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Abstract. We extend the applicability of the Generalized Linear Sampling Method

(GLSM) [2] and the Factorization Method (FM)[14] to the case of inhomogeneities

where the contrast change sign strictly inside the obstacle. Both methods give an

exact characterization of the target shapes in term of the far�eld operator (at a �xed

frequency). One of the key ingredient to prove this exact characterization is based on a

factorization of the far�eld operator. This factorization involves three operators which

should exhibit speci�c properties. This paper is concerned with the extension of the

coercivity property required on one of them to the case of sign changing contrast both

for isotropic and anisotropic scatters with possibly di�erent supports for the isotropic

and anisotropic parts. We fnally validate the method through some numerical tests in

two dimensions.

AMS classi�cation scheme numbers: 35R60, 35R30, 65M32

Keywords: Inverse scattering problems, Linear Sampling Method, Factorization Method,

Qualitative methods

1. Introduction

We extend the applicability of the Generalized Linear Sampling Method (GLSM) [2] and

the Factorization Method (FM)[14] to the case of inhomogeneities where the contrast

change sign strictly inside the obstacle. Such an extension is quite natural because such

properties of the contrast induce discreteness of the Interior Transmission Problem (ITP)

and therefore range characterization [6] are available. Those range characterizations lead

to Linear Sampling Method which has not a rigorous mathematical justi�cation. In order

to have a rigorous mathematical analysis we have to consider the FM and the GLSM

that give an exact characterization of the target shapes in term of the far�eld operator

(at a �xed frequency). One of the key ingredient to prove this exact characterization

is based on a factorization of the far�eld operator. This factorization involves three

operators which should exhibit speci�c properties. This paper is concerned with the

extension of the coercivity property required on one of them to the case of sign changing

contrast both for isotropic and anisotropic scatters with possibly di�erent supports for

the isotropic and anisotropic parts.
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The main idea behind our method is to introduce an arti�cial contrast that will

allow us to demonstrate that sign changing support induce a compact perturbation of

the operator in the well study case of constant sign contrast. Therefore we will be able to

demonstrate that the known assumptions on the contrasts usually stated on the whole

domain are in fact only mandatory in a neighborhood of the boundary. A similar result

for isotropic scatters have been obtain independently by [10].

This work clearly �nd its root in the study of the ITP for sign changing contrast

[6, 15, 9, 4, 8, 13] however proving the coercivity needed involve also the properties of

the �eld outside this obstacle. The main idea of our paper is to introduce an arti�cial

contrast in order to isolate the contribution of the sign changing part of the contrast into

a speci�c part of the �eld. Using regularity results of this part of the �eld we are able

to demonstrate that the sign changing contrast only induce a compact perturbation of

the operator from the well known case non sign changing part. As a direct consequence

of our study of anisotropic scattering we also prove that using the GLSM framework

extend the validity of sampling method for such medium with respect to the factorization

method. We believe that our analysis could be applied straightforwardly to other type

of perturbations, such as soundsoft or soundhard, of inhomogeneities to demonstrate

coercivity in those cases [16].

The article is organized as follows. In Section 2 we introduce the scalar wave

equation for orthotropic media and demonstrate that the far�eld operator can be

factorized in a similar way as for the isotropic case (although with some additional

technicalities with respect to [5]). The obtained factorization does not require any

correlation between the supports of the isotropic parameters and the anisotropic ones

(which then may be di�erent). In Section 3 we demonstrate the coercivity of the

middle operator (denoted T ) which is shown to hold true if the contrasts have �x (and

compatible) sign in a neighborhood of the boundary of D. In Section 4 we conclude that

the Generalized Linear Sampling Method or the Factorization Method could be apply

in these cases. Finally in Section 5, we give some numerical illustration.

