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Abstract
This paper deals with the generalization ability of
classifiers trained from non-iid evolutionary-related
data in which all training and testing examples cor-
respond to leaves of a phylogenetic tree. For the re-
alizable case, we prove PAC-type upper and lower
bounds based on symmetries and matchings in such
trees.

1 Introduction
Modeling evolutionary aspects of species correctly is crucial
for many biological problems. An important challenge is that
usually only the genomes and phenotypes of today’s individ-
uals can be observed, while their ancestry and the character-
istics of their ancestors are uncertain. In a number of cases,
e.g. for haploid species, it is a reasonable approximation to
assume that evolution follows a tree, i.e. that every individ-
ual only has one parent. Such trees representing individuals
and their ancestors are called phylogenetic trees. There is a
large body of work studying techniques for deriving phylo-
genetic trees from the genomes of the leaves [Lemey, 2009;
Mossel and Roch, 2006]. Similar techniques are also used in
other fields, e.g. in stemmatology to reconstruct the ancestry
of historic documents.

While reconstructing phylogenetic trees has been thor-
oughly studied, there has been much less attention to learn-
ing theory exploiting the phylogenetic tree information. In
particular, consider a set of individuals for which we know
the genomes and ancestry, and assume that we know for a
subset of these individuals a target value (phenotype) which
depends on the genome (features). The individuals are not
independent as they inherit properties from common parents,
and hence we can’t assume they are distributed identically
and independently (iid), which makes most classic general-
ization bounds inapplicable. Can we construct a new gener-
alization error bound which not only depends on the number
of training examples, but also on the relationship through the
phylogenetic tree with the testing examples on which we want
to make a prediction? An adequate answer to this question
would be of significant value in a lot of bio-medical experi-
mental research.
Example 1. Let us consider the following hypothetical sce-
nario. A lab O (origin) cultivates a strain of bacteria in petri

dishes and then distributes samples to labs A, B, C and D.
Labs A, B, C and D then search for hypotheses about gene
mutations for some phenotype (e.g. resistance to antibiotics).
Now, something strange happens: the hypotheses from labs
A, B and C usually work well on each others data but the hy-
potheses from lab D do not work on data from A, B, C and
vice versa. After reconstructing the phylogenetic tree of the
bacteria from all four labs, it may turn out that the bacteria
which lab D received is actually an almost isolated subpop-
ulation for which generalizing to the rest of the population
is difficult (as we show rigorously in this paper). A machine
learning practitioner may try to explain this phenomenon by
pointing out that the training and testing data is not iid. But
the data is not iid for A, B and C either, even though they are
mixed, so such an explanation would not be sufficient.

We derive probabilistic bounds shedding light on phenom-
ena such as the one described in the above example. We
model the task of learning from evolutionary-related data us-
ing complete binary trees and develop techniques to bound
test-set errors of classifiers trained from such trees in the re-
alizable case, i.e. when there is a hypothesis achieving zero
training error. We provide both lower bounds and upper
bounds. This is important because without the lower bounds,
we would not have any means to check to what extent the
upper bounds make sense in situations when they are much
more pessimistic compared to learning from iid data (e.g. in
situations where the training and testing data come from al-
most separated subpopulations).

Allowing ourselves to speculate a bit, the theoretical re-
sults presented in this paper may also be relevant to problems
of organism immunization. For instance, it seems to be typi-
cally the case that people vaccinated against one strain of flu
may be immune also against similar strains but not necessar-
ily to the more distant ones [Carrat and Flahault, 2007]. If we
think of immunization as learning of immune system to cope
with germs, the analysis described in this paper may be very
relevant.

2 Preliminaries
A tree is a simple, undirected, connected, acyclic graph.
When a special node is designated to turn a tree into a rooted
tree, it is called the root. In such a tree, each of the nodes
that is one edge further away from the root than a given node
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Figure 1: A tree with dataset configuration (A,B,B,A).

is called its child (parent can be defined correspondingly).
The depth of a rooted tree is the distance from the root to the
farthest leaf node. If every node in a tree has at most two
children, this tree is a binary tree. Every non-root node with
degree 1 is a leaf of the tree. An ordered rooted binary tree
is a binary tree in which children of non-leaf nodes are dis-
tinguished, called left and right child, respectively. If T is a
tree, we denote by L(T ) its left subtree and by R(T ) its right
subtree. Similarly, L(T, v) and R(T, v) denote the left and
right subtree of the subtree of T rooted in v. Unless stated
otherwise, when speaking of trees, we assume that they are
complete, ordered and binary, and their leaves are indexed by
increasing integers (from left-most to right-most). Leaves of
trees may also be labeled (not to be confused with indexing of
leaves which is given by ordering of the nodes in a given tree).
As long as we keep working only with complete ordered bi-
nary trees, we can represent labelings of leaves of any tree T
by a sequence z = (z1, z2, . . . , zm) with m = 2d where d is
depth of the tree, z1 is the label of the left-most leaf, z2 is the
label of the second left-most leaf and so on. For instance, the
labeling of the tree from Figure 1 is z = (A,B,B,A). Here,
A and B are just labels whose meaning is not important at
this point.

Sequences z = (z1, z2, . . . , zm) and z′ = (z′1, z
′
2, . . . ,

z′m) of labels of leaves of a complete binary tree are said to
be isomorphic if there exists an automorphism π of the (un-
ordered version of) the tree such that the label of any leaf in
z is the same as the label of the image under π of that leaf
in z′. Informally, z and z′ are isomorphic if there exists a
complete binary tree whose m leaves are labeled by z, and
z′ is the leaf labeling sequence obtained by flipping the or-
der of some subtrees in it (i.e. by swapping some left and
right subtrees). For instance, the sequence z = (A,B,B,A)
from Figure 1 is isomorphic to z′ = (B,A,B,A) but not
to z′′ = (B,B,A,A). Aut(z1, z2, . . . , zm) is the set of
all sequences (z′1, z

′
2, . . . , z

′
m) that are isomorphic to (z1, z2,

. . . , zm). For instance, Aut(B,B,A,A) = {(B,B,A,A),
(A,A,B,B)} We can further define an order on the se-
quences in Aut(z1, z2, . . . , zm), e.g. the lexicographical or-
der. The smallest sequence in an Aut(z1, z2, . . . , zm) is then
called the canonical representative of sequences in this set.

3 Evolutionary Tree Model
The evolutionary tree model considered in this paper is given
by a class X of possible instances (e.g. genomes of individu-
als), a complete binary tree T , a conditional probability func-
tion p(x|x′) : X × X → [0, 1] and a probability function
p0(x) : X → [0, 1]. The joint probability of the individuals

in the tree is given as P [X1 = x1 ∧ · · · ∧Xk = xk] =

= p0(x1) ·
(k−1)/2∏

i=1

p(x2i|xi) · p(x2i+1|xi)

where k is the number of vertices in T , X1 corresponds to
the root, X2i and X2i+1 are children of Xi (i.e. the probabil-
ity factorizes according to a Bayesian network with structure
corresponding to the tree with edges directed from root).

Intuitively, the model describes the following generative
process. First, the common ancestor x1 is sampled according
to the probability distribution p0(.). Then two children x2
and x3 of this common ancestor are sampled according to the
conditional probability distribution p(.|x1). In the next step,
the children of these nodes are again sampled according to
p(.|x2) and p(.|x3) and so on. Since we will mostly be work-
ing only with leaves of the trees, we will denote by P ∗(S)
the marginal probability of the instances in the leaves of the
given tree, i.e. P ∗(S) = P [Xm = x1 ∧ · · · ∧X2m−1 = xm]
where S = (x1, . . . , xm) ∈ Xm is called a sample (notice
that samples only involve leaves of the tree). It holds that if
S = (x1, . . . , xm) ∈ Xm and S ′ = (x′1, . . . , x

′
m) ∈ Xm,

satisfy S ′ ∈ Aut(S) then P ∗(S) = P ∗(S ′), i.e. the distribu-
tion is invariant with respect to symmetries which correspond
to reorderings of a given ordered tree.

Learning in the evolutionary tree model. We assume that
we are given an evolutionary tree model. The positions of
training and testing examples in the tree are specified by
dataset configurations. A dataset configuration is a sequence
A = (a1, a2, . . . , am) where ai ∈ {train, test}. The leaves
of the tree T with an index i such that ai = train are called
train-set leaves and the remaining leaves are called test-set
leaves.

