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We study a system of N noninteracting spinless fermions trapped in a confining potential, in arbitrary
dimensions d and arbitrary temperature T . The presence of the confining trap breaks the translational invariance
and introduces an edge where the average density of fermions vanishes. Far from the edge, near the center of the
trap (the so-called “bulk regime”), where the fermions do not feel the curvature of the trap, physical properties
of the fermions have traditionally been understood using the local density (or Thomas-Fermi) approximation.
However, these approximations drastically fail near the edge where the density vanishes and thermal and quantum
fluctuations are thus enhanced. The main goal of this paper is to show that, even near the edge, novel universal
properties emerge, independently of the details of the shape of the confining potential. We present a unified
framework to investigate both the bulk and the edge properties of the fermions. We show that for large N ,
these fermions in a confining trap, in arbitrary dimensions and at finite temperature, form a determinantal point
process. As a result, any n-point correlation function, including the average density profile, can be expressed as
an n × n determinant whose entry is called the kernel, a central object for such processes. Near the edge, we
derive the large-N scaling form of the kernels, parametrized by d and T . In d = 1 and T = 0, this reduces to the
so-called Airy kernel, that appears in the Gaussian unitary ensemble (GUE) of random matrix theory. In d = 1 and
T > 0 we show a remarkable connection between our kernel and the one appearing in the (1 + 1)-dimensional
Kardar-Parisi-Zhang equation at finite time. Consequently, our result provides a finite-T generalization of the
Tracy-Widom distribution, that describes the fluctuations of the position of the rightmost fermion at T = 0, or
those of the largest single-fermion momentum. In d > 1 and T � 0, while the connection to GUE no longer
holds, the process is still determinantal whose analysis provides a new class of kernels, generalizing the 1d Airy
kernel at T = 0 obtained in random matrix theory. Some of our finite-temperature results should be testable in
present-day cold-atom experiments, most notably our detailed predictions for the temperature dependence of the
fluctuations near the edge.

I. INTRODUCTION

A. Overview

Over the past few years, experimental developments in
trapping and cooling of dilute Bose and Fermi gases have led
to spectacular progress in the study of many-body quantum
systems [1,2]. Even in the absence of interactions, bosons
and fermions display collective many-body effects emerging
purely from the quantum statistics [3–5]. For noninteracting
fermions, which we focus on here, the Pauli exclusion principle
induces highly nontrivial spatial (and temporal) correlations
between the particles. Remarkably, the recent development of
Fermi quantum microscopes [6–8] provides a direct access
to these spatial correlations, via a direct in situ imaging of
the individual fermions, with a resolution comparable to the
interparticle spacing. It is thus important to have a precise
theoretical description of these correlations in such fermionic
gases.

In many experimental setups, including the aforementioned
Fermi quantum microscopes, the fermions are trapped by
an external potential. This trapping potential breaks the
translational invariance and generically induces an edge of
the Fermi gas. Indeed, beyond a certain distance from the

center of the trap, the average density of fermions vanishes.
Far from the edge, i.e., close to the center of the trap, the
properties of the Fermi gas are well described by standard
tools of many-body quantum physics, like the local density
(or Thomas-Fermi) approximation (LDA) [4,9]. However,
this approximation breaks down close to the edge where the
density vanishes, and where the fluctuations (both quantum and
thermal) are large [10]. The purpose of this paper is to develop a
general framework, which encompasses the LDA (and actually
puts it on firmer ground) and provides an analytical description
of the edge properties of the Fermi gas in any spatial dimension
d, and at finite temperature T .

This framework, whose main results were recently an-
nounced in two short papers [11,12], is based on random
matrix theory (RMT) [13,14] and, more generally, on the
theory of determinantal point processes [15–17]. The simplest
example is the case of N noninteracting spinless fermions
in a one-dimensional harmonic potential V (x) = 1

2mω2x2 at
zero temperature T = 0. In this case, by computing explicitly
the ground-state wave function, one can show [13,18,19]
that there exists a one-to-one mapping between the positions
of the fermions x1,x2, . . . ,xN and the (real) eigenvalues
λ1,λ2, . . . ,λN of random N × N Hermitian matrices with
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independent Gaussian entries, the so-called Gaussian unitary
ensemble (GUE) in RMT. Although this connection has
certainly been known for a long time [13], it is only recently
that the powerful tools of RMT have been used to compute
the statistics of physical observables for fermions [18–22]
(see Sec. III for an extended discussion of these applications).
In particular, it is well known that, in the large-N limit, the
(scaled) density of eigenvalues (or equivalently the density of
fermions) has a finite support and is given by the celebrated
Wigner semicircular law fW (z) = 1

π

√
2 − z2.