2. Model Problem

The model problem we are interested in is the scattering of scalar waves by an orthoptic

medium. For a wave number k > 0, the total �eld solves the following scalar wave

equation:

div(Aru) + k2nu = 0 in Rd

with d = 2 or 3 and with n 2 L1(Rd) denoting the refractive index such that the

support of n�1 is included into Dn with Dn a bounded domain with Lipschitz boundary

and connected complement and such that =(n) � 0. We assume that A is at least in

L1(Rd)d�d and that the support ofA�Id is included intoDA withDA a bounded domain

with Lipschitz boundary and connected complement and such that =(A� � ��) � 0 and

<(A)� � �� � cj�j2 for � 2 Cd and for some positive constant c. We introduce a domain
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D such that Dn [ DA � D with D a bounded domain with Lipschitz boundary and

connected complement. In the following we will assume that the simply connected

components of D will either have boundary where A is not equal to Id or n is not equal

to one if A is identically equal to Id. Therefore we will have Dn [DA = D.

We are interested in the cases where the total �eld is generated by plane waves,

ui(�; x) := eikx�� with x 2 Rd and � 2 Sd�1 and we denote by us the scattered �eld

de�ned by

us(�; �) = u(�; �)� ui(�; �) in Rd;

which is assumed to be satisfying the Sommerfeld radiation condition,

lim
r!1

Z
jxj=r

����@us@r
� ikus

����
2

ds = 0:

Our data for the inverse problem will be formed by noisy measurements of so called

far�eld pattern u1(�; x̂) de�ned by

us(�; x) =
eikjxj

jxj(d�1)=2
(u1(�; x̂) +O(1=jxj))

as jxj ! 1 for all (�; x̂) 2 Sd�1 � Sd�1. The goal is to be able to reconstruct D from

these measurements (without knowing n and A). From those measurement we introduce

the far�eld operator F : L2(Sd�1) ! L2(Sd�1), de�ned by

Fg(x̂) :=

Z
Sd�1

u1(�; x̂)g(�)ds(�); x̂ 2 Sd�1

Let us de�ne for  2 ff 2 L2(D) s:t f jDA
2 H1(DA)g, the unique function w 2 H1

loc(R
d)

satisfying 8>>><
>>>:

div(Arw) + nk2w = �k2(n� 1) � div((A� Id)r ) in Rd;

lim
r!1

Z
jxj=r

����@w@r � ikw

����
2

ds = 0:
(1)

By linearity of the forward scattering problem, Fg is nothing but the far�eld pattern of

w solution of (1) with  = vg in D , where

vg(x) :=

Z
Sd�1

eikx��g(�)ds(�); g 2 L2(Sd�1); x 2 Rd:

We introduce X(D) = f(f; g) 2 L2(D) � L2(DA) s:t: g = rf in DAg, we identify X

and its adjoint. Finally we consider the norm on X(D) de�ned by

k(f; g)kX = kfkL2(D) + kgkL2(DA)
= kfkH1(DA)

+ kfkL2(Dn)

Now consider the (compact) operator H : L2(Sd�1) ! X de�ned by

Hg :=

"
vgjDn

rvgjDA

#
; (2)
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and the (compact) operator G : R(H) � X ! L2(Sd�1) de�ned by

G

"
 

r 

#
:= w1jSd�1 (3)

where w1 is the far�eld of w 2 H1
loc(R

d) solution of (1) and where R(H) denotes the

closure of the range of H in X. Then clearly

F = GH (4)

One can also decompose G to get the second factorization of the far�eld operator.

More precisely, for the case under consideration, since the far�eld pattern of w has the

following expression [5]:

w1(x̂) = �

Z
Dn

e�iky:x̂(1� n)k2( (y) + w(y))dy �

Z
DA

(A� Id)rye
�iky:x̂ � r( (y) + w(y))dy;

one simply has G = H�T , where H� : X ! L2(Sd�1) is the adjoint of H given by

H�

"
'

r'

#
(x̂) :=

Z
Dn

e�iky:x̂'(y)dy +

Z
DA

(A� Id)rye
�iky:x̂ � r'dy; ' 2 X; x̂ 2 Sd�1;

and T : X ! X is de�ned by

T

"
 

r 

#
:=

"
�k2(1� n)( + w)

�(A� Id) � (r (y) +rw(y)

#
; (5)

with w 2 H1
loc(R

d) being the solution of (1)(with  1 =  and  2 = r ). Finally we get

F = H�TH; (6)

Remark 1. We remark that T is independent of the type of incident waves (either plane

waves, point sources ...). We presented our results for plane waves but the properties of

T presented in this paper remain true for other type of incident waves and measurements

such as the one consider in [3].

3. Key properties of the Factorization Operators

In the following we will review important properties of the operators involved in the

factorization (4) and (6). First we will state the classical properties of H and G, in

particular a range characterization of the obstacle D which is at the heart of both the

GLSM and the FM. Then we will study the coercivity of T for sign changing contrasts.

3.1. Range characterization

First we assume that our obstacle D will be composed of several disjoint simply

connected components. Those components will either have A = Id and n 6= 1 or

A 6= Id in a neighborhood of their boundaries. The characterization of the obstacle D
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in term of the range of G is based on the solvability of the interior transmission problem

(for given regular boundary values f and g):8>>><
>>>:

divAru+ k2nu = 0 in D;

�v + k2v = 0 in D;

(u� v) = f on @D;
@
@�

(u� v) = g on @D;

(7)

where (u; v) 2 Y(D) and Y(D) is a space of solutions that will be speci�ed later. We

will assume that the following hypothesis holds true.

Hypothesis 1. We assume that k2 2 R+ is such that problem (7) has a unique solution

for all regular (to be speci�ed later) functions f and g.

This hypothesis and the interior transmission problem stated above are incomplete

in the sense that we did not specify Y(D). This space actually depends on the

properties of A and n. For example if we assume that Dn � DA = D, (7) can be

studied for (u; v) 2 Y(D) = H1(D) � H1(D). In this case we know from [4] that

hypothesis 1 is for instance true if A � Id and n � 1 have the same sign and do not

change sign in a neighborhood of @D. The case where DA = ; should be consider for

(u; v) 2 L2(D) � L2(D) such that u � v 2 H2(D). In this case Hypothesis 1 is true

if n � 1 does not change sign in a neighborhood of @D. The case where n = 1 in a

neighborhood of @D has been less studied in the literature and the only case where we

know that hypothesis 1 is true is when A�Id does not change sign in all D and n = 1 in

D. Finally when A = Id in a neighborhood of @D, but not in all D, and n� 1 does not

change sign in a neighborhood of @D, there is no clearly stated result in the literature

about this case. Let us mention however that surface integral method applied to (7) (as

proposed in [9]) would be an appropriate tool to study this case.

Lemma 1. If hypothesis 1 holds true, we have that z is inside D if and only if

�z(x̂) := e�ikx̂�z 2 R(G).

We also give the following lemmas from [5]:

Lemma 2. G is compact and if hypothesis 1 holds true, its range is dense in L2(Sd�1).

Lemma 3. The compact operator H has a dense range in the space f(f; g) 2 L2(D)�

L2(DA) s:t: g = rf in DA and �f + k2f = 0 in Dg � X(D).

3.2. Coercivity of the middle operator T

Our hypothesis on D implies that we can split the simply connected component into

two categories. The �rst one is such that A� Id does not equal zero on a neighborhood

of the boundary and the second one is such that A� Id = 0 and n� 1 does not change

sign in a neighborhood of the boundary. We will give a coercivity result for each of

those two con�gurations and then merge them into a combined condition on n and A

under which we have the coercivity of T de�ned in (5).

For both cases we will need the following equality.
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Lemma 4. We have the following identity, for  = ( 1;  2) 2 X(D) and T de�ned in

(5) :

=hT ;  i = k

Z
Sd�1

jw1j2�

Z
DA

=(A)(rw+r ) � (r(w) +r ) + k2
Z
Dn

=(n)jw+ j2:

Proof. We recall that for any  2 X(D) there exists a unique w 2 H1
loc(R

d) that solves

(1). The de�nition of T , (5) gives:

hT ;  i = �
R
DA

(A� Id)(r +rw) � (r +rw)� k2
R
Dn

(1� n)j + wj2

+
R
DA

(A� Id)(r +rw) � (rw) + k2
R
Dn

(1� n)( + w) �w
(8)

Using (1) and integrating by parts over a ball BR such that D � BR we have:

�

Z
BR

rw�rw�k2ww+

Z
@BR

@w

@r
w =

Z
DA

(A�Id)(rw+r )�rw+k2
Z
Dn

(1�n)(w+ )w

Substituting in (8), taking the imaginary part and letting R to +1 prove the lemma.

3.2.1. The case where DA ( Dn We �rst consider the case where DA ( Dn which can

be seen as an extension of the case DA = ;. The Herglotz wave operator reduces to

Hg = [vgjD;rvgjDA
].

Hypothesis 2. There exist � � 0,c > 0 such that either <(n � 1) + �=(n) � c or

<(1� n) + �=(n) � c in a neighborhood of @D.

Theorem 1. If �DA ( Dn = D and hypothesis 2 and 1 holds true , then there exists �

such that the operator T de�ned in (5) veri�es

jhT ;  ij � � k k2X(D) ;

for all  2 R(H).

Proof. We will proceed by a contradiction argument, therefore we assume:

k `kX(D) = 1 � l + k2 l = 0 in D and j(T `;  `)j ! 0 as `!1:

Up to changing the initial sequence, one can assume that  ` weakly converges to  in

L2(D). one easily see that  satis�es

� + k2 = 0 in D:

We denoted w` 2 H
2
loc(R

d) the solution of8>>><
>>>:

div(Arw`) + nk2w` = �k2(n� 1) ` � div((A� Id)r `) in Rd;

lim
r!1

Z
jxj=r

����@w`

@r
� ikw`

����
2

ds = 0:
(9)
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w` converges weakly in H2
loc(R

d) and strongly in H1(D) to some w 2 H2
loc(R

d) that

sati�es with  equation (9).

Lemma 4 implies that w1
` ! 0 in L2(Sd�1) and therefore w1 = 0. The Rellich

theorem and the unique continuation principle imply that w = 0 outside D. Thus we

have that u =  + w and v =  solve the interior transmission eigenvalue problem (7)

with f = g = 0. Hypothesis 1 implies that that  = w = 0.

Our hypothesis on n allow us to introduce n0 such that n0 = n in some domain

V � D and there exist � � 0 and c > 0 such that either <(n0 � 1) + �=(n0) � c or

<(1 � n0) + �=(n0) � c in D. We introduce 
 = supp(n0 � n) [ DA. By assumption

we have that 
 ( D and we can choose V such that V \ 
 = ;. We introduce the

intermediate scattered �eld us0;` 2 H
2
loc(R

d) that satis�es :8><
>:

�us0;` + k2nus0;` = �k2(n0 � 1) ` in Rd;

lim
r!1

R
jxj=r

���@(us0;`)@r
� ik(us0;`)

���2 ds = 0:
(10)

We denoted by u0;` = us0;`+ ` the associated total �eld. We also introduced the scattered

�eld us` that satis�es :8><
>:

div(Arus`) + k2nus` = �div((A� Id)ru0;`)� k2(n� n0)u0;` in Rd;

lim
r!1

R
jxj=r

���@(us0;`)@r
� ik(us`)

���2 ds = 0:
(11)

Using the same argument as for w` we get that us0;` converges strongly to zero in H1(D).

Since 
 is strictly included inside D, we have that u0;` is bounded in H2(
) (by interior

elliptic regularity). Therefore u0;` 2 H
2(
) converges strongly to zero in H1(
) together

with the continuity of the forward scattering problem for us`, we deduce that us` converges

strongly to zero in H1
loc(R

d). Finally the interior elliptic regularity implies that  `

strongly converges to zero in H1(
). Applying those strong convergence result to

hT `;  `i = �
R
D
k2(1� n0)u0;` ` � sign(<(1� n0))

R


jr `j

2 �
R



(A� Id)r(u0;` + us`)r `

�
R
D
k2(1� n)us` ` �

R


k2(n� n0)u0;` ` + sign(<(1� n0))

R


jr `j

2:

we deduce that the last four terms go to zero. The �rst two terms on the right hand

side can be bounded from bellow :

� k � sign(<(1� n0))

Z



jr `j
2 �

Z
D

(1� n0) ` `k � kk2
Z
D

(1� n0)u
s
0;` `k

where the last term on the right hand side goes to zero (because of the strong convergence

results), and using the assumption on n0 we conclude that lim
`!0

khT `;  `ik � k2c=2 > 0;

which is a contradiction.
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3.2.2. The case Dn � DA Without loss of generality we will consider the case where

Dn = ; and D = DA rather than the case Dn � DA = D in order to lighten the

notation. This is possible because thanks to compact embedding from H1 to L2, terms

that come from contrast in n will go to zero in the proof similarly to the previous section.

Therefore in the following DA = D and kkX(D) will be equal to the jkH1(D).

Hypothesis 3. A is C1 in a neighborhood V of @D and if either of both conditions

apply:

� there exists � � 0, c > 0 such that <(A� Id)� �=(A) � c in V

� <(A) is positive de�nite and there exists � � 0, c > 0 and 0 < � � 1 such that

<(Id� A)X �X + (1� �)<(A)Y � Y � �=(A)(X + Y ) � (X + Y ) � cX �X

in V for all X; Y 2 Cd.

Theorem 2. If Dn = ;, D = DA and hypothesis 3 holds true, there exists � such that

the operator T de�ned in (5) veri�es

jhT ;  ij � � k k2X(D)

for all  2 R(H).

Proof. We introduce A0 such that A0 = A inside V a neighborhood of @D and A0

veri�es hypothesis 3 in all D. Since we suppose that A is C1 inside V we can choose A0

to be C1 inside all D. We also introduce 
 = supp(A� A0), by construction 
 ( D.

We will proceed by a contradiction argument, therefore we assume:

k `kX(D) = 1 and j(T `;  `)j ! 0 as `!1

and that  ` weakly converges in H1(D) to  that satis�es

� + k2 = 0 in D:

The solution w` satisfying (1) with v =  ` weakly converges in H1(D) to w 2 H1(Rd)

satisfying (1) with v =  .

Lemma 4 implies that w1 ! 0 in  L2(Sd�1) and therefore w1 = 0. The Rellich

theorem and unique continuation theorem imply that w = 0 outside D. Thus we

have that u =  + w and v =  solve the interior transmission eigenvalue problem (7).

Hypothesis 1 implies that that  = w = 0. Let us introduce the intermediate (scattered)

�eld us0;` that solves:8><
>:

div(A0ru
s
0;`) + k2us0;` = �div((A0 � Id)r `) in Rd;

lim
r!1

R
jxj=r

���@(us0;`)@r
� ik(us0;`)

���2 ds = 0:
(12)
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We denote by u0;` = us0;` +  ` the total �eld. We also introduce us` that solves:8><
>:

div(Arus`) + k2us` = �div((A� A0)ru0;`) in Rd;

lim
r!1

R
jxj=r

���@us`@r
� ikus`

���2 ds = 0:
(13)

We have

j(T `;  `)j =
��R

D
(A� Id)r(us` + u0;`)r `dx

��
=
��R

D
(A0 � Id)ru0;`r `dx+

R
D

((A� Id)rus`r `dx+
R



(A� A0)ru0;`r `dx
��

�
��R

D
(A0 � Id)ru0;`r `dx

��� ��R
D

((A� Id)rus`r `dx+
R



(A� A0)ru0;`r `dx
��

�
��R

D
(A0 � Id)ru0;`r `dx

��� ��R
D

(Id� A)rus`r `dx
��� ��R



(A� A0)ru0;`r `dx

��
(14)

Since u0;` 2 H1(D) satis�es div(A0ru0;`) + k2u0;` = 0 in D, we infer by interior

elliptic regularity that u0;` 2 H2(
) (from [11] and the fact that A0 is C1). Due to

compact embeddings from H2 to H1, we deduce that u0;` strongly converges to zero in

H1(
). For the same reasons we deduce that  ` strongly converges to zero in H1(
).

