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Synopsis 

This work is focused on shear thinning behavior of suspensions of rigid non-Brownian fibers 

dispersed in a Newtonian liquid. The work consists in developing a new theoretical model and 

conducting accurate experimental measurements. The shear thinning is expected to be caused 

by adhesive interactions between fibers. Experiments on polyamide (PA) fibers (present 

work) and carbon nanotube (CNT) suspensions [Khalkhal et al., J. Rheol. 55, 153-175 (2011)] 

have revealed the following features: (a) the flow curves exhibit a pronounced pseudo-plastic 

behavior interpreted in terms of the progressive aggregate destruction at the increasing shear 

rate; (b) the enhancement of the shear thinning with an increasing particle volume fraction is 

observed and explained by an increase of the strength of effective interactions between 

particles, as their concentration increases; (c) a weak yield stress of the PA fiber suspensions 

is detected in a controlled-stress mode and explained by the liquid-solid transition as the 

concentration of aggregates (constituted by fibers) approaches the close packing limit; (d) the 

shear thinning is much stronger in CNT suspensions because the adhesive interactions play a 

more important role between nano-sized CNT particles than between micron-sized PA fibers. 

A theoretical model considering the coexistence of transient aggregates with free non-

aggregated fibers has been developed. The model allows viscosity calculations in terms of the 

aggregation parameter – the ratio of adhesive to hydrodynamic forces. It captures qualitatively 

the above-mentioned shear thinning behaviors and fits reasonably well to the experimental 

data on both PA fiber and CNT suspensions. 

I. Introduction 

Fiber-reinforced composites are broadly used in civil engineering, automobile and 

aerospace industries. Fabrication of these materials is often related to extrusion or mixing of 

fibers dispersed in a liquid matrix [1]. The composites are usually charged with a large 

amount of particles. Therefore, their successful fabrication and processing require a deep 

understanding of rheology of concentrated fiber suspensions. 

Since the pioneering work of Jeffery [2], the rheology of dilute and semi-dilute fiber 

suspensions has been well understood and documented, see reviews by Larson [3], Petrie [4]. 
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In concentrated suspensions, short-range interparticle interactions play an important, if not 

decisive, role. The effect of short-range hydrodynamic forces and of direct mechanical 

contacts has been understood through theoretical modeling [5,6] and direct numerical 

simulations [7–9]. In suspensions of fibers dispersed in a Newtonian solvent and interacting 

with each other through lubrication forces, direct collisions and Coulombic friction, all these 

interactions produce a single scaling for the stress, σ ∼
0

η γɺ , with 
0

η  being the solvent 

viscosity and γɺ  – a characteristic value of the rate-of-strain tensor (shear rate in the case of a 

simple shear flow). These suspensions exhibit a viscous behavior with the shear viscosity 

linear in particle volume fraction ϕ at low concentrations and nearly quadratic with ϕ at 

higher volume fractions [7,8]. The last trend is explained in terms of pair-wise interactions 

between fibers. Non-hydrodynamic interactions, such as adhesive or electrostatic repulsive 

forces between fibers, as well as elastic bending of flexible fibers produce non-linear scaling 

of the shear stress with the shear rate.  

From a general perspective, the role of the non-hydrodynamic interactions becomes 

less important with increasing shear rate. In most cases, this results in a shear thinning 

behavior. The degree of shear thinning strongly depends on the types of interactions between 

particles, as well as on fiber flexibility, as discussed below:  

1. In purely repulsive systems, the electric double layer may substantially increase the 

effective particle size and lead to gelation transition and consequently to a yield stress at 

particle volume fractions well below conventional dense packing fraction [10]. Electrostatic 

repulsion has recently been found to be at the origin of a yield stress in nanofiber suspensions 

[11].  

2. Excluded volume interactions between rigid or semi-flexible fibers could also lead to 

gelation of the nanofiber suspension [12]. 

3. In attractive systems with colloidal nanoparticles, the interplay between the 

electrostatic repulsion and the van der Waals attraction governs the degree of particle 

flocculation and yielding behavior [13-15]. At the same time, adhesive interactions produce a 

moderate shear thinning in suspensions of rigid micron-sized rod-like particles, such as 

polyamide [16, 17], ceramic particles [18], wollastonite [19].  

4. Elastic bending of flexible micron-sized or nano-sized fibers is another mechanism 

inducing both shear thinning or yield behaviors observed in pulp suspensions [20, 21], carbon 

nanotube (CNT) composites [22, 23], solutions of agar fibers [24]. The yield stress in flexible 

fiber suspensions comes from the formation of an entangled network whose strength depends 

mostly on inter-particle solid friction and, to a lesser extent, on the colloidal forces between 

them, as revealed by particle level simulations of Klingenberg and co-workers [25, 26]. 

Theoretical models by Toll and Månson [27] and Servais et al. [28] allow a correct prediction 

of the yield stress in short fiber polymer composites during their forming, while the model of 

Keshtkar et al. [29] captures the transient viscosity of semi-flexible fiber suspensions. 
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Surprisingly, theoretical modeling of the rheology of rigid fiber suspensions with 

colloidal interactions is less documented. One of the first rigorous models considering 

aggregation of rigid fibers has been developed by Ma et al. [30], in the case of Brownian 

fibers. This model introduces a continuous series of fiber populations with different degrees 

of aggregation. The model captures well the shear thinning behavior and shows a good 

agreement with experiments on CNT suspensions. However, the role of the colloidal 

interactions cannot be well understood. First, the shear-induced destruction of aggregates is 

taken into account only implicitly by the introduction of phenomenological shear rate 

dependencies of the aggregation and disaggregation rates. Second, the model introduces 

distinct rotary diffusivities for each population, and these diffusivities are taken to be 

independent of shear rate. The shear thinning is thus a synergy of the two following effects: 

(a) the fiber alignment at increasing Péclet numbers; and (b) disaggregation generated by a 

progressive decrease of the aggregation rate with increasing shear rate. More recently, a 

multi-scale model of aggregated fiber suspensions has been proposed by the same research 

group [31-33]. This approach considers both the dynamics of the rod-like particles inside the 

cluster and the dynamics of the whole cluster. The model allows a precise determination of 

the cluster rotation and deformation in shear flows. At this moment, colloidal interactions 

between fibers constituting the aggregates are not explicitly introduced, and the rheology of 

the clustered suspension is not analyzed in details. 

Another model allowing capturing the shear thinning in fiber suspensions has been 

recently developed by Natale et al. [34] and Férec et al. [35]. This model discards aggregation 

of particles and considers short-ranged forces between contacting fibers. The authors capture 

shear thinning behavior introducing a non-linear lubrication force (proportional to n

γɺ , 0<n<1) 

between fibers that mimics a combined effect of the short-range hydrodynamic and non-

hydrodynamic interactions. This force is weighed by the contact probability and affects both 

the orientation state (producing more isotropic orientation distribution) and the stress tensor. 

Such a phenomenological approach provides a good agreement with experiments on CNT 

suspensions. However, the role of the colloidal interactions remains unclear. In our recent 

work, we have extended this model to van der Waals interactions and solid friction between 

fibers [36]. Affine motion of the fibers in shear flow has been supposed. Despite the fact that 

aggregation was neglected, this model predicts a yielding behavior of the suspension with an 

apparent yield stress being totally defined by the strength of the van der Waals interaction. 

The model gives a satisfactory agreement with experiments on CNT suspensions at high shear 

rates, at which both the shear stress and the first normal stress difference are quasi linear with 

the shear rate and the extrapolation of the flow curves on zero shear rate gives the apparent 

yield stress. The model does not capture initial rounded shape of the flow curves. This 

disagreement comes probably from the aggregation of the suspension at low shear rates 

discarded in the model. 

In some rigid fiber suspensions, such as CNTs subjected to moderate shear stresses, 

the particles experience attractive colloidal interactions often leading to aggregation [30, 37]. 

It is therefore important to develop an adequate theoretical model for rigid fiber suspensions 
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with aggregation induced by these interactions. To the best of our knowledge, such 

aggregation model explicitly accounting for attractive colloidal forces has never been reported 

in literature for rigid fiber suspensions, even though various cluster models exist for 

suspensions of spherical particles [3, 38]. Furthermore, the experimental rheological results 

often depend on the mode of the suspension preparation and on the shear history [39]. 

Because of relatively large periods of fiber rotation, the steady state of the shear flow is 

expected to be achieved at a long time usually exceeding the typical duration of standard 

rheometric measurements. These two factors complicate the comparison between the theory 

and experiments on steady-state flows. Only accurate experiments ensuring the steady state 

and independence of shear history could be safely compared to the model.  

This allows us to formulate the main objectives of the present work: (a) develop a 

theoretical model of aggregated fiber suspensions, in which the aggregate behavior and the 

suspension viscosity would be explicitly expressed through short-ranged adhesive forces 

between fibers; (b) conduct new rigorous experiments on the steady-state shear flow of non-

Brownian fiber suspensions with adhesive interactions and compare these experiments to the 

theoretical model. The theory proposed in the present work is inspired by the multi-population 

aggregation model of Vaccaro and Marrucci [40], Ma et al. [30], the contact probability 

approach of Djalili-Moghaddam and Toll [5], Férec et al. [6] and a scenario of aggregate 

rupture under shearing forces developed by Snabre and Mills [41] for aggregated suspensions 

of spheres. The rheological experiments are made with neutrally buoying polyamide (PA) 

fibers dispersed in a Newtonian solvent in the range of the shear rates and shear stress when 

the fibers can be considered as almost perfectly rigid. We test our model on two different 

experimental systems exhibiting aggregation behavior – PA fibers (the present experiments) 

and CNT suspensions (experiments of Natale et al. [34]).  

This paper is organized as follows. The theoretical model is presented in Sec. II. The 

experimental details are explained in Sec. III. Experimental results are reported and compared 

to the theoretical model in Sec. IV. Conclusions and perspectives are outlined in Sec. V. 

II. Theory 

II-A. Basic assumptions and qualitative behavior  

Let us consider a steady state simple shear flow of a suspension of fibers dispersed in a 

Newtonian solvent of a viscosity η0. The Cartesian coordinate frame is chosen in such a way 

that the axes x1, x2 and x3 correspond to the flow, velocity gradient and vorticity directions, 

respectively, as depicted in Fig.1a. The flow is considered to be homogeneous on a 

macroscopic scale, and the volume average velocity is defined by the vector 
2

( ,0,0)xγ=v ɺ , 

where γɺ  is the shear rate.  
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Fig. 1. Problem geometry. The two-population approach is schematically presented in figure (a). According to 

this approach, the spherical aggregates are dispersed in a suspension (population) of free fibers dispersed in a 

liquid carrier [cf. assumption (3) of Sec. II-A]. Aggregate rupture in the middle plane is presented in figure (b). 

Two contacting fibers inside an aggregate are shown in figure (c). 

To get the physical insight into the role of adhesive interactions on aggregation and 

rheology of fiber suspensions, first we present a qualitative picture of the suspension behavior 

introducing the following simplifications and assumptions:  

1. The fibers are considered to be perfectly rigid, non-Brownian and mono-disperse, i.e. 

all having the same length l, diameter d and aspect ratio r=l/d. The high aspect ratio limit 

1r >>  is considered. As it will be stated below, this limit affects the fiber orientation 

distribution, their contact probability and the suspension viscosity. The gravitational settling 

of fibers is neglected. The validity of these conditions is checked in Sec. C of Supplemental 

Materials [42] for the PA fibers.  

2. The flow is considered to be laminar both on the scale of the whole suspension and on 

the scale of the aggregates or isolated fibers. This condition is satisfied by low values of the 
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Reynolds number, 1Re < , at all the scales of the problem, as shown by estimations in Sec. C 

of Supplemental Materials [42]. 

3. The model is developed for attractive colloidal interactions which can stick the fibers 

together and induce spatial heterogeneities as well as their cooperative motion under shear. 

The cooperative motion of particles can be quantified by a spatial correlation function of 

particle velocities associated to a certain correlation length [43]. This allows us to define the 

aggregates as the regions with presumably higher particle concentrations showing a coherent 

motion of fibers and delimited by a correlation length D. The following assumptions are 

related to the structure of the aggregated suspension: 

3.1. As often observed in flocculated fiber suspensions, the aggregates are periodically 

formed by relative translational and rotational motion of fibers and periodically destroyed by 

shearing forces – see review by Kerekes [44]. 

3.2. The whole suspension is considered to be a two population system – transient 

aggregates immerged in a suspension of free fibers filling the space between them, as depicted 

in Fig.1a. The fraction of fibers involved into aggregates is denoted by Φ1, while the fraction 

of free fibers is Φ2. The particle conservation implies: 

     
1 2

1Φ +Φ = .      (1) 

3.3. In the dynamic equilibrium at steady state, the rates of aggregate construction and 

destruction are the same; the fractions Φ1 and Φ2 remain constant with time and are defined 

by a kinetic equation formulated in Sec. II-D. 

3.4. For the sake of clarity, we will consider aggregates of spherical shape, while 

extension of the model to elongated shape (prolate ellipsoids of revolution) is developed in 

Sec. A of Supplemental Materials [42].  

3.5. The contribution of aggregates to the suspension viscosity is estimated ignoring 

filtration flows and relative motion of fibers within the aggregates (rigid aggregate 

assumption), as if we dealt with a hard sphere suspension of an effective particle volume 

fraction equal to 
1

/
a i

ϕ ϕ ϕ= Φ , with ϕ - volume fraction of fibers in the whole suspension, ϕi 

– internal volume fraction of aggregates. Note however, that such viscosity estimation can be 

subject to some uncertainty because both internal flows and relative motion of fibers may 

appear during fragmentation of aggregates unless this process is very fast compared to their 

living time. 

