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Stochastic approximation techniques have been used in various contexts in data science. We propose a stochastic version of the forward-backward algorithm for minimizing the sum of two convex functions, one of which is not necessarily smooth. Our framework can handle stochastic approximations of the gradient of the smooth function and allows for stochastic errors in the evaluation of the proximity operator of the nonsmooth function. The almost sure convergence of the iterates generated by the algorithm to a minimizer is established under relatively mild assumptions. We also propose a stochastic version of a popular primal-dual proximal splitting algorithm, establish its convergence, and apply it to an online image restoration problem.

INTRODUCTION

A large array of optimization problems arising in signal processing involve functions belonging to Γ 0 (H), the class of proper lower semicontinuous convex function from H to ]-∞, +∞], where H is a finite-dimensional real Hilbert space with norm • . In particular, the following formulation has proven quite flexible and far reaching [START_REF] Combettes | Signal recovery by proximal forwardbackward splitting[END_REF]. Problem 1.1 Let f ∈ Γ 0 (H), let ϑ ∈ ]0, +∞[, and let h : H → R be a differentiable convex function such that ∇h is ϑ -1 -Lipschitz continuous on H. The goal is to minimize

x∈H f(x) + h(x), (1) 
under the assumption that the set F of minimizers of f + h is nonempty.
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A standard method to solve Problem 1.1 is the forwardbackward algorithm [START_REF] Chaux | A variational formulation for frame-based inverse problems[END_REF][START_REF] Combettes | Proximal thresholding algorithm for minimization over orthonormal bases[END_REF][START_REF] Combettes | Proximal splitting methods in signal processing[END_REF][START_REF] Combettes | Compositions and convex combinations of averaged nonexpansive operators[END_REF][START_REF] Combettes | Signal recovery by proximal forwardbackward splitting[END_REF], which constructs a sequence (x n ) n∈N in H via the recursion

(∀n ∈ N) x n+1 = prox γnf x n -γ n ∇h(x n ) , (2) 
where γ n ∈ ]0, 2ϑ[ and prox γnf is the proximity operator of function γ n f, i.e., [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF] prox γnf : x → argmin

y∈H f(y) + 1 2γ n x -y 2 . (3) 
In practice, it may happen that, at each iteration n, ∇h(x n ) is not known exactly and is available only through some stochastic approximation u n , while only a deterministic approximation f n to f is known; see, e.g., [START_REF] Pereyra | A survey of stochastic simulation and optimization methods in signal processing[END_REF]. To solve [START_REF] Atchadé | On stochastic proximal gradient algorithms[END_REF] in such uncertain environments, we propose to investigate the following stochastic version of (2). In this algorithm, at iteration n, a n stands for a stochastic error term modeling inexact implementations of the proximity operator of γ n f n , (Ω, F , P) is the underlying probability space, and L 2 (Ω, F , P; H) denotes the space of H-valued random variable x such that E x 2 < +∞. Our algorithmic model is the following.

Algorithm 1.2 Let x 0 , (u n ) n∈N , and (a n ) n∈N be random variables in L 2 (Ω, F , P; H), let (λ n ) n∈N be a sequence in ]0, 1], and let (γ n ) n∈N be a sequence in ]0, 2ϑ[, and let (f n ) n∈N be a sequence of functions in Γ 0 (H). For every n ∈ N, set