By continuity of the forward scattering problem veri�ed by us` and the strong convergence

of u0;` in H1(
), we deduce that us` strongly converges to zero in H1
loc(R

d). We therefore

deduce that for ` large enough (14) becomes:

j(T `;  `)j �
1

2

����
Z
D

(A0 � Id)ru0;`r `dx

���� (15)

To treat j(T0 `;  `)j =
��R

D
(A0 � Id)ru0;`r `dx

�� we need to consider two cases

depending on the compatibility of the sign of A0�Id and Id (as in [7]). First we consider

the case when there exist � � 0 and c > 0 such that <(A0 � Id) � �=(A0) � c > 0.

Since us0;` solves (12) we deduce that:

(T0 `;  `) = �
R
D

(A0 � Id)ru0;`ru0;` + ju0;`j
2 �

R
Rd
jrus0;`j

2 + jus0;`j
2 +

R
D
ju0;`j

2

+
R
Rd
jus0;`j

2 + ik
R
Sd�1

jus0;`j
2 (16)

The weak convergence of us0;` in H1
loc(R

d) and u0;` in H1(D) imply the strong convergence

in L2
loc(R

d) and L2(D) respectively. Therefore the last three terms in the equality above

go to zero. Moreover (15) implies that j(T0 `;  `)j go to zero. Therefore the �rst term

in (16) goes also to zero and the hypothesis on A0 implies that

k �

Z
D

(A0 � Id)ru0;`ru0;` + ju0;`j
2k � c=2 ku0;`kH1(D)

Therefore ku0;`k
2
H1(D) goes to zero as well as

us0;`2H1

loc
(Rd)

. This implies that k `k
2
H1(D) !

0 which is a contradiction.

Then we consider the case when <(A0) is positive de�nite. We cannot use (16)

since the term involving u0;` and us0;` do not have the same sign. From the de�nition of

T0 we have:

(T0 `;  `) = �

Z
D

(A0 � Id)r `r ` �

Z
D

(A0 � Id)rus0;`r `:
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Using equation (1) veri�ed by us0;` we have:

(T0 `;  `) = �
R
D

(A0 � Id)r `r ` +
R
Rd

�A0r�us0;`ru
s
0;`

�2i
R
D
=(A0)ru

s
0;`r ` � ik

R
Sd�1

ju10;`j
2 �

R
Rd
k2�us0;`u

s
0;`

The last two terms go to zero because of regularity and compact embedding. The real

part of the remainings term isR
D

(Id�<(A0))r `r ` +
R
Rd
<(A0)ru

s
0;`r�us0;`

�i
R
D
=(A0)ru

s
0;`r( ` + �us0;`)�=(A0)r�us0;`r( ` + us0;`)

and the imaginary part is

�

Z
D

=(A0)r( ` + us0;`)r( ` + �us0;`)

, both will go to zero. Those two terms can be combined through a positive parameter

� in order to form the following quantity:

R
D

(Id�<(A0))r `r ` +
R
D
<(A0)ru

s
0;`r�us0;` � �

R
D
=(A0)r( ` + us0;`)r( ` + �us0;`)

�i
R
D
=(A0)ru

s
0;`r( ` + �us0;`)�=(A0)r�us0;`r( ` + us0;`) +

R
RdnD

<(A0)ru
s
0;`r�us0;`

If we denote the quantity under the integral over D in this identity by

M(r `;ru
s
0;`). We observe that :

M(X; Y ) = (I �<(A0))X � �X + (1� �)<(A0)Y � �Y � �=(A0)(X + Y ) � ( �X + �Y )

+j(�<(A0))
1=2Y + i(�<(A0))

�1=2=(A0)(X + Y )j2 � j(�<(A0))
�1=2=(A0)(X + Y )j2

Our assumption on A0 implies that for

� > � + sup
x2D

k=(A0(x))k =(� k<(A0(x))k)

we have

(T0 `;  `) � c=2 k `k
2
H1(D)

This implies that k `k
2 goes to zero which is a contradiction.

Remark 2. One can weaken the regularity assumption on A in V (e.g. example

piecewise C1) as long as one obtain an interior regularity property (e.g. u0;` 2 Hs(
)

where s is strictly larger than one) which implies strong convergence through compact

embeddings [12].
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3.2.3. A �nal coercivity result We introduce D =
S

iD
i
n [

S
iD

i
A where the Di are

simply connected disjoint component. We assume that A � Id is not zero in the

neighborhood of the boundary Di
A and A � Id equals zero in the neighborhood of the

boundary Di
n. With those notation and the result of Theorems 2 and 1 we can give the

�nal result under Hypothesis 1 in the case of many disjoint scatter.

Theorem 3. Assume A has C1 regularity in Di
A \ V and that either conditions apply :

� there exist c > 0 and � > 0 such that either <(A � Id) � �=(A) � c > 0 inS
iD

i
A \ V and <(1� n) + �=(n) � c > 0 in

S
iD

i
n \ V

� <(A) is positive de�nite in
S

iD
i
A \ V and there exists � � 0, c > 0 and 0 < � � 1

such that <(n� 1) + �Im(n) � c > 0 in
S

iD
i
n \ V and

<(Id� A)X �X + (1� �)<(A)Y � Y � �=(A)(X + Y ) � (X + Y ) � cX �X

in
S

iD
i
A \ V for all X; Y 2 Cd.

We have that T de�ned by (5) veri�es:

jhT ;  ij � � k k2X

where  2 R(H).

Proof. We set D1 =
S

iD
i
A and D2 =

S
iD

i
n. In this case we have that

hT ;  i = hT jD1
;  jD1

i+ hT jD2
;  jD2

i

By the linearity of the forward scattering problem, if we introduce the two total �elds

associated to the two incidents waves  1 =  jD1
in D1 and 0 in D2 and  2 =  jD2

in

D2 and 0 in D1, denoted u1 = us1 +  1 and u2 = us2 +  2. Then we have:

hT ;  i = hT1 1;  1iD1
+ hT2 2;  2iD2

�
R
D1

(A� Id)rus2 � r � 1 + k2(1� n)us2
� 1

�
R
D2

k2(1� n)us1
� 2 + (A� Id)rus1 � r � 2

where T1 and T2 are the operators corresponding to D1 and D2 respectively. We clearly

see that the last two terms go to zero (using a compactness argument). Therefore if T1
and T2 have the same sign, we obtain that T is coercive. The sign of T1 and T2 are given

in the proofs of Theorems 2 and 1 respectively, which allows us to conclude.

Remark 3. In this article we concentrate on sign changing contrast but we believe

that both the results and the methods of the proofs could be straightforwardly extend

to inclusion of any kind (sound soft, sound hard, robin condition,...) strictly included

inside the penetrable obstacle.
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4. Application to the GLSM and Factorization methods

4.1. Application to the GLSM

We recall that the far�eld pattern of the green function �z is given by,

�z(x̂) := e�ikx̂�z

and that that lemma 1 give a range characterization of D. In order to use this range

characterization the GLSM framework introduce the cost functional J�, de�ned for

g 2 L2(Sd�1) by

J�(�z; g) = �jhFg; gij+ �1�jhFg � �z; gij+ kFg � �zk
2 (17)

where  2]0; 1[. We also introduce

j�(�z) = inf
g2L2(Sd�1)

J�(�z; g):

From the results of [2], [1] and [3] (partly based on lemmas 3, 2 and 1), we obtain the

following characterization of D.

Theorem 4. Assume that Hypothesis 1 and the hypothesis of theorem 3 hold true. For

z 2 Rd let us introduce gz;� such that J�(�z; g
z;�) � j�(�z) + p(�) with p(�) = O(�).

Then z 2 D if and only if lim sup
�!0

jhFgz;�; gz;�ij < 1. Moreover, we have that

the sequence of Herglotz wave functions associated with gz;� converges strongly to the

solution v of (7) with (f; g) = (�z;
@�z

@�
) as � goes to zero.

For the noisy case, consider F � : L2(Sd�1) ! L2(Sd�1) a compact operator such

that: F � � F
 � �:

Then consider for � > 0 and � 2 L2(Sd�1) the functional J��(�; �) : L2(Sd�1) ! R,

J��(�z; g) = �j


F �g; g

�
j+ �1�� kgk2 + �1�j



F �g � �z; g

�
j+

F �g � �z
2

where  2]0; 1[. We obtain the following asymptotic characterization of D.

