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The Generalized Linear Sampling Method for limited aperture measurements

Lorenzo Audibert* and Houssem Haddar f

Abstract. We extend the so-called Generalized Linear Sampling Method (GLSM) to the case of limited aperture
data at a fixed frequency. In this case the factorization of the sampling operator does not obey
the symmetry required in the justification of the GLSM introduced in Audibert-Haddar [Inverse
Problems, 2014]. We propose a new formulation by adding an extra penalty term that asymptotically
correct the non symmetry of the GLSM original penalty term. The analysis of the new formulation
is first presented in an abstract framework. We then show how to apply our setting to the scalar
problem with far field measurements or near field measurements on a limited aperture. We finally
validate the method through some numerical tests in two dimensions and for far field measurements.

Key words. Inverse scattering problems, Linear Sampling Method, Generalized Linear Sampling Method, Fac-
torization Method, Qualitative methods

AMS subject classifications. 35R60, 35R30, 65M32

1. Introduction. This work is concerned with the design of so-called sampling methods
[7, 6, 8, 13, 4] for inverse scattering problems where one would like to determine the shape
of extended targets from fixed frequency multi-static data. More precisely we extend and
analyze the recently introduced Generalized Linear Sampling Method [3] (GLSM) to limited
aperture data. The GLSM framework developed in [3] provides an exact characterization of
the target shape in terms of the so-called far field operator (at fixed frequency and for full
aperture). This characterization is based on two factorizations of the far field operator. The
first one is used to justify the Linear Sampling Method (LSM) and the second one is at the
heart of the Factorization Method(FM). Considering general limited aperture data break the
symmetry of the second factorization and prevent the application of the results of [3] or [13]
on the FM. The characterization of the GLSM is based on constructing nearby solution to the
far field equation as minimizing sequences of a special cost functional. In this cost functional
the symmetric factorization is important to ensure that the regularization term has suitable
properties. In this article we propose a modification of the regularization term and analyze this
modification in order to prove exact characterization even for non symmetric factorization.

The main idea behind our method is that without symmetric factorization it is not possible
to control directly the norm of the Herglotz wave that approximately solves the far field
equation. However we have access to a term that is close to this quantity and we can bound
the error we made, therefore controlling the norm of the associated Herglotz wave. Due to
this splitting the control is coarser and therefore it reflects the fact that this situation is less
favorable for imaging. The fact that the regularization involves compact operators or the case
of noisy operators are covered using the idea already proposed in [3]. However the interesting
property of strong convergence of the minimizing sequence of the cost functional demonstrated
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2 L. AUDIBERT AND H. HADDAR

in [2] could not be simply extended. The second main contribution of this article is to add a
regularization term to lower the hypothesis of [2] on the regularization term. This new results
extend the validity of the results of [2] and enable an extension to non symmetric factorization.
In order to introduce those ideas we choose to present the case of scalar inverse scattering
from inhomogeneous inclusions for limited aperture far field measurements. We also indicate
how the method can be easily extended to near field data.

On the numerical side we introduce a second order method to minimize the cost functional,
this method prove to be more efficient than the one use in [3]. The superiority of our indicator
function is demonstrated for symmetric factorization. The theory does not say how to choose
the regularization parameter for symmetric factorization, the method does not seem to be
very sensitive and an heuristic choice give good result. For non symmetric factorization this
choice is by far more important and we propose three heuristics to set this parameter.

The article is organized as follows.In Section 2 a model problem is introduced to motivate
the GLSM for non symmetric factorization. Theoretical extension for the symmetric factor-
ization is given in section 3.1 and the case of non-symmetric factorization is treated in section
3.2. Section 4 provides an example of application by completely treating the model problem
introduce in section 2. Section 5 show how nearfield data easily fit into the theory developed in
Section 3. The last section (Section 6) is devoted to numerical algorithms issued from section
4 along with validating numerical results and discussion on the difference between symmetric
and non-symmetric cases.

2. A model problem for limited aperture data. We choose to present our method for
the simple model of inverse time harmonic scattering problem from inhomogeneous targets.
For a wave number k > 0, the total field solve the following scalar wave equation:

Au + k2nu =0 in R?

with d = 2 or 3 and with n € L>®°(R?) denoting the refractive index such that the support of
n — 1 is included inside D with D a bounded domain with Lipschitz boundary and connected
complement and such that &(n) > 0.

We consider the cases where the total field is generated by incident plane waves, u*(6, z) :=
e*70 with v € R? and 6 € T, (I'y € S ! the unit sphere) and we denote by u® the scattered
field defined by

us(6,) =u—u'(0,-) inRY

which is assumed to be satisfying the Sommerfeld radiation condition,

2

Ou ds = 0.

-

— tku®

lim
r—00

|x|=r

The data for the inverse problem is formed by noisy measurements of the so called far field
pattern 4°°(0, &) defined by

ezk|a:|

u?(0, ) = |33|(di,1)/2(U‘X’(@aﬂ?) +O(1/]z]))
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THE GENERALIZED LINEAR SAMPLING METHOD FOR LIMITED APERTURE MEASUREMENTS 3

as || — oo for all (§,2) € 'y x ['yy,, where Ty, is a subset of S¢~! possibly different from T'.
The goal is to be able to reconstruct D from these measurements (without knowing n). We
introduce the far field operator F : L?(I's) — L?(I',,), defined by

Fg(z) ::/ u™(0,2)g(0)ds(0), & € ['y,.

8

Let us define, for ¢» € L?(D), the unique function w € Hlloc(Rd) satisfying
Aw + nk?w = —k*(n — 1)9 in RY,
(1) lim [ ‘%—f—z’kwﬁ ds = 0.

r—00
|x|=r

By linearity of the forward scattering problem, F'g is nothing but the far field pattern of w
solution of (1) with 1) = vy in D, where

vg(z) == / e*04(0)ds(6), g € LY(T), = € RY.

