ensured quadratically by adding a
stabilization term, proportional to[ϕ]⊗N : C : [δϕ]⊗N, whereC is the tangent material moduli.
This term stabilizes the jump in displacements and the influence of the material relations for large
displacements is properly included. The final formulation of the DG method is:

Z

Ω0

(ρ0 ϕ̈ δϕ+P : ∇0δϕ)dV −
Z

∂IΩ0

〈P〉[δϕ]N dS

+
Z

∂IΩ0

[ϕ]⊗N : 〈
β
hs

C〉 : [δϕ]⊗N dS =
Z

∂NΩ0

T̄ δϕ dS ∀δϕ ∈ B0
X ,∀t ∈ T

(9)

β > 0 is the stabilization parameter andhs is a suitable characteristic length.
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2.3 Generalization: Finite Element implementation

In the case offinite elements, the previous formulation is still valid. The initial domain is parti-

tioned into elementsΩ0 ≈ Ω0h =
E
S

e=1
Ωe

0. One possible way to define the interior boundary∂IΩ0

is to refer to all the boundaries between elements (fig. 2):

∂IΩ0 =

(

E
[

e=1

∂Ωe
0

)

∖

∂Ω0h (10)

The characteristic lengthhs is the mesh size. Equation 9 is still valid for any finite number of
interfaces. The only difference is the definition of the spaces in which the unknown displacements
and stresses are defined. Furthermore, the discretization in time is a conventional explicit inte-
gration. A second-order central difference scheme with mass lumping is adopted. The space-DG
formulation imposes a condition on the time step:

∆t ≤ ∆tcritic =
hs
√

βc
(11)

3 Handling fracture with the DG methodology

3.1 Hybrid formulation

Failure occurs when a threshold criterion is satisfied. Before fracture, the DG law governs the evo-
lution of the interface. Once the average local stress along the interface reaches a given threshold
called the cohesive strengthσc, the interface follows the Camacho and Ortiz linear cohesive law
[10]. The weak formulation becomes:

Z

Ω0

(ρ0 ϕ̈ δϕ+P : ∇0δϕ)dV +α
(

Z

∂IΩ0

T([ϕ]) [δϕ] dS

)

+(1−α)

(

−
Z

∂IΩ0

〈P〉[δϕ]N dS +
Z

∂IΩ0

[ϕ]⊗N : 〈
β
hs

C〉 : [δϕ]⊗N dS

)

=
Z

∂NΩ0

T̄ δϕ dS ∀δϕ ∈ B0
X ,∀t ∈ T

(12)

α = 0 at each element boundary before fracture initiation. When the fracture criterion is
satisfied,α is 1. T is the cohesive traction, and is function of the jump in displacements across the
interface. Its behavior can follow any cohesive law. In the present study, the law is linear [10].

3.2 Linear cohesive law definition

First, let us respectively denote byT , δnorm andδtang the norms ofT , of the normal and of the
tangential parts of[ϕ]. The interface effective opening is a combination ofδnorm andδtang.

δcoh =
√

δ2
norma + γ δ2

tang (13)

Theparameterγ balances the tension and shear contributions. Denoting the cohesive strengthσc

and the critical openingδc, the tractionT behaves by following the cohesive law:

T
σc

= 1−
δcoh

δc
, for δ̇coh > 0 , δcoh = δmax andD < 1 (14)

T
σc

= 1−
δmax

δc
, for δcoh < δmax andD < 1 (15)
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The element opening is governed by the first equation while the second equation accounts for the
closing.D is thelocal damage, and is comprised between 0 (initiation of the cohesive crack) and 1
(the cohesive crack is fully broken). Consequently, only two parameters are necessary to define this
law: the cohesive strengthσc and the critical openingδc. One can either choose these values equal
for every cohesive element (homogeneous material), or different (heterogeneous material). In this
study, the critical openingδc is kept constant and the cohesive strengthsσc follow a uniform or a
Weibull distribution. In this way, the DG method and the cohesive approach can easily be inserted
into a conventional finite element code to simulate the fragmentation of heterogeneous structures.

4 Fragmentation of a heterogeneous plate

A ceramic plate of area 1cm by 1cm and of thickness 0.015mm, is submitted to biaxial tension.
The velocity is imposed on the four sides and drives the plate expansion at a strain rate of 105s−1.
Before fracture, the behavior is elastic (Young modulus equal to 260GPa, Poisson ratio of 0.21 and
volumetric mass set to 3690kg.m−3). When the stress is high enough, the plate begins to damage
locally, cracks are propagating and eventually coalesce. Figure 3 represents the applied boundary
conditions and the resulting fragments for two initial distributions of defects. In the first case, we
consider a nearly homogeneous material with a uniform distribution in which cohesive strengths
vary in a 1% range around the mean (σc = 300MPa). In the second case, the cohesive strengths
follow a Weibull distribution of modulus of two and around the same mean as before. This second
distribution has a larger standard deviation and represents a more heterogeneous material. The
results reveal a larger spread in fragment sizes for the heterogeneous plate, and a smaller final
number of fragments. These findings are in accordance with prior results obtained with classical
continuous Galerkin methods coupled with cohesive zone modeling. This confirms the potential
of using DG for robust scalable fragmentation simulations. Statistics on fragment sizes, shapes
and how they can be impacted by defects will be computed in future work.

(a) Boundary conditions and
region of interest

(b) Fragmented region of in-
terest for a uniform distribu-
tion of defects

(c) Fragmented region of in-
terest for a Weibull distribu-
tion of defects

Figure 3: Plate under rapid biaxial tension

5 Conclusion

DG methods are efficient to simulate the fragmentation of heterogeneous materials. In this pa-
per, we have briefly derived the DG equations and applied them to a usual finite element code.
While the DG methodology handles the bulk behavior, the failure process is governed by a linear
cohesive law which allows numerous cracks to open, interact and coalesce simultaneously. The
last section focuses on the fragmentation of a heterogeneous plate submitted to biaxial tension.
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Two distributions of cohesive stresses model the material heterogeneity: a uniform with lowstan-
dard deviation and a Weibull distribution with Weibull modulus 2 (larger standard derivation). In
both cases, the DG methodology resolves well the intense loading applied as boundary conditions.
At the end of the process, the uniform distribution (more homogeneous material) leads to smaller
and more numerous fragments than the Weibull distribution (more heterogeneous material), which
confirms prior experimental and numerical observations.
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