3.6. The suspension viscosity is calculated using the Krieger-Daugherty relationship [3], 

in which the shear viscosity, fη , of anisotropic free fiber population is used as the viscosity of 

the suspending medium for aggregates. Perturbation of the orientation state of the free fibers 

surrounding the aggregates, and its consequence on fη  value are neglected. Studies on the 

liquid crystalline polymers charged with hard sphere particles show that this approach gives at 

least a semi-quantitative agreement with experiments for the composite viscosity [45]. 

3.7. The aggregate behavior (and, as a consequence, the suspension rheology) is governed 

by the dimensionless ratio of the characteristic adhesive force FA to the characteristic 

hydrodynamic force 
2

dσ  (with σ - the applied shear stress): 
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2

A

A

F
N

dσ
= ,      (2) 

called hereinafter the aggregation parameter. 

4. Two length scales of inter-fiber interactions are considered. The hydrodynamic 

interactions correspond to a length scale of about a fiber diameter d and to the separation 

between fibers, 
R H
h h d<< < , where hR is the surface roughness scale. The adhesive 

interactions usually have a shorter length scale hA. Both aggregated and free fibers should 

experience these two types of interactions. However, adhesive interactions are supposed to be 

negligible for free fibers. This statement is confirmed by a posteriori estimation of adhesive 

and lubrication forces for free fibers [see Section IV-C, Appendix D]. On the other hand, 

according to Assumption 3.5, the aggregates contribute to the suspension viscosity through 

their effective volume fraction ϕa, which is defined by the cohesive strength Fc of the 

aggregates [Sec. II-C, Appendix A]. For rigid aggregates, Fc is uniquely determined by 

adhesive forces between aggregated fibers before they begin to slide over each other during 

aggregate break-up. Thus, the hydrodynamic force between aggregated fibers does not 

intervene into calculations of the cohesive strength and suspension viscosity. 

5. Two different scenarios of the break-up of inter-fiber contacts during aggregate 

fragmentation are considered: (a) rupture in the direction normal to the contact surface; (b) 

sliding of fibers along each other. In the case (a), friction does not intervene, and the cohesive 

strength of the aggregate is fully defined by the normal colloidal force Fn. In the case (b), the 

cohesion strength is defined by tangential friction force Fτ, while the normal colloidal force 

Fn intervenes into the cohesive strength through a friction law. The cases (a) and (b) will be 

hereinafter referred to as, respectively, the normal and the tangential rupture scenarios.  

6. The classical Amontons-Coulomb friction law is supposed for the tangential rupture: 

n
F F
τ

µ= .     (3) 

Here µ is the friction coefficient, whose typical values vary in a relatively narrow range for 

polymer fibers in different solvents, namely µ=0.3-0.5, as measured experimentally [46, 47]. 

Note that little is known about friction mechanics at nanoscale, especially in the boundary 

lubrication regime. However, the simplest Amontons-Coulomb law still allows correct 

predictions of the friction between single crystal nanoparticles [48], as well as of flows of 

concentrated colloidal nanoparticles [49] or hard-sphere suspensions [50].  

7. The three following assumptions are related to the internal aggregate structure:  

7.1. The orientation state of the fibers inside the aggregates is considered to be isotropic. 

However, to check whether the orientation distribution strongly affects the aggregate cohesive 

strength, we extend our model to nearly aligned state and obtain only a slight difference with 

respect to the isotropic orientation distribution [Appendix A]. Thus, the model can be applied 

for our experiments with PA fibers showing an intermediate orientation state.  
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7.2. The internal aggregate structure corresponds to the colloidal glass state, characterized 

by spatially homogeneous distribution of fibers with a fractal dimension equal to 3. This state 

occurs within the range of the internal particle volume fractions inside the aggregates, 

0.7 / 5.4 /
i

r rϕ≤ ≤ , valid for the high aspect ratio limit [51, 52]. The lower bound of this 

interval corresponds to the percolation threshold. Analysis at the end of Sec. II-C shows that 

concentration of fibers inside the aggregates in our PA suspensions is above the percolation 

threshold. 

7.3. All the aggregates have the same internal volume fraction i
ϕ , corresponding to the 

limit of their mechanical stability [see Sec. II-C]. 

8. The characteristic aggregate size, D, is supposed to be much smaller than the width of 

the flow channel b, and possible wall interactions are neglected. Particle/aggregate migration 

induced by shear rate gradients or normal stress gradients in rheometric flows are also 

neglected for both populations of free and aggregated fibers. These both assumptions are a 

posteriori verified, at least, for the PA suspensions [Sec. III-B].  

The approach introduced in the assumption (3.5) allows us to calculate separately the 

viscosity of the free fiber population suspension [Sec. II-B] and then the viscosity of the 

whole suspension [Sec. II-C]. To close the problem, the unknown fractions Φ1 and Φ2 of 

fibers belonging to both populations will be determined by a kinetic equation in Sec. II-D. 

II-B. Viscosity of the free fiber population suspension 

The rheology of this population is governed by the fiber-fluid and hydrodynamic fiber-

fiber interactions, while adhesive interactions are negligible [Assumption (4) justified in Sec. 

IV-C]. In what follows, on the basis of our previous work [36], we will briefly describe how 

the viscosity of the free fiber population can be found accounting for hydrodynamic 

interactions between fibers. 

Only the short-range hydrodynamic fiber-fiber interactions are considered. They 

correspond to lubrication forces that are assumed to be proportional to the contact surface [53] 

and to be linear in velocity [5]. For two perfectly smooth cylindrical surfaces (i.e. when the 

separation hH between surfaces of free fibers is well above the roughness scale hR, as 

confirmed for our PA suspensions, cf. Table IV), the expression for the lubrication force reads 

[54]:  

2

0

lub

3

H

d

h
α β

πη
=

×

u
F

p p
     (4) 

where u is the relative velocity of the approach of two fibers, whose orientation is described 

by unit vectors p
α
 and p

β
. The gap hH between free fibers is taken as a free parameter in the 

model. 
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The lubrication forces are weighed over the contact probability introduced by Férec et 

al. [6] and estimated in the high aspect ratio limit, 1r >> , using the tube model of Doi and 

Edwards [55] and taking into account the length-scale hH of hydrodynamic interactions: 

2
2 ( )

H H
dP n d h ds ds d

α β β

α β βψ= + ×p p p    (5) 

where n2 is the particle number fraction in the free fiber population, ψβ is the angular 

distribution function of the neighboring fibers β; sα and sβ are the distances between the 

contact point and the centers of the fibers α and β [Fig. 1c]. 

The hydrodynamic interactions between fibers induce their stochastic angular motion 

[56] that can be mimicked by an isotropic rotary diffusion process with a phenomenological 

rotary diffusivity 

2r
D Cϕ γ= Φ ɺ ,      (6) 

accounting for pair-wise interactions between fibers with frequency proportional to the 

particle volume fraction (
2

ϕΦ  in the case of the free fiber population) and to the shear rate. 

The dimensionless constant C accounts for geometrical details of the interaction.  

The orientation state of the fibers can be found in low diffusion, 
3
/ 1

r
D r γ <<ɺ , and 

high aspect ratio, 1r >>  limits, following the work of Leal and Hinch [57]. In this limit, the 

moment 2 2

1 2
p p  of the orientation distribution function does not depend on 

r
D  and is equal 

to 2 2

1 2
0.315 /

e
p p r≈ , with 

1/ 2
1.24 / ln

e
r r r≈  being the equivalent aspect ratio of fibers 

Brenner [58]. The shear viscosity fη  of the free fiber population depends only on the moment 

2 2

1 2
p p . Thus, fη  appears to be independent of the rotary diffusivity, and the unknown 

constant C does not intervene into the final expression for fη . 

The stress tensor is obtained by the averaging of the local stress over the contact 

probability [Eq. (5)] and over the fiber orientation, using the slender body theory for fiber-

fluid interaction [59]. The component of lubrication force parallel to the fiber axis gives a 

contribution proportional to the square of the particle concentration. Since non-hydrodynamic 

interactions between free fibers are neglected, the free fiber population behaves as a 

Newtonian suspension of an effective particle volume fraction 
2

ϕΦ  with a relative shear 

viscosity given by the following formula
b
 [36]: 

                                                           
b
 Equation (7) is obtained from Eq. (2.26) of the original paper [36] by replacing the constant k by 3π(d+hH)/hH 

and neglecting the last adhesion term in the right-hand side of this equation. 
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1/ 2 II

2 1/ 2

2 2 2

0

2 ln ( ) 8
1 2( ) ( ) ( ) 1 ln ( )

3 ln(2 )

fr

f

H

r r f d
c c r r

r h

η
η ϕ ϕ ϕ

η π

 
= = + Φ + Φ + Φ + 

 
 (7) 

where II (1 0.64 ) /(1 1.5 )f ε ε= + −  is the form factor; 1/ ln(2 )rε =  and c≈0.254. The last two 

terms of Eq. (7) stand respectively for hydrodynamic interactions between the fibers and the 

solvent and for short-range lubrication forces between contacting fibers. 

Notice that the relative viscosity of the whole disaggregated suspension at high shear 

plateau is defined by Eq. (7) where the fraction of free fibers Φ2 is set to unity: Φ2=1. 

II-C. Mechanical equilibrium of the aggregates and suspension viscosity 

According to the assumption (3) [Sec. II-A], the rigid impermeable clusters are 

dispersed in a Newtonian fluid formed by the population of free fibers suspended in the liquid 

solvent. The volume fraction of the aggregates is 
1
/

a i
ϕ ϕ ϕ= Φ , and the relative viscosity of 

the suspension of the aggregates dispersed in the continuous medium of viscosity fη  is 

estimated by the Krieger-Daugherty relationship [3]: 

[ ] [ ]
, ,

1

, ,

1 1

m a m a

r a a
a

f m a m a i

η ϕ η ϕ

η ϕ ϕ
η

η ϕ ϕ ϕ

− −

   Φ
= = − = −   

      
   (8) 

where [η] is the intrinsic viscosity of a dilute suspension of aggregates, 
,m a

ϕ  is their 

maximum packing fraction. The value [ ] 5 / 2η =  allows recovering a dilute hard sphere 

suspension limit for aggregates at high shear rates, while the maximum packing fraction is 

forced to unity, 
,m a

ϕ ∼1, that is appropriate for a continuous fiber network occupying all the 

suspension volume, which is expected in the quiescent suspension.  

The relative viscosity 
r

a
η  depends on the two unknown parameters Φ1 and 

i
ϕ . The 

fraction Φ1 of aggregated fibers will be estimated in Sec. II-D. The internal volume fraction 

i
ϕ  of aggregates is determined in this section. 

According to the assumption (7.3) [Sec. II-A], all the aggregates are supposed to have 

the same internal volume fraction corresponding to the limit of their mechanical stability 

under shearing forces. The adhesive forces between fibers are capable to preserve the 

aggregates from destruction until they are dominant over the shearing forces.  

The aggregate break-up can follow two different scenarios: (a) erosion of individual 

fibers from the aggregate surface, or (b) aggregate rupture and splitting into parts, both 

mechanisms being observed in flexible cellulose suspensions [60]. The dominant break-up 

mechanism has to be found for our particular case of rigid fiber suspensions. To this purpose, 

it is convenient to compare the shear stresses corresponding to aggregate destruction by both 
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mechanisms. Estimation shows that the rupture stress, 2 232 /(5 )
r i A

rF dσ ϕ π=  appears to be 

lower than the erosion stress, 232 /(5 )
e i A

rF dσ ϕ π=  (cf. Sec. B of Supplemental Materials) 

[42], or, in other words, the fracture occurs at lower stresses and therefore is expected to be a 

dominant mechanism of the aggregate destruction. 

We suppose therefore that the aggregates are broken in equal parts by shearing forces. 

The hydrodynamic force acting on a half of a broken aggregate is maximal along the 

extension axis. Therefore, the fracture is assumed to happen at the aggregate middle plane 

perpendicular to the extension axis of the shear flow, making an angle π/4 with the flow 

direction [Fig. 1b] Note that appearance of the voids inside the flocs under shearing forces has 

been reported by Björkmann [61] and Karppinen et al. [62] for micro-fibrillated cellulose 

suspensions. These voids were extended along the largest compression axis (therefore 

perpendicular to the extension axis) and led to partial breakup of the fiber network. 

The aggregate fracture corresponds to a break-up of the adhesive contacts within the 

fracture region. It is expected to occur when the hydrodynamic force, Fh, acting on a half of 

the aggregate surface overcomes the aggregate cohesive strength, Fc, defined by the sum of all 

adhesive forces in the fracture region. Both Fh and Fc represent the projection of the forces 

onto the extension axis along which the aggregate is torn.  

Since the concentration 
a

ϕ  of aggregates in the suspension is high enough, the 

hydrodynamic force acting on aggregates will be affected by multi-body hydrodynamic 

interactions with neighboring aggregates. These interactions can be accounted for by an 

effective medium approach considering that the aggregates are immersed into a fluid whose 

viscosity is equal to the viscosity η of the whole suspension rather than the viscosity ηf of the 

suspending medium. Such an approach has been successfully used by Snabre and Mills [41] 

for aggregated suspensions of spherical particles. At this condition, the hydrodynamic force 

acting on a half of the aggregate along the extension axis is given by the following expression 

[63]: 

    
2 25 5

8 8
h

F D D
π π
ηγ σ= =ɺ      (9) 

where D is the aggregate diameter and σ is the applied shear stress. 

Similarly to lubrication forces between free fibers, the normal adhesive force Fn 

between aggregated fibers is expected to be proportional to the inter-fiber contact area, thus 

inversely proportional to the sine of the angle δ between fibers ( sin α β
δ = ×p p , cf. Fig.1c) 

[11]: 

     n

F
F

α β
=

×p p
      (10) 
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where F is the value of the normal adhesive force corresponding to the angle δ=π/2 between 

two fibers. In the particular case of van der Waals interaction, equation (10) holds at 
1

/ 2r δ π
−

≤ ≤  and, at small separations 
A
h d<<  between the fiber surfaces, the expression 

for F reads [64]: 

2
12

A

A d
F

h
=       (11) 

where A is the Hamaker constant. 