x n+1 = x n + λ n prox γnfn (x n -γ n u n ) + a n -x n . ( 4 
)
The first instances of the stochastic iteration (4) can be traced back to [START_REF] Robbins | A stochastic approximation method[END_REF] in the context of the gradient descent method, i.e., when f n ≡ f = 0. Stochastic approximations in the gradient method were then investigated in the Russian literature of the late 1960s and early 1970s [START_REF] Yu | The method of stochastic gradients and its application[END_REF][START_REF] Guseva | The rate of convergence of the method of generalized stochastic gradients[END_REF][START_REF] Shor | Minimization Methods for Non-Differentiable Functions[END_REF]. Stochastic gradient methods have also been used extensively in adaptive signal processing, in control, and in machine learning, (e.g., in [START_REF] Bach | Non-asymptotic analysis of stochastic approximation algorithms for machine learning[END_REF][START_REF] Kushner | Stochastic Approximation and Recursive Algorithms with Applications[END_REF][START_REF] Widrow | Adaptive Signal Processing[END_REF]). More generally, proximal stochastic gradient methods have been applied to various problems; see for instance [START_REF] Atchadé | On stochastic proximal gradient algorithms[END_REF][START_REF] Duchi | Efficient online and batch learning using forward backward splitting[END_REF][START_REF] Konecný | Minibatch semistochastic gradient descent in the proximal setting[END_REF][START_REF] Rosasco | Convergence of stochastic proximal gradient algorithm[END_REF][START_REF] Shalev-Shwartz | Stochastic dual coordinate ascent methods for regularized loss minimization[END_REF][START_REF] Xiao | A proximal stochastic gradient method with progressive variance reduction[END_REF][START_REF] Yamagishi | Acceleration of adaptive proximal forward-backward splitting method and its application to sparse system identification[END_REF].

The first objective of the present work is to provide a thorough convergence analysis of the stochastic forwardbackward algorithm described in Algorithm 1.2. In particular, our results do not require that the proximal parameter sequence (γ n ) n∈N be vanishing. A second goal of our paper is to show that the extension of Algorithm 1.2 for solving monotone inclusion problems allows us to derive a stochastic version of a recent primal-dual algorithm [START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF] (see also [START_REF] Combettes | Variable metric forward-backward splitting with applications to monotone inclusions in duality[END_REF][START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF]). Note that our algorithm is different from the random blockcoordinate approaches developed in [START_REF] Bianchi | A stochastic coordinate descent primal-dual algorithm and applications to large-scale composite optimization[END_REF][START_REF] Pesquet | A class of randomized primal-dual algorithms for distributed optimization[END_REF], and that it is more in the spirit of the adaptive method of [START_REF] Ono | A sparse system identification by using adaptively-weighted total variation via a primal-dual splitting approach[END_REF].

The organization of the paper is as follows. Section 2 contains our main result on the convergence of the iterates of Algorithm 1.2. Section 3 presents a stochastic primal-dual approach for solving composite convex optimization problems. Section 4 illustrates the benefits of this algorithm in signal restoration problems with stochastic degradation operators. Concluding remarks appear in Section 5.

A STOCHASTIC FORWARD-BACKWARD ALGORITHM

Throughout, given a sequence (x n ) n∈N of H-valued random variables, the smallest σ-algebra generated by x 0 , . . . , x n is denoted by σ(x 0 , . . . , x n ), and we denote by X = (X n ) n∈N a sequence of sigma-algebras such that

(∀n ∈ N) X n ⊂ F and σ(x 0 , . . . , x n ) ⊂ X n ⊂ X n+1 .
(5) Furthermore, ℓ + (X ) designates the set of sequences of [0, +∞[-valued random variables (ξ n ) n∈N such that, for every n ∈ N, ξ n is X n -measurable, and we define

ℓ 1/2 + (X ) = (ξ n ) n∈N ∈ ℓ + (X ) n∈N ξ 1/2 n < +∞ P-a.s. , (6) 
and

ℓ ∞ + (X ) = (ξ n ) n∈N ∈ ℓ + (X ) sup n∈N ξ n < +∞ P-a.s. . (7) 
We now state our main convergence result.

Theorem 2.1 Consider the setting of Problem 1.1, let (τ n ) n∈N be a sequence in [0, +∞[, let (x n ) n∈N be a sequence generated by Algorithm 1.2, and let X = (X n ) n∈N be a sequence of sub-sigma-algebras satisfying [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]. Suppose that the following are satisfied:

(a) n∈N λ n E( a n 2 | X n ) < +∞. (b) n∈N √ λ n E(u n | X n ) -∇h(x n ) < +∞. (c) For every z ∈ F, there exists (ζ n (z)) n∈N ∈ ℓ ∞ + (X ) such that λ n ζ n (z) n∈N ∈ ℓ 1/2 + (X ) and (∀n ∈ N) E( u n -E(u n | X n ) 2 | X n ) τ n ∇h(x n ) -∇h(z) 2 + ζ n (z). (8) (d) There exist sequences (α n ) n∈N and (β n ) n∈N in [0, +∞[ such that n∈N √ λ n α n < +∞, n∈N λ n β n < +∞, and 
(∀n ∈ N)(∀x ∈ H) prox γnfn x -prox γnf x α n x + β n . (9) (e) inf n∈N γ n > 0, sup n∈N τ n < +∞, and sup n∈N (1 + τ n )γ n < 2ϑ. (f) Either inf n∈N λ n > 0 or γ n ≡ γ, n∈N τ n < +∞,
and
n∈N λ n = +∞ .
Then the following hold for every z ∈ F and for some Fvalued random variable x:

(i) n∈N λ n ∇h(x n ) -∇h(z) 2 < +∞ P-a.s. (ii) n∈N λ n x n -γ n ∇h(x n )-prox γnf x n -γ n ∇h(x n ) + γ n ∇h(z) 2 < +∞ P-a.s. (iii) (x n ) n∈N converges almost surely to x.
In the deterministic case, Theorem 2.1(iii) can be found in [START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF]Corollary 6.5]. The proof the above stochastic version is based on the theoretical tools of [START_REF] Combettes | Stochastic quasi-Fejér blockcoordinate fixed point iterations with random sweeping[END_REF] (see [START_REF] Combettes | Stochastic approximations and perturbations in forward-backward splitting for monotone operators[END_REF] for technical details and extensions to infinite-dimensional Hilbert spaces).

It should be noted that the existing works which are the most closely related to ours do not allow any approximation of the function f and make some additional restrictive assumptions. For example, in [1, Corollary 8] and [START_REF] Rosasco | Stochastic forward-backward splitting for monotone inclusions[END_REF], (γ n ) n∈N is a decreasing sequence. In [1, Corollary 8], [START_REF] Rosasco | Stochastic forward-backward splitting for monotone inclusions[END_REF], and [START_REF] Rosasco | A stochastic inertial forwardbackward splitting algorithm for multivariate monotone inclusions[END_REF], no error term is allowed in the numerical evaluations of the proximity operators (a n ≡ 0). In addition, in the former work, it is assumed that (x n ) n∈N is bounded, whereas the two latter ones assume that the approximation of the gradient of h is unbiased, that is

(∀n ∈ N) E(u n | X n ) = ∇h(x n ). (10) 

STOCHASTIC PRIMAL-DUAL SPLITTING

The subdifferential

∂f : x → u ∈ H (∀y ∈ H) y -x | u + f(x) f(y) (11 
) of a function f ∈ Γ 0 (H) is an example of a maximally monotone operator [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]. Forward-backward splitting has been developed in the more general framework of solving monotone inclusions [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF][START_REF] Combettes | Solving monotone inclusions via compositions of nonexpansive averaged operators[END_REF]. This powerful framework makes it possible to design efficient primal-dual strategies for optimization problems; see for instance [START_REF] Combettes | Variable metric forward-backward splitting with applications to monotone inclusions in duality[END_REF][START_REF] Komodakis | Playing with duality: An overview of recent primal-dual approaches for solving large-scale optimization problems[END_REF] and the references therein.

More precisely, we are interested in the following optimization problem [START_REF] Combettes | Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators[END_REF]Section 4].