Now consider the (compact) operator Hy : L2(I's) — L%(D) defined by

(2) Hgg = 'Ug‘D,

and the (compact) operator Gy, : R(Hs) C L*(D) — L*(T'y,) defined by
(3) Gmw = ww’Fm

where w™ is the far field of w € H_(R?) solution of (1) and where R(H,) denotes the closure
of the range of Hy in L?(D). Then clearly

F=G,H;

One can still decompose F' to get the second factorisation of the far field operator. More
precisely, for the case under consideration, since the far field pattern of w has the following
expression ([4])

W () = — /D e~ (1~ n)E2(p(y) + w(y))dy,

one simply has G,,, = H} T+, where H}, : L*(D) — L*(T';;,) is the adjoint of the operator H,,
(defined similarly to Hg but with T's replaced by T';,) and whose expression is given by

Hiyp(2) = /D e MEp(y)dy, ¢ € LA(D), & € L,

and where the operator T: L?(D) — L?(D) is defined by

(4) T := —k*(1 = n)(y + w),
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with w € H{

loc

(5) F = H' TH,.

(R?) being the solution of (1). Finally we end up with

This factorization is called "non symmetric” in the cases Hy,, # H; which correpond to
s # I'yy. The GLSM as formulated in [3] applies to the "symmetric” cases, i.e. I'y = I'y,.
Physically the latter correspond with sources and receivers on symmetric opposite sides of the
target (as shown in Figure 1).

Sources Receivers

Figure 1. Sources-receivers configurations that correspond with symmetric factorizations of the far field
operator.

Our focus in the following is to extend the GLSM to non symmetric factorizations of the
measurement operator.

3. Theoretical foundation of the GLSM for limited aperture. In this section we shall
give the theoretical foundation of the extension of the GLSM to non symmetric factorizations.
We will adopt an abstract framework that can be applied to other settings than the one
presented in the previous section (See for instance Section 5 where the case of near field data
is considered). As pointed above, the ”symmetry” in the factorization of the far field operator
is of primary importance in the GLSM framework of [3] where the following cost functional
(for noise-free data) was introduced:

Ja($19) == al(Bg, g)| + & [(Fg — ¢, g)| + | Fg — ¢||°

with B being an operator constructed from F' and that has a ”"symmetric” factorization. The
latter seems to be hard to ensure in general when F itself has not a 7symmetric” factorization.
In some special cases this can be done as for heterogeneous backgrounds [10] or special settings
of the near field data [5]. However, in the case of limited aperture presented above with
I',, # D[y, this type of construction seems to be impossible to achieve. This is why we shall
consider in the following only the case B = F.

As has been pointed out in [2], for the case B = F', one cannot guarantee in general the
strong convergence of Herglotz waves associated with the minimizing sequences of J,(¢;g)
(when the sampling point is inside D). Since this convergence is an important property for
some imaging algorithms (as in [2] for the case of differential measurements), we shall first
modify the setting of GLSM so that one obtain this convergence result even in the case B = F.
The idea is to add an extra (carefully chosen) penalty term that is inspired from difficulties
encountered in establishing the over mentioned convergence result in the classical setting of
GLSM.

This manuscript is for review purposes only.



THE GENERALIZED LINEAR SAMPLING METHOD FOR LIMITED APERTURE MEASUREMENTS 5

3.1. A new formulation of the GLSM for symmetric factorizations.

3.1.1. Analysis of the noise free case. We denote by X and Y two (complex) reflexive
Banach spaces with duals X* and Y* respectively and shall denote by (, ) a duality product
that refers to (X*, X) or (Y*,Y) duality. We consider the linear operator ' : X — X*.
Moreover we shall assume that the following factorization holds

(6) F=H'TH

where the operators H : X — Y and T : Y — Y* are bounded. We denote by G : R(H) C
Y — X* the linear operator H*T restricted to R(H).

Let a > 0 be a given parameter and ¢ € X*. The new GLSM (for noise free measurements)
is based on considering minimizing sequences of the functional J,(¢;-) : X — R

(7) Ja($:9) = a|(Fg, g)| + o' 1(Fg — ¢, g)| + | Fg — ¢||*> Vg € X,

where 1 € ]0,1] is a fixed parameter. Following [3], we first observe that

(8) Ja(p) := inf Jo(d;9) — 0 as a — 0.
geX

for all ¢ € X* if one assumes that F' has dense range. Indeed in this case, for a given € > 0
there exists g. such that ||Fg. — ¢|| < 5. Then one can choose ag(e) such for all o < ag(e),
a[(Fg:, go)| + o "(Fg — ¢, g)| < § so that j,(¢) < e, which proves (8). One then can prove
the following characterization of the range of G in terms of F": .

Theorem 1. We assume that H is compact, G is injective and F is injective with dense
range. We also assume that T satisfies the coercivity property

(9) (Th, h)| > p|Rl|> YheR(H),

where p > 0 is a constant independent of h. Consider for a > 0 and ¢ € X*, g4 € X such
that

(10) Jo(#; 9a) < Ja(d) + pla)

where ‘7% 18 bounded with respect to a. Then

¢ € R(G) iff h{)% ’(Fgon 9a>’ < 00.

In the case ¢ = G, the sequence Hg, converges strongly to ¢ in'Y as a goes to zero.

Proof. Assume that ¢ € R(G) and let ¢ € R(H) such that Gy = ¢. For a > 0 one can
choose go € X such that |[Hgy — ¢||* < 2. Then by continuity of G, ||Fgy — ¢||* < ||G|[>a?.
On the other hand the continuity of 7" implies

|(Fg0. 9o}l = (THgo, Hgo)| < I |1 Hgoll* < 2|ITI| (® + llol|*)

and

[{(Fg0 — ¢, go)| = (T (Hgo — ¢), Hgo)| < |IT||[[Hgo — ¢l |1Hgoll < 2Tl eclex + [lel])-

This manuscript is for review purposes only.
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6 L. AUDIBERT AND H. HADDAR

From the definitions of j,(¢) and g, we have

o|(Fgo, 90)| + o' "|(Fgo — &, go)| + [Fgo — ¢lI* > ja($) > Ja(d, 9a) — p(a).

We then deduce from the definition of J,, the fact that n € ]0, 1] and previous inequalities
(11) al{Fga, ga)l < Ja($,9a) < pla) +2a|T| (@ + [lol*) + o®||G|* + 2| Tl o>~ (e + [[ol])-

Therefore limsup |[{Fga, ga)| < o0. The coercivity property of 7' implies that ||[Hge|? is
0

a—

bounded. From (8) and (10) and the injectivity of G we infer that the only possible weak
limit of (any subsequence of) Hg, is ¢. Thus the whole sequence Hg, weakly converges to ¢
in Y. On the other hand we have that:

|Hga —¢l” < T(Hga —¢), Hga — )|
< T(Hga — @), Hga)| + (T(Hga — ), ¢)|
<Fga — ¢, ga)| + (T (Hga — ¢), ©)]

The last term goes to zero due to the weak convergence of Hg,. The first term goes to zero
since the second inequality in (11) implies in particular that |(Fga — ¢, ga)| < @'l. Therefore
we conclude that H g, strongly converges to ¢ and consequently

lim [(Fga, ga)| = {Tp, ).
a—0

We now consider the case ¢ ¢ R(G). Assume that lim iglf\(Fga, 9a)| < 00. Then, (for some
a—

extracted subsequence go) [(Fga, ga)| < A for some constant A independent of « — 0. The
coercivity of T implies that ||Hg.|| is also bounded and therefore one can assume that, up to
an extracted subsequence, Hg, weakly converges to some ¢ € R(H). Since G is compact,
we obtain that GH g, strongly converges to Gy as @ — 0. On the other hand, (8) and the
definition of J, (¢, go) imply that ||Fga — ¢l < Jao(@, 9a) < jal(p) + Ca — 0 as @ — 0. Since
Fg, = GHg, we obtain that Gy = ¢ which is a contradiction. We then conclude that if

¢ ¢ R(G) then lin}) (Fga, ga)| = co. [ ]
a—

Remark 1. The extension proposed in Theorem 1 requires indeed less assumptions to ensure
strong convergence than the one proposed in [2] for the case of symmetric factorizations.
However the result from [2] is still interesting for practical applications (when applicable)
since it uses a convex cost functional which is easier to minimize numerically.

3.1.2. Analysis for the case of noisy measurements. Let F° : X — X* be the operator
associated with noisy far field measurements such that

& £ <

for some & > 0. We assume that the operators F° and F are compact. Again let i €]0,1] be
a fixed parameter. We define for @ > 0 and ¢ € X* the regularized functional

2
(12)  Jiég) = al(FPg, g)|+ ' (g — 6. g)| + o' o |gl* + [ F0g — 6|

This manuscript is for review purposes only.
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143 for g € X. This functional has a minimizer

111 (13) Go = argmin Jo (¢; 9)

145 and we also have, assuming that F' has a dense range,

146 (14) lim lim sup J2 (¢; ¢)) = 0.

a—0 50

The latter can be proved exactly the same way as in [3, Lemma 4] or Lemma 5 below and is
based on the estimate

T2; 9) < Ja($y9) + (@d + @' 715 + 715 + 6%) || g|)?

147 and (8). We now state and prove the main result of this section.

148 Theorem 2. Assume that the hypothesis of Theorem 1 hold true. Let gg be the minimizer
149 of J3(¢;-) fora >0, >0 and ¢ € X*. Then

1508 ¢ € R(G) implies lim lim sup (KFégg, ggﬂ + da" HggH2) < 00.
a—=0 50

1510 ¢ ¢ R(G) implies lim tim inf (|(F793, 93)] +da~" |gh]|") = oc.
a —
Moreover, when ¢ € R(G) we also have

2

lim limsupd |lgo|| = 0.

a=0 50

152 If Gp = ¢, then there exists dg(cx) such that for all §(a) < dp(a), Hgg(a) converges strongly
153 1o ¢ as o goes to zero.

Proof. The proof follows the lines of the proof of Theorem 1. Assume that ¢ = G(y) for

some ¢ € R(H). We consider gy (that depends on « but is independent from §) such that
| Hgo — ¢|* < &®. Choosing § sufficiently small such that

(ad + &' "8 + o715 + 62) |90 < «
154 we get
155 (15) To(¢ig8) < Ja($:.90) < Jalhi go) + o

Consequently, following the same arguments as for the second inequality in (11), we arrive at
2
a (I(F%fw gl +a "5 g ) < Ja(¢ig2) < Ca,

for sufficiently small o with C a constant independent from «.. This proves lim sup lim sup (‘ <F 999, ggﬂ + 78| F?
a—0 6—0
o0o. We also have, as a consequence of the inequalities above, that

2
(5‘ < Ca,

ga

This manuscript is for review purposes only.
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8 L. AUDIBERT AND H. HADDAR

which proves lim sup lim § H ggH2 = 0. We also have
a—0 60

[(Fg% — ¢, 93)] < Ca
which proves, with the estimate on ¢ H ggH2 given above, that
lim lim sup |<Fgg — ¢, gg>| =0.
a=0 550

We then get that lin% lim sup ‘(F‘sgg, ggﬂ < oo and can conclude as in the proof of Theorem
a=0 50

1 that H gg(a) converges strongly to ¢ as a goes to zero for §(«) sufficiently small. This also
proves that lim limsup (‘(F‘;gg, ggﬂ + 0o " HggHZ) < 0.
6—0

a—0
Now assume that ¢ ¢ R(G) and lim inf lim inf <‘<F‘sgi, gi}‘ +a™" HggH2> is finite. The
a—0 0—0
coercivity of 7" and « < 1 implies that

2

2
9 - b
It HHgaw)H <[(Fgd, go) < [(F°g0, go)| +a7"8 ‘ 95

Therefore lim 161f hgn 151f HH ggH is also finite. This means the existence of a subsequence
a— —

7 2
(o, (') such that o/ — 0 and §(a’) — 0 as @’ — 0 and HHgg(,a )H is bounded independently
from /. One can also choose §(’) such that §(a/) < &’'=". On the other hand Equation
(14) indicates that one can choose this subsequence such that nga )(giga )) —0as o — 0

and therefore HF‘sgigal) - ¢H — 0as o — 0 and a’lfﬂ(s(a/)||giga’)||2 —0asa — 0. By a

—0as o — 0.

triangular inequality and 6(a) < /'~ we then deduce that HFgg(,O/) — ¢

The compactness of G implies that a subsequence of GH gg}“') converges for some Gy in X*.

The uniqueness of the limit implies that Gy = ¢, which is a contradiction.

3.2. The GLSM for non symmetric factorizations. In this section we shall extend GLSM
formalism presented in the previous section to the case of non symmetric factorisations. The
general framework is given by the following assumptions. We shall denote by X;, X, and
Y three (complex) reflexive Banach spaces with duals X, X and Y™* respectively and shall
denote by (, ) a duality product that refers to (X, X1), (X5, X2) or (Y*,Y) duality. We
also set X := X7 x Xo.