The cohesive strength, Fc, of the aggregates is estimated in Appendix A for both 

normal and tangential rupture scenarios [assumption (4)] and for both isotropic and nearly 

aligned fiber orientation within the aggregates [assumption (7.1)]. These four cases are 

combined into a single expression for Fc: 

     

2 2

2

4
i A

c

F D r
F

d

ϕ

π
= −      (12) 

where r and d are the fiber aspect ratio and diameter, respectively, 
A

F Fξ=  is an effective 

colloidal force, where the multiplier ξ is of the order of unity and varies in a narrow range 

min(1/ 2, / 4) max(1, )πµ ξ µ≤ ≤  depending on the contact rupture scenario and the orientation 

state. The reasons for a weak variation of the cohesive strength with the rupture scenario and 

with the orientation distribution are explained in details in Appendix A. On the other hand, the 

characteristic value of the normal adhesive force, F, can be estimated using Eq. (11) if the 

separation hA between aggregated fibers is known. In the present model, the value 
A

F ∼F is 

taken as an adjustable parameter, which will allow us to estimate the separation hA [Sec. IV-C, 

Appendix D]. 

At mechanical equilibrium, the sum of the hydrodynamic [Eq. (9)] and cohesive 

[Eq.(12)] forces is zero, and we arrive at the following expression for the desired quantity – 

the internal volume fraction of aggregates: 

2 2 2 2

32 321

5 5

A A

i

F r N r

dϕ π σ π
= = ,     (13) 

where we have made use of Eq. (2) for the aggregation parameter NA.  

The equation (13) gives a progressive increase of the internal volume fraction with an 

increase of the shear stress. This comes from the fact that the total number of contacts inside 

the fracture region (proportional to 
2

i
ϕ ) should increase in order that the aggregate might 

support a higher applied stress. In such a way, the cohesive strength of the aggregate increases 

with the increasing stress; this ensures the balance of hydrodynamic and cohesive forces 

acting on the aggregate. At high shear stresses, the aggregation parameter vanishes, 1
A

N << , 
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and the volume fraction becomes much larger than unity: 1
i

ϕ >> . This indicates that the 

present model is only valid for moderate-to-high aggregation state, 1
A

N >  ensuring 

physically correct values of the internal volume fraction 1
i

ϕ < . To extend our model to high 

shear states, we add a term 
2

,
1/

m i
ϕ  to the right-hand side of Eq. (13), allowing an upper 

limitation of the 
i

ϕ  value by some maximum admissible internal volume fraction 
,m i

ϕ : 

2 2 2

,

321 1

5

A

i m i

N r

ϕ π ϕ
= +       (14) 

For definiteness, we put 
,m i

ϕ  equal to the upper limit concentration of the colloidal 

glass state: 
,

5.4 /
m i

rϕ = . Notice that the aggregate diameter D disappears from Eq. (14) for 

i
ϕ . This has been expected thanks to non-fractal nature of the aggregate structure [assumption 

(7.2)]. 

Finally, substituting Eq. (14) for 
i

ϕ  into Eq. (8), we get the following expression for 

the relative viscosity of the suspension of spherical aggregates dispersed in a free fiber 

suspension: 

[ ]
,

5/ 2
1/ 2 1/ 2

1
12 2 2 2 2

, , ,

32 321 1
1 1

5 5

m a

r A A

a

m a m i m i

N r F r

d

η ϕ

ϕ
η ϕ

ϕ π ϕ π σ ϕ

− −

      Φ
   = − + = − Φ +               

 (15) 

The equation (15) allows one to find the relative viscosity of the aggregate population 

as function of the aggregation parameter NA (or, alternatively, the applied stress σ) and of the 

particle volume fraction ϕ. The viscosity of the whole suspension is found as the product of 

the relative viscosity 
r

a
η  of the aggregate suspension and the viscosity fη of its suspending 

medium – the free fiber population:  

0

r r r

f a f aη η η η η η= =      (16) 

where 
0

η  is the Newtonian solvent viscosity, 
r

fη  is given by Eq. (7) and 
r

a
η  - by Eq. (15). 

It is important to notice that the viscosities 
r

fη  and 
r

a
η  of both fiber populations are 

affected by the average number Z of contacts per fiber. This effect is considered in details in 

Appendix B. 

To close the problem, we need to define the fractions Φ1 and Φ2 of fibers belonging to 

both populations, since these quantities appear in the suspension viscosity. 
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II-D. Kinetic equation for the fractions Φ1 and Φ2 

Kinetics of aggregation and of destruction of the aggregates is a complicated 

multiscale process. The aggregation is usually governed by the collisions between the 

aggregates of different sizes and is satisfactorily described by Smoluchowsky equation [65] 

allowing estimation of the aggregate size distribution. If the aggregation of spherical particles 

is well documented, the aggregation of fibers is studied only scarcely [66, 67] likely because 

of complexities related to orientational ordering and intricate cluster geometry. Development 

of a rigorous multiscale approach of the aggregation kinetics is out of scope of the present 

study.  

Let 
1
n  and 

2
n  number density of particles belonging to populations of aggregated and 

free fibers, respectively, while n is the number density of all particles in the suspension. The 

particle conservation implies 
1 2

n n n= + . The kinetic equations of both populations are written 

in the most general form, as follows: 

1

c d

dn
q q

dt
= −      (17a) 

2

c d

dn
q q

dt
= − +      (17b) 

where t is the time; c
q  and d

q  are, respectively, the aggregate construction and the aggregate 

destruction rates per unit volume of the suspension. The sum of both kinetic equations gives 

/ 0dn dt =  that verifies the particle conservation condition. 

The aggregate construction is supposed to be governed by the fiber collision 

frequency, whose volume density has been estimated theoretically [8] and then confirmed by 

simulations [68]: 

c
q ∼

2 3

2 2

ln r
n l

r
γɺ ∼

2

2
lnfn V rγɺ      (18) 

where fV , l and r are, respectively, the fiber volume, length and aspect ratio. The aggregation 

rate is then given by the product of the collision rate to the probability α0 that the collision 

sticks the fibers together, also called the orthokinetic capture efficiency [69] and takes the 

form: 

2

1 0 2
lnc fq k n V rα γ= ɺ       (19) 

where k1 is a dimensionless constant accounting for geometrical details of the fiber-fiber 

collisions.  
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According to the fracture scenario introduced in Sec. II-C, the aggregate destruction is 

supposed to be governed by the fracturing of unstable aggregates having an internal volume 

fraction 
i

ϕ  lower than that given by Eq. (14) and thus having an insufficient cohesive strength 

to resist to the shearing forces. The broken halves are expected to have nearly the same 

internal volume fraction as the original aggregate; they are therefore unstable and subject to a 

further fracturing. Thus, the first break-up could initiate a continuous fracturing-break-up 

process until the aggregates are fully disintegrated into separate fibers. In such a scenario, the 

destruction rate is given by:  

d a
q n J= ∼

a i a
n nV γɺ ,     (20) 

where na is the number density of the aggregates in the suspension; J is the number of fibers 

per unit time moving apart from the destroyed aggregate under the action of the shear flow, ni 

is the number density of the fibers in the aggregates, and Va is the aggregate volume. The 

product 
a i
n n  appearing in the last equation is related to the number density 

1
n  of the 

aggregated fibers by the following expressions: 
1
/

a i a
n n n V= . The destruction rate is corrected 

by the term 1 /
i

ϕ ϕ−  to ensure zero rate when the fiber concentration in the suspension, ϕ, 

approaches the internal volume fraction ϕi of aggregates – the yield point at which a 

continuous fiber network is expected to occur. In this way, topological interactions between 

fibers are implicitly taken into account. The final expression for the volume density of the 

destruction rate reads: 

2 1
1

d

i

q k n
ϕ

γ
ϕ

 
= − 

 
ɺ      (21) 

with k2 - a dimensionless constant, accounting for microscopic details of the aggregate 

destruction. Combining together Eqs. (17a), (19) and (21), the kinetic equation for 
1
n  is 

written in its final form: 

21

1 0 2 2 1
ln( ) 1f

i

dn
k V r n k n

dt

ϕ
α γ γ

ϕ

 
= − − 

 
ɺ ɺ    (22) 

The number densities 
1
n  and 

2
n  are related to the fractions 

1
Φ  and 

2
Φ  of the 

aggregated and free fibers by the following expressions: 
1 1

/ fn Vϕ= Φ  and 
2 2

/ fn Vϕ=Φ . 

Replacing these formulas in Eq. (22) and taking into account the particle conservation 

[Eq.(1)], we arrive at the following equation with respect to 
1

Φ : 

21

1 0 1 2 1
ln( ) (1 ) 1

i

d
k r k

dt

ϕ
α γ ϕ γ

ϕ

 Φ
= −Φ − Φ − 

 
ɺ ɺ    (23) 

This equation admits the following steady state solution (at 
1
/ 0d dtΦ = ): 
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[ ]
1/ 2

1
1 ( 2)λ λ λΦ = + − +             (24a) 

0

1 /

2 ln

i

r

ϕ ϕ
λ κ

α ϕ

−

=              (24b) 

where 
2 1
/k kκ =  is a dimensionless constant taken as an adjustable parameter of the present 

model and ϕi is given by Eq. (14) as function of the applied stress σ. The fraction 
2

Φ  of the 

free fibers is obtained from Eqs. (1) and (24a): 

[ ]
1/ 2

2 1
1 ( 2)λ λ λΦ = −Φ = + −      (25) 

The last unknown parameter intervening into the expressions (24a) and (25) for 
1

Φ  

and 
2

Φ  is the sticking probability α0 given by the following expression estimated in 

Appendix C:  

     
0

α ∼
( )

1
ln(2 )

A
r N

e

−

−

     (26) 

where the aggregation parameter NA is related to the applied shear stress σ by Eq. (2). 

In summary, the suspension shear viscosity η is calculated by Eqs. (7), (15), (16), in 

which the fiber fractions 
1

Φ  and 
2

Φ  are replaced by Eqs. (24) and (25), respectively. The 

three adjustable parameters of the model are the gap hH between free fibers, the effective 

adhesive force FA, and the parameter κ appearing in the expression [Eq. (24)] for the fraction 

1
Φ  of aggregated fibers. 

III. Experiments 

In this work two kinds of fiber suspensions were investigated: polyamide fiber (PA) 

and carbon nanotube (CNT) suspensions. The characterization and experimental measuring 

protocols for PA suspensions will be presented in Sec. III-A and III-B, while the CNT 

suspensions will be briefly characterized in Sec. III-C. 

III-A. Polyamide fiber suspensions  

The PA fibers (provided by “La société nouvelle le flocage”, France) of the length 

l=0.5 mm and of two different diameters, d=15.2±0.5 µm and 27.8±0.5 µm, corresponding to 

aspect ratios of r=33±1 and 18±0.5, were used. The fibers were monodisperse and their size 

was confirmed by optical microscopy measurements. The fiber density was measured 

precisely by a pycnometer method. Table I summarizes the size, the density and the effective 

stiffness (Eq. (S-16) in Supplemental Materials) [42] of both types of fibers. 
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The fiber surface roughness has been measured using an atomic force microscope 

(AFM). We obtained the values hR=5±2 nm and hR=14±4 nm of the arithmetic average 

roughness (Ra) for the fibers of the aspect ratios, r=18 and r=33, respectively. 

Table I. Characterization of PA fibers and CNT 

Material Length 

l [µm] 

Diameter 

d [µm] 

Aspect 

ratio 

r 

Density 

ρf [g/cm
3
] 

Effective 

dimensionless 

stiffness, Seff*** 

PA  500 15.2±0.5 33±1 1.340±0.001 4 – 4·10
4
 

PA 500 27.8±0.5 18±0.5 1.090±0.001 30 – 3·10
5
 

CNT 0.1-2.2 

(0.5)* 

0.007-0.025 

(0.014)* 

4-314 

(36)** 

≈2.0 0.4 – 4·10
3
 

* The values in brackets correspond to the peak of the size distribution of CNT reported by Khalkhal et al. [37]; 

** The value in brackets correspond to the ratio of the peak value of the CNT length to the peak value of its 

diameter 

*** Estimations are provided in Sec. C of Supplemental Materials [42] 

Table II. Characterization of the suspending liquid of the fiber suspensions 

Fibers Composition Density 

ρ0 [g/cm
3
] 

Viscosity 

η0 [Pa·s] 

Ionic 

strength 

I [mol/L]* 

PA, r=33 Ucon oil (30%vol)/ 

water (70%vol) / 

ZnBr2 (404 g/L) 

1.340±0.001 0.310±0.010 

at 20°C 

4.5 

PA, r=18 Ucon oil (40%vol)/ 

water (60%vol) / 

NaBr (92.6 g/L) 

1.090±0.001 0.364±0.010 

at 20°C 

0.9 

CNT, r=36 Epoxy Epson 828 

(HEXION Specialty 

Chemicals Inc.) 

1.16 12.33 at 25°C N/A 

* Estimations are provided in Sec. C of Supplemental Materials [42] 

The PA fibers were dispersed in a mixture of UCON oil 75H90000 (Dow Chemical, 

France; density ρoil=1.09 g/cm
3
, viscosity ηoil=30 Pa·s at 25°C) in distilled water at different 

volume fractions ϕ ranging from 1 to 17% depending on the fiber aspect ratio. This mixture 

has been chosen as a model system, ensuring the neutral buoyancy and having a relatively low 

viscosity that allows attaining a relatively high ratio of colloidal-to-hydrodynamic forces 

required for studies of the shear thinning behavior. Furthermore, UCON oil shows a good 

solubility in water without phase separation, and the mixture exhibits a perfectly Newtonian 
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response in the considered range of the shear rates, 2 2
10 10γ

−

< <ɺ  s
-1

. An appropriate amount 

of zinc bromide (ZnBr2) or sodium bromide (NaBr) salt [Sigma-Aldrich, France] was added 

into the mixture in order to adjust the density of the suspending liquid to that of the fibers. 