Problem 3.1 Let f ∈ Γ 0 (H), let ϑ ∈ ]0, +∞[, let h : H → R
be convex and differentiable with a ϑ -1 -Lipschitz-continuous gradient, and let q be a strictly positive integer. For every k ∈ {1, . . . , q}, let G k be a finite-dimensional Hilbert space, let g k ∈ Γ 0 (G k ), and let

L k : H → G k be linear. Let G = G 1 ⊕ • • • ⊕ G q be
the direct Hilbert sum of G 1 , . . . , G q , and suppose that there exists x ∈ H such that

0 ∈ ∂f(x) + q k=1 L * k ∂g k (L k x) + ∇h(x). (12) 
Let F be the set of solutions to the problem minimize

x∈H f(x) + q k=1 g k (L k x) + h(x) (13) 
and let F * be the set of solutions to the dual problem

minimize v∈G (f * h * ) - q k=1 L * k v k + q k=1 g * k (v k ), (14) 
where denotes the infimal convolution operation, ϕ * is the Legendre conjugate of a function ϕ, and v = (v 1 , . . . , v q ) designates a generic point in G. The objective is to find a point in F × F * .

We are interested in the case when only stochastic approximations of the gradients of h and approximations of the function f are available to solve Problem 3.1. The following algorithm, which can be viewed as a stochastic extension of those of [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF][START_REF] Combettes | A forwardbackward view of some primal-dual optimization methods in image recovery[END_REF][START_REF] Combettes | Variable metric forward-backward splitting with applications to monotone inclusions in duality[END_REF][START_REF] Condat | A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms[END_REF][START_REF] Esser | A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science[END_REF][START_REF] He | Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective[END_REF][START_REF] Vũ | A splitting algorithm for dual monotone inclusions involving cocoercive operators[END_REF], will be the focus of our investigation. Algorithm 3.2 Let ρ ∈ ]0, +∞[, let (f n ) n∈N be a sequence of functions in Γ 0 (H), let (λ n ) n∈N be a sequence in ]0, 1] such that n∈N λ n = +∞, and, for every k ∈ {1, . . . , q}, let σ k ∈ ]0, +∞[. Let x 0 , (u n ) n∈N , and (b n ) n∈N be random variables in L 2 (Ω, F , P; H), and let v 0 and (c n ) n∈N be random variables in L 2 (Ω, F , P; G). Iterate

for n = 0, 1, . . .            y n = prox ρfn x n -ρ q k=1 L * k v k,n + u n + b n x n+1 = x n + λ n (y n -x n ) for k = 1, . . . , q w k,n = prox σ k g * k v k,n + σ k L k (2y n -x n ) + c k,n v k,n+1 = v k,n + λ n (w k,n -v k,n ). ( 15 
)
One of main benefits of the proposed algorithm is that it allows us to solve jointly the primal problem ( 13) and the dual one [START_REF] Combettes | Methods for digital restoration of signals degraded by a stochastic impulse response[END_REF] in a fully decomposed fashion, where each function and linear operator is activated individually. In particular, it does not require any inversion of some linear operator related to the operators (L k ) 1 k q arising in the original problem. The convergence of the algorithm is guaranteed by the following result which follows from [START_REF] Combettes | Stochastic approximations and perturbations in forward-backward splitting for monotone operators[END_REF]Proposition 5.3]. Proposition 3.3 Consider the setting of Problem 3.1, let X = (X n ) n∈N be a sequence of sub-sigma-algebras of F , and let (x n ) n∈N and (v n ) n∈N be sequences generated by Algorithm 3.2. Suppose that the following are satisfied:

(a) (∀n ∈ N) σ x n ′ , v n ′ 0 n ′ n ⊂ X n ⊂ X n+1 . (b) n∈N λ n E( b n 2 | X n ) < +∞ and n∈N λ n E( c n 2 | X n ) < +∞. (c) n∈N √ λ n E(u n | X n ) -∇h(x n ) < +∞.
(d) There exists a summable sequence

(τ n ) n∈N in [0, +∞[ such that, for every x ∈ F, there exists ζ n (x) n∈N ∈ ℓ ∞ + (X ) such that λ n ζ n (x) n∈N ∈ ℓ 1/2 + (X ) and 
(∀n ∈ N) E( u n -E(u n | X n ) 2 | X n ) τ n ∇h(x n ) -∇h(x) 2 + ζ n (x). (16) 
(e) There exist sequences

(α n ) n∈N and (β n ) n∈N in [0, +∞[ such that n∈N √ λ n α n < +∞, n∈N λ n β n < +∞, and 
(∀n ∈ N)(∀x ∈ H) prox ρfn x -prox ρf x α n x + β n . ( 17 
) (f) ρ -1 - q k=1 σ k L k 2 ϑ > 1/2.
Then, for some F-valued random variable x and some F *valued random variable v, (x n ) n∈N converges almost surely to x and (v n ) n∈N converges almost surely to v.