We consider a linear operator F': Xo — X that is assumed to be bounded and has the
following factorization

(16) F=UTV

where the operators V : Xo - Y, T :Y - Y* and U : X; — Y are bounded. We set
G:Ry(V) CY — X7 the restriction of U*T to Ry (V) where Ry (V) is the closure of the

This manuscript is for review purposes only.
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range of V in Y. We shall assume in addition the existence of a space Y such that U and V
can be extended to bounded operators V : Xo =Y and U : X; — Y such that

(17) Vg2 +Ugilly <[Vga +Ugilly, Vi(g1,92) € X.

We finally assume that

(18) Ry(V) = Ry(U) and R}A/(V) = 'R?(U).

A typical example is the case of limited aperture presented above with Xy = L?(T,),
X, = L?(T,), Y = L*(D) and Y = L*(X) with ¥ being any domain such that D C ¥. The
domain ¥ is assumed to be known a priori (which can coincide with the whole probed domain)
and therefore the operators V : Xo — Y and U : X; — Y are also known a priori. In the case
of limited aperture presented above these operators are defined by

Vg(x) :/F e 9(0)ds(0) and Ug(z) :/F e*04(0)ds(h), =€

m

3.2.1. Analysis of the noise free case. Let o > 0 be a given parameter and ¢ € X}. We
redefine the functional J, as Jo(¢;-) : X = X3 x Xo - R

(19)  Jal¢sg) == al{Fgs, g1)| + " |[Vgo = Uqil3 + o' "(Fgo — ¢, g1)| + | Fgz2 — ¢|?

for all ¢ = (g1,92) € X where n € ]0,1[ is again a fixed parameter. We also set
2 ] := inf 1q).
(20) jo(¢) = inf Ja(d:g)

Indeed the role of the extra term ||V go — Ugi|| is to formally ensure Vgo ~ Ug; which cannot
be done exactly since the ranges of the operators V and U are different in general. We then
observe that the penalty term is of the form

(Fg2, 91)| = (TV g2, Ug1) =~ (TV g2, Vgo)

and therefore formally behaves as in the case of symmetric factorizations. The goal of the
following analysis is to show that this is indeed asymptotically the case as & — 0. We first
prove that with the additional penalty term, the inf still goes to 0 as & — 0 which guarantee
that we can construct nearby solutions of the Fg ~ ¢.

Lemma 3. Assume that F' has dense range. Then for all ¢ € X5, jo(¢) — 0 as o — 0.

Proof. Since F' has dense range, for a given € > 0 there exists g5 such that
(21) 1Fg5 — ¢l <e/3.
Using (18) and (17) we can choose g§ such that:

(22) IVgs —Ugilly < Vg5 —Ugills <e/3

2
15
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10 L. AUDIBERT AND H. HADDAR

One then can choose o small enough such that

(23) al(Fgs, g5)| + o' TT(Fgs — b, g5)| < /3.

Together with inequalities (21) and (22) the latter inequality implies

Ja(@) < Juo(d;9°) < ¢

for sufficiently small « where ¢° := (g7, g5). [ ]

We now can state and prove the main theorem of this section that provides a characterization
of the range of G in terms of F' and U and V as operators with values in Y.

Theorem 4. We assume that G : Ry(V) C Y — XT is injective and that F has dense
range. We also assume that T satisfies the coercivity property

(24) (T, o) > pllel? Ve eRU) =RV),

where p > 0 is a constant independent of p. Let p(a) be a given function such that @ =0(1)
and consider for > 0 and ¢ € X7, g% = (9§,9%) € X such that

(25) Jo($59%) < jal®) + pla).

Then we have the following:
® € R(G) implies imsup (|(Fgs., o7)| + a7 Ves — Ugt|}) < oo.

b ¢ R(G) implies lim (|(Fg5, g?)| + a7 |Vg§ — Ugf|[}) = o0
«
In the case ¢ = G, the two sequences Vg and Ug{ strongly converge to ¢ in'Y .

Proof. The proof follows roughly the same steps and ideas as the proof for the case of
symmetric factorizations. We start with the case ¢ € R(G). We consider ¢ € Ry (V) such
that Go = ¢ and hS € Xy such that |[VAG — <p||§/ < a?. According to (18) and (17), there

exists h{ € X such that:

(26) IVAS = URL|ly < VA = US| < o,

We also have

[(Fhg, k)| = KTVhg, UhL)|
(27) < [TVhE, Vh§)|+ (TVhG, UhT — Vh)|
< NTIVESIE + 171 VA ]y Vo
and
(Fhs — ¢, hf)| = KT (VRS — ), URY)| < |T| VRS — ol JURS||
< 2[|T[ el + [ool| + V).

The two previous inequalities and the definitions ¢ and j,(¢) lead to

ol[(Fgs, g7)| +a "[Vs —Ugtl§ + o "(FhG — ¢, hf))) < ja(9) +p(a) < Ca,

This manuscript is for review purposes only.
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3

where C' is bounded independently of o. This implies in particular that (| (Fgg, g +a |Vgy —Ugf

remains bounded as o — 0. We also get

(28) IVgs —Ugtll; < Ca”
and
(29) [(Fgs — &, g7)| < Ca. u

We shall prove now the convergence of Vg5 strongly converges to ¢ in Y where Gy = ¢. The
coercivity of T implies

plVaslls < TV, Vas)| < (TVgs, Vas) + (TVes, Ugk — Vgs)| +[(TVgs, Ugf — Vgs)|
On the one hand
(TVg3, Vg3) +(TVgy, Ugt = Vg3)| = [(Fg5, g1)| < C
and on the other hand
(TVgs, Ugt = V)| < ITIHVslly Vg —Ugllly < T Ca[[Vg3lly

These inequalities show that ||V g§ ||, is bounded. Second, from Lemma 3 and (25) and the
injectivity of G we infer that the only possible weak limit of (any subsequence of) Vg$ in Y
is . Thus the whole sequence Vg5 weakly converges to ¢ in Y. Following the idea of proof
of Theorem 1 we use the formula:

(T(Vgs =), Vgs — o)l < (T(Vgs — ), o)|+(T(Vgs — @), Vg5 — Ugt)| +I(Fg5 — ¢, g7

IV a3 [I+elD1V g5 —Ugt lly

The first term on the right hand side goes to zero thanks to the weak convergence, the second
term goes to zero thanks to (28) and the third term goes to zero thanks to (29). The coercivity
property of T" implies that Vg5 converges strongly to ¢ in Y. The strong convergence of Ug{*
to ¢ in Y is a direct consequence of (28).

We now consider the case ¢ ¢ R(G) and assume that ligljglf (FgS, g!)|+a ||Vgs — Ugf

2
Y/<I

%/ < A for some

0o. Then, (for some extracted subsequence g%) [(Fg$, gf)|+a~"||Vgs — Ug?
A independent of a as « goes to 0. Using the same reasoning as in the first part of the theorem
this implies that ||V ¢3|y- is bounded. We then obtain a contradiction exactly in the same
way as in the proof of the second part of Theorem 1.

3.2.2. Analysis of the case of perturbed operators. We now consider the case of noisy
data and/or non exact models. The noise in the data is modelled with an operator ' such
that

| =7

<9

for some 6 > 0. We can also assume error in the "model” by considering perturbed operators
U67 V(5
v -v| <6 ana |vP-v| <
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The noisy operators F, U% and V? are assumed to be compact. We introduce the counterpart
of (19) in the noisy case (for a constant n €]0, 1[) as

T g) i=a [(Foga, g1)| + o' (lgill%, + lgzlly,) + o "(Fog2 — ¢, g1)]

(30) a1 ||Vigy — Udg, |5 + || Fog — ¢H§q

for g = (g1,92) € X. We can also treat the case of noisy incorrect knowledge of ¢ by assume
that one would consider ¢° € X such that

I9° — ¢ll <.
The analysis of the noisy case will then be mainly based on the following simple estimate
(31) Jo(8°59) < Ja(di g) + (6, 9),
where

n(d,a,9) = Sa+a"N(lgilx, +lgzl%,)

(32) 2 _ 2 2
+32 (lga %, + o' (o Ik, + lgal%,) +1)

Lemma 5. For for all o, 6 > 0 the functional JO(¢%;-) has a minimizer g®°. Assume in
addition that F has dense range. Then we have

lim lim Jg(qb‘s;ga’é) =0.

a—0§6—0

Proof. The existence of a minimizer is clear: for a fixed @ > 0, § > 0 and ¢°, any
minimizing sequence g" of Jg(¢5; -} is bounded and therefore there exists a weakly convergent
subsequence to some ¢*°. The lower semi-continuity of the norm with respect to the weak
convergence and the compactness property of the operators then imply:

Ta(¢7:97) <Timinf Jo (@5 g") < inf Jo(¢;9)

n—+0oo

which proves that g®? is a minimizer of JJ(¢;-). Let € > 0 be given. We consider ¢° as
introduced in the proof of Lemma 3 and choose § sufficiently small (§ < dg(c, €) such that

n(d,a,9%) < €.
We then deduce from (31) and the definition of g®° that
Jo(@79%%) < Ja(dig%) + e

and conclude as in Lemma 3 that
T2 (¢ 9*°) < 2e

for sufficiently small «, which proves the second claim of the lemma. |
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We now can prove the following asymptotic characterization of the range of G (as 60). In
order to shorten the notaion we define

2
Rig,,0) = (Fga, g1)| + 80~ (g1l + llgull%,) + o~ [Vigs - s .

Theorem 6. Assume that the hypothesis of Theorem J hold true. Let g®° = (g?’d,gg’(s) be
the minimizer of JO(¢%;-). Then:
¢ € R(G) implies lim sup lim sup R(¢™, v, §) < oo.

a—0 6—0
¢ ¢ R(G) implies liminf lim inf R(g®?, a, §) = 0.
a—0 6—0

Moreover, if Go = ¢, then we also have

2
)-o
X

and there exists do(a) such that for all §(a) < do(a), Vgg"é(a) and Ugf’d(a) converge strongly
to p inY as a goes to zero.

Proof. Consider first the case ¢ € R(G). We shall make use of same function h* = (h$, h§)
as in the first part of the proof of Theorem 4 (that only depends on «). If we choose §(«)
such that :

(33) lim sup lim sup & (Hgf"‘s g5°

a—0 §—0

2
+
X1

n(d{a),a,h?) <«

(where n is defined in (32)) then we get (as in first part of the proof of Theorem 4)

Jo(4;9%%) < Ca+ av.

Consequently
(34) R(g™°,,8) < C
which proves the first assertion of the theorem. We also get, as a consequence of the inequalities
above, that
(o + o] ) < e
U, 2 |y, ) =

which proves

2 2
35 lim limsupd ( g7+ o3| ) =0,
w s ([, + o[,
For the same reasons, since > 0 we have

2
(36) lirn lim sup HV%Q‘*S — Ut =0,
a=0 550

Now choose dg(c) small enough such that, lim sup n(do(e), o, h%) = 0, consider §(a) < dp(c)
a—0

and denote by §* := ¢®%(®). Then, from (34) and (36) we clearly obtain that the quantity
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<TV5(O‘)§§“, Vé(a)§§‘> is bounded. To conclude as in the proof of Theorem 4 that V¢§ and
Ug{ converge strongly to ¢ in Y as « goes to zero, one just need to remark that

2
Va5 — gt < ||v*gs — ' @ge |+ 6@ 1311k, +0(e)” 135 1%, — 0

as o — 0 and

(Fgs — ¢, g2 < [(FP@gs — b, g2)] +6(lg2l1%, + a51%,) — 0.

as a — 0.
Consider now the case ¢ ¢ R(G) and assume that lim i{)lf lign iélf R(¢g™%, a,0) is finite.
a— —
Then, from

2
,0 ,0 ,0 X
(37) ‘<Fg§‘ , gy >‘S‘<F‘sg§‘ . g7 >‘+%‘

,d
92

a,d 2
91

+g\

X1 X

we deduce that ‘<Fgg’6, g?’6>

2
P )
HVQS“ -Ug™|,.

is bounded for some subsequence J(a). One also get that

is bounded for the same sequence d(«) meaning that, similarly to the

)

is bounded as a — 0. We

second part of the proof of Theorem 4, the sequence HVgg da

then can obtain a contradiction exactly the same way as in the proof of Theorem 4. |

4. Application to inverse scattering. The purpose of this section is to apply the result
of section 3 to limited aperture data (described in section 2). This will be possible if D C ¥
where ¥ is some bounded known domain. We then define ¥ from section 3 to be L*(X) and
set V= Hg; and U = H,,.

The basis of the GLSM is the characterization of the obstacle D in term of the range of
G- This characterization is based on the solvability of the following interior transmission
problem for u,v € L?(D) such that u — v € H*(D),

Au+k*nu=0 in D,
Av+k*v=0 inD,
(u—v)=f ondD,

%(u—v) =g ondD,

(38)

for a given f € H %(3D) and g € H %(8D). We should make the following assumption
Hypothesis 1. We assume that k* € R, is such that for all f € H%(aD) and g € H%(aD)
problem (38) has a unique solution in (u,v) € L*(D) x L*(D) and u —v € H?*(D).

We recall that it is known [15] that if n — 1 positive definite or negative definite in a neigh-
borhood of @D, Hypothesis 1 is verified for all £ € R except a countable set without finite
accumulation point.
Defining

$.(2) := e k% for 3 €Ty,

we have:
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Theorem 7. Under Hypothesis 1, ¢, € R(Gp,) (for G, defined in (3)) if and only if z € D.

Lemma 8. R(H;) = {v € L?(D) s.t. Av+k*v =0 in D} = R(Hp,)

The proof of this theorem is rather straightforward using the result of Lemma 8 (see [13]) and
the fact that ¢, is the far field of ®(-, z), the fundamental solution of the Helmholtz equation
satisfying the Sommerfeld radiation condition.

The central additional theorem needed in order to apply the theory developed in Section
3 is the following coercivity property of the operator 7T'. This theorem holds true under the
following assumptions:

Hypothesis 2. We assume thatn € L>®(R%) with 3(n) > 0 and there exist constants ng, o >
0 such that 1 —R(n) +aSS(n) > 0 for a.e. x in a neighborhood of 0D or R(n) —1+aS(n) >0
for a.e. x in a neighborhood of 0D.

The following lemma has been proved in [1].

Lemma 9. Assume that Hypothesis 2 holds and that k? is not a transmission eigenvalue.
Then the operator T satisfies the coercivity property (9).

Let C > 0 be a given constant (independent of o) and consider & > 0 and z € R,
> = (g7, 95%) € L*(Ty,) x L*(L's) such that :

_ 2
Jal(z,97%) = al(Fg3®, g7 ) + ' 7" | Hygy™ — Hingy Il 25
_ 2
+a' T(Fgy " = ¢z g7 + [1Fg5 ™ — ¢l
< Jal¢z) + Ca,
where 7 €]0, 1] and

a(P2) = inf al\®2,39).
Ja(2) geLZ)(F,lnn)xLz(Fs)J (¢2,9)

Combining the results of Theorems 4 and 7 we obtain the following theorem:

Theorem 10. Assume that Hypotheses 1 and 2 hold. Then z € D if and only if limsup |(F g5, gf’a>\+l
a—0

_ 2

o [ Hsgy™ = Hmgi |72 < oo

Moreover, if z € D then the sequence of Herglotz wave functions associated to g%
strongly to the solution v of (38) with (f,g) = (®,, aa%) as « goes to zero.

@ converges

For applications, it is important to rather use the criterion provided in Theorem 6. Con-
sider FO : L*(T'y) — L?*(T',,) a compact operator such that:

- <
Then consider for & > 0 and ¢ € L*(T,,) the functional JO(¢,-) : L?(T's) x L*(Ty,) — R,

Jo(b2,9) = al(FOgs, g1)| + o' || Hygz — HleH%Q(E) +a' 715 g|f?
_ 2
+a T(FOgs — ¢y g1)| + || FOg2 — ¢

where 7 €]0, 1[. Then as a direct consequences of Theorem 6 we obtain the following charac-
terization of D,
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Theorem 11. Assume that the hypothesis of Theorem 10 hold true. For z € R? denote by
>0 the minimizer of J%(¢,-) over L*(T's) x L?(Ty,). Then z € D if and only if

I I o z2,0,0 Z,0,0 -l g z,a,é_H 20,0 2 2,0,0 2
im sup lim sup | 95", g1 |+ s09 my1 g < oo.

a—0 §—0

+a ‘
)

If z € D, there exists do(ct) such that for all §(a) < do(a), Hg?»**®) converges strongly
to the solution v of (38) with (f,g) = (P, aaqjj) as a goes to zero.

5. Extension to near field data. We concentrated in the previous sections on incident
plane waves and far field measurement and raise the problem of ”non symmetric factorization”
in the case of limited apertures. We here show how the theory of Section 3 can be applied to
other configurations of non symmetric factorization. This is the case for instance of near field
data that we shall present in this section.

The total field is generated by point sources and the scattered field is recorded on a surface
of R? (usually where the point source lies). If we denote by 99 the surface where the sources
lie, we consider an incident field v!(y,z) := ®(y,z) with 2 € R? and y € 99Q. We introduce
N : H™3(99Q) — H2(99) defined by

(39) .Ngziégu%%mnxwddw,geaﬂ%awxawaﬂiwax

where u®(y,- = w) solution of (1) with an incident field ¢ = w'(y,-). We introduce the
compact operator S : H_%(GQ) — L?(D) (which plays the role of H,) defined by

(40) Sg = /8Q ®(y,x)g(y)ds(y), g € H 3(8Q), z € D

and the (compact) operator G : R(S) C L?(D) — H%(aQ) defined by
G = wlaq,

where R(S) denotes the closure of the range of S in L?(D) and w is defined as in (1). Then
clearly

(41) N =GS.

In the case under consideration, since the scattered field has the following expression :
wla) = = [ Blya)(1 =W (lo) + )y,

one simply has G = S*T1) where S* : L?(D) — L?(0Q) is the conjugate of the adjoint of S
given by:

Sp(z) = /D<I>(y,x)90(y)dy, z €T,
and T is defined by (4). Finally we get
(42) N = S*TS.

As for the limited aperture case this factorization is "non symmetric”.

This manuscript is for review purposes only.
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5.1. Point sources and point measurements on the same surface. The case where the
point sources and the measurements are on the same surface can be solved without relying on
the theory developed in Section 3.2. At the cost of computing an operator C' (introduced in
the following) such that :

B=CF = HTH,

one can rely on the theory of Section 3.1 or on the theory proposed in [3]. In [13] an inf-criterion
is proposed to tackle the case of near field full aperture, through the use of the corresponding
far field operator. We refer to [12] for similar ideas using near field measurement. We propose
to adapt this idea to the setting of the GLSM and to revisit its analysis to avoid the use of
the corresponding far field operator. To do so we need to introduce the following operator,
which is closely connected to S and a technical lemma.

(43) Son + H™3(0) = H3 (0, Son((@) = [ @@ 4)f(y)ds(y), @ € 90

Lemma 12. If k? is not a Dirichlet eigenvalue of the Laplace operator in Q, we have that:
S3aSpaS* = S*.

Proof. If /{:? is not a Dirichlet eigenvalue of the Laplace operator in Q, for ¢ € H *%(39)
we have that SSgé’*Sag)(p and S¢ solves the Helmholtz equation in . Straightforward cal-
culations provide that 5’3953_5’*5&190 = 5”39(,0 therefore the two solutions share the same

boundary values on 0f2. By taking the adjoint we conclude the proof. |
Using (42) we arrived at
B = SjqS;qN = §*TS
From this factorization one can either use the framework developed in [3] or the factoriza-
tion method developed in [13]. One can also apply the results from Section 3.1 by substituting

(Fg — ¢, g) with (C(Fg — ¢), g)-

5.2. Point sources and measurements lying on different surfaces. One can consider a
limited aperture nearfield measurement by considering that the point sources are located on
'y C 99 and the measurements are done on I'y,, C J€2 and assume that I'; and 'y, are analytic
surfaces. In this case similarly to the far field case we obtain a factorization :

(44) N = §: TS,

where S, and S are defined similarly to Ssq with 9 replaced by Ty, 1and I's respectively.
Similarly to Section 2, we define the compact operator G from R(S;) to H2(I'y,) by G := S}, T.
As for the far field case we have the following result which is proven in [13],

Lemma 13. If Hypothesis 1 is verified, ®, € R(G) if and only if z € D.

Lemma 14. If k is not o dirichlet eigenvalue of Q) we have that Ss and Sy, are dense in
{v € L*(D) s.t. Av+v =0 in D}

This manuscript is for review purposes only.
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As already pointed out the operator T is not changed by the type of incident wave and
measurement therefore it keeps the coercivity property given in section 4.

The two previous lemmas, the coercivity of T and (44) are all the required ingredients to
apply the framework of section 3.2 with V = S, U = S,, and F = N. We therefore obtain
the following corollary for the GLSM with nearfield measurements.

Corollary 15. Assume that Hypotheses 1 and 2 hold and that D C Y. Then z € D if and
only if )
(Ngs®, g7 ™) +a™||Ssg5" — Smgf’aHH(z) remains bounded for g7’"" and 93" defined as in
Section 3 with ¢ = ¢,
R(g7™%, 0, 8) (defined in Theorem 6) remains bounded for g**° defined as in Section 3 with
b=¢,, V=55 and U = 5p,.
Moreover we have that one can extract a subsequence from the sequence of herglotz wave
functions associated to g>® (resp. ¢=*° )which will converge strongly to the solution v of
(38) with (f,g) = (®,, 851;2) as a goes to zero (resp. as o and § go to zero for § < dp).

6. Numerical Algorithm and results. In order to fix the ideas, we shall restrict ourselves
in a two dimensional setting with far field measurement. We identify S' with the interval
[0,27[. In order to collect the data of the inverse problem we solve numerically (1) for N
incident fields using the surface integral equation forward solver available in [11]. The discrete
version of F' is then the matrix FN. We add some noise to the data to build a noisy far
field matrix F§ where (F3)jx = (Fx)jx(1 + oNjj) for ¢ > 0 and N;; an uniform complex
random variable in [—1,1]2. We denote &, x € CN, the vector defined by P, n(j) = gbz(Q%)
for 0 < 5 < N—1. In all our experiments we take n = 0 as we do not find a significant
influence for this parameter.

6.1. Symmetric case. First we will look at the result given when I';, = I';. This setting
could be seen as a reference image as it does not introduce any new regularization term based
on a priori knowledge on D (the choice of ¥). Moreover it can be formulated [3] as a convex
functional if one introduces Fgﬁ = [R(F)| + |S(F?)|, we introduce:

20 — grg min o (F(S)% 24—041*7’(5” 12+ ||Fg — ¢ ’
g3™" = arg min %)z g g g— .

This minimization is solved using the normal equation:

95 = (aFy + o' 761d + F»* F°) 7 P g,

And finally we use the following indicator function to retrieve the D

1

I#(Z) = 1 2

5 9 76
H(FQ) 295"

2,0,0

2
R

+a " ‘

To compare with setting where I',,, # ['s we also introduced :

2

9" = arg min al(F'g, g)| + ot 15 g + o' (g — o, g)] + | Fog — .
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and consider the following indicator function:

1
[(Fg2ad, g=e0)| + and ||g=ed|?

Computing ¢g>*? is much more challenging as the functional is non convex nor differentiable

in general. In [3], a first order gradient method is used. We here improve the efficiency of this
scheme by using a second order method. We give the formula of the gradient and the hessian
explicitly in the more general case were I',, # I';. The iteration are initialized by using the
original LSM [4] with Tikhonov regularization :

2

. 55 1
95" = arg min B gl + | F'g - 4.
geCN

8
17l

9 75
g’

I

where we choose 8 such that § ‘ . From this choice of § we set a =

B8
or .

W e consider two examples one with two ellipses and one with a kite shape obstacle both
penetrable obstacle with index of refraction of 0.2. The axis are labelled as multiple of the
wavelength A = 27 /k. We consider three apertures :[7/2,37/2[, [37/4, 57 /4] and |77 /8,97 /8]
with a noise § = 1%. In figure 2, we show the results of 7 and 7.

6.2. NonSymetric case. We consider the case where T',, # I';. In this case we have to
define g*®? as the minimizer of a (non convex nor differentiable) cost functional,

2,0,,0 : ) 1— 2 1— )
@0 = qrg min a|(F°g2, +a " + o TN Fg0 — ¢,
g g min o ol(Fg 01) gl [(F°92 = ¢2, g1)]
_ 2
+a' || Hygo — Hugi||” + ||FOg92 — 6|
and we introduced the indicator function:

1
(Fogs20, g7 )| 4 016 [lg=ad|[? + o= | Hyg5 ™ — Hypgi™?

I(z) = ‘2.