Going beyond the average density, the fluctuations at the
edge of the Wigner sea have also generated a lot of interest
in RMT. Of particular interest is the statistics of the largest
eigenvalue λmax = max1�i�N λi . Indeed, its probability distri-
bution function (PDF), properly shifted and scaled (see Sec. III
below for more detail) is given for large N by the celebrated
Tracy-Widom (TW) distribution for GUE [23], which is now
a cornerstone of extreme value statistics of strongly correlated
variables. Since its discovery in RMT, this TW distribution
(and its counterparts for other matrix ensembles) have emerged
in a wide variety of systems, a priori unrelated to RMT.
These include the longest increasing subsequence of random
permutations [24], directed polymers [25,26], and growth
models [27,28] in the Kardar-Parisi-Zhang (KPZ) universality
class in (1 + 1) dimensions as well as for the continuum
(1 + 1)-dimensional KPZ equation [29–32], sequence align-
ment problems [33], mesoscopic fluctuations in quantum
dots [34], height fluctuations of nonintersecting Brownian
motions over a fixed time interval [35,36], height fluctuations
of nonintersecting interfaces in presence of a long-range
interaction induced by a substrate [37], and also in finance [38]
(see [39,40] for reviews). The TW distributions have been re-
cently observed in experiments on nematic liquid crystals [41]
and in experiments involving coupled fiber lasers [42]. From
the aforementioned connection between fermions and RMT, it
follows that the quantum fluctuations of the rightmost fermion
xmax(T = 0) = max1�i�N xi are also governed by the TW
distribution for GUE. Hence, noninteracting spinless fermions
in a one-dimensional harmonic trap at T = 0 provide one
of the simplest physical systems where the TW distribution
appears.

It is natural to ask what happens at finite temperature T > 0
and/or in higher dimensions d > 1? These are natural and
relevant questions both experimentally and theoretically. In
this case, the connection with the Gaussian unitary ensemble
of RMT is lost. Nevertheless, it is still possible to show
that the system is a determinantal process (this is an exact
statement at T = 0 and any d [12] and true only for large
N at T > 0 [11]). This means that all n-point correlation
functions of the d-dimensional Fermi gas, Rn(x1,x2, . . . ,xn),
can be expressed as the determinant of an n × n matrix whose
entries are given by Kμ(xi ,xj ) where the function Kμ(x,y) is
called the kernel and depends on the chemical potential μ. It
is thus the central object of the theory as it gives access to
the computation of all the correlation functions. Therefore, it
is important to characterize the behavior of this kernel, in the
limit of a large number of fermions N � 1, both in the bulk
and at the edge of the Fermi gas. In two recent papers, we
announced, giving few details, results for the limiting kernels
first in the case d = 1 and T � 0 in Ref. [11] and then in

d > 1, but only for T = 0 [12]. In this paper, we present a
detailed derivation of these results, which relies in particular
on a path-integral representation of the kernel Kμ(x,y). This
allows us to study the problem in any dimension d � 1 and for
any finite temperature T � 0, hence generalizing our previous
results [12] to finite temperature. We will show that this method
allows us to recover, in a fully controlled way, the LDA results
in the bulk but also allows one to compute the correlations
at the edge. In addition, as we will demonstrate below, this
path-integral method is extremely powerful as it allows us to
treat a wide class of trapping potentials of the form V (x) ∼ |x|p
at large |x|, with p > 0, and demonstrate the universality of
our results, both in the bulk and at the edge.

B. Model

We study in this paper a model for N spinless non-
interacting fermions in a d-dimensional potential V (x). It
is described by an N -body Hamiltonian ĤN = ∑N

j=1 Ĥj ,

where Ĥj = Ĥ (pj ,xj ) is a one-body Hamiltonian of the form
Ĥ ≡ Ĥ (pj ,xj ) with

Ĥ = p̂2

2m
+ V (x), p̂ = �

i
∇. (1)

We will consider here only confining potentials V (x) such
that the one-body Hamiltonian Ĥ admits an infinite number of
bound states. One such class consists of confining potentials
of the form V (x) with V (x) ∼ |x|p at large |x|, with p > 0,
and here we will mainly focus here on this class (and
only briefly mention some other cases). The simplest such
confining potential is the isotropic d-dimensional harmonic
oscillator