APPLICATION TO ONLINE SIGNAL RECOVERY

We consider the recovery of a signal x ∈ H = R N from the observation model

(∀n ∈ N) z n = K n x + e n , (18) 
where K n is a R M×N -valued random matrix and e n is a R M -valued random noise vector. The objective is to recover x from (K n , z n ) n∈N , which is assumed to be an identically distributed sequence. Such recovery problems have been addressed in [START_REF] Combettes | Methods for digital restoration of signals degraded by a stochastic impulse response[END_REF]. In this context, we propose to solve the primal problem [START_REF] Combettes | Stochastic approximations and perturbations in forward-backward splitting for monotone operators[END_REF] with q = 1 and

(∀x ∈ R N ) h(x) = 1 2 E K 0 x -z 0 2 , (19) 
while functions f and g 1 • L 1 are used to promote prior information on the target solution. Since the statistics of the sequence (K n , z n ) n∈N are not assumed to be known a priori and have to be learnt online, at iteration n ∈ N, we employ the empirical estimate

u n = 1 m n+1 mn+1-1 n ′ =0 K ⊤ n ′ (K n ′ x n -z n ′ ) (20) 
of ∇h(x n ). The following statement, which can be deduced from [13, Section 5.2], illustrates the applicability of the results of Section 3. Based on this result, we apply Algorithm 3.2 to a practical scenario in which a grayscale image of size 256 × 256 with pixel values in [0, 255] is degraded by a stochastic blur. The stochastic operator corresponds to a uniform i.i.d. subsampling of a uniform 5 × 5 blur, performed in the discrete Fourier domain. More precisely, the value of the frequency response at each frequency bin is kept with probability 0.3 or it is set to zero. In addition, the image is corrupted by an additive zero-mean white Gaussian noise with standard deviation equal to 5. The average signal-to-noise ratio (SNR) is initially equal to 3.4 dB.

In our restoration approach, the function f is the indicator function of the set [0, 255] N , while g 1 • L 1 is a classical isotropic total variation regularizer, where L 1 is the concatenation of the horizontal and vertical discrete gradient operators. Fig. 1 displays the original image, the restored image, as well as two realizations of the degraded images. The SNR for the restored image is equal to 28.1 dB. Fig. 2 shows the convergence behavior of the algorithm. In these experiments, in accordance with Proposition 4.1, we have chosen

(∀n ∈ N)
m n = n 1.1 λ n = (1 + (n/500) 0.95 ) -1 .

(22)

CONCLUSION

We have proposed two stochastic proximal splitting algorithms for solving nonsmooth convex optimization problems. 

Proposition 4 . 1

 41 Consider the setting of Problem 3.1 and Algorithm 3.2, where f n ≡ f, b n ≡ 0, and c n ≡ 0. Let (m n ) n∈N be a strictly increasing sequence in N such that m n = O(n 1+δ ) with δ ∈ ]0, +∞[, and let(∀n ∈ N) X n = σ x 0 , v 0 , (K n ′ , e n ′ ) 0 n ′ <mn ).(21) Suppose that the following are satisfied: (a) The domain of f is bounded. (b) (K n , e n ) n∈N , is an independent and identically distributed (i.i.d.) sequence such that E K 0 4 < +∞ and E e 0 4 < +∞. (c) λ n = O(n -κ ), where κ ∈ ]1 -δ, 1] ∩ [0, 1]. Then Assumptions (a)-(e) in Proposition 3.3 hold.
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 12 Fig. 1. Original image x (a), restored image (b), degraded image 1 (SNR = 0.14 dB) (c), and degraded image 2 (SNR = 12.0 dB) (d).