Example 2. For instance, the dataset configuration (train,
train, train, train, test, test, test, test) corresponds to training
and testing examples forming two completely separated pop-
ulations. Regarding Example 1 from Introduction, this could
happen if lab O put half of the original sample of bacteria to
one petri dish and the other half to another petri dish, contin-
ued cultivating the bacteria in the two dishes separately and
then provided samples from one dish to one lab and samples
from the other dish to the other lab. On the other hand, the
dataset configuration (train, test, test, train, train, train, test,
test) corresponds to training and testing examples being more
mixed.

The set of indices of train-set leaves is denoted by Tr(A)
and the set of indices of test-set leaves is denoted by Te(A). If
S is a joint sample of leaves of a given tree then STr(S, A) =
(S)Tr(A) and STe(S, A) = (S)Te(A) are the samples of train-
ing and testing examples, respectively. In a sample, we not
only get feature-vectors x (e.g. genomes), but also the corre-
sponding labels l ∈ {0, 1} given by an unknown concept.

Example 3. If we substitute A := train, B := test
in the tree in Figure 1 then its dataset configuration is
(train, test, test, train). It holds Tr(A) = (1, 4), Te(A) =
(2, 3). If S = (w, x, y, z) then STr(S, A) = (w, z) and



STe(S, A) = (x, y) are the training and testing samples, re-
spectively.

Let H be some class of functions from X to {0, 1}. The
goal of learning is to find a hypothesis h ∈ H which can do
well in predicting labels of testing examples. In the realiz-
able learning case, we also want the hypothesis h to correctly
classify all training examples (such a hypothesis is called con-
sistent hypothesis). A learning algorithm L may be seen as a
function mapping training examples STr ∈ (X × {0, 1})∗
to hypotheses h ∈ H such that for all training examples
(xi, li) ∈ STr it holds li = h(xi). If h is a hypothesis then
err(S, h) =

∑
xi∈S 1(h(xi) 6= li) is the error of the hypoth-

esis h on S.
By error upper bounds in this model, we will understand

inequalities of the form P [err(STe, L(STr)) ≥ k] ≤ fA(k)
where STr = STr(S, A), STe = STe(S, A) and S is jointly
sampled from the given evolutionary tree model. Put simply
in words, we are interested in bounding the probability that a
hypothesis produced by a learning algorithm L which returns
a hypothesis h ∈ H consistent with the sample will disagree
with the unknown concept c ∈ H, which determines labels of
training and testing examples, on k or more testing examples
from the joint sample.

4 Upper Bounds
In this section we derive upper bounds on test-set error. The
next theorem gives a bound on the probability that a fixed
hypothesis h consistent with training examples will result in
k or more errors on the test-set examples.

Theorem 1. Let us have an evolutionary tree model from
which samples S are sampled. Let A = (a1, a2, . . . , am)
be a dataset configuration, h be a fixed hypothesis and c be
an unknown concept. Then the probability

P [err(STr(S, A), h) = 0 ∧ err(STe(S, A), h) ≥ k]

is bounded by

max
e=(e1,...,em)∈Ck

|{e′ ∈ Aut(e) s.t.
∑

i∈Tr(A) e
′
i = 0}|

|Aut(e)|

where Ck denotes the set of all sequences e ∈ {0, 1}m with∑
i ei ≥ k.

Not surprisingly, error bounds depend on given dataset con-
figurations. The next example shows a dataset configuration
for which one cannot really guarantee good generalization.

Example 4. Let us have a complete binary tree with dataset
configuration (train, train, train, train, test, test, test, test).
Using Theorem 1, we obtain the same bound 1

2 for the
probability of 1, 2, 3, and 4 errors on test-set examples. For
instance, for 3 errors e maximizing the fraction in Theorem
1 is e = (0, 0, 0, 0, 1, 1, 1, 0) and we can check that the size
of the set in the numerator is 4 and |Aut(e)| = 8 which gives
the bound 1

2 . Intuitively, this dataset configuration is not
very good for learning because, revisiting the evolutionary
motivation, we have two subpopulations which evolved inde-
pendently of each other but we have only training examples
from one of the populations. It is not surprising that we

? ? T ? T ? T T

Figure 2: A tree with dataset configuration (test, test, train,
test, train, test, train, train). A matching of cardinality 3 is
depicted by the thick edges where different colors correspond
to different matched pairs of train-set and test-set leaves.