To minimize the cost functional we will rely on a second order descent method. We will
choose the starting point of the descent, gg, as

2
3 '76 : 2
935" = arg min fy 9> + | F'g — .
’ geCN
2
) 76 — 3 2 3 76
(45) g5l = arg min B 9| + | Hng — Hygi |
3 QECN )
where we choose 2 such that § 93352’6‘ = HFOZ”QB”S — ¢,|| and B; such that ‘9331’31"5‘ =
‘ géf 2 ‘ This second choice is purely arbitrary, our purpose in setting g is to avoid, géf 19

to have large norm which would dominate numerically all other quantities.
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The minimization of Jg causes numerical problem. Indeed first numerically H,, is a
compact operator and even if it is not important for the theory we are implicitly inverting it
by minimizing J¢ therefore we have to be careful on the balance between the terms ||g;||* and
|Hmgr — Hsge||. This is even more important as Hggo is not in the range of Hy,. Since the
theory does not give a strategy to set «, we proposed and tested three strategies that give
similar results. Those strategies are based on the idea (we also use to pick an initial guess gg)

that ||g] B 1’5H and ‘ g;’ﬁ 1’5H should have the same order of magnitude.

First one should remark that we have used the same parameter, n in front of all the terms
but it could have been chosen with a different value for each term (as long as it stays between
0 and 1 for the theory). Using different « instead of 1 to keep simple notation we introduce:

J2g1,92) = al{Fg2, g1)| + a1 g1 ||” + aad H!J?HZ + M Fgy — by 1)
+az || Hsgo — I'Imng2 + HF592 - ¢zH

We have actually increase the number of parameter in order to get some freedom to balance
the term involving ¢; and H,,g1. To set @ we use again our heuristic: a = \(BTZH We propose
to choose a1 = ay = @ and a3 = ad/f; and therefore keep the regularizing power used to
find the initial guess. The parameters set, we used a newton method to minimize Jg.

A second solution we have experienced is to alternatively minimize Jg as a function of go

with a3 = @3 = 0 and to minimize the same Tikhonov functional (45) we used to find the

2,816 || _ || 2820
= [Joz |

initial guess go,1. This will impose H 9, and limit the number of parameters

to set, however it is not a scheme that is cover by the theory.

A third solution closely related to our heuristic for symmetric factorization, we have set
ag to 1 and a1 = ag = o where « is chosen to be equal to max (1, 52)/ HF‘;H

All those three methods give similar result. In the following we will show only the results
of the first method. In order to perform the Newton method we need to compute the gradient
and the Hessian which we explicit in the following for the original cost functional, both gradient
and Hessian can be easily derive from those formulas. If - is the dot product without conjugate,
! the transposition and by * the classical transpose-conjugate, we can rewrite Jg(qb, )

olg" (F'g)|+a'lg" - (Fig= )|+ 30~ | F*| g"-g+a'~(Hg)" - (Hg) +(F'g—¢)"- (F'g—¢)
where we use the matrix:

0
F5:[8 F(’)N] and H= [ H,, —H, | andg:[g?] andqﬁ:[%z]

Using this notation we can compute following the framework of [14] the gradient

60! 1| 0| g+ FO*(Fog — ) + ol MH"Hg  +a 0ot (T

1—n (g% (FOg—¢))(F g— @)+ (g* -(FOg—$))F°*g
to (g~
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and the Hessian,

S~ || F®|| Id + F**F° + o' ~"H*H + ag*~(F59)F‘5+(g*-(Féfng;*ézﬁ‘;gg*ﬂ*+F5*gg*F‘5

— U9 P gt (g (0 g)) ) (g™ (0 g) F g (g™ -(Fg)) " g)”
- 2|9 -(F°g)|2
ot (gD (g (FO =N EY (09— g)(g" FO" —¢") +F0" 9" O
- g*-(FP9—9)|
_ (g (g —9)) (g —9)+(g" (179 —¢) F** 9) (g™ (F 9 —¢)) (I g —¢) +(g"-(F*g—)) """ g)"
2lg=-(F°g—¢)|2

~

We apply those techniques to the case of back scattering data which is when I',, = —I', for
apertures I's = [7/2,37/2[, [37/4,57 /4] and [77/8,97/8[. The result are shown in figure 3 for
the kite example for a domain > which occupies the whole image and the smallest rectangle
that contains D. We also consider the case of T'y being either [7/2,37 /2], [37/4, 57 /4] and
[7m/8,97/8[ and I';, being either [0, 7], [7/4,3n /4] and [37/8,57/8]. The results are shown
in figure 4, again for a kite example and an original setting of sources and measurements. On
those simulation the size of X has no clear impact therefore we will only show simulation for
the large grid.

Figures 5 and 6 consider backscattering data from aperture of the same size as previously,
but rotated around the obstacle. We see the strong dependency with the mean direction of the
aperture. The fact that the results are coherent with the aperture we consider lets us think
that non symmetric aperture is intrinsically worst than symmetric one. Connected to that
subject in [9] they study invisibility for a finite number of incident direction and demonstrate
that imposing invisibility in symmetric direction is equivalent to impose invisibility in all
direction. Meaning that there is more information inside symmetric-factorization like far field
operator than any other setting of sources and measurements.
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Figure 2. On the left Zu and on the right Z. From up to down the aperture is : [n/2,3w /2], [3n/4, 5 /4]
and [77 /8,97 /8[ (as depicted on the right column).
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Figure 3. 7 computed on the left with a large ¥ and with on the right with a small one. From up to down
the apertures are : I's = [1/2,3n /2], [37 /4,57 /4] and [T7/8,97/8] (as depicted in the right column).
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Figure 4. T computed on the left with a large ¥ and with on the right with a small one. From up to down the
apertures are I's = [w/2,3n/2[, [3nw/4, 57 /4] and [T7/8,97/8[ and 'y, = [0, [, [w/4, 37 /4] and [37/8, 57 /8[(as
depicted in the right column).
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Figure 5. 7 computed with ¥ equals the full grid. From left to right and up to down the aperture are :
Ds[3n/4, 7 /4], [r,2n] and [-7/2,7/2[ and Ty, = ['s + w (the sensor setting are depicted following the same
order in the last image).
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Figure 6. Z computed with ¥ equals the full grid. From left to right and up to down the aperture are :
Dy = [3n/4,7n /4], [r,2n[ and [-7/2,7/2[ and T, = T's +7 (the sensor setting are depicted following the same
order in the last image).
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