Stochastic forward-backward and primal-dual approximation algorithms with application to online image restoration - Archive ouverte HAL
Communication Dans Un Congrès Année : 2016

Stochastic forward-backward and primal-dual approximation algorithms with application to online image restoration

Résumé

Stochastic approximation techniques have been used in various contexts in data science. We propose a stochastic version of the forward-backward algorithm for minimizing the sum of two convex functions, one of which is not necessarily smooth. Our framework can handle stochastic approximations of the gradient of the smooth function and allows for stochastic errors in the evaluation of the proximity operator of the nonsmooth function. The almost sure convergence of the iterates generated by the algorithm to a minimizer is established under relatively mild assumptions. We also propose a stochastic version of a popular primal-dual proximal splitting algorithm, establish its convergence, and apply it to an online image restoration problem.
Fichier principal
Vignette du fichier
eusipco2016.pdf (162.8 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01422154 , version 1 (23-12-2016)

Identifiants

Citer

Patrick L Combettes, Jean-Christophe Pesquet. Stochastic forward-backward and primal-dual approximation algorithms with application to online image restoration. European Signal and Image Processing Conference (EUSIPCO 2016), Aug 2016, Budapest, Hungary. pp.1813 - 1817, ⟨10.1109/EUSIPCO.2016.7760561⟩. ⟨hal-01422154⟩
441 Consultations
274 Téléchargements

Altmetric

Partager

More