cannot give very good guarantees for generalization when
learning only from one of the sub-populations. A dataset
configuration, better suited for learning and leading to much
better bounds is (train, test, train, test, train, test, train, test).
In this case the bounds are 1

2 , 1
4 , 1

8 , and 1
16 for the probability

of 1, 2, 3, and 4 errors, respectively.
The bound in Theorem 1 has two disadvantages for prac-

tical use. First, it is not expressed in terms of a very intu-
itive or an easy-to-compute graph parameter, and second, it
does not have exponential form which is needed for obtain-
ing analytic bounds on the expected error as done in Sec-
tion 6. Therefore, next, we connect the bound from Theo-
rem 1 with matchings in trees. A matching in an ordered tree
T with dataset configuration A is a set of pairs of indices of
leaves M = {(i1, j1), (i2, j2), . . . , (in, jn)} such that: (i) for
every (i, j) ∈ M , i is index of a train-set leaf and j is in-
dex of a test-set leaf, and (ii) the shortest paths connecting
(i, j), (i′, j′) ∈M are disjoint if (i, j) 6= (i′, j′).
Theorem 2. Let T be a tree, letA be its dataset-configuration
and let B(A, k) be the upper bound from Theorem 1. Let
M be a matching of a subset of train and test leaves (M is
supposed to be a set of pairs of indexes). Then B(A, k) ≤
2−k+|Te(A)|−|M |.

Thus, matchings in trees give us simpler, albeit looser, upper
bounds than the bounds from Theorem 1.
Example 5. Let us have a tree with dataset configuration
A = (test, test, train, test, train, test, train, train) displayed
in Figure 2. Then Theorem 2 gives us the upper bound 21−k

on probability of getting at least k errors on test-set examples
and 0 errors on train-set examples for a fixed hypothesis h.

We can use the result from Theorem 2 together with
the shattering lemma (see Lemma 2.1 in [Natarajan, 1991])
and union bound to obtain the upper bound (m + 1)d ·
2−k+|Te(A)|−|M | for learning from a hypothesis class with
VC dimension d [Vapnik, 1995]. We will use this bound for
computing bounds for expected error in Section 6.

5 Lower Bounds
In this section, we derive a lower bound1 corresponding to the
upper bound from Theorem 1.

1In Appendix we actually prove a lemma with a stronger lower
bound than the one in Theorem 3 but less interpretable from which
Theorem 3 follows.



Theorem 3. Let A be a dataset configuration and let k ≤
|Te(A)|. Then there exists an evolutionary tree model, a hy-
pothesis h and a concept c such that

P [err(STr(S, A), h) = 0 ∧ err(STe(S, A), h) ≥ k]

≥ 1

|Aut(A)|2
.

Example 6. Let us have a dataset configuration correspond-
ing to train and test set coming from two completely separated
populations, i.e. A = (train, train, . . . , train, test, test, . . . ,
test). Then the upper bound obtained using Theorem 1 is 1

2
for all k and the lower bound obtained using Theorem 3 is
1
22 = 1

4 , also for all k. So, in this case the ratio of the upper
bound and the lower bound is constant. On the other hand,
when we consider the case in which train and test set are per-
fectly mixed, such as in the case of the dataset configuration
A′ = (train, test, train, test, train, test, train, test), then one
may check that the ratio of the upper bound and the lower
bound grows with k.

We should note here that the lower bound presented in this
section is not the tightest possible. In general, one could
get tighter lower bounds for a fixed dataset configuration by
viewing the tree as a Bayesian network and directly opti-
mizing the conditional probability functions p(.|.) and p0(.).
However, first, this would lead to intractable optimization
problems and, second, it would not give any insight into the
problem. The lower bounds provided in this section are useful
especially in the cases when |Aut(A)|, where A is a dataset
configuration, is small, such as in cases when training and
testing examples come from (almost) separated populations.

6 Bounds on Expected Error
In this section we describe a method for obtaining upper
bounds on expected error. In order to compute expected error
bounds, we will utilize the following theorem which consid-
ers only the special case of dataset configurations with only
one test-set leaf.
Theorem 4. Let A = (test, train, train, . . . , train, train) be
a dataset configuration and H be a hypothesis class with VC
dimension d. Let us suppose that the learning algorithm L
selects a hypothesis from H which is consistent with training
examples. Then for the test-set error we have the inequality

ES [err(STe(S, A), L(STr(S, A)))] ≤
4 + 2d log (|A|+ 1)

|A|
The bounds from the previous theorem lead to a general

and straightforward method for obtaining bounds on expected
errors. For every test-set leaf, we can find the largest complete
binary tree embedded in the original tree T with the dataset
configuration A which still contains that test-set leaf and no
other test-set leaves. By summing up the bounds, using lin-
earity of expected value, for all test-set leaves in the tree, we
obtain an upper bound on the expected error when learning a
consistent hypothesis from a classH with VC dimension d.
Example 7. LetA be a dataset configuration of size 1024 and
let A consist of interleaved blocks of 4 train-set leaves and 4
test-set leaves and let H have VC dimension d = 2. Then for

every test-set leaf, we can find an embedded complete binary
tree consisting of 128 leaves, in which every other leaf is a
train-set leaf. Therefore we can bound the expected number
of errors in this tree by

ES [err(STe(S, A), L(STr(S, A)))]

≤ 512 · 4 + 2 · 2 · log2 129
128

≈ 128.2

which corresponds to error rate of approximately 25%.

7 Related Work
In this section, we discuss related works on learning theory
for learning settings violating the iid assumption. An exam-
ple is learning from examples which are not independent but
only exchangeable. Many classical results on iid learning can
be generalized to this setting [Catoni, 2004; Pestov, 2010;
Shalizi and Kontorovitch, 2013]. Although superficially sim-
ilar to our work because both rely on symmetries, there are
important differences between the two settings. Most notably,
the structure of symmetries is more complicated in our setting
because the bounds in our work must somehow reflect the de-
pendence on symmetries of the dataset configurations.

There are also works on inductive learning from various
models of dependent training examples. In [De Brabanter et
al., 2011], the correlations between training errors are explic-
itly specified. In [Usunier et al., 2005], a setting was studied
in which binary classifiers are trained with data which may
be dependent but deterministically generated from a sam-
ple of independent examples. In time series analysis, train-
ing examples are usually assumed to satisfy some mixing
conditions, e.g. α-mixing or β-mixing [Guo and Shi, 2011;
Ralaivola et al., 2010], which is then used to obtain general-
ization guarantees. In [Wang et al., 2014], dependency struc-
ture of examples is assumed to be known and represented by
hypergraphs. In all these cases, while training examples are
assumed to be dependent, the test-set examples are assumed
to be sampled independently from them. In contrast, in our
work the train-set and test-set examples are both assumed to
be sampled from the evolutionary process and, thus, not in-
dependently.

The case when training and testing examples are not mu-
tually independent of each other, like in the present paper,
has also received attention in learning theory. In [Aldous
and Vazirani, 1990], a model was introduced in which train-
ing and testing examples are sampled from a random walk
(Markov chain). Our work may be regarded as related to
these works in that the evolutionary tree model is related to
branching random walks. However, one difference is that we
assume that the examples come only from leaves of the tree
(which is sensible from the biological motivation because liv-
ing individuals correspond to the leaves) whereas in the ran-
dom walk model the examples are assumed to come from all
stages of the walk. Another difference which stems from this
is that there is no notion of dataset configurations in the ran-
dom walk model. Several results from [Kontorovich, 2012]
would be relevant for our work as well, but only if we put
additional assumptions on the evolutionary process beyond
those used in this paper.



The work presented in this paper is also related to transduc-
tive learning [Gammerman et al., 1998; El-Yaniv and Dmitry,
2009] in that the number of test-set examples is finite and
known in advance (whereas in inductive learning, the number
of test-set examples is assumed to be infinite as there we are
mostly interested in bounding the probability that a hypothe-
sis with high expected error is learned). However, unlike in
transductive learning we do not assume that the test-set ex-
amples are known by the time of learning.

8 Conclusions
In this paper we studied generalization bounds for learn-
ing from examples which are sampled from an evolutionary
model. We provided PAC-type upper bounds based on combi-
natorial arguments and also upper bounds on expected errors.
To complement the upper bounds we also provided a lower
bound for the number of errors of a consistent hypothesis.
For some dataset configurations corresponding to training and
testing examples from populations which are not very mixed
with each other, the lower bounds and upper bounds are rela-
tively tight and pessimistic, confirming the intuition that guar-
anteeing good generalization performance should not be pos-
sible in general for such situations – without some additional
assumptions on the evolutionary process. For the cases when
the training and testing examples come from similar popu-
lations, the upper bounds have exponentially decaying tails
which also leads to reasonable bounds for expected errors. To
our best knowledge, this is the first work providing a theoret-
ical analysis of learning where training and testing examples
are evolutionary related. Extending our analysis to the agnos-
tic case is an interesting future direction.
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A Proofs of Theorems
We will need a little additional notation. Let S =
(x1, . . . , xm) be a joint sample of leaves of the given tree. Let
c ∈ H be an unknown concept according to which training
and testing examples are labeled, and h ∈ H be a hypothe-
sis. Then we let e(S) = (1(c(x1) 6= h(x1)), . . . ,1(c(xm) 6=
h(xm))) denote a sequence which contains ones in the places
of examples for which h and c disagree. We call e(y) error
configuration of y.

Proof of Theorem 1. We can define PE(e) =∑
S∈Xm s.t. e=e(S) P

∗(S) which is the probability that
we sample from the evolutionary tree model a joint sample S
with error configuration equal to e.

Let us denote by ConsAut(e) the set

ConsAut(e) =

{
e′ ∈ Aut(e)|

∑
i∈TrA

e′i = 0

}
which is the set of all error configurations isomorphic to e
with errors only on the test-set leaves. Let ISO be the set of

representatives for classes of isomorphic error configurations
(i.e. for for every e ∈ {0, 1}m there is e′ ∈ ISO such that
e ∈ Aut(e′)). We are interested in bounding the probability
of the event ETe ≥ k ∧ ETr = 0 for which we have

P [err(STr(S, A), h) = 0 ∧ err(STe(S, A), h) ≥ k]

=
∑

e∈Ck∩ISO

|ConsAut(e)|
|Aut(e)|

· |Aut(e)| · PE(e)

≤ max
e′∈Ck

{
|ConsAut(e′)|
|Aut(e′)|

}
which is what we needed to show.

Proof of Theorem 2. First, we define an auxiliary concept
called root of pair. Let (tr, te) ∈ M and let tr =
v1, v2, . . . , vr+1, . . . , v2r+1 = te be the unique path connect-
ing tr and te then vr+1 is called root of the pair (tr, te).

Without loss of generality, we assume that A is such that
for any pair of train-set and test-set leaves (tr, te) ∈ M , if
vr is the root of the pair (tr, te), l is the index of the left-
most leaf of L(T, vr) (which is the left subtree of the subtree
of T rooted in vr) and r is the index of the left-most leaf of
R(T, vr) then either tr = l, te = r or tr = r, te = l. It is not
difficult to see that for any dataset-configuration A there is an
isomorphic dataset-configuration satisfying this property.

Let e ∈ Ck be an error configuration. We will construct
a mapping ϕ : ConsAut(e) → 2Aut(e)\ConsAut(e) such that
for any two different e′, e′′ it will hold ϕ(e′)∩ϕ(e′′) = ∅ and
|ϕ(e′)| ≥ 2k−|Te(A)|+|M | − 1.

First, we order the pairs of the matching M = ((tr1, te1),
(tr2, te2), . . . , (tr|M |, te|M |)) as follows: if the unique path
connecting tei and the root of the tree intersects the path con-
necting trj and tej then j ≤ i. Now, let e = (e1, . . . , em) ∈
ConsAut(e) ∩ Ck be an error configuration with exactly k′
errors and let Erre = {i ∈ N |ci = 1} be the set of in-
dexes of the errors in the error configuration e. Let M ′ =
((tr′1, te

′
1), . . . , (tr

′
k′ , te′k′)) be a subsequence of M consist-

ing of those pairs (tri, tei) ∈M where tei ∈ Erre. Note that
k′ ≥ k−|Te(A)|+|M |. Next, letB = {0, 1}k′\(0, 0, . . . , 0).
For every b = (b1, . . . , bk′) ∈ B we construct a new er-
ror configuration isomorphic to e as follows. We iterate j
down from k′ to 1. If bj is 0, we do not do anything. If
bj is 1 then we find the root vr of the pair (trj , tej), we
take e[L(T, vr)] = (es, es+1 . . . , es+r) and e[R(T, vr)] =
(es+r+1, es+r+2 . . . , es+2r) and swap them in e. where
(s, s+ 1 . . . , s+ r) and (s+ r + 1, s+ r + 2 . . . , s+ 2r)
are the indices of the leaves of the left and right subtree rooted
in the children of vr.

