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The Generalized Linear Sampling Method for limited aperture measurements1

Lorenzo Audibert� and Houssem Haddar y2

3

Abstract. We extend the so-called Generalized Linear Sampling Method (GLSM) to the case of limited aperture4
data at a �xed frequency. In this case the factorization of the sampling operator does not obey5
the symmetry required in the justi�cation of the GLSM introduced in Audibert-Haddar [Inverse6
Problems, 2014]. We propose a new formulation by adding an extra penalty term that asymptotically7
correct the non symmetry of the GLSM original penalty term. The analysis of the new formulation8
is �rst presented in an abstract framework. We then show how to apply our setting to the scalar9
problem with far �eld measurements or near �eld measurements on a limited aperture. We �nally10
validate the method through some numerical tests in two dimensions and for far �eld measurements.11

Key words. Inverse scattering problems, Linear Sampling Method, Generalized Linear Sampling Method, Fac-12
torization Method, Qualitative methods13

AMS subject classi�cations. 35R60, 35R30, 65M3214

1. Introduction. This work is concerned with the design of so-called sampling methods15

[7, 6, 8, 13, 4] for inverse scattering problems where one would like to determine the shape16

of extended targets from �xed frequency multi-static data. More precisely we extend and17

analyze the recently introduced Generalized Linear Sampling Method [3] (GLSM) to limited18

aperture data. The GLSM framework developed in [3] provides an exact characterization of19

the target shape in terms of the so-called far �eld operator (at �xed frequency and for full20

aperture). This characterization is based on two factorizations of the far �eld operator. The21

�rst one is used to justify the Linear Sampling Method (LSM) and the second one is at the22

heart of the Factorization Method(FM). Considering general limited aperture data break the23

symmetry of the second factorization and prevent the application of the results of [3] or [13]24

on the FM. The characterization of the GLSM is based on constructing nearby solution to the25

far �eld equation as minimizing sequences of a special cost functional. In this cost functional26

the symmetric factorization is important to ensure that the regularization term has suitable27

properties. In this article we propose a modi�cation of the regularization term and analyze this28

modi�cation in order to prove exact characterization even for non symmetric factorization.29

The main idea behind our method is that without symmetric factorization it is not possible30

to control directly the norm of the Herglotz wave that approximately solves the far �eld31

equation. However we have access to a term that is close to this quantity and we can bound32

the error we made, therefore controlling the norm of the associated Herglotz wave. Due to33

this splitting the control is coarser and therefore it reects the fact that this situation is less34

favorable for imaging. The fact that the regularization involves compact operators or the case35

of noisy operators are covered using the idea already proposed in [3]. However the interesting36

property of strong convergence of the minimizing sequence of the cost functional demonstrated37
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2 L. AUDIBERT AND H. HADDAR

in [2] could not be simply extended. The second main contribution of this article is to add a38

regularization term to lower the hypothesis of [2] on the regularization term. This new results39

extend the validity of the results of [2] and enable an extension to non symmetric factorization.40

In order to introduce those ideas we choose to present the case of scalar inverse scattering41

from inhomogeneous inclusions for limited aperture far �eld measurements. We also indicate42

how the method can be easily extended to near �eld data.43

On the numerical side we introduce a second order method to minimize the cost functional,44

this method prove to be more e�cient than the one use in [3]. The superiority of our indicator45

function is demonstrated for symmetric factorization. The theory does not say how to choose46

the regularization parameter for symmetric factorization, the method does not seem to be47

very sensitive and an heuristic choice give good result. For non symmetric factorization this48

choice is by far more important and we propose three heuristics to set this parameter.49

The article is organized as follows.In Section 2 a model problem is introduced to motivate50

the GLSM for non symmetric factorization. Theoretical extension for the symmetric factor-51

ization is given in section 3.1 and the case of non-symmetric factorization is treated in section52

3.2. Section 4 provides an example of application by completely treating the model problem53

introduce in section 2. Section 5 show how near�eld data easily �t into the theory developed in54

Section 3. The last section (Section 6) is devoted to numerical algorithms issued from section55

4 along with validating numerical results and discussion on the di�erence between symmetric56

and non-symmetric cases.57

2. A model problem for limited aperture data. We choose to present our method for58

the simple model of inverse time harmonic scattering problem from inhomogeneous targets.59

For a wave number k > 0, the total �eld solve the following scalar wave equation:60

�u+ k2nu = 0 in R
d

61

with d = 2 or 3 and with n 2 L1(Rd) denoting the refractive index such that the support of62

n� 1 is included inside D with D a bounded domain with Lipschitz boundary and connected63

complement and such that =(n) � 0.64

We consider the cases where the total �eld is generated by incident plane waves, ui(�; x) :=
eikx�� with x 2 Rd and � 2 �s (�s � Sd�1 the unit sphere) and we denote by us the scattered
�eld de�ned by

us(�; �) = u� ui(�; �) in Rd;

which is assumed to be satisfying the Sommerfeld radiation condition,

lim
r!1

Z
jxj=r

����@u
s

@r
� ikus

����
2

ds = 0:

The data for the inverse problem is formed by noisy measurements of the so called far �eld
pattern u1(�; x̂) de�ned by

us(�; x) =
eikjxj

jxj(d�1)=2 (u
1(�; x̂) +O(1=jxj))
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THE GENERALIZED LINEAR SAMPLING METHOD FOR LIMITED APERTURE MEASUREMENTS 3

as jxj ! 1 for all (�; x̂) 2 �s � �m, where �m is a subset of Sd�1 possibly di�erent from �s.65

The goal is to be able to reconstruct D from these measurements (without knowing n). We66

introduce the far �eld operator F : L2(�s)! L2(�m), de�ned by67

Fg(x̂) :=

Z
�s

u1(�; x̂)g(�)ds(�); x̂ 2 �m:

Let us de�ne, for  2 L2(D), the unique function w 2 H1
loc(R

d) satisfying68

(1)

8><
>:

�w + nk2w = �k2(n� 1) in Rd;

lim
r!1

R
jxj=r

��@w
@r � ikw

��2 ds = 0:
69

By linearity of the forward scattering problem, Fg is nothing but the far �eld pattern of w
solution of (1) with  = vg in D, where

vg(x) :=

Z
�s

eikx��g(�)ds(�); g 2 L2(�s); x 2 Rd:

Now consider the (compact) operator Hs : L
2(�s)! L2(D) de�ned by70

(2) Hsg := vgjD;71

and the (compact) operator Gm : R(Hs) � L2(D)! L2(�m) de�ned by72

(3) Gm := w1j�m73

where w1 is the far �eld of w 2 H1
loc(R

d) solution of (1) and where R(Hs) denotes the closure
of the range of Hs in L

2(D). Then clearly

F = GmHs

One can still decompose F to get the second factorisation of the far �eld operator. More74

precisely, for the case under consideration, since the far �eld pattern of w has the following75

expression ([4])76

w1(x̂) = �
Z
D
e�iky:x̂(1� n)k2( (y) + w(y))dy;77

one simply has Gm = H�
mT , where H

�
m : L2(D)! L2(�m) is the adjoint of the operator Hm

(de�ned similarly to Hs but with �s replaced by �m) and whose expression is given by