The composition of the suspending liquid for both fiber sizes is summarized in Table II along 

with its physical properties. 

The fiber sedimentation time scale, the fiber effective stiffness Péclet and Reynolds 

numbers, inertial pressure, Debye screening length and Hamaker constant of PA/UCON-water 

system are estimated in Sec. C of Supplemental Materials [42]. These estimations allow us to 

draw the following conclusions on PA suspensions: 

(a) the assumption (1) on rigid non-Brownian (Péclet number is 7
3 10Pe ≈ × ) and neutrally 

buoyant fibers is confirmed; 

(b) the assumption (2) on laminar flow on the flow scale (Reynolds number 360flowRe ≈ ) 

and particle scale ( 3
4 10

p
Re

−

≈ × ) is validated; 

(c) the electrostatic interactions are completely screened by a relatively large amount of 

brome salts added to the suspending fluid resulting in Debye length κe
-1

<1 nm; PA 

suspensions are therefore fitted into the frames of our model developed for attractive 

interactions [assumption (3)]. 

The same conclusions hold for CNT suspensions, as follows from appropriate 

characterizations and estimations done in the work of Khalkhal et al. [37]. 

The quiescent PA fiber suspensions were visualized after shearing using an inverted 

optical microscope Nikon Dashpot. The micrographs shown in Fig. 2 confirm some spatial 

heterogeneity at relatively low suspension concentration.  

 

Fig. 2. Optical microscopy images for quiescent PA fiber suspensions. The figure (a) corresponds to particle 

aspect ratio r=18 and ϕ=0.03; the figure (b) – to r=33 and ϕ=0.05 

 

Existence and behavior of concentration heterogeneities can be better analyzed via 

observation of the suspension behavior under shear. The video available in Supplemental 
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Materials [70] (best viewed in Google Chrome or Safari browsers) shows the shearing of the 

suspension of fiber volume fraction ϕ=0.05 and aspect ratio r=18 at a shear rate 0.3 s
-1

 and at 

the gap between moving plates fixed to three fiber lengths. The experiment starts with a short 

and intense pre-shear at 50 s
-1

 applied before the main shearing at 0.3 s
-1

 in order to be closer 

to the experimental protocol of the rheometric measurements [Sec. III-B]. The following 

information can be drawn from this observation: (a) the existence of denser domains separated 

by free fibers is confirmed; (b) the fibers belonging to these domains seem to exhibit a 

cooperative motion and some misalignment relatively to each other; (c) it was impossible to 

measure the spatial correlation of fiber velocities but we estimated the spatial correlation of 

the particle concentration applying a Fourier transform to the image intensity and assigning 

the lowest harmonic to the correlation length; this length was about one-to-two fiber lengths, 

D∼(1–2)l, and was taken as a rough estimate of the aggregate size; notice that density and 

velocity correlation lengths could be different, thus an exhaustive experimental study is 

required for a precise determination of the aggregate size distribution; (d) some domains have 

an isotropic shape, other ones – an extended shape aligned with the main flow, however the 

Fourier analysis appears to be very rough to indicate precise values of the aggregate aspect 

ratio; it is estimated to lie in the range 1<ra<3; (e) some rearrangement of fibers inside the 

denser domains is observed but it is difficult to follow kinetics of their formation and 

disintegration because of their small travel distance limited by the narrow observation 

window. Even though more accurate image processing would be necessary to well 

characterize the aggregate morphology, we believe that these observations are in agreement 

with our basic assumptions (3.1)-(3.4) concerning particle aggregation, as we defined it in 

Sec. II-A. 

III-B. Experimental procedure on polyamide fiber suspensions 

The viscosity measurements are carried out with a controlled-stress rheometer 

(Thermo Mars II) in rotating parallel plate geometry. The suspension is introduced into a pool 

and sheared by a rotating top disk, as shown schematically in Fig. 3. The suspension level in 

the pool is adjusted to the upper surface of the rotating plate. This allows minimization of 

capillary pressure effects and shear rate oscillations at low shear rates. The pool is covered by 

a Plexiglas lid in order to minimize evaporation of the suspending liquid. The temperature of 

the lower plate (bottom of the pool) is kept constant and equal to 20°C by a standard Peltier 

element, while the experimental room is air conditioned at 22°C. The measuring system had 

the following dimensions: the rotating plate and the pool radii were Rplate=30 mm and 

Rpool=44 mm, respectively. The gap between the rotating plate and the bottom of the pool was 

varied in the range b=2-10 mm. This geometry was chosen in order to decrease possible 

effects of the fiber or aggregate confinement in the measuring gap. However, due to shearing 

of the suspension in the pool outside the gap, this geometry gives overestimated values of the 

viscosity and the appropriate correction is described in Sec. C of Supplemental Materials [42]. 

To check the confinement effect, we have measured the suspension viscosity in the 

pool geometry at different gaps b, ranging from 1 to 6 mm. The measurements show that the 
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suspension viscosity becomes independent of the gap at b>4 mm. We expect therefore that the 

confinement effects are negligible when the gap is set to b=5 mm for all the measurements 

reported in the present paper. This is also consistent with the scale separation, D b<<  

assumed in our model [assumption (8)] and approximately verified in visualization 

experiments [Sec. III-A], where D∼ (1 2) 0.5 1 mml− = −  is the aggregate length scale. 

 

Fig. 3. Sketch of the experimental pool geometry 

The measurements are performed in a controlled-stress mode using the following 

protocol. First, the suspension is pre-sheared for 3 min at 2
10γ =ɺ  s

-1
. Then, the suspension is 

left at rest for 3 min. Then, the constant shear stress of the lowest value (corresponding 

approximately to 2
10γ

−

=ɺ  s
-1

) is applied for a time ranging between 2 and 5 h, long enough to 

ensure that the steady state has been reached. The shear rate and the suspension viscosity are 

measured as function of time. At the end of this period, the suspension is left un-sheared for 3 

min, and sheared again for 3 min at 2
10γ =ɺ  s

-1
, left un-sheared once more for 3 min, and a 

new value of the constant shear stress is applied for a time sufficient for reaching the steady-

state. For adequate comparison with the theory, the Moony correction is applied to the shear 

stress and the shear viscosity, as explained in details in Sec. C of Supplemental Materials 

[42]. This procedure with a pre-shear stage is repeated for all the values of the applied shear 

stress (increasing at each new step) until its highest value corresponding to 2
10γ =ɺ  s

-1
. In 

some cases, the measurements have also been continued by a decreasing shear stress ramp. 

And, even though the full measurement lasts several hours, we did not observe distinguishable 

flow curve hysteresis and the low-shear steady-state viscosity was found to be the same at the 

beginning and the end of the test. This proves the absence of sedimentation and evaporation 

of the suspending liquid, in agreement with the estimation by Eq. (S-14) in Supplemental 

Materials [42], as well as the absence of aging effects. Furthermore, shear-induced particle 

migration, either within the gap or from the inside to outside of the gap, appears not to play 

any role, in agreement with the assumption (8) and with the experimental data on suspensions 

of spherical particles in parallel plate geometry [71-73]. 



21 

It is important to note that our measuring protocol with high shear rate pre-shearing 

ensured the similar initial conditions for each value of the applied shear stress. This allowed 

us to exclude the effects of the shear history on the suspension rheology. 

III-C. Carbon nanotube suspensions 

The CNT suspensions have been characterized in details in the work of Khalkhal et al. 

[37]. Some parameters of the multiwall CNT particles are summarized in Table I. The 

particles showed a rather broad distribution of their length and diameter, with the values l=0.5 

µm and d=14 nm corresponding to the peak of the size distribution curves. These values result 

in an effective aspect ratio r=36 and were used for the comparison between experiments and 

our model.  

The multiwall CNTs were dispersed in a Newtonian epoxy resin Epson 828 (HEXION 

Specialty Chemicals Inc.) having a viscosity η0=12.3 Pa.s at 25°C at different volume 

fractions ϕ ranging from 0.59 to 2.36%. The estimations using Eqs. (S-14)-(S-16) in 

Supplemental Materials [42] allow one to neglect the CNT settling during experiments and 

consider them as rigid and non-Brownian within the experimental range of applied shear 

rates, even though the electron microscopy reveals some bending of fibers likely because of 

some local defects. The Hamaker constant for CNT/epoxy system was evaluated to be    

A∼10
-20

 J (cf. Sec. C of Supplemental Materials) [42]. Unfortunately, there is no more precise 

information about colloidal interactions between the CNT and their surface roughness. 

A torsional cone-plate flow was realized using an Anton Paar Physica MCR 501 

rheometer in a controlled-rate mode with a rotating cone having a diameter of 50 mm and an 

apex angle of 2°. The shear rate is homogeneous in this geometry, and any rheological 

correction is not required. The flow respected the non-inertia limit according to the 

estimations of the Reynolds numbers and of the inertial pressure (cf. Eqs. (S-19) and (S-20) in 

Supplemental Materials) [42]. The experimental protocol is described in details in the work of 

Natale et al. [34]. 

IV. Results and discussion 

IV-A. Transient response 

Experimental time dependency of the viscosity of PA fiber suspension during all the 

measurement corresponding to the increasing stress ramp including pre-shearing stages 

between each applied stress is shown in Fig. 4a for the particle volume fraction ϕ=0.09 and 

aspect ratio r=18. The time dependency of the imposed shear stress is also shown on this 

figure. As is seen from this figure, the total duration of the measurement is about 10.5h. The 

duration of the longest measurement step between intense pre-shearing steps (that are 

expected to re-suspend the particles) is 2h and is smaller than the typical settling time of 7h, 

estimated by Eq. (S-14) in Supplemental Materials [42]. 
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A detailed view of the second and the third stress steps (σ=0.2 Pa and 0.3 Pa) is 

presented in Fig. 4b for the same suspension. This figure deserves some comments. Firstly, 

the viscosity signal for σ=0.2 Pa is quite noisy probably because such a small imposed stress 

generates an extremely low shear rate of about 2·10
-3

 s
-1

 being near the detection limit of the 

rheometer. Another possible reason could come from an unstable and inhomogeneous flow of 

highly aggregated suspension at very low shear rate near the yield point. The viscosity signal 

becomes rather smooth and regular starting from the imposed stress equal to 0.3 Pa.  

 

Fig. 4. Transient rheological response of a PA fiber suspension with a particle aspect ratio r=18 and a particle 

volume fraction ϕ=0.09. The figure (a) corresponds to the whole duration of the experiment; the figure (b) is a 

detailed view of the second and third stress steps at imposed shear stress equal to σ=0.2 Pa and 0.3 Pa. On both 

graphs, the blue line corresponds to the imposed stress σ(t); the red curve – to the viscosity ( )tη . Raw values of 

the viscosity are presented in figures (a) and (b) without performing the correction due to the pool geometry. 

Secondly, very large times are required to achieve the steady state viscosity at low 

shear rates γɺ ∼10
-2

 s
-1

. This can be easily understood in terms of slow orientation dynamics of 

fibers in the shear flow. The Jeffery period of the rotation of high aspect ratio fibers is given 

by [3]: 2 /
rot
T rπ γ≈ ɺ  that gives about 3h for r=18 and 2

10γ
−

=ɺ  s
-1

. Even though the fibers are 

pre-oriented by intense pre-shearing at the beginning of each measurement, they spend almost 

half of the Jeffery period being nearly aligned with the flow and trying to readjust their mean 
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orientation to the new steady state value. Another possible reason for a slow dynamics is the 

kinetics of aggregation. The aggregation governed by pair collisions between fibers has a time 

scale of 
agr
T ∼

1
γ

−

ɺ . A more precise estimation based on the solution of the kinetic equation 

(23) gives the value of about 0.5h for the time required for the fraction, 
1

Φ , of aggregated 

fibers to reach 95% of its steady state value at 2 1
10  sγ

− −

=ɺ , r=18 and ϕ=0.17 [we set 

1 2 0
k k α= = ∼1 in Eq.(23)]. Thus, taking into account uncertainties in kinetic coefficients k1 

and k2, kinetics of aggregation and orientation could have comparable time scales, both 

governing the long-time transient response of the suspension.  

IV-B. Steady-state: high shear viscosity 

The steady-state values of the shear rate and of the suspension viscosity at a given 

shear stress σ were calculated by the time averaging of the experimental ( )tγɺ  and ( )tη  

dependencies [Fig. 4] over the last quarter of the corresponding time interval. Before the 

study of the suspension shear thinning, it is important to inspect the high shear rate response 

when all the aggregates are expected to be destroyed and the suspension should behave as a 

Newtonian fiber suspension in absence of non-hydrodynamic interactions. The theoretical and 

experimental dependencies of the high shear relative viscosity 
0

/
r

η η η=  on the particle 

volume fraction ϕ is presented in Fig. 5a for PA fibers of both aspect ratios r=18 and 33. 

The experimental values of r

η  (symbols in Fig. 5a) were taken at the highest shear 

rate 2
10γ ≈ɺ  s

-1
, while the theoretical values (solid lines) where calculated by Eq. (7), in which 

the fraction of the free fibers was set to one: 
2

1Φ = . As is seen from this figure, both 

experimental and theoretical concentration dependencies are stronger than linear indicating 

the presence of hydrodynamic interactions between fibers. The pair-wise lubrication 

interactions between free fibers have been taken into account in our model producing a term 

quadratic in particle volume fraction [last term in Eq. (7)]. Recall that the theoretical 

expression (7) contains one adjustable parameter – the gap hH between the free fibers. A 

satisfactory fit of the experimental curves was ensured almost in the whole range of particle 

volume fractions ϕ except for the highest concentrations. The disagreement at high 

concentrations likely comes from the fact that pair-wise lubrication forces between free fibers 

are insufficient to describe the viscosity of highly concentrated suspensions. The following 

values of hH were used to ensure the best fits: hH=6 µm for the fibers of the aspect ratio r=33 

and hH=9 µm for r=18. 
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Fig.5. Experimental and theoretical dependencies of the relative high shear viscosity of the PA fiber 

suspensions on the particle volume fraction (a) and on the factor Ψ  (b). Solid curves – theory [Eq. (7) with 

2
1Φ = ].  

It is known that, in the low diffusion, 
3
/ 1

r
D r γ <<ɺ , and high aspect ratio, 1r >>  

limits, the relative viscosity of dilute-to-semi-dilute fiber suspensions is approximately 

proportional to the product ϕr of the particle concentration and the fiber aspect ratio [3, 58]. 

More precisely, according to Eq. (7), we expect that the relative viscosity r

η  is proportional 

to the factor 1/ 2 IIln ( ) / ln(2 )r r f rϕΨ =  in the low concentration limit, (1 / ) 1
H

d hϕ + << , when 

the lubrication forces between fibers give a negligible contribution to the suspension 

viscosity. In this case, the data for fibers of different aspect ratios are expected to fit onto a 

single master curve ( )
r fη = Ψ . To check this point, we plot experimental and theoretical 

dependencies of the relative viscosity on the factor Ψ on Fig. 5b for both aspect ratios r=18 

and 33. The experimental data for two aspect ratios collapse in a single curve in a relatively 

wide range of factors Ψ, namely 0<Ψ<2, while the data diverge at Ψ≈3. 

Notice that our aggregation model [Sec. II-C] allows recovering the high shear 

viscosity [Eq. (7)] due to the fact that, at high applied stresses, the sticking probability tends 
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to zero [Eq. (26)] such that the fraction of free fibers tends to unity, 
2

1Φ =  [Eq. (25) with 

λ →∞  at 
0

0α = ]. 

IV-C. Steady-state: shear thinning behavior  

Experimental and theoretical flow curves are shown on the left column of Fig. 6, while 

the shear rate dependency of the relative viscosity 
0

/
r

η η η=  is shown on the right column of 

this figure, for PA fibers with aspect ratio r=18 [Fig. 6a], PA fibers with r=33 [Fig. 6b] and 

CNT dispersed in a Newtonian epoxy resin [Fig. 6c]. Theoretical ( )σ γɺ  and ( )η γɺ  

dependencies are obtained in parametric form using ( ) / ( )γ σ σ η σ=ɺ . All the theoretical 

curves were fitted to experimental data using the set of the adjustable parameters (hH, FA, κ) 

summarized in Table IV of Appendix D. In what concerns the aggregate shape, analysis 

conducted in Sec. A of Supplemental Materials [42] shows that the aggregate aspect ratio ra 

has only a minor influence on the suspension viscosity in the range 1 3
a
r≤ ≤  corresponding 

to our experiments on PA suspensions. Therefore, all the calculations reported in the present 

paper correspond to the spherical aggregate shape. 

All the theoretical and experimental flow curves shown on the left column in Fig. 6 

share the following common features: (a) they show a shear-thinning behavior; (b) they are 

shifted upwards with increasing the particle concentration signifying an increase of the 

viscous dissipation. In double logarithmic scale, some experimental flow curves show a two 

step behavior with an intermediate quasi-plateau (Fig. 6b for r=33 and ϕ=0.07 and 0.09). 

Such a shape is reminiscent for shear banding and/or wall slip in complex fluids [74]. A 

similar flow curve shape has been observed in flocculated cellulose suspensions for which 

existence of shear banding and wall slip were confirmed by flow visualization and by 

measurements of the velocity profiles [11, 62, 75]. However, our preliminary observations 

under shear did not allow a clear justification for existence of shear banding, while the wall 

slip usually leads to a gap dependence of the suspension viscosity, which has not been 

detected for the gaps b>4 mm. Our model (solid lines) better reproduces the experimental 

flow curves at shear rates 0.1γ >ɺ  s
-1

 and predicts a low shear plateau at 0.1γ <ɺ  s
-1

 

reminiscent for the yield stress [Sec. IV-D]. A discrepancy at low shear rates could come from 

the representation of the suspension structure by spherical aggregates instead of a continuous 

fiber network. 
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Fig. 6. Experimental and theoretical flow curves (left column) and viscosity versus shear rate 

dependences (right column) of different fiber suspensions at different particle volume fractions: PA microfibers 

with the particle aspect ratio equal to r=18 (a); PA microfibers with r=33 (b); and CNT with r=36 (c). Symbols 

correspond to experiments and solid lines – to the theory. The values of the adjustable parameters are 

summarized in Table IV in Appendix D. 

The observed shear thinning behavior can be better analyzed with the help of the shear 

rate dependency of the relative viscosity [right column of Fig. 6]. Let us first analyze the 

curves corresponding to the PA fiber suspensions and then compare them to those 

corresponding to the CNT suspensions. Qualitatively, for PA fibers, both the theory (solid 

curves) and experiments (symbols) reveal a rather strong shear thinning with an increase of 
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the viscosity of more than one order of magnitude (compared to the high shear rate viscosity 

value) for the highest fiber concentrations. The high shear plateaus are well distinguished at 

relatively low particle volume fractions (ϕ<0.07 at r=18 and ϕ<0.05 at r=33). They are 

shifted to higher shear rate values when the particle volume fraction increases and disappear 

at the highest concentrations (ϕ >0.15 at r=18 and ϕ=0.11 at r=33). Such a shift is 

accompanied by a significant increase of the degree of shear thinning when the particle 

volume fraction becomes larger. These both concentration effects could be explained by an 

increasing role of the adhesive interactions between fibers when the particle volume fraction 

increases. Such concentration behavior is analyzed in details in Appendix E. 

In what concerns the CNT suspensions [right graph on Fig. 6c], both theory and 

experiments also reveal a strong shear thinning with low shear viscosity at 2
10γ

−

=ɺ  s
-1

 being 

two-to-three orders of magnitude higher than the high-shear viscosity at 2
10γ =ɺ  s

-1
. 

Estimation of the colloidal forces could clarify the reason behind a stronger shear thinning in 

CNT suspensions. By fitting the rheological curves to the experimental data, we obtain the 

value of the effective adhesive force FA for PA fibers three orders of magnitude larger than for 

CNT [see Table IV, Appendix D], that is something expected because of the size difference 

between these two types of fibers. However, it is not the value FA that directly affects the 

suspension viscosity but rather the ratio of colloidal to hydrodynamic forces NA, or more 

precisely, the dimensionless factor 2/( )
A A

N r F r dσ= , as inferred from Eq. (15). At the same 

applied stress, σ, and nearly the same aspect ratio (r=33 for PA fibers and r=36 for CNT), the 

factor 
A

N r  for CNT is about 2×10
3
 times higher than for PA fibers. At the same shear rate, 

say -1
1 sγ =ɺ , and nearly the same volume fraction (ϕ=0.01 for PA and 0.0118 for CNT), this 

difference reduces to 10 times because of much higher viscosity of the suspending liquid of 

CNT. Both estimations indicate a more pronounced role of colloidal interactions between 

nanoscale CNT compared to micron-sized PA fibers. As a consequence, the CNT aggregates 

better resist to the shearing forces and give a higher viscosity at low shear rates and thus a 

higher decrease in viscosity between the low-shear and high-shear regimes. 

As is seen in Fig. 6, the best agreement between the theory and experiments is 

obtained at intermediate particle concentrations for both PA fiber suspensions [Figs. 6a, 6b] 

and CNT suspensions [Fig. 6c]. Some mismatch at the lowest concentrations likely comes 

from a non-spherical shape of the aggregates caused by collisions between the fibers mostly 

aligned with the flow at low particle volume fractions. The discrepancy at the highest 

concentrations (especially pronounced for PA fibers at r=18, Fig. 6a) can be related to 

different factors, such as (a) incorrect estimation of the high-shear viscosity under 

approximation of pair-wise interactions between fibers belonging to the free fiber population; 

(b) a more complex kinetics of aggregation/destruction rather than that considered in Sec. II-

D. Despite of these disagreements, our model captures relatively well, both qualitatively and 

quantitatively, the shear thinning behavior of both the CNT and the PA fiber suspensions. 
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From the theoretical point of view, the shear thinning behavior is related to variable 

aggregate volume fraction, 
1
/

a i
ϕ ϕ ϕ= Φ  [Eq. (8)], and is therefore a combination of the shear 

rate dependencies 
1
( )γΦ ɺ  and ( )

i
ϕ γɺ . For the better understanding of the shear thinning 

behavior, we inspect these two dependences on Fig. 7 for PA fibers at the particle volume 

fraction ϕ=0.11 and for two considered aspect ratios.  

 

Fig. 7. Theoretical shear rate dependencis of the fraction Φ1 of aggregated PA fibers (a) and of the internal 

aggregate volume fraction ϕi (b) for PA fibers at the particle volume fraction ϕ=0.11 and two aspect ratios r=18 

and 33. The horizontal dotted lines on figure (b) indicate the lower (ϕi=ϕ) and the upper (ϕi=5.4/r) concentration 

limits for ϕi 

The fraction Φ1 of aggregated fibers exhibits a progressive decrease from unity at zero 

shear rate (fully aggregated state with a yield stress – see Sec. IV-D) to zero at high shear 

rates (fully unstructured suspension) – see Fig. 7a. We also note that the content of aggregates 

is higher for the fibers with a higher aspect ratio. The fraction Φ2 of free fibers is related to 

the fraction Φ1 of aggregated fibers by Eq. (1). Thus, Φ2 follows an opposite tendency with 

increasing shear rate (not shown here for brevity): it increases progressively from zero at zero 

shear rate to unity at high shear rates. The internal aggregate volume fraction ϕi [Eq. (14)] 

also shows a monotonic increase with the shear rate [Fig. 7b] related to the fact that more 
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compact aggregates (with higher contact densities) better resist to increasing shear forces. At 

zero shear rate, ϕi tends to the particle volume fraction ϕ; this corresponds to a percolated 

fiber network with Φ1=1. At high shear rates, ϕi approaches the upper concentration limit 

ϕm,i=5.4/r. The horizontal dotted lines in Fig. 7b correspond to the upper and the lower 

concentration limits of the internal volume fraction ϕi. Thus, the shear rate dependencies 

1
( )γΦ ɺ  and ( )

i
ϕ γɺ amplify each other being in qualitative agreement with the shear thinning 

behavior observed on Fig. 6: progressive compactness and disappearance of aggregates with 

increasing shear rates leads to a gradual decrease of the suspension viscosity. 

Finally, the obtained value of the adjustable parameter FA allows a posteriori estimation 

of the inter-fiber separation hA between the aggregated fibers, while another adjustable 

parameter directly gives the gap hH between the free fibers. The details of this estimation are 

reported in Appendix D. Briefly, we get (0.3 0.4) 6 9 µm
H
h d= − ≈ −  for free PA fibers and 

A
h ∼ (0.2 0.6)

R
h− ∼3 nm for aggregated fibers, with d≈15-28 µm being the fiber diameter and 

R
h ∼5-14 nm - surface roughness [Sec. III-A]. These values fit into the length scale ranges of 

hydrodynamic and colloidal interactions a priori supposed for free fibers and aggregated 

fibers respectively. Furthermore, the lubrication force between the free fibers (estimated by 

Eq. (4) with an appropriate value of hH and α β
×p p  set to unity] appears to be 8-10 orders of 

magnitude larger than the adhesive force FA, in agreement with assumption (4) of Sec. II-A. 

Note that the value 
A
h ∼3 nm is somewhat lower than the fiber surface roughness hR that likely 

indicates a close contact between fibers inside the aggregates with interlocking asperities. On 

the other hand, surface roughness is known to substantially increase the effective van der 

Waals attraction at close separations hA between rough surfaces [76]. Therefore, the value of 

A
h ∼3 nm is likely underestimated. The same conclusions hold for CNT suspensions. 

IV-D. Yield stress 

Low shear plateau of the theoretical flow curves plotted in log-log scale and shown in 

Fig. 6 reveal some yield stress, which appears to be higher in CNT suspensions than in PA 

fiber suspensions. Experiments on PA fiber suspensions conducted in a stress-control mode 

also showed some small but measurable yield stresses at high enough particle volume 

fractions ( 0.07ϕ ≥  at r=18 and 0.05ϕ ≥  at r=33). Experiments on CNT were carried out by 

Natale et al. [34] in shear rate-control mode, not allowing a direct measurement of the yield 

stress. However, potential yield stress for this suspension can be seen in flow curves plotted in 

a log-log scale – see Fig. 6c. It is worth noticing that, in contrast to the results of Natale et al. 

[34], other authors report a non-negligible yield stress in suspensions of CNT dispersed in the 

Newtonian epoxy solvent [77, 78]. They attribute the yield behavior to appearance of the 

network of nanotubes having a higher aspect ratio (80<r<1200) than those used by Natale et 

al. (r≈36) and being less stiff. 
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For a deeper understanding of the yielding behavior, let us find an explicit expression 

for the predicted yield stress. Similarly to the structural models of Snabre and Mills [41], 

Quemada and Berli [10], the yield stress arises in our model when the effective aggregate 

concentration 
1
/

a i
ϕ ϕ ϕ= Φ  approaches the value 

,m a
ϕ  of the maximum packing fraction of 

aggregates and the fraction of aggregated fibers Φ1 approaches to unity. Physically, when the 

shear rate is decreased, the aggregates get larger (more inflated). They finally touch each 

other and form an infinite spanning network at rest with 
,m a

ϕ ∼1 and the internal volume 

fraction of aggregates equal to the particle volume fraction in the suspension: 
i

ϕ ϕ≈ . In this 

sense, the model predicts the threshold stress, σth, below which the suspension is jammed 

when the applied stress is decreased. Thus, the proposed aggregation scenario is, to some 

extent, equivalent to the network failure scenario of the yield stress. The difference lies in 

opposite directions of reaching the yield point. The network scenario considers a network 

breakup at increasing stress, while the aggregation scenario deals with the jamming at 

decreasing stress. If one assumes a reversible process of the network destruction (at increasing 

stress) and construction (at decreasing stress), both scenarios give the same magnitude σth, 

which can be assimilated to the yield stress. Absence of distinguishable flow curve hysteresis 

in our experiments allows us to use the value σth as an estimate of the yield stress σY. 

The condition 
,a m a

ϕ ϕ≈ ∼1 is reached when the term in square brackets of Eqs. (8) and 

(15) tends to zero and the relative viscosity 
r

a
η  diverges. Setting this term to zero and Φ1 to 

unity, the following expression for the yield stress is obtained: 

2

2 2 2

,
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1 ( / ) 5

A

Y

m i

F r

d

ϕ
σ

ϕ ϕ π
=

−

     (27) 

To analyze the concentration behavior of the yield stress, we plot in Fig. 8 the 

theoretical and experimental dependencies of the suspension yield stress on particle volume 

fraction in log-log scale for the two PA suspensions used in experiments. At low 

concentrations, the theoretical curves are linear in the log-log scale with a slope equal to two 

corresponding to the ϕ 
2
-behavior established by Eq. (27) at 

,m i
ϕ ϕ<< . At higher ϕ, the 

concentration dependence becomes stronger leading to a divergence of the yield stress as the 

particle volume fraction approaches the upper limit of the colloidal glass state 

,

5.4 /
m i

rϕ ϕ→ = . The agreement between the theory and the experiments is rather poor 

likely because of a poor precision of the yield tress determination at the stress values as low as 

0.1 Pa. In particular, experiments show a stronger concentration behavior of the yield stress of 

PA suspensions, 
4 0.8

Y
σ ϕ

±
∝ , as compared to the model predictions. This discrepancy likely 

comes from the fact that the adhesive force FA may increase with the particle volume fraction 

ϕ, such that the predicted behavior, 
2 2

,
/(1 ( / ) )

Y A m i
Fσ ϕ ϕ ϕ∝ − , would be stronger then 

quadratic. In fact, an applied macroscopic stress σY is transmitted to contact points and press 
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the fibers to each other. The adhesive force acts on the roughness scale, 
A
h ∼

R
h , so that a 

stronger transmitted stress at higher ϕ could lead to stronger interlocking of surface asperities 

at the contact point and, consequently to lower effective separations hA and higher adhesive 

forces 
2

A A
F h

−

∝  [Eq. (11)]. Unfortunately, we are unable to confirm this explanation at the 

present time. 

Strong concentration effects on the yield stress have been previously observed in: (a) 

CNT suspensions with ϕ 
2.1 

to ϕ 
3.2

 behaviors for aspect ratios r=80 and 1200, respectively 

[77, 78], (b) nanofibrillated cellulose suspensions with ϕ 
3.1 

[11], and (c) flexible pulp fiber 

suspensions with ϕ 
2.5 

to ϕ 
5
-trend found between the experiments, theory and simulations [20, 

21, 28, 79]. As already mentioned, the existence of a yield stress and the strong concentration 

effects for attractive flexible fiber suspensions are explained mostly by the interplay between 

the fiber bending and inter-fiber solid friction. In repulsive systems, the yield stress is 

interpreted as a stress required to overcome repulsive colloidal forces and continuously 

extract the fibers from the current network configuration to the new one [11]. The ϕ 
3.1 

 

behavior in these systems comes from the decrease in the Debye length and the variations in 

electrostatic potential with increasing concentration.  

 

Fig. 8. Theoretical and experimental dependencies of the yield stress on the particle volume fraction for PA 

fibers with r=18 and r=33. The values of the adjustable parameter FA summarized in Table IV of Appendix D 

were used for the yield stress calculations. The symbols stand for the experiments and lines –for the theory 

Finally, notice that our previous model, considering only non-aggregated fibers with 

frictional contacts, predicted a purely Bingham behavior with a yield stress given by the 

expression [36]: 

2

2 2

16
A

Y

F r

d
σ ϕ

π
=      (28) 
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with 
A

F µF= , µ - friction coefficient and F - the van der Waals force given by Eq. (11). Both 

models give the same dimensional scaling for the yield stress, 
2

/
Y A

F r dσ ∝  and the same 

concentration behavior 
2

Y
σ ϕ∝  at low particle volume fractions, 

,m i
ϕ ϕ<< . However, at 

higher volume fractions, the present aggregation model provides a stronger concentration 

behavior 
2 2

,
/(1 ( / ) )

Y A m i
Fσ ϕ ϕ ϕ∝ −  than the model of non-aggregated fibers with 

2

Y
σ ϕ∝  at 

any ϕ. Notice that the previous model [36] does not reproduce at all the shape of the 

experimental flow curves of PA suspensions [Fig. 6] and gives zero yield stress in absence of 

solid friction between fibers. Introduction of aggregation in the present model allows us to 

obtain a reasonable agreement with experiments and reproduce a shear thinning without solid 

friction. 

V. Conclusions 

This work is focused on shear thinning behavior of rigid non-Brownian fiber 

suspensions under the action of adhesive interactions between particles. Rheological 

experiments have been conducted with neutrally buoyant PA fiber suspensions. For the sake 

of comparison, the experimental data of Natale et al. [34] on suspensions of untreated 

multiwall CNTs dispersed in a Newtonian epoxy resin have also been analyzed. The 

experimental results can be summarized as follows: 

1. The steady-state flow curves of both PA and CNT fiber suspensions show a significant 

shear thinning with a decrease of the viscosity attaining two-to-three orders of magnitude 

when the shear rate is increased from 0.1 to 100 s
-1

. The degree of shear thinning has been 

found to increase with particle concentration, in accordance with experimental results of 

Mueller et al. [19]. 

2. A small yield stress has been detected in PA fiber suspensions in controlled-stress 

measurements. The measurements in controlled-rate mode were unable to confirm the 

existence of a yield stress in suspensions of relatively short CNT (r≈36) used in experiments 

of Natale et al. [34]. However, other authors report a non-negligible yield stress related to 

formation of a network in suspensions of longer nanotubes (80<r<1200) [77, 78]. 

3. Visualization experiments on PA suspensions reveal some spatial heterogeneity with 

denser domains separated by free fibers. The fibers belonging to these domains show a 

cooperative motion and some misalignment relatively to each other. 

For a better understanding of these findings, a theoretical model has been developed 

allowing us to establish the relationship between the adhesive force between contacting fibers 

and the shear thinning behavior. The model assumes existence of transient aggregates whose 

size is assimilated to a correlation length D∼(1-2)l of experimentally observed spatial 

heterogeneities. 

The model seems to capture the main experimental behaviors of PA and CNT 

suspensions:  
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1. The enhancement of the shear thinning with increasing particle volume fraction has 

been confirmed and explained by the fact that both the adhesive interactions and the fraction 

1
Φ  of aggregated fibers increase with the particle concentration.  

2. A weak yield behavior of the PA fiber suspensions has been confirmed. According to 

our model, the yield stress comes from the liquid-solid transition as the aggregate 

concentration ϕa approaches the maximum packing limit ϕm,a resulting in divergence of the 

viscosity as the shear rate goes to zero.  

3. The model reproduces a much stronger shear thinning in CNT suspensions than in PA 

ones, which is explained by a stronger role of adhesive interactions between nanoscale CNT 

particles than between micron-sized PA fibers.  

4. From a microscopic perspective, the short-ranged interactions between fibers are likely 

governed by two different length scales. Comparison between theoretical and experimental 

rheological response indicates that the interactions between free fibers are hydrodynamic with 

a characteristic length 
H
h ∼d, while the interactions between aggregated fibers are 

predominately adhesive (frictional or non-frictional) with 
A
h d<< , where d is the fiber 

diameter. 
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Appendix A. Cohesive strength of the aggregates 

Let us suppose that the fracture region is localized in a plane layer of a width equal to 

the fiber length l and created by cutting the aggregate by two planes parallel to the middle 

fracture plane and separated from it by a distance l/2 [Fig.1b]. Let the orientation of two 

contacting fibers inside the aggregates described by unit vectors the unit vectors 
α

p  and 
β

p  

[Fig. 1c] and the direction of the aggregate rupture – by a unit vector e oriented along the 

extension axis [Fig. 1b]. During the aggregate break-up, two possibilities of the contact 

rupture are considered on the basis of Assumption (5), as schematized in Fig. 9. In the case of 

normal rupture, the fibers are separated from each other along a unite vector n perpendicular 

to their contact surface. Then, the cohesive force is the normal adhesive force Fn aligned with 

n. In the case of tangential rupture, the fibers slide along each other. In such a case, the 

cohesive force is the friction force Fτ whose absolute value is proportional to the normal 

adhesive force, 
n

F F
τ

µ=  [Eq. (3)] and whose orientation is opposed to the direction of 
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motion of the contact point. This direction is characterized by a unit vector τ, which belongs 

to the plane αβ (formed by the contacting fibers α and β) and oriented along the projection of 

the unit vector e onto the plane αβ [Fig. 9]. Let Θ be the angle that the unit vector e makes 

with the unit vector n. For a given contact point, the projection of the cohesive force onto the 

extension axis reads: 

1

cos ,  normal rupture;

sin ,  tangentional rupture

n

n

F

F

Fµ

− Θ
= 

− Θ
   (A-1) 

Here the minus sign appears because the cohesion force is opposed to the direction of the 

aggregate rupture. The e-component (along the extension axis) of the total cohesion force 

exerted on a test fiber α by all the neighboring fibers β is found by weighing the cohesion 

force [Eq. (A-1)] by the contact probability dPA: 

1 A
F FdP
α
= ∫      (A-2) 

2 ( )
A i A

dP n d h ds ds d
α β β

α β βψ= + ×p p p   (A-3) 

where ni is the number fraction of fibers inside the aggregates. 

 
Fig. 9. Sketch for determination of the contact rupture 

The resultant cohesive force (cohesive strength) acting on all N fibers situated in the 

fracture region is proportional to the product of the number of fibers N by the force F
α

 

averaged over all possible orientations of the test fiber “α”: 

/ 2 / 2

1

/ 2 / 2

2

1
( )

2

cos ,  normal rupture;
( )

sin ,  tangential rupture

l l

c i A

l l

i A

F N F d Nn d h ds ds d F d

Nn d h l F

α β

α α α β β

α α α β α βψ ψ ψ

µ

− −

= = + × =

 Θ
= − + ×

Θ

∫ ∫ ∫ ∫ ∫p p

p p p p p

 (A-4) 
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where ψα is the angular distribution function of the test fibers α; F is the value of the normal 

colloidal force Fn for the angle between two fibers equal to δ=π/2 [cf. Eq. (10)]; the factor 

(1/2) is introduced in order to avoid double counting of the contact force acting in the contact 

point of a pair of fibers; the magnitudes cosΘ  and sinΘ  are averaged according to the rule 

( , )X d X d
α β

α α β β

α β
ψ ψ= ∫ ∫p p

p p p p  and are found as function of the orientation vectors 
α

p , 

β
p  and e by the following expressions: 

1/ 2
2

( ) ( )
cos( ) , sin 1

α β α β

α β α β

  ⋅ × ⋅ ×  Θ = Θ = −
  × ×   

e p p e p p

p p p p
  (A-5) 

The average values cosΘ  and sinΘ  depend on the orientation state inside the 

aggregates and are summarized in Table III. 

Table III. Values of cosΘ , sinΘ  and ξ for different considered cases 

Orientation state Sketch 
cosΘ  sinΘ  

Rupture 

scenario 

/
A

F Fξ =  

Isotropic 

 

1

2
 

4

π

 
normal 1

2
 

Isotropic 

 

1

2
 

4

π

 
tangential 

4

π
µ  

Nearly aligned 

along e 

 

1
( )O r

−

 1≈  tangential µ  

Nearly aligned, 

perpendicular to e 

 

1≈  
1

( )O r
−

 normal 1 

 

To get the final expression for the cohesive strength, we find the number of fibers N 

and their number density ni in the fracture region as follows: 

2 2

2 2 2

4 4
;

4

i i i
i i fracture i

f

D l D
n N nV

V d l d l d

ϕ ϕ ϕ π
ϕ

π π
= = = ≈ = ,  (A-6) 



36 

where fV  is the fiber volume, 
i

ϕ  is the internal volume fraction of aggregates, and 
fractureV is 

the volume of the fracture zone of a thickness l and diameter D [Fig.1b].  

Substituting Eq. (A-6) into Eq. (A-5) and using appropriate values of cosΘ  and 

sinΘ  [Table III], we get the final expression [Eq. (12)] for the cohesive strength, in which 

the inter-fiber gap hA is neglected before the fiber diameter d. The effective adhesive force 

A
F Fξ=  introduced into this expression generalizes different considered cases through the 

multiplier ξ whose values are summarized in Table III, as function of the chosen contact 

rupture scenario and orientation state. 

For realistic values 0.3 0.5µ< <  of the friction coefficient, the cohesive force between 

fibers, F or µF, is of the same order of magnitude for both rupture mechanisms. 

To check whether the fiber orientation strongly influences the cohesive strength of the 

aggregates, in addition to the assumed isotropic state (Assumption 7.1) we consider a nearly 

aligned state, in which case the condition 1
sin r

α β
δ

−

= × ≥p p  holds and the equations 

(10) and (A.3) are still valid [60]. We assume that the aggregate rupture occurs when the 

fibers are either aligned with the extension axis or perpendicular to it. In the first case, the 

fibers slide along extension axis during the aggregate break-up. This corresponds to the 

tangential rupture scenario. In the second case, the fibers move apart in the direction normal 

to the contact surface; normal rupture scenario is expected [cf. sketches in Table III]. In both 

these cases of the aligned orientation, the cohesive strength of the aggregate appears to be 

very close to the one found for isotropic orientation. This is because: (a) the product of the 

number of contacts by the adhesive force of a pair of fibers is independent of the orientation 

scalar 
1
f α β
= ×p p  [cf. Appendix B], and (b) cosΘ  and sinΘ  vary between ½ and 1 

for different orientations, while the value 
1

( )O r
−

 is excluded from consideration because it 

does not contribute to the cohesive strength. 