Now we need to show that the sets of error configurations
produced by the above procedure have the desired proper-
ties. First, it is obvious that any error configuration produced
in this way must be contained in Aut(e). Next, notice that
there will always be at least one ei = 1 with i ∈ TrT (A)
(at least the one produced by the last swap) which implies
that no error configuration e′ produced in this way can be
in ConsAut(e). So ϕ maps elements from ConsAut(e) to
subsets of Aut(e) \ ConsAut(e) as required. Now, given



the matching and an error configuration e′ 6∈ ConsAut(e)
we can actually ’decode’ the original configuration as well
as the vector B from which the next two required properties
follow: ϕ(e′) ∩ ϕ(e′′) = ∅ for any e′ 6= e′′ and |ϕ(e′)| ≥
2k−|Te(A)|+|M | − 1. The decoding can be done as follows.
We iterate j from 1 to |M |. For any pair (trj , tej) we check
if etrj = 1 or etej = 1. If so, we know that (trj , tej) ∈ M ′.
If etrj = 1, we set bj = 1 and swap (es, es+1 . . . , es+r) and
(es+r+1, es+r+2 . . . , es+2r) in e where (s, s+ 1 . . . , s+ r)
and (s+ r + 1, s+ r + 2 . . . , s+ 2r) are the indices of the
leaves of the left and right subtree of the tree rooted in the
root of the pair (trj , tej). Otherwise we set bj = 0 and do
not change e at all. It can be shown using induction on the
length of B that this procedure correctly reconstructs both B
and the original e.

Since |ϕ(e) ∪ {e}| ≥ 2k−|Te(A)|+|M |, ϕ(e) ⊆ Aut(e) \
ConsAut(e) for any e ∈ Ck and ϕ(e′) ∩ ϕ(e′′) = ∅ for any
e′ 6= e′′, we can conclude that maxe′∈Ck

{
|ConsAut(e′)|
|Aut(e′)|

}
≤(

1
2

)k−|Te(A)|+|M |
.

We state the next simple lemma without proof.

Lemma 5. For an error (or dataset) configuration e, if
L(e) is isomorphic to R(e) then |Aut(e)| = |Aut(L(e))| ·
|Aut(R(e))|, else |Aut(e)| = 2 · |Aut(L(e))| · |Aut(R(e))|.

Theorem 3 will follow directly from the next lemma.

Lemma 6. IfA is a dataset configuration then there exists an
evolutionary model, a hypothesis h and a concept c such that

P [err(STr(S, A), h) = 0 ∧ err(STe(S, A), h) ≥ k]

≥max
e∈Ck

{
|ConsAut(e)|
|Aut(e)|2

}
.

Proof. For any fixed error configuration e, we have
P [err(STr(S, A), h) = 0 ∧ err(STe(S, A), h) ≥ k] ≥∑

e′∈Aut(e) PE(e
′) · |ConsAut(e)|

|Aut(e)| (because the factor∑
e′∈Aut(e) PE(e

′) is the probability of obtaining an er-
ror configuration isomorphic to e and the other factor
|ConsAut(e)|
|Aut(e)| is the fraction of these configurations with no

errors on training examples). Since the second factor is fixed
for any given error configuration, we can maximize the first
factor independently of it for the fixed error configuration
e, i.e. we can find the set X , functions p0(.), p(.|.) and a
hypothesis h and concept c maximizing the probability of
sampling an error configuration isomorphic to e.

LetX = {−1, 0, 1, 2, . . . , |A|−1}. Let h(x) = 0 for every
x ∈ X and let c(x) = 1 for x = −1 and c(x) = 0 otherwise.
We prove using induction on depth d of the tree T that for any
error configuration e there are functions p0(.) and p(.|.) such
that: p0(x0) = 1 for some x ∈ X , p(x0|.) = 0 and p(x|y)
is non-zero only for x’s from a set Xd ⊆ X of cardinality at
most 2d−1 + 1, and

∑
e′∈Aut(e) PE(e

′) ≥ 1
|Aut(e)| .