H�
m'(x̂) :=

Z
D
e�iky:x̂'(y)dy; ' 2 L2(D); x̂ 2 �m;

and where the operator T : L2(D)! L2(D) is de�ned by78

(4) T := �k2(1� n)( + w);79
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4 L. AUDIBERT AND H. HADDAR

with w 2 H1
loc(R

d) being the solution of (1). Finally we end up with80

(5) F = H�
mTHs:81

This factorization is called "non symmetric" in the cases Hm 6= Hs which correpond to82

�s 6= �m. The GLSM as formulated in [3] applies to the "symmetric" cases, i.e. �s = �m.83

Physically the latter correspond with sources and receivers on symmetric opposite sides of the84

target (as shown in Figure 1).85

D

Sources Receivers

Figure 1. Sources-receivers con�gurations that correspond with symmetric factorizations of the far �eld
operator.

Our focus in the following is to extend the GLSM to non symmetric factorizations of the86

measurement operator.87

3. Theoretical foundation of the GLSM for limited aperture. In this section we shall
give the theoretical foundation of the extension of the GLSM to non symmetric factorizations.
We will adopt an abstract framework that can be applied to other settings than the one
presented in the previous section (See for instance Section 5 where the case of near �eld data
is considered). As pointed above, the "symmetry" in the factorization of the far �eld operator
is of primary importance in the GLSM framework of [3] where the following cost functional
(for noise-free data) was introduced:

J�(�; g) := �jhBg; gij+ �1��jhFg � �; gij+ kFg � �k2

with B being an operator constructed from F and that has a "symmetric" factorization. The88

latter seems to be hard to ensure in general when F itself has not a "symmetric" factorization.89

In some special cases this can be done as for heterogeneous backgrounds [10] or special settings90

of the near �eld data [5]. However, in the case of limited aperture presented above with91

�m 6= �s, this type of construction seems to be impossible to achieve. This is why we shall92

consider in the following only the case B = F .93

As has been pointed out in [2], for the case B = F , one cannot guarantee in general the94

strong convergence of Herglotz waves associated with the minimizing sequences of J�(�; g)95

(when the sampling point is inside D). Since this convergence is an important property for96

some imaging algorithms (as in [2] for the case of di�erential measurements), we shall �rst97

modify the setting of GLSM so that one obtain this convergence result even in the case B = F .98

The idea is to add an extra (carefully chosen) penalty term that is inspired from di�culties99

encountered in establishing the over mentioned convergence result in the classical setting of100

GLSM.101

This manuscript is for review purposes only.



THE GENERALIZED LINEAR SAMPLING METHOD FOR LIMITED APERTURE MEASUREMENTS 5

3.1. A new formulation of the GLSM for symmetric factorizations.102

3.1.1. Analysis of the noise free case. We denote by X and Y two (complex) reexive103

Banach spaces with duals X� and Y � respectively and shall denote by h; i a duality product104

that refers to hX�; Xi or hY �; Y i duality. We consider the linear operator F : X ! X�.105

Moreover we shall assume that the following factorization holds106

(6) F = H�TH107

where the operators H : X ! Y and T : Y ! Y � are bounded. We denote by G : R(H) �108

Y ! X� the linear operator H�T restricted to R(H).109

Let � > 0 be a given parameter and � 2 X�. The new GLSM (for noise free measurements)110

is based on considering minimizing sequences of the functional J�(�; �) : X ! R111

(7) J�(�; g) := �jhFg; gij+ �1��jhFg � �; gij+ kFg � �k2 8g 2 X;112

where � 2 ]0; 1] is a �xed parameter. Following [3], we �rst observe that113

(8) j�(�) := inf
g2X

J�(�; g)! 0 as �! 0:114

for all � 2 X� if one assumes that F has dense range. Indeed in this case, for a given " > 0115

there exists g" such that kFg" � �k < "
2 . Then one can choose �0(") such for all � � �0("),116

�jhFg"; g"ij+�1��jhFg � �; gij < "
2 so that j�(�) < ", which proves (8). One then can prove117

the following characterization of the range of G in terms of F : .118

Theorem 1. We assume that H is compact, G is injective and F is injective with dense119

range. We also assume that T satis�es the coercivity property120

(9) jhTh; hij > � khk2 8h 2 R(H);121

where � > 0 is a constant independent of h. Consider for � > 0 and � 2 X�, g� 2 X such122

that123

(10) J�(�; g�) � j�(�) + p(�)124

where p(�)
� is bounded with respect to �. Then

� 2 R(G) i� lim
�!0

jhFg�; g�ij <1:

In the case � = G', the sequence Hg� converges strongly to ' in Y as � goes to zero.125

Proof. Assume that � 2 R(G) and let ' 2 R(H) such that G' = �. For � > 0 one can
choose g0 2 X such that kHg0 � 'k2 < �2. Then by continuity of G, kFg0 � �k2 < kGk2�2.
On the other hand the continuity of T implies

jhFg0; g0ij = jhTHg0; Hg0ij � kTk kHg0k2 < 2 kTk (�2 + k'k2)
and

jhFg0 � �; g0ij = jhT (Hg0 � '); Hg0ij � kTk kHg0 � 'k kHg0k < 2 kTk�(�+ k'k):

This manuscript is for review purposes only.



6 L. AUDIBERT AND H. HADDAR

From the de�nitions of j�(�) and g� we have

�jhFg0; g0ij+ �1��jhFg0 � �; g0ij+ kFg0 � �k2 > j�(�) > J�(�; g�)� p(�):

We then deduce from the de�nition of J�, the fact that � 2 ]0; 1] and previous inequalities126

(11) �jhFg�; g�ij � J�(�; g�) � p(�)+2� kTk (�2+ k'k2)+�2kGk2+2 kTk�2��(�+ k'k):127

Therefore lim sup
�!0

jhFg�; g�ij < 1. The coercivity property of T implies that kHg�k2 is

bounded. From (8) and (10) and the injectivity of G we infer that the only possible weak
limit of (any subsequence of) Hg� is '. Thus the whole sequence Hg� weakly converges to '
in Y . On the other hand we have that:

kHg� � 'k2 � jhT (Hg� � '); Hg� � 'ij
� jhT (Hg� � '); Hg�ij+ jhT (Hg� � '); 'ij
� jhFg� � �; g�ij+ jhT (Hg� � '); 'ij

The last term goes to zero due to the weak convergence of Hg�. The �rst term goes to zero
since the second inequality in (11) implies in particular that jhFg� � �; g�ij � ��. Therefore
we conclude that Hg� strongly converges to ' and consequently

lim
�!0

jhFg�; g�ij = jhT'; 'ij:

We now consider the case � =2 R(G). Assume that lim inf
�!0

jhFg�; g�ij < 1: Then, (for some128

extracted subsequence g�) jhFg�; g�ij < A for some constant A independent of � ! 0. The129

coercivity of T implies that kHg�k is also bounded and therefore one can assume that, up to130

an extracted subsequence, Hg� weakly converges to some ' 2 R(H). Since G is compact,131

we obtain that GHg� strongly converges to G' as � ! 0. On the other hand, (8) and the132

de�nition of J�(�; g�) imply that kFg� � �k � J�(�; g�) � j�(�) + C�! 0 as �! 0. Since133

Fg� = GHg� we obtain that G' = � which is a contradiction. We then conclude that if134

� =2 R(G) then lim
�!0

jhFg�; g�ij =1.135

Remark 1. The extension proposed in Theorem 1 requires indeed less assumptions to ensure136

strong convergence than the one proposed in [2] for the case of symmetric factorizations.137

However the result from [2] is still interesting for practical applications (when applicable)138

since it uses a convex cost functional which is easier to minimize numerically.139

3.1.2. Analysis for the case of noisy measurements. Let F � : X ! X� be the operator
associated with noisy far �eld measurements such thatF � � F

 � �

for some � > 0. We assume that the operators F � and F are compact. Again let � 2]0; 1] be140

a �xed parameter. We de�ne for � > 0 and � 2 X� the regularized functional141

(12) J��(�; g) := �j
F �g; g
�j+ �1��j
F �g � �; g

�j+ �1��� kgk2 +
F �g � �

2142

This manuscript is for review purposes only.



THE GENERALIZED LINEAR SAMPLING METHOD FOR LIMITED APERTURE MEASUREMENTS 7

for g 2 X. This functional has a minimizer143

(13) g�� := argmin
g2X

J��(�; g)144

and we also have, assuming that F has a dense range,145

(14) lim
�!0

lim sup
�!0

J��(�; g
�
�) = 0:146

The latter can be proved exactly the same way as in [3, Lemma 4] or Lemma 5 below and is
based on the estimate

J��(�; g) � J�(�; g) + (�� + �1��� + �1��� + �2) kgk2

and (8). We now state and prove the main result of this section.147

Theorem 2. Assume that the hypothesis of Theorem 1 hold true. Let g�� be the minimizer148

of J��(�; �) for � > 0, � > 0 and � 2 X�. Then149

� � 2 R(G) implies lim
�!0

lim sup
�!0

���
F �g��; g
�
�

���+ ����
g��2

�
<1.150

� � =2 R(G) implies lim
�!0

lim inf
�!0

���
F �g��; g
�
�

���+ ����
g��2

�
=1.151

Moreover, when � 2 R(G) we also have

lim
�!0

lim sup
�!0

�
g��

2 = 0:

If G' = �, then there exists �0(�) such that for all �(�) � �0(�), Hg
�(�)
� converges strongly152

to ' as � goes to zero.153

Proof. The proof follows the lines of the proof of Theorem 1. Assume that � = G(') for
some ' 2 R(H). We consider g0 (that depends on � but is independent from �) such that
kHg0 � 'k2 < �2. Choosing � su�ciently small such that

(�� + �1��� + �1��� + �2) kg0k2 � �

we get154

(15) J��(�; g
�
�) � J��(�; g0) � J�(�; g0) + �:155

Consequently, following the same arguments as for the second inequality in (11), we arrive at

�

�
j
F �g��; g

�
�

�j+ ����
g��

2
�
� J��(�; g

�
�) � C�;

for su�ciently small � with C a constant independent from �. This proves lim sup
�!0

lim sup
�!0

���
F �g��; g
�
�

���+ ����kF �k g��2
�
<

1. We also have, as a consequence of the inequalities above, that

�
g��

2 � C��;

This manuscript is for review purposes only.



8 L. AUDIBERT AND H. HADDAR

which proves lim sup
�!0

lim
�!0

�
g��2 = 0. We also have

j
F �g�� � �; g��
�j � C��

which proves, with the estimate on �
g��2 given above, that

lim
�!0

lim sup
�!0

j
Fg�� � �; g��
�j = 0:

We then get that lim
�!0

lim sup
�!0

��
F �g��; g
�
�

��� <1 and can conclude as in the proof of Theorem156

1 that Hg
�(�)
� converges strongly to ' as � goes to zero for �(�) su�ciently small. This also157

proves that lim
�!0

lim sup
�!0

���
F �g��; g
�
�

���+ ����
g��2

�
<1:158

Now assume that � =2 R(G) and lim inf
�!0

lim inf
�!0

���
F �g��; g
�
�

���+ ����
g��2

�
is �nite. The159

coercivity of T and � < 1 implies that160

�
Hg��(�)

2 � j
Fg��; g���j � j
F �g��; g
�
�

�j+ ����
g��

2 :161

Therefore lim inf
�!0

lim inf
�!0

Hg��2 is also �nite. This means the existence of a subsequence162

(�0; �(�0)) such that �0 ! 0 and �(�0)! 0 as �0 ! 0 and
Hg�(�0)

�0

2 is bounded independently163

from �0. One can also choose �(�0) such that �(�0) � �01��. On the other hand Equation164

(14) indicates that one can choose this subsequence such that J
�(�0)
�0 (g

�(�0)
�0 ) ! 0 as �0 ! 0165

and therefore
F �g

�(�0)
�0 � �

 ! 0 as �0 ! 0 and �01���(�0)kg�(�0)
�0 k2 ! 0 as �0 ! 0. By a166

triangular inequality and �(�0) � �01�� we then deduce that
Fg�(�0)

�0 � �
 ! 0 as �0 ! 0.167

The compactness of G implies that a subsequence of GHg
�(�0)
�0 converges for some G' in X�.168

The uniqueness of the limit implies that G' = �, which is a contradiction.169

3.2. The GLSM for non symmetric factorizations. In this section we shall extend GLSM170

formalism presented in the previous section to the case of non symmetric factorisations. The171

general framework is given by the following assumptions. We shall denote by X1, X2 and172

Y three (complex) reexive Banach spaces with duals X�
1 , X

�
2 and Y � respectively and shall173

denote by h; i a duality product that refers to hX�
1 ; X1i, hX�

2 ; X2i or hY �; Y i duality. We174

also set X := X1 �X2.175

We consider a linear operator F : X2 ! X�
1 that is assumed to be bounded and has the176

following factorization177

(16) F = U�TV178

where the operators V : X2 ! Y , T : Y ! Y � and U : X1 ! Y are bounded. We set179

G : RY (V ) � Y ! X�
1 the restriction of U�T to RY (V ) where RY (V ) is the closure of the180

This manuscript is for review purposes only.



THE GENERALIZED LINEAR SAMPLING METHOD FOR LIMITED APERTURE MEASUREMENTS 9

range of V in Y . We shall assume in addition the existence of a space Ŷ such that U and V181

can be extended to bounded operators V : X2 ! Ŷ and U : X1 ! Ŷ such that182

(17) kV g2 + Ug1kY � kV g2 + Ug1kŶ ; 8(g1; g2) 2 X:183

We �nally assume that184

(18) RY (V ) = RY (U) and RŶ (V ) = RŶ (U):185

A typical example is the case of limited aperture presented above with X2 = L2(�s),
X1 = L2(�m), Y = L2(D) and Ŷ = L2(�) with � being any domain such that D � �. The
domain � is assumed to be known a priori (which can coincide with the whole probed domain)
and therefore the operators V : X2 ! Ŷ and U : X1 ! Ŷ are also known a priori. In the case
of limited aperture presented above these operators are de�ned by

V g(x) =

Z
�s

eikx��g(�)ds(�) and Ug(x) =

Z
�m

eikx��g(�)ds(�); x 2 �:

3.2.1. Analysis of the noise free case. Let � > 0 be a given parameter and � 2 X�
1 . We186

rede�ne the functional J� as J�(�; �) : X = X1 �X2 ! R187

(19) J�(�; g) := �jhFg2; g1ij+ �1�� kV g2 � Ug1k2Ŷ + �1��jhFg2 � �; g1ij+ kFg2 � �k2188

for all g = (g1; g2) 2 X where � 2 ]0; 1[ is again a �xed parameter. We also set189

(20) j�(�) := inf
g2X

J�(�; g):190

Indeed the role of the extra term kV g2�Ug1k is to formally ensure V g2 ' Ug1 which cannot
be done exactly since the ranges of the operators V and U are di�erent in general. We then
observe that the penalty term is of the form

hFg2; g1ij = hTV g2; Ug1i ' hTV g2; V g2i

and therefore formally behaves as in the case of symmetric factorizations. The goal of the191

following analysis is to show that this is indeed asymptotically the case as � ! 0. We �rst192

prove that with the additional penalty term, the inf still goes to 0 as �! 0 which guarantee193

that we can construct nearby solutions of the Fg ' �.194

Lemma 3. Assume that F has dense range. Then for all � 2 X�
1 , j�(�)! 0 as �! 0.195

Proof. Since F has dense range, for a given " > 0 there exists g"2 such that196

(21) kFg"2 � �k � "=3:197

Using (18) and (17) we can choose g"1 such that:198

(22) kV g"2 � Ug"1k2Y < kV g"2 � Ug"1k2Ŷ < "=3199
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10 L. AUDIBERT AND H. HADDAR

One then can choose � small enough such that200

(23) �jhFg"2; g"1ij+ �1��jhFg"2 � �; g"1ij � "=3:201

Together with inequalities (21) and (22) the latter inequality implies

j�(�) � J�(�; g
") � "

for su�ciently small � where g" := (g"1; g
"
2).202

We now can state and prove the main theorem of this section that provides a characterization203

of the range of G in terms of F and U and V as operators with values in Ŷ .204

Theorem 4. We assume that G : RY (V ) � Y ! X�
1 is injective and that F has dense205

range. We also assume that T satis�es the coercivity property206

(24) jhT'; 'ij > � k'k2 8' 2 R(U) = R(V );207

where � > 0 is a constant independent of '. Let p(�) be a given function such that p(�)
� = O(1)208

and consider for � > 0 and � 2 X�
1 , g

� = (g�1 ; g
�
2 ) 2 X such that209

(25) J�(�; g
�) � j�(�) + p(�):210

Then we have the following:211

� � 2 R(G) implies lim sup
�!0

�
jhFg�2 ; g�1 ij+ ��� kV g�2 � Ug�1 k2Ŷ

�
<1.212

� � =2 R(G) implies lim
�!0

�
jhFg�2 ; g�1 ij+ ��� kV g�2 � Ug�1 k2Ŷ

�
=1213

In the case � = G', the two sequences V g�2 and Ug�1 strongly converge to ' in Y .214

Proof. The proof follows roughly the same steps and ideas as the proof for the case of215

symmetric factorizations. We start with the case � 2 R(G). We consider ' 2 RY (V ) such216

that G' = � and h�2 2 X2 such that kV h�2 � 'k2Y � �2. According to (18) and (17), there217

exists h�1 2 X1 such that:218

(26) kV h�2 � Uh�1 k2Y < kV h�2 � Uh�1 k2Ŷ < ��:219

We also have220

(27)

jhFh�2 ; h�1 ij = jhTV h�2 ; Uh�1 ij
� jhTV h�2 ; V h�2 ij+ jhTV h�2 ; Uh�1 � V h�2 ij
� kTk kV h�2 k2Y + kTk kV h�2 kY

p
��

221

and
jhFh�2 � �; h�1 ij = jhT (V h�2 � '); Uh�1 ij � kTk kV h�2 � 'k kUh�1 k

< 2 kTk�(�+ k'k+p
��):

The two previous inequalities and the de�nitions g� and j�(�) lead to

�(jhFg�2 ; g�1 ij+ ��� kV g�2 � Ug�1 k2Ŷ + ���jhFh�2 � �; h�1 ij) � j�(�) + p(�) � C�;
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where C is bounded independently of �. This implies in particular that
�
jhFg�2 ; g�1 ij+ ��� kV g�2 � Ug�1 k2Ŷ

�
222

remains bounded as �! 0. We also get223

(28) kV g�2 � Ug�1 k2Ŷ � C��224

and225

(29) jhFg�2 � �; g�1 ij � C��:226

We shall prove now the convergence of V g�2 strongly converges to ' in Y where G' = �. The
coercivity of T implies

� kV g�2 k2Y � jhTV g�2 ; V g�2 ij � jhTV g�2 ; V g�2 i+ hTV g�2 ; Ug�1 � V g�2 ij+ jhTV g�2 ; Ug�1 � V g�2 ij
On the one hand

jhTV g�2 ; V g�2 i+ hTV g�2 ; Ug�1 � V g�2 ij = jhFg�2 ; g�1 ij � C

and on the other hand

jhTV g�2 ; Ug�1 � V g�2 ij � kTk kV g�2 kY kV g�2 � Ug�1 kŶ � kTkC�� kV g�2 kY
These inequalities show that kV g�2 kY is bounded. Second, from Lemma 3 and (25) and the
injectivity of G we infer that the only possible weak limit of (any subsequence of) V g�2 in Y
is '. Thus the whole sequence V g�2 weakly converges to ' in Y . Following the idea of proof
of Theorem 1 we use the formula:

jhT (V g�2 � '); V g�2 � 'ij � jhT (V g�2 � '); 'ij+jhT (V g�2 � '); V g�2 � Ug�1 ij| {z }
�kTk(kV g�2 k+k'k)kV g

�
2�Ug

�
1 kY

+jhFg�2 � �; g�1 ij

The �rst term on the right hand side goes to zero thanks to the weak convergence, the second227

term goes to zero thanks to (28) and the third term goes to zero thanks to (29). The coercivity228

property of T implies that V g�2 converges strongly to ' in Y . The strong convergence of Ug�1229

to ' in Y is a direct consequence of (28).230

We now consider the case � =2 R(G) and assume that lim inf
�!0

jhFg�2 ; g�1 ij+��� kV g�2 � Ug�1 k2Ŷ <231

1. Then, (for some extracted subsequence g�) jhFg�2 ; g�1 ij+��� kV g�2 � Ug�1 k2Ŷ � A for some232

A independent of � as � goes to 0. Using the same reasoning as in the �rst part of the theorem233

this implies that kV g�2 kY is bounded. We then obtain a contradiction exactly in the same234

way as in the proof of the second part of Theorem 1.235

3.2.2. Analysis of the case of perturbed operators. We now consider the case of noisy
data and/or non exact models. The noise in the data is modelled with an operator F � such
that F � � F

 � �

for some � > 0. We can also assume error in the "model" by considering perturbed operators
U �, V � U � � U

 � � and
V � � V

 � �:
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The noisy operators F �, U � and V � are assumed to be compact. We introduce the counterpart236

of (19) in the noisy case (for a constant � 2]0; 1[) as237

(30)
J��(�; g) := � j
F �g2; g1

�j+ ��1��(kg1k2X1
+ kg2k2X2

) + �1��j
F �g2 � �; g1
�j

+�1��
V �g2 � U �g1

2
Ŷ
+
F �g2 � �

2
X�
1

238

for g = (g1; g2) 2 X. We can also treat the case of noisy incorrect knowledge of � by assume
that one would consider �� 2 X such that

k�� � �k � �:

The analysis of the noisy case will then be mainly based on the following simple estimate239

(31) J��(�
�; g) � J�(�; g) + n(�; �; g);240

where241

(32)
n(�; �; g) := �(�+ �1��)(kg1k2X1

+ kg2k2X2
)

+�2
�
kg2k2X2

+ �1��(kg1k2X1
+ kg2k2X2

) + 1
�
:

242

Lemma 5. For for all �; � > 0 the functional J��(�
�; �) has a minimizer g�;�. Assume in

addition that F has dense range. Then we have

lim
�!0

lim
�!0

J��(�
�; g�;�) = 0:

Proof. The existence of a minimizer is clear: for a �xed � > 0, � > 0 and ��, any
minimizing sequence gn of J��(�

�; �) is bounded and therefore there exists a weakly convergent
subsequence to some g�;�. The lower semi-continuity of the norm with respect to the weak
convergence and the compactness property of the operators then imply:

J��(�
�; g�;�) � lim inf

n!+1
J��(�

�; gn) � inf
g
J��(�

�; g)

which proves that g�;� is a minimizer of J��(�; �). Let � > 0 be given. We consider g" as
introduced in the proof of Lemma 3 and choose � su�ciently small (� � �0(�; �) such that

n(�; �; g") � ":

We then deduce from (31) and the de�nition of g�;� that

J��(�
�; g�;�) � J�(�; g

") + "

and conclude as in Lemma 3 that

J��(�; g
�;�) � 2"

for su�ciently small �, which proves the second claim of the lemma.243
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We now can prove the following asymptotic characterization of the range of G (as �0). In
order to shorten the notaion we de�ne

R(g; �; �) := j
F �g2; g1
�j+ ����(kg1k2X1

+ kg2k2X2
) + ���

V �g2 � U �g1

2
Ŷ
:

244

Theorem 6. Assume that the hypothesis of Theorem 4 hold true. Let g�;� = (g�;�1 ; g�;�2 ) be245

the minimizer of J��(�
�; �). Then:246

� � 2 R(G) implies lim sup
�!0

lim sup
�!0

R(g�;�; �; �) <1.247

� � =2 R(G) implies lim inf
�!0

lim inf
�!0

R(g�;�; �; �) =1:248

Moreover, if G' = �, then we also have249

(33) lim sup
�!0

lim sup
�!0

�

�g�;�1

2
X1

+
g�;�2

2
X2

�
= 0250

and there exists �0(�) such that for all �(�) � �0(�), V g
�;�(�)
2 and Ug

�;�(�)
1 converge strongly251

to ' in Y as � goes to zero.252

Proof. Consider �rst the case � 2 R(G). We shall make use of same function h� = (h�1 ; h
�
2 )

as in the �rst part of the proof of Theorem 4 (that only depends on �). If we choose �(�)
such that :

n(�(�); �; h�) � �

(where n is de�ned in (32)) then we get (as in �rst part of the proof of Theorem 4)

J��(�; g
�;�) � C�+ �:

Consequently253

(34) R(g�;�; �; �) � C254

which proves the �rst assertion of the theorem. We also get, as a consequence of the inequalities
above, that

�

�g�;�1

2
X1

+
g�;�2

2
X2

�
� C��

which proves255

(35) lim
�!0

lim sup
�!0

�

�g�;�1

2
X1

+
g�;�2

2
X2

�
= 0:256

For the same reasons, since � > 0 we have257

(36) lim
�!0

lim sup
�!0

V �g�;�2 � U �g�;�1

2
Ŷ
= 0:258

Now choose �0(�) small enough such that, lim sup
�!0

n(�0(�); �; h
�) = 0, consider �(�) � �0(�)

and denote by ~g� := g�;�(�). Then, from (34) and (36) we clearly obtain that the quantity

This manuscript is for review purposes only.



14 L. AUDIBERT AND H. HADDAR



TV �(�)~g�2 ; V

�(�)~g�2
�
is bounded. To conclude as in the proof of Theorem 4 that V ~g�2 and

U~g�1 converge strongly to ' in Y as � goes to zero, one just need to remark that

kV ~g�2 � U~g�1 k2Ŷ �
V �(�)~g�2 � U �(�)~g�1

2
Ŷ
+ �(�)2 k~g�1 k2X1

+ �(�)2 k~g�2 k2X2
! 0

as �! 0 and

jhF ~g�2 � �; ~g�1 ij � j
F �(�)~g�2 � �; ~g�1
�j+ �(k~g�1 k2X1

+ k~g�2 k2X2
)! 0:

as �! 0.259

Consider now the case � =2 R(G) and assume that lim inf
�!0

lim inf
�!0

R(g�;�; �; �) is �nite.260

Then, from261

(37)
���DFg�;�2 ; g�;�1

E��� � ���DF �g�;�2 ; g�;�1

E���+ �
2

g�;�1

2
X1

+ �
2

g�;�2

2
X2

262

we deduce that
���DFg�;�2 ; g�;�1

E��� is bounded for some subsequence �(�). One also get that263 V g�;�2 � Ug�;�1

2
Ŷ

is bounded for the same sequence �(�) meaning that, similarly to the264

second part of the proof of Theorem 4, the sequence
V g�;�(�)2


Y
is bounded as � ! 0. We265

then can obtain a contradiction exactly the same way as in the proof of Theorem 4.266

4. Application to inverse scattering. The purpose of this section is to apply the result267

of section 3 to limited aperture data (described in section 2). This will be possible if D � �268

where � is some bounded known domain. We then de�ne Ŷ from section 3 to be L2(�) and269

set V = Hs and U = Hm.270

The basis of the GLSM is the characterization of the obstacle D in term of the range of271