A relatively small variation of ξ (which is of the order of unity) allows us to apply the 

obtained results to intermediate states where (1) normal rupture of contacts coexist with 

tangential rupture during the aggregate break-up; and (2) the orientation state inside the 

aggregate is arbitrary. In those cases, an appropriate value of the parameter ξ, that fits into the 

range min(1/ 2, / 4) max(1, )πµ ξ µ≤ ≤ , should be chosen. 

Note finally that if the aggregate size is of the order of the fiber length, the whole 

aggregate is expected to be disintegrated into individual fibers rather than be broken in parts. 

However, the number of ruptured contacts and, consequently, the aggregate cohesive strength 

are still correctly estimated using the above considered fracture scenario. 
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Appendix B. Fiber connectivity  

The fiber connectivity in both populations is characterized by the average number of 

contacts per fiber, called the coordination number and defined by the expression [11, 80]: 

( ) [ ]( )
2

1 2
4 1 / 2 / (1 / ) 1Z h d f r h d fϕ π= + + + + , where 

1
f α β
= ×p p , 

2
f α β
= ⋅p p , h=hH 

for free fibers and h=hA for aggregated fibers. More precisely, the coordination number affects 

the viscosities through the term 
1

/ 8 (1 / ) /Z f r h dϕ π≈ +  obtained at 1r >> . The orientation 

scalar 
1
f  disappears while averaging adhesive and lubrication forces over the contact 

probability, because the product of each of this force with the contact probability is 

independent of α β
×p p , as inferred from Eqs. (4), (5), (10) and (A-3). The coordination 

number inside the aggregates should be higher than the percolation threshold 1.4
p

Z ≈  [81]. 

This constraint imposes the lower bounds of suspension concentration at which our model is 

still valid: 
min

0.02ϕ ≈  at r=18 and 
min

0.01ϕ ≈  at r=33. Our PA suspensions respect these 

bounds. The CNT suspensions characterized by Khalkhal et al. (2011) [37] and used for 

comparison with our model are quite polydisperse, some CNTs attain the aspect ratio of the 

order of 100 at the mean value r=36. Therefore their coordination number is likely 

underestimated. 

Appendix C. Sticking probability α0 [Eq. (26)]. 

The fibers are supposed to stick after collision if the adhesive force produces a torque 

A
T ∼

1
/

A
F s f ∼

A
F sr  strong enough to overcome a hydrodynamic torque 

H
T ∼

3 / ln(2 )l rη ω ∼

3 /( ln(2 ))l r rσ , otherwise the adhesive contact may be easily ruptured. Here, s is the distance 

along the fiber major axis between the fiber center of mass and the contact point [cf. Fig. 1c]; 

1
f α β
= ×p p ∼

1
r
−  [36]; ω ∼ / rγɺ  is an average angular velocity of the fiber; the viscosity of 

the suspending liquid η0 is again replaced by the suspension viscosity η in order to account 

for hydrodynamic interactions between fibers, and the product ηγ σ=ɺ  refers to the applied 

shear stress. The condition 
A H
T T≥  implies that the fibers stick when the contact point is 

situated in the interval 
0

/ 2s s l≤ ≤ , that corresponds to the sticking probability 
0

α ∼
0

1 2 /s l− , 

where the critical distance 
0
s ∼

2 /( ln(2 ))
A

d l F rσ  is given by the equilibrium of torques. This 

approach applies well for low shear regime but likely underestimates the contact probability at 

high shear producing negative values of 
0

α  above some critical stress. To avoid this 

inconsistency and impose a smooth variation of 
0

α  from unity at low shear stresses to zero at 

infinite stresses, we replace 
0

α ∼
0

1 2 /s l−  by 
0

α ∼ 0
2 /s l

e
−

. The last expression reduces to the 

initially derived low shear limit at 
0

2 / 1s l <<  and takes the final form of Eq. (26), discarding 

numerical multipliers and making use of Eq. (2) for the aggregation parameter NA. 
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Appendix D. Adjustable parameters and the gaps hH and hA 

The set of the adjustable parameters (hH, FA, κ) is summarized in Table IV. The values 

of the first adjustable parameter hH (the gap between the free fibers) for the PA fibers were 

chosen similar to those used for the fit of the concentration dependencies of the high-shear 

viscosity [cf. Fig. 5].  

Table IV. Adjustable parameters of the model and different length scales 

Sample Effective 

adhesive 

force 

FA [N] 

Correction 

factor 

[Eq.(23)] 

κ 

Length scales 

Fiber 

diameter 

d [µm] 

Roughness 

hR [µm] 

Gap 

(hydro) 

hH [µm] 

Gap 

(adhesive) 

hA [µm] 

PA, r=18 3.0×10
-9

 1 27.8±0.5 (5±2)×10
-3

 9.0 2.8×10
-3

 

PA, r=33 1.5×10
-9

 1 15.2±0.5 (14±4)×10
-3

 6.0 3.0×10
-3

 

CNT 2.5×10
-12

 0.05 0.014* N/A 8.0×10
-3

 2.2×10
-3

 

* Peak value of the CNT diameter 

The values of the second adjustable parameter, FA, allow us to estimate the gap hA 

between aggregated fibers. Assuming van der Waals adhesive interaction, the value of hA is 

obtained from Eq. (10), in which the Hamaker constant is of the order A ∼

20
10  J

−  for both PA 

and CNT suspensions (cf. Sec. C of Supplemental Materials) [42] and F is replaced by 

A
F Fξ=  taking into account that the multiplier ξ is of the order of unity [cf. Appendix A]. 

It is worth noticing that, the chosen values of our adjustable parameter 
A

F ∼

9
(1.5 3) 10  N

−

− ×  approach the values of the adhesive force measured by Chaouche and Koch 

[17] for PA fibers dispersed either in a silicon oil, F ∼10
-8

 N, or in a water-glycerol solution, 

F ∼10
-7

 N, and having nearly the same size as the ours. 

Finally, the dimensionless correction factor κ, appearing in Eqs. (24), (25) for fiber 

fractions 
1

Φ  and 
2

Φ , is set to unity ( 1κ = ) for PA fibers of both aspect rations (r=18 and 

33). This parameter is set to 0.05 for CNT suspensions – a value twenty times lower than the 

one used for PA fibers. A lower parameter 
2 1
/k kκ =  stands for higher aggregation rate or 

lower destruction rate [cf. Eq.(23)] in CNT suspensions. This is qualitatively consistent with 

our previous argument on more important role of colloidal interactions between nanoscale 

CNT particles as compared to micron-sized PA fibers [Section IV-C]. 

Appendix E. Low-shear concentration behavior 

At low shear rates, the suspensions are expected to be highly aggregated, and their 

concentration behavior is expected to differ from that shown on Fig. 5 for high shear rates. In 

order to better appreciate the concentration effect on the low shear viscosity, the ratio 
1 1(0.1 s ) / (100 s )r r

η η
− −  of the low shear viscosity to the high shear viscosity is plotted 

against particle volume fraction in Fig. 10 for both the PA (at r=18 and 33) and CNT 

suspensions. The viscosity ratio appears to be a growing function of the particle concentration 
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for the three suspensions meaning that the suspensions are much more shear-thinning at high 

concentrations than at low concentrations. Such concentration enhancement of the shear 

thinning comes from the synergy of the two following effects: (a) adhesive interactions 

between fibers give a stronger than linear concentration behavior of the suspension viscosity 

[cf. Eq. (15)]; (b) the fraction 
1

Φ  of aggregated fibers monotonically increases with the 

particle concentration [cf. Eq. (24)] providing a further increase in viscosity. 

 

Fig. 10. Theoretical and experimental dependences of the ratio of low-shear-to-high-shear viscosity 
1 1

(0.1 s ) / (100 s )
r r

η η
− −  on particle volume fraction. Symbols – experiment, solid lines – theory. The values of 

the adjustable parameters are summarized in Table IV of Appendix D. 

In order to better illustrate the second effect, the theoretical dependency of the fraction 

1
Φ  of aggregated fibers on the particle volume fraction is plotted in Figure 11 for two PA 

suspensions at a shear rate 0.1γ =ɺ  s
-1

.  

 

Fig. 11. Theoretical dependences of the fraction of aggregated fibers on the particle volume fraction of 

PA suspensions at 0.1γ =ɺ  s-1. The vertical dashed lines stands for the upper concentration limit 
,

0.3
m i

ϕ =  and 

,

0.16
m i

ϕ ≈  for PA fiber suspensions with r=18 and 33, respectively. The values of the adjustable parameters are 

summarized in Table IV in Appendix D. 
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Figure 11 shows that the fraction Φ1 of aggregated fibers progressively increases from 

zero to unity between the infinite dilution limit 0ϕ →  and the upper concentration bound 

,

5.4 /
m i

rϕ ϕ→ =  assumed to be the upper limit of the colloidal glass state.  
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Supplemental Materials 

for the paper “Shear-thinning in concentrated rigid fiber suspensions: Aggregation induced by 

adhesive interactions” by Bounoua et al. 

 

A. Extension of the theoretical model to non-spherical aggregates 

The aggregate shape intervenes into the intrinsic viscosity [η] appearing in Eqs. (8), 

(15) of the manuscript, as well as into the hydrodynamic force acting on the aggregate 

[Eq.(9)]. In this Section, we will define these quantities as function of the aggregate aspect 

ratio. 

Let us suppose that the aggregates are prolate ellipsoids of revolution having a minor 

axis D, a major axis Dra and an aspect ratio ra [Fig. S-1]. The aggregate is subjected to a 

linear shear field characterized by a shear rate γɺ  and its orientation with respect to the 

laboratory reference frame xyz is described by the angles φ and θ. In the reference frame 

x’y’z’ related to the aggregate main axes, the shear field is characterized by the rate-of-strain 

tensor ' (1/ 2)( ' / ' ' / ' )
ik i k k i

v x v xγ = ∂ ∂ + ∂ ∂ . Suppose that the fracture plain of the aggregate is the 

middle plain perpendicular to its major axis z’ and having a circular cross-sectional area πD
2
. 

Thus, the rupture is assumed to occur along the major axis of the aggregate.  

 

Fig. S-1. Sketch of the problem geometry 

The distribution of hydrodynamic stress on the surface of the ellipsoid has been 

calculated by Jeffery (1922). The hydrodynamic rupture force along the major axis z’ is 

obtained by integration of this stress over a half surface: 

2

0 0

2

h

a

F D C
r

πηγ γ β
 

= − + 
 

ɺ     (S-1a) 



47 

0 0

2

0 0 0

ˆ(2 " ") '1

6 ( ") 2 " "

zz

C
γ β γ

β β γ

+

=

+

    (S-1b) 

2'
ˆ ' sin sin cos

zz

zz

γ
γ θ φ φ

γ
= =

ɺ
,   (S-1c) 

( )2 2

0 2
2

ln 2 1 2 1
1

1 2 1

a a a

a

a
a

r r r

r

r r

β

 − + −
 = − − −  

    (S-1d) 

( )2 2

0 2
2

ln 2 1 2 1
1 2

1 1

a a a

a a
a

r r r

r r r

γ

 − − −
 = − + − −  

   (S-1e) 

( )
( )

2

2 2

0 2
22

2 11
" 3 ln 2 1 2 1

2 11

a

a a a a

aa

r

r r r r

rr

β
 +
 = − + − − −
 −−  

  (S-1f) 

( )
( )

2

2 2 2

0 2
22

4 11
" (2 1) ln 2 1 2 1

2 14 1

a

a a a a a

aa

r

r r r r r

rr

γ

 −
 = + − − + −
 −−  

  (S-1g) 

As expected, the hydrodynamic force is maximum, when the aggregate is situated in 

the shear plain xz (θ=π/2) and makes an angle φ=π/4 with the axis z [Fig. S-1]. This 

orientation corresponds to the following value of the zz-component of the rate of strain tensor: 

' / 2
zz

γ γ= ɺ , as follows from Eq. (S-1c). In the case of the spherical aggregate (ra=1), equation 

(S-1a) with the above components of '
ik

γ  reduces to the known result [Bagster and Tomi 

(1974)]: 

2

,

5

8
h sphF D

π
ηγ= ɺ      (S-

2) 

This allows us to estimate the correction factor of the hydrodynamic force as: 

0 0

( 1) 8 2
'

( 1) 5

h a

h a a

F r
C

F r r
ζ γ β

 ≥
= = − + 

=  
    (S-

3) 

Fitting the ζ’(ra) by simple functions we get the following correlation: 
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    (S-4) 

However, this factor will not likely correctly reflect the effect of the aggregate shape 

on its average rupture force. This is because elongated aggregates spend much more time 

aligned in the flow direction and will likely have less chance to be broken at φ=π/4 than 

spherical aggregates, especially if the aggregate living time is smaller than the Jeffrey period. 