(Base case, d = 1). In this case the tree consists of just the
root (which is at the same time also either a train-set leaf or a
test-set leaf). If e = (1) (i.e. e is the configuration (’error’))
then we set p0(−1) = 1 and p0(x) = 0 for x ∈ X \ {−1}.
Otherwise, if e = (0), we set p0(0) = 1 and p0(x) = 0 for

x ∈ X \ {0}. Therefore we have
∑

e′∈Aut(e) PE(e
′) = 1 ≥

1
|Aut(e)| so the base case holds.

(Inductive step, depth of the tree T is d = n). We con-
sider two cases according to symmetry of e. (i) If L(e) and
R(e) are isomorphic then we can select the same p′0(.), p

′(.|.)
andX ′ maximizing the probability P ′E(L(e)) for both the left
and right subtree of the tree T . Let x′0 be the only element
from X ′ for which p′0(x

′
0) = 1. Let us set p0(x0) = 1 for

an arbitrary x0 ∈ X \ X ′. Let us set p(x′0|x0) = 1 and
p(x|y) = p′(x|y) for all x, y ∈ X ′ and p0(x) = 0 for the
rest of x ∈ X \ {x0}. By the induction hypothesis: PE(e) =
P ′E(L(e)) · P ′E(R(e)) ≥ 1

|Aut(L(e))| ·
1

|Aut(R(e))| =
1

|Aut(e)|
(where the last equality follows from Lemma 5). (ii) If L(e)
andR(e) are not isomorphic, let pL0 (.), p

L(.|.), pR0 (.), pR(.|.),
XL, XR maximize PL

E (L(e)) and PR
E (R(e)), respectively.

We can assume w.l.o.g. that there is no x ∈ X \ {−1, 0}
for which both pL(x|.) 6= 0 and pR(x|.) 6= 0. Let xL0
and xR0 be the only elements for which pL0 (x

L
0 ) = 1 and

pR0 (x
R
0 ) = 1, respectively. Let us set p0(x0) = 1 for an arbi-

trary x0 ∈ X \ (XL ∪ XR) and p0(x) = 0 for the rest of x ∈
X \ {x0}. Let us set p(xL0 |x0) = 0.5, p(xR0 |x0) = 0.5 and
p(x|y) = pL(x|y) for all x, y ∈ XL, and p(x|y) = pR(x|y)
for all x, y ∈ XR. By the induction hypothesis, we get

PE(e) ≥ 2 · p(xL0 |x0) · p(xR0 |x0) · PL
E (L(e)) · PR

E (R(e))

≥1

2
· 1

|Aut(L(e))|
· 1

|Aut(R(e))|
=

1

|Aut(e)|
(where the last equality follows from Lemma 5) which fin-
ishes the proof.

Lemma 7. Let A = (test, train, test, train, . . . , test, train)
be a dataset configuration and H, d and L be as in Theorem
4. Then for the expected test-set error we have the inequality
ES [err(STe(S, A), L(STr(S, A)))] ≤ 2 + d log2 (|A|+ 1).

Proof. We have
ES [err(STe(S, A), L(STr(S, A)))] =

=

∞∑
i=1

P [err(STe(S, A), L(STr(S, A))) ≥ i]

≤u+ 1 +

∞∑
i=du+1e

(|A|+ 1)d · 2−i

≤u+ 1 + (|A|+ 1)d · 2−u

Now setting u := log2 (|A|+ 1)d (since the above inequali-
ties hold for any real number u ≥ 0), we get
ES [err(STe(S, A), L(STr(S, A)))] ≤ 2 + d log2 (|A|+ 1).

Proof of Theorem 4. We can ’pretend’ that the dataset config-
uration is (test, train, test, train, . . . , test, train) by ignoring
(|A| − 1)/2 train-set leaves (this never decreases the proba-
bility of selecting a ’bad’ hypothesis fromH which produces
an error on the test-set leaf). Then we can use the bound on
expected error from Lemma 7. It follows from the symmetry
of the problem that we can obtain the bound on expected error
from the statement of this theorem.
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