Theorem 5. Assume that the hypothesis of the previous theorem hold true. For z 2 Rd

let us denote by gz;�;� the minimizer of J��(�z; �) over L2(Sd�1).

Then z 2 D if and only if lim sup
�!0

lim sup
�!0

j


F �gz;�;�; gz;�;�

�
j+ ���

gz;�;�2 <1.

Moreover, there exists �0(�) such that for all �(�) � �0(�), Hgz;�;�(�) converges strongly

to the solution v of (7) with (f; g) = (�z;
@�z

@�
) as � goes to zero.

4.2. Application to the Factorization method

From [14] we have the following theorem for the factorization method:

Theorem 6. For F = H�TH, assume that :
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� H� is compact with dense range.

� =(T ) is compact and non negative on the range of H.

� j<(T )j is one to one or =(T ) is strictly positive on R(H)

� j<(T )j = C +K, where K is compact and C is a self adjoint coercive operator.

Then the range of the operators F
1=2
# and H� coincide, where F# = j<(F )j+ =(F ).

The �rst three assumptions are direct consequences of lemmas 3, 2 and 1. For the

last assumption the application of the Factorization method is more restrictive than the

GLSM as it relies on the fact that the real part of T have to be of the form "coercive

+ compact". In section 3 we have proven that T is actually of the form T0 +K, where

K is compact and T0 extend assumptions on the contrast in a neighborhood of the

boundary @D to all D. Therefore for the factorization method to work we need to �nd

a set of assumptions on the contrasts inside all D that ensure that j<(T0)j is of the form

"coercive+compact". Such hypothesis for DA can be found in [7] (Theorem 4.8) and in

[14] for Dn. Those results allow us to state the following theorem,

Theorem 7. Assume that Hypothesis 1 holds true and A has C1 regularity in Di
A \ V

and that either conditions apply :

� there exist c > 0 and � > 0 such that either <(A� Id) � c > 0 in
S

iD
i
A \ V and

<(1� n) � c > 0 in
S

iD
i
n \ V

� there exists � � 0, c > 0 and 0 < � � 1 such that <(n � 1) + �Im(n) � c > 0 inS
iD

i
n \ V and (Id�<(A)� �j=(A)j is positive de�nite and (<(A)� 1

�
j=(A)j � 0

for some � > 0 in
S

iD
i
A \ V .

Then z is inside D if and only if �z 2 R(F
1=2
# ).

5. Numerical experiments

We restrict ourselves to the two dimensional isotropic case (A is the identity matrix) and

will introduce the algorithms for the discrete version of the GLSM and FM. We indentify

S1 with the interval [0; 2�[. In order to collect the data of the inverse problem we solve

numerically (1) for N incident �elds ui(2�j
N
; �), j 2 0; :::; N � 1 using a �nite element

solver. The discrete version of F is the matrix F := (u1(2�j
N
; 2�k

N
)0�j;k�N . We add some

noise to the data to build a noisy far�eld matrix F � where (F �)j;k = Fj;k(1 + �Nj;k) for

� > 0 and Nj;k an uniform complex random variable in [�1; 1)2. Similarly we consider

the discrete version of the green function �z(j) = �z(
2�j
N

) for j 2 0; :::; N .

We apply both the factorization method and the GLSM to kite shape obstacle

where with n = 0:2 except within a disk stricly inside the kite wehe n = 2. We choose

N = 100 and a wavelength � = 2�
k

= 0:5. We �x the regularization parameter � as

explained in [2] for the GLSM and using the Morozov discrepancy principle for the

factorization method. Figure 1 shows that there is no signi�cant change in the ability

of the methods to reconstruct the inclusion when the contrast changes sign or not. The

axes of the �gure are measured in �.



Sampling method for sign changing contrast 14

Figure 1. First line : Factorization method (left) and GLSM (right) without sign

changing contrast. Second line : Factorization method (left) and GLSM (right) with

sign changing contrast.
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