Gm. This characterization is based on the solvability of the following interior transmission272

problem for u; v 2 L2(D) such that u� v 2 H2(D),273

(38)

8>><
>>:

�u+ k2nu = 0 in D;
�v + k2v = 0 in D;
(u� v) = f on @D;
@
@� (u� v) = g on @D;

274

for a given f 2 H 3
2 (@D) and g 2 H 1

2 (@D). We should make the following assumption275

Hypothesis 1. We assume that k2 2 R+ is such that for all f 2 H 3
2 (@D) and g 2 H 1

2 (@D)276

problem (38) has a unique solution in (u; v) 2 L2(D)� L2(D) and u� v 2 H2(D).277

We recall that it is known [15] that if n � 1 positive de�nite or negative de�nite in a neigh-
borhood of @D, Hypothesis 1 is veri�ed for all k 2 R except a countable set without �nite
accumulation point.
De�ning

�z(x̂) := e�ikx̂�z for x̂ 2 �m

we have:278
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Theorem 7. Under Hypothesis 1, �z 2 R(Gm) (for Gm de�ned in (3)) if and only if z 2 D.279

Lemma 8. R(Hs) = fv 2 L2(D) s:t: �v + k2v = 0 in Dg = R(Hm)280

The proof of this theorem is rather straightforward using the result of Lemma 8 (see [13]) and281

the fact that �z is the far �eld of �(�; z), the fundamental solution of the Helmholtz equation282

satisfying the Sommerfeld radiation condition.283

The central additional theorem needed in order to apply the theory developed in Section284

3 is the following coercivity property of the operator T . This theorem holds true under the285

following assumptions:286

Hypothesis 2. We assume that n 2 L1(Rd) with =(n) � 0 and there exist constants n0; � >287

0 such that 1�<(n)+�=(n) � 0 for a.e. x in a neighborhood of @D or <(n)�1+�=(n) � 0288

for a.e. x in a neighborhood of @D.289

The following lemma has been proved in [1].290

Lemma 9. Assume that Hypothesis 2 holds and that k2 is not a transmission eigenvalue.291

Then the operator T satis�es the coercivity property (9).292

Let C > 0 be a given constant (independent of �) and consider � > 0 and z 2 Rd,293

gz;� = (gz;�1 ; gz;�2 ) 2 L2(�m)� L2(�s) such that :294

J�(�z; g
z;�) = �jhFgz;�2 ; gz;�1 ij+ �1�� kHsg

z;�
2 �Hmg

z;�
1 k2L2(�)

+�1��jhFgz;�2 � �z; g
z;�
1 ij+ kFgz;�2 � �zk2

� j�(�z) + C�;

where � 2]0; 1[ and
j�(�z) = inf

g2L2(�m)�L2(�s)
J�(�z; g):

Combining the results of Theorems 4 and 7 we obtain the following theorem:295

Theorem 10. Assume that Hypotheses 1 and 2 hold. Then z 2 D if and only if lim sup
�!0

jhFgz;�2 ; gz;�1 ij+296

��� kHsg
z;�
2 �Hmg

z;�
1 k2L2(�) <1.297

Moreover, if z 2 D then the sequence of Herglotz wave functions associated to gz;� converges298

strongly to the solution v of (38) with (f; g) = (�z;
@�z
@� ) as � goes to zero.299

For applications, it is important to rather use the criterion provided in Theorem 6. Con-
sider F � : L2(�s)! L2(�m) a compact operator such that:

F � � F
 � �:

Then consider for � > 0 and � 2 L2(�m) the functional J��(�; �) : L2(�s)� L2(�m)! R,

J��(�z; g) = �j
F �g2; g1
�j+ �1�� kHsg2 �Hmg1k2L2(�) + �1��� kgk2

+�1��j
F �g2 � �z; g1
�j+ F �g2 � �z

2
where � 2]0; 1[. Then as a direct consequences of Theorem 6 we obtain the following charac-300

terization of D,301
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16 L. AUDIBERT AND H. HADDAR

Theorem 11. Assume that the hypothesis of Theorem 10 hold true. For z 2 Rd denote by
gz;�;� the minimizer of J��(�; �) over L2(�s)� L2(�m). Then z 2 D if and only if

lim sup
�!0

lim sup
�!0

j
D
F �gz;�;�2 ; gz;�;�1

E
j+ ���

Hsg
z;�;�
2 �Hmg

z;�;�
1

2
L2(�)

+ ����
gz;�;�2 <1:

If z 2 D, there exists �0(�) such that for all �(�) � �0(�), Hg
z;�;�(�) converges strongly302

to the solution v of (38) with (f; g) = (�z;
@�z
@� ) as � goes to zero.303

5. Extension to near �eld data. We concentrated in the previous sections on incident304

plane waves and far �eld measurement and raise the problem of "non symmetric factorization"305

in the case of limited apertures. We here show how the theory of Section 3 can be applied to306

other con�gurations of non symmetric factorization. This is the case for instance of near �eld307

data that we shall present in this section.308

The total �eld is generated by point sources and the scattered �eld is recorded on a surface309

of Rd (usually where the point source lies). If we denote by @
 the surface where the sources310

lie, we consider an incident �eld ui(y; x) := �(y; x) with x 2 Rd and y 2 @
. We introduce311

N : H� 1
2 (@
)! H

1
2 (@
) de�ned by312

(39) Ng :=

Z
@

us(y; x)g(y)ds(y); g 2 H� 1

2 (@
); x 2 H 1
2 (@
);313

where us(y; � = w) solution of (1) with an incident �eld  = ui(y; �). We introduce the314

compact operator S : H� 1
2 (@
)! L2(D) (which plays the role of Hs) de�ned by315

(40) Sg :=

Z
@


�(y; x)g(y)ds(y); g 2 H� 1
2 (@
); x 2 D316

and the (compact) operator G : R(S) � L2(D)! H
1
2 (@
) de�ned by

G := wj@
;
where R(S) denotes the closure of the range of S in L2(D) and w is de�ned as in (1). Then317

clearly318

(41) N = GS:319

In the case under consideration, since the scattered �eld has the following expression :

w(x) = �
Z
D
�(y; x)(1� n)k2( (y) + w(y))dy;

one simply has G = �S�T where �S� : L2(D) ! L2(@
) is the conjugate of the adjoint of S
given by:

�S�'(x) =

Z
D
�(y; x)'(y)dy; x 2 �;

and T is de�ned by (4). Finally we get320

(42) N = �S�TS:321

As for the limited aperture case this factorization is "non symmetric".322
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5.1. Point sources and point measurements on the same surface. The case where the
point sources and the measurements are on the same surface can be solved without relying on
the theory developed in Section 3.2. At the cost of computing an operator C (introduced in
the following) such that :

B = CF = H�TH;

one can rely on the theory of Section 3.1 or on the theory proposed in [3]. In [13] an inf-criterion323

is proposed to tackle the case of near �eld full aperture, through the use of the corresponding324

far �eld operator. We refer to [12] for similar ideas using near �eld measurement. We propose325

to adapt this idea to the setting of the GLSM and to revisit its analysis to avoid the use of326

the corresponding far �eld operator. To do so we need to introduce the following operator,327

which is closely connected to S and a technical lemma.328

(43) S@
 : H� 1
2 (@
)! H

1
2 (@
); S@
(f)(x) =

R
@


�(x; y)f(y)ds(y); x 2 @
329

Lemma 12. If k2 is not a Dirichlet eigenvalue of the Laplace operator in 
, we have that:

S�@
S
�1
@


�S� = S�:

Proof. If k2 is not a Dirichlet eigenvalue of the Laplace operator in 
, for ' 2 H� 1
2 (@
)330

we have that �SS�1;�@
 S@
' and S' solves the Helmholtz equation in 
. Straightforward cal-331

culations provide that �S@
S
�1;�
@
 S�@
' = �S@
' therefore the two solutions share the same332

boundary values on @
. By taking the adjoint we conclude the proof.333

Using (42) we arrived at

B = S�@
S
�1
@
N = S�TS

From this factorization one can either use the framework developed in [3] or the factoriza-334

tion method developed in [13]. One can also apply the results from Section 3.1 by substituting335

hFg � �; gi with hC(Fg � �); gi.336

5.2. Point sources and measurements lying on di�erent surfaces. One can consider a337

limited aperture near�eld measurement by considering that the point sources are located on338

�s � @
 and the measurements are done on �m � @
 and assume that �s and �m are analytic339

surfaces. In this case similarly to the far �eld case we obtain a factorization :340

(44) N = �S�mTSs;341

where Sm and Ss are de�ned similarly to S@
 with @
 replaced by �m and �s respectively.342

Similarly to Section 2, we de�ne the compact operator G fromR(Ss) toH 1
2 (�m) by G := �S�mT .343

As for the far �eld case we have the following result which is proven in [13],344

Lemma 13. If Hypothesis 1 is veri�ed, �z 2 R(G) if and only if z 2 D.345

Lemma 14. If k is not a dirichlet eigenvalue of 
 we have that Ss and Sm are dense in346

fv 2 L2(D) s:t: �v + v = 0 in Dg347
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As already pointed out the operator T is not changed by the type of incident wave and348

measurement therefore it keeps the coercivity property given in section 4.349

The two previous lemmas, the coercivity of T and (44) are all the required ingredients to350

apply the framework of section 3.2 with V = Ss, U = �Sm and F = N . We therefore obtain351

the following corollary for the GLSM with near�eld measurements.352

Corollary 15. Assume that Hypotheses 1 and 2 hold and that D � �. Then z 2 D if and353

only if354

� jhNgz;�2 ; gz;�1 ij+ ���
Ssgz;�2 � �Smg

z;�
1

2
L2(�)

remains bounded for gz;�1 and gz;�2 de�ned as in355

Section 3 with � = �z356

� R(gz;�;�; �; �) (de�ned in Theorem 6) remains bounded for gz;�;� de�ned as in Section 3 with357

� = �z, V = Ss and U = �Sm.358

Moreover we have that one can extract a subsequence from the sequence of herglotz wave359

functions associated to gz;� (resp. gz;�;� )which will converge strongly to the solution v of360

(38) with (f; g) = (�z;
@�z
@� ) as � goes to zero (resp. as � and � go to zero for � � �0).361

6. Numerical Algorithm and results. In order to �x the ideas, we shall restrict ourselves362

in a two dimensional setting with far �eld measurement. We identify S1 with the interval363

[0; 2�[. In order to collect the data of the inverse problem we solve numerically (1) for N364

incident �elds using the surface integral equation forward solver available in [11]. The discrete365

version of F is then the matrix FN. We add some noise to the data to build a noisy far366

�eld matrix F �
N where (F �

N)j;k = (FN)j;k(1 + �Nij) for � > 0 and Nij an uniform complex367

random variable in [�1; 1]2. We denote �z;N 2 CN, the vector de�ned by �z;N(j) = �z(
2�j
N )368

for 0 � j � N � 1. In all our experiments we take � = 0 as we do not �nd a signi�cant369

inuence for this parameter.370

6.1. Symmetric case. First we will look at the result given when �m = �s. This setting
could be seen as a reference image as it does not introduce any new regularization term based
on a priori knowledge on D (the choice of �). Moreover it can be formulated [3] as a convex
functional if one introduces F �

# = j<(F �)j+ j=(F �)j, we introduce:

gz;�;�# = arg min
g2CN

�
(F �

#)
1
2 g
2 + �1��� kgk2 +

F �g � �z

2

This minimization is solved using the normal equation:

gz;�;�# = (�F# + �1���Id+ F �;�F �)�1F �;��z

And �nally we use the following indicator function to retrieve the D

I#(z) = 1(F �
#)

1
2 gz;�;�#

2 + ����
gz;�;�#

2
To compare with setting where �m 6= �s we also introduced :

gz;�;� = arg min
g2CN

�j
F �g; g
�j+ �1��� kgk2 + �1��j
F �g � �z; g

�j+ F �g � �z

2
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and consider the following indicator function:

I(z) = 1

j
F �gz;�;�; gz;�;�
�j+ ���� kgz;�;�k2

:

Computing gz;�;� is much more challenging as the functional is non convex nor di�erentiable371

in general. In [3], a �rst order gradient method is used. We here improve the e�ciency of this372

scheme by using a second order method. We give the formula of the gradient and the hessian373

explicitly in the more general case were �m 6= �s. The iteration are initialized by using the374

original LSM [4] with Tikhonov regularization :375

gz;�;�0 = arg min
g2CN

� kgk2 +
F �g � �z

2

where we choose � such that �
gz;�;�0

 = F z;�;�
0 � �z

. From this choice of � we set � = �

kF#k376

or �
kFk .377

We consider two examples one with two ellipses and one with a kite shape obstacle both378

penetrable obstacle with index of refraction of 0:2. The axis are labelled as multiple of the379

wavelength � = 2�=k. We consider three apertures :[�=2; 3�=2[; [3�=4; 5�=4[ and [7�=8; 9�=8[380

with a noise � = 1%. In �gure 2, we show the results of I# and I.381

6.2. NonSymetric case. We consider the case where �m 6= �s. In this case we have to382

de�ne gz;�;� as the minimizer of a (non convex nor di�erentiable) cost functional,383

gz;�;� = arg min
g2CN�CN

�j
F �g2; g1
�j+ �1��� kgk2 + �1��j
F �g2 � �z; g1

�j
+�1�� kHsg2 �Hmg1k2 +

F �g2 � �z
2 ;

and we introduced the indicator function:384

I(z) = 1

j
D
F �gz;�;�2 ; gz;�;�1

E
j+ ���� kgz;�;�k2 + ���

Hsg
z;�;�
2 �Hmg

z;�;�
1

2 :
To minimize the cost functional we will rely on a second order descent method. We will385

choose the starting point of the descent, g0, as386

gz;�2;�0;2 = arg min
g2CN

�2 kgk2 +
F �g � �z

2

(45) gz;�1;�0;1 = arg min
g2CN

�1 kgk2 +
Hmg �Hsg

z;�;�
0;2

2387

where we choose �2 such that �
gz;�2;�0;2

 =
F z;�2;�

0;2 � �z

 and �1 such that
gz;�1;�0;1

 =388 gz;�2;�0;2

. This second choice is purely arbitrary, our purpose in setting �1 is to avoid, gz;�1;�0;1389

to have large norm which would dominate numerically all other quantities.390
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The minimization of J�� causes numerical problem. Indeed �rst numerically Hm is a391

compact operator and even if it is not important for the theory we are implicitly inverting it392

by minimizing J�� therefore we have to be careful on the balance between the terms kg1k2 and393

kHmg1 �Hsg2k. This is even more important as Hsg2 is not in the range of Hm. Since the394

theory does not give a strategy to set �, we proposed and tested three strategies that give395

similar results. Those strategies are based on the idea (we also use to pick an initial guess g0)396

that
gz;�1;�1

 and
gz;�1;�2

 should have the same order of magnitude.397

First one should remark that we have used the same parameter, � in front of all the terms
but it could have been chosen with a di�erent value for each term (as long as it stays between
0 and 1 for the theory). Using di�erent � instead of � to keep simple notation we introduce:

J��(g1; g2) = �j
F �g2; g1
�j+ �1� kg1k2 + �2� kg2k2 + �1��j
F �g2 � �z; g1

�j
+�3 kHsg2 �Hmg1k2 +

F �g2 � �z
2

We have actually increase the number of parameter in order to get some freedom to balance398

the term involving g1 and Hmg1. To set � we use again our heuristic: � = �2
kFk . We propose399

to choose �1 = �2 = � and �3 = ��=�1 and therefore keep the regularizing power used to400

�nd the initial guess. The parameters set, we used a newton method to minimize J��.401

A second solution we have experienced is to alternatively minimize J�� as a function of g2402

with �3 = �1 = 0 and to minimize the same Tikhonov functional (45) we used to �nd the403

initial guess g0;1. This will impose
gz;�1;�1

 =
gz;�2;�2

 and limit the number of parameters404

to set, however it is not a scheme that is cover by the theory.405

A third solution closely related to our heuristic for symmetric factorization, we have set406

�3 to 1 and �1 = �2 = � where � is chosen to be equal to max(�1; �2)=
F �

.407

All those three methods give similar result. In the following we will show only the results408

of the �rst method. In order to perform the Newton method we need to compute the gradient409

and the Hessian which we explicit in the following for the original cost functional, both gradient410

and Hessian can be easily derive from those formulas. If � is the dot product without conjugate,411
t the transposition and by � the classical transpose-conjugate, we can rewrite J��(�; �) :412

�jg� �(F �g)j+�1��jg� �(F �g��)j+��1��
F �

 g� �g+�1��(Hg)� �(Hg)+(F �g��)� �(F �g��)

where we use the matrix:

F � =

�
0 F �

N

0 0

�
and H =

�
Hm �Hs

�
and g =

�
g2
g1

�
and � =

�
�z

0

�

Using this notation we can compute following the framework of [14] the gradient413

��1��
F �

 g + F ��(F �g � �) + �1��H�Hg +� g��(F �g)F �g+(g��(F �g))F ��g
jg��(F �g)j

+�1�� (g
��(F �g��))(F �g��)+(g��(F �g��))F ��g

jg��(F �g��)j
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and the Hessian,414

��1��
F �

 Id+ F ��F � + �1��H�H + � g��(F �g)F �+(g��(F �g))F ��+F �gg�F ��+F ��gg�F �

jg��(F �g)j

�� (g��(F �g)F �g+(g��(F �g))F ��g)(g��(F �g)F �g+(g��(F �g))F ��g)�

2jg��(F �g)j
3
2

+�1��( (g
��(F �g��))F �+(g��(F �g��))F ��+(F �g��)(g�F �����)+F ��gg�F �

jg��(F �g��)j

� ((g��(F �g��))(F �g��)+(g��(F �g��))F ��g)((g��(F �g��))(F �g��)+(g��(F �g��))F ��g)�

2jg��(F �g��)j
3
2

):

415

We apply those techniques to the case of back scattering data which is when �m = ��s, for416

apertures �s = [�=2; 3�=2[, [3�=4; 5�=4[ and [7�=8; 9�=8[. The result are shown in �gure 3 for417

the kite example for a domain � which occupies the whole image and the smallest rectangle418

that contains D. We also consider the case of �s being either [�=2; 3�=2[, [3�=4; 5�=4[ and419

[7�=8; 9�=8[ and �m being either [0; �[, [�=4; 3�=4[ and [3�=8; 5�=8[. The results are shown420

in �gure 4, again for a kite example and an original setting of sources and measurements. On421

those simulation the size of � has no clear impact therefore we will only show simulation for422

the large grid.423

Figures 5 and 6 consider backscattering data from aperture of the same size as previously,424

but rotated around the obstacle. We see the strong dependency with the mean direction of the425

aperture. The fact that the results are coherent with the aperture we consider lets us think426

that non symmetric aperture is intrinsically worst than symmetric one. Connected to that427

subject in [9] they study invisibility for a �nite number of incident direction and demonstrate428

that imposing invisibility in symmetric direction is equivalent to impose invisibility in all429

direction. Meaning that there is more information inside symmetric-factorization like far �eld430

operator than any other setting of sources and measurements.431
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Figure 2. On the left I# and on the right I. From up to down the aperture is : [�=2; 3�=2[, [3�=4; 5�=4[
and [7�=8; 9�=8[ (as depicted on the right column).
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Figure 3. I computed on the left with a large � and with on the right with a small one. From up to down
the apertures are : �s = [�=2; 3�=2[, [3�=4; 5�=4[ and [7�=8; 9�=8[ (as depicted in the right column).
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Figure 4. I computed on the left with a large � and with on the right with a small one. From up to down the
apertures are :�s = [�=2; 3�=2[, [3�=4; 5�=4[ and [7�=8; 9�=8[ and �m = [0; �[, [�=4; 3�=4[ and [3�=8; 5�=8[(as
depicted in the right column).

This manuscript is for review purposes only.



26 L. AUDIBERT AND H. HADDAR

Figure 5. I computed with � equals the full grid. From left to right and up to down the aperture are :
�s[3�=4; 7�=4[, [�; 2�[ and [��=2; �=2[ and �m = �s + � (the sensor setting are depicted following the same
order in the last image).
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Figure 6. I computed with � equals the full grid. From left to right and up to down the aperture are :
�s = [3�=4; 7�=4[, [�; 2�[ and [��=2; �=2[ and �m = �s+� (the sensor setting are depicted following the same
order in the last image).
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