One way to account for this effect is to multiply the correction factor ζ’ by the probability 

density ψ of finding the aggregate pointed along the extension axis (θ=π/2, φ=π/4) divided by 

the same probability for spherical aggregates (equal to 
1

(4 )π
−

). This magnitude can be 

estimated in the limit of infinite Péclet numbers using the results of the work of Leal and 

Hinch (1971). The following correlation is obtained by fitting the results of that work with 

simple power-law functions: 

1/ 4

1

, 1 3
4

3 / 2, 3

a a

a a

r r

r r

πψ

−

−

 ≤ ≤
≈ 

>

    (S-

5) 

Thus, the final approximate expression is obtained for the resultant correction factor 

for the hydrodynamic force: 

     
,h h sphF Fζ=     (S-6a) 
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The second parameter [η] corresponds to the intrinsic viscosity of a dilute suspension 

of aggregates. In the limit of infinite Péclet numbers, the following correlation can be 

obtained from the values of [η] tabulated in Brenner (1974): 

    [ ]

2.5 0.0984 , 1 50

0.315
2 , 50

ln(2 ) 1.5

a a

a

a

a

r r

r

r

r

η

+ ≤ ≤


≈ 
+ > −

   (S-7) 

These two corrections imply the following slight modifications of Eqs. (14), (15) and 

(27) of the manuscript: 

2 2 2

,

321 1

5

A

i m i

N r

ϕ π ζ ϕ
= +       (S-8a) 
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The aggregates observed in our visualization experiments with polyamide fiber 

suspensions [see video in Supplemental Materials] have an aspect ratio varying between 1 and 

3. The two above considered coefficients vary in the following ranges for these aspect ratios:  

1 1.4ζ≤ ≤ ; [ ]2.5 2.8η≤ ≤   at 1 3.5
a
r≤ ≤      (S-

9) 

These variations are not very significant compared to possible errors introduced by 

numerous assumptions of the model; it is therefore reasonable to consider spherical shape of 

the aggregates with 1ζ =  and [ ] 2.5η = . However, the results of this section can be useful for 

other attractive suspensions developing more elongated aggregates. 

 

B. Comparison between erosion and rupture mechanisms 

To establish the dominant mechanism of the aggregate breakup, let us compare the shear 

stresses corresponding to aggregate destruction by both mechanisms. 

In the case when the fiber is eroded from the aggregate surface, it experiences the maximum 

hydrodynamic force along the extension axis, as shown schematically in Fig. S-2. The 

hydrodynamic force acting on this fiber can be estimated as a product of the local normal 

stress (5 / 2)
loc

σ ηγ= ɺ  on the aggregate surface and the fiber cross-sectional area 2
/ 4dπ : 

     
25

8
h

F d
π

σ=      (S-10) 

where σ ηγ= ɺ  is the applied macroscopic stress. 
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Fig. S-2. Erosion of a fiber from the aggregate surface. The eroded fiber is denoted a bold red line 

The total cohesive force acting on a considered fiber “α” is the sum of all the attractive forces 

with neighboring fibers “β”. It can be estimated as an integral of the single contact force F1 

over the contact probability dPA (Eq. (A-3) of the manuscript): 

/ 2 / 2

2

1

0 / 2

4
2 ( )

l l

A

c A i A i A i A

l

F
F FdP n d h ds ds d n dl F F r

β

α β β

α β βα β
ψ ϕ

π
−

= = − + × ≈ − = −

×
∫ ∫ ∫ ∫p p p p

p p

,    (S-11) 

where FA is an effective adhesive force (cf. Appendix A of the manuscript) and 
A
h d≪  is the 

mean separation between the fibers inside the aggregate. Here, we have assumed that only a 

half of the eroded fiber is immerged into the aggregate [Fig. S-2] that explains the zero value 

of the lower bound of the integral over s
α

. 

The fiber is supposed to be eroded when the equilibrium of forces (S-10) and (S-11) 

holds. This allows us to estimate the minimum applied stress required for the fiber erosion at a 

given internal volume fraction ϕi of the aggregate: 

2

32

5

A

e i

F r

d
σ ϕ

π
=     (S-12) 

In the case of the aggregate fracture, the critical stress is obtained by the force balance acting 

on each half of the breaking aggregate. Setting to zero the sum of right-had sides of Eqs. (9) 

and (12) of the manuscript, we get the following expression for the rupture stress: 

2

2

32

5

A

r i

F r

d
σ ϕ

π
=     (S-13) 

Comparison of Eqs. (S-12) and (S-13) show that both expressions differ only by a factor ϕi. 

Since in all the cases 0.3
i

ϕ <  (cf. Fig. 7b of the manuscript), the rupture stress appears to be 

lower than the erosion stress, or, in other words, the fracture occurs at lower stresses and 

therefore is expected to be a dominant mechanism of the aggregate destruction. 

 

C. Experimental details 

The major part of this section is devoted to polyamide (PA) fiber suspensions. Thus, if 

not indicated, the estimated magnitudes concern these suspensions. For the meaning of the 

notations, please refer to the manuscript. 

The fiber sedimentation time scale is estimated as the time required for the horizontal 

fiber to displace in the downward direction over its length [Chaouche and Koch (2001)]: 
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0

16

( ) ln 2
s

f

l

gd r

η
τ

ρ ρ
≈

−
    (S-14) 

Providing the density matching with a maximal error of 
3

0
( ) 2 10fρ ρ

−

− = ⋅  g/cm
3
, the 

sedimentation time of PA fibers ( 7
s

τ ∼  h) is estimated to be larger than the experimental 

time of the measurement interval for a given shear stress between two pre-shearing stages (see 

the measurement protocol in Sec. III-B of the manuscript). 

The relative importance of the Brownian motion with respect to hydrodynamic 

interactions is described by the Péclet number [Larson (1999)]: 

3

0

3 ln 2
B

l
Pe

k T r

πη γ
≈

ɺ

    (S-15) 

where 23
1.38 10

B
k

−

≈ ⋅  J/K is the Boltzmann constant and T is the absolute temperature. The 

PA fibers are perfectly non-Brownian, as inferred from extremely high values of the Péclet 

number 7
3 10Pe ≈ ⋅  estimated in the worst case of the smallest shear rate 

2
10γ

−

=ɺ  s
-1

. 

The dimensionless effective stiffness of fibers is estimated as the ratio of the elastic 

bending stress to the hydrodynamic stress exerted on fibers using the following expression 

proposed by Switzer and Klingenberg (2003): 

0

4 4

0 0
64

Y Y
eff

E I E
S

l r

π

η γ η γ
= =

ɺ ɺ
   (S-16) 

with 2
Y

E ≈  GPa being the Young modulus of the PA fibers and 4

0
/ 64I dπ=  - the cross-

section area moment. Estimated values of the effective stiffness are presented in Table 1 of 

the manuscript. Estimations reveal the values 1effS ≫  in most cases of the present 

experiments. The PA fibers are therefore considered to be perfectly rigid. Note that in many 

other studies, the PA fibers either had a higher aspect ratio or were dispersed in a highly 

viscous fluid. In this case, the criterion 1effS ≫  did not hold and they were categorized as 

semi-flexible fibers [see for instance Keshtkar et al. (2009)]. The above estimations [Eq.     

(S-14)-(S-16)] allow us to validate the assumption (1) [Sec. II-A of the manuscript]. 

The ionic strength, I, of the suspending liquid and the thickness of the electric double 

layer, κe
-1

, are estimated using the following expressions [van de Ven (1989)]: 

    
21

2
i i

I c z= ∑      (S-17a) 
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ε ε
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=  
 

     (S-17b) 
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where ci is the molar concentration (in mol/m
3
) of the ions of the valence zi; ε0≈8.85·10

-12
 F/m 

- the dielectric permittivity of vacuum; ε≈50 – the relative dielectric permittivity of the oil-in-

water mixture; N0≈6·10
23

 mol
-1

 – Avogadro number; e≈1.6·10
-19

 C – elementary charge; The 

values of I are reported in Table 2 of the Manuscript. At such high ionic strength (related to 

high salt concentration required for the density matching), the double layer thickness, 
1

e
κ

−

, 

appears to be less than 1 nm for both suspending liquids. The electrostatic interactions are 

expected to be completely screened and not to play significant role on the suspension 

rheology. PA suspensions are therefore fitted into the frames of our model developed for 

attractive interactions [assumption (3) of Sec. II-A of the Manuscript]. 

The Hamaker constant for PA fibers dispersed in UCON oil-in-water mixture was 

estimated using simplified Lifshitz theory applied to the case of non-retarded van der Waals 

interaction and completely screened electrostatic interaction [Russel et al. (1989)]: 

( )

( )

2
2 2

3/ 2
2 2

3

16 2

f sUV

f s

n n

A

n n

ω −

≈

+

ℏ
    (S-18) 

where 34
1.055 10  J s

−

= ⋅ ⋅ℏ  is the Planck constant, ωUV≈2.10
-16

 rad/s – frequency of dominant 

relaxation in ultraviolet region for both PA and the suspending fluid, nf=1.53±0.03 and 

ns=1.38±0.03 - refractive indexes of PA fibers and the suspending fluid, respectively. 

Estimations give a value A∼10
-20

 J for PA/UCON-water system. 

The Hamaker constant for CNT dispersed in epoxy resin can be estimated using the 

same equation (S-18) with the values ωUV≈7.2·10
-15

 rad/s, nf≈2.15 and ns≈1.57, as reported by 

Khalkhal et al. (2011). We also obtain the value A∼10
-20

 J for CNT/epoxy composite. Note 

that a value A∼10
-19

 J has been reported by Khalkhal et al. (2011), which is explained by an 

erroneous exponent used by in the denominator of Eq. (7) of that paper, namely ½ instead of 

3/2 in Eq. (S-18). Also, we neglected the term depending on dielectric constants of the fibers 

and fluid because of its smallness, while this term is kept in the work of Khalkhal et al. 

(2011). 

The Reynolds numbers on the scale of the flow (rheometer gap) and on the particle 

scale are estimated by the following expressions [Lindström and Uesaka (2009)]: 

2

0

flow

b
Re

ρ γ

η
=

ɺ
; 0

0

p

dl
Re

ρ γ

η
=

ɺ
    (S-19) 

Estimations give the following maximal values of the Reynolds numbers: 8flowRe ≈  

for the rheometer gap scale and 
3

4 10
p

Re
−

≈ ⋅  for the particle scale. Both these values are 

below the limits 360flowRe ≈  [Tillmark and Alfredsson (1992)] and 1
p

Re ∼  [Happel and 

Brenner (1983)] of the laminar-to-turbulent transition on both considered scales. Thus 
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hypothesis (2) in Sec. II-A of the Manuscript is valid. Nevertheless, despite low values of Re , 

secondary flows may appear in torsional parallel plate geometry. The relative importance of 

these flows can be estimated by the ratio of the generated inertial pressure pi to the shear 

stress [Mccoy and Dean (1971)]: 

2

0
0.15 ( )

0.15i
flow

p b
Re

ρ γ

ηγ ηγ
= =

ɺ

ɺ ɺ
   (S-20) 

Within the experimental conditions, this ratio is lower or of the order of 1, meaning 

that, in most of our experiments, secondary inertial flows can be neglected. 

The rheological measurements on PA suspensions conducted in a pool parallel plate 

geometry were subjected to two rheological corrections. 

 

 

a) Moony correction 

The shear stress is defined through the measurements of the applied torque M. The shear rate 

varies linearly from zero on the axis of symmetry to its maximum value at the rim, R
γɺ  which 

is calculated from the measured rotational speed Ω. The following expressions were applied 

for the measured shear stress, shear rate and suspension viscosity [Macosco (1994)]: 

3

2

app

plate

M

R
σ

π

= ; 
plate

R

R

b
γ

Ω
=ɺ ;  

app

app

R

σ
η

γ
=

ɺ
  (S-21) 

where the subscript “app” stands for the apparent shear stress or the apparent viscosity, which 

correspond exactly to the shear rate 
R

γɺ  only in the case of a Newtonian fluid. In experiments, 

the apparent values 
app
σ  and 

app
η  are measured as function of 

R
γɺ . Thus, to compare our 

experiments with the theory, the theoretical values of the shear stress σ and viscosity η are 

converted to the apparent ones using the following relationships [Macosco (1994)]: 

2

3

0

4
( ) ( )

R

app R

R

d

γ

σ γ γ σ γ γ
γ

= ∫
ɺ

ɺ ɺ ɺ ɺ

ɺ
   (S-22a) 
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0

4
( ) ( )

R

app

app R

R R

d

γ
σ

η γ γ η γ γ
γ γ

= = ∫
ɺ

ɺ ɺ ɺ ɺ

ɺ ɺ
  (S-22b) 

In order to use these relationships, we need to find theoretical dependences ( )σ γɺ  and 

( )η γɺ  by solving the transcendental equation (15) of the manuscript with respect to σ and η, 

respectively, by using 
0

r r

f aσ ηγ η η η γ= =ɺ ɺ  [Eq. (16) of the manuscript].  
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Equation (S-22a) gives the following simple relationship between the apparent and the 

real yield stress for the parallel plate geometry: 

2

, 3
0

0

4 4
lim

3

R

R

Y app Y Y

R

d

γ

γ

σ γ σ γ σ
γ→

 
= =  

 
∫
ɺ

ɺ

ɺ ɺ

ɺ
   (S-23) 

All the rheological data reported in the manuscript for the PA suspensions are related 

to the apparent quantities. However the subscripts “app” and “R” are omitted for brevity. 

Notice that the above rheological correction does not apply to the results on CNT suspensions 

measured in a cone-plate geometry. 

b) Correction for the pool geometry 

The pool geometry shown in Fig. 3 of the manuscript gives overestimated values of the 

viscosity because of shearing of the suspension in the pool outside the gap. To estimate the 

necessary correction, the suspending liquid viscosity is measured both in the pool geometry as 

a function of the gap, 
0

( )pool
bη , and in conventional plate-plate geometry with a meniscus at 

the rim, 
0

p p
η

−

. The ratio of these viscosities is fitted by a linear function: 

0 0 1 2
( ) ( ) /pool p pf b b bη η α α

−

≡ = + . Then, the viscosity, ( 5 mm)
pool

bη = , of the PA 

suspensions is measured in the pool geometry with a gap equal to b=5 mm. Finally, assuming 

that the correction function f(b) is the same for the fiber suspension and for the suspending 

liquid, the “true value” of the suspension viscosity η and of the relative viscosity η
r

 are 

deduced: ( 5 mm) / ( 5 mm)
pool

b f bη η= = =  and 
0

/
r p p

η η η
−

= . 
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