V (x) ≡ V (r) = 1
2mω2r2, r = |x|. (2)

C. Outline and summary of the main results

The paper is organized as follows. In Sec. II, we pro-
vide the general framework to study the correlations of N

noninteracting fermions in an arbitrary confining potential
at zero temperature T = 0 and in arbitrary dimension d.
The main result is the determinantal structure of the n-point
correlations in the ground state, given in Eq. (15), with the
associated kernel in Eq. (9). In Sec. III, we focus on the
one-dimensional system (d = 1), for the special case of a
harmonic potential V (x) = 1

2mω2x2, still restricted to T = 0.
This case is particularly interesting because of its connection,
valid for any finite number of fermions N , with the Gaussian
unitary ensemble (GUE) of random matrix theory (RMT) [see
Eqs. (20) and (21)]. From this connection, many interesting
properties, which are summarized in that section, can be
obtained for the fermion problem. In particular, this relation
with RMT shows that the statistics of the position of the
rightmost fermion, at zero temperature, is governed by the
celebrated Tracy-Widom distribution for GUE [see Eqs. (47)
and (48)]. In Sec. IV, we study the case of N noninteracting
fermions in a one-dimensional (d = 1) arbitrary potential V (x)
at finite temperature T > 0. The main result of this section is
to show that the n-point correlations still have a determinantal
structure in the limit of a large number of fermions N � 1
[see Eqs. (93) and (94)]. As explained in detail in that section,
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this structure is due to a large extent to the equivalence,
when N � 1, between the canonical and the grand-canonical
ensemble. In Sec. V, we apply the general analysis performed
in Sec. IV to the case of N noninteracting fermions in a
one-dimensional harmonic potential at T > 0. This case is
of particular interest as it is exactly solvable and the limit
of large N can be studied in detail. The main results of this
section concern the local correlations which are described, in
the limit N → ∞, by the limiting kernels given by Eq. (120)
in the bulk (i.e., near the center of the trap) and by Eq. (134)
at the edge of the Fermi gas. They generalize the well-known
sine kernel [see Eq. (35)] (in the bulk) and the Airy kernel
[see Eq. (37)] (at the edge), which both play a fundamental
role in RMT. The resulting kernel at the edge (134) allows
us to compute the fluctuations of the rightmost fermion at
finite temperature as a Fredholm determinant (137), which
generalizes the Tracy-Widom distribution (48) for finite
temperatures. Quite remarkably, exactly the same Fredholm
determinant has appeared in the context of stochastic growth
models in the KPZ equation [see Eqs. (305) and (307)]. This
establishes an unexpected connection between free fermions
at finite temperature and the KPZ equation at finite time t [see
Eq. (309)]. In Sec. VI, we study the case of N noninteracting
fermions in a harmonic potential, in arbitrary dimension d and
at zero temperature. Our analysis is based on a path-integral
representation of the correlation kernel, given in Eqs. (168)
and (169), which can then be analyzed in a very elegant
way in the large-N limit. The most interesting results of
that section are certainly the expression of the density profile
[see Eqs. (201) and (203)] and the kernel [see Eqs. (227)
and (228)] at the edge, the latter being a generalization
of the Airy kernel (37) for any finite d . In Sec. VII, we
provide the full analysis of the correlations for a general
d-dimensional soft potential, of the form V (x) ∼ |x|p (for
large |x| and p > 1), at finite temperature T > 0. Using again
a path-integral representation of the kernel, we show that
the local correlations both in the bulk and at the edge are
universal, i.e., independent of the (smooth) confining potential
considered here. The resulting universal correlation kernels in
the bulk (274) and at the edge (296) generalize, respectively,
the sine kernel (35) and the Airy kernel (37) for any finite
dimension d and temperature T . The last section (Sec. VIII)
contains a discussion of our results, including the connection
with the KPZ equation mentioned above, and our conclusions.
Some technical details have been relegated in Appendixes A
and B.

II. CORRELATIONS FOR NONINTERACTING FERMIONS
AT ZERO TEMPERATURE

A. Many-body ground-state wave function

Let us start with N fermions strictly at zero temperature.
Consider first the single-particle eigenfunctions ψk(x) which
satisfy the Schrödinger equation Ĥψk(x) = εkψk(x), where
Ĥ = −[�2/(2m)] ∇2 + V (x) is the Hamiltonian and the en-
ergy eigenvalues εk are labeled by d quantum numbers denoted
by k ∈ Zd . Because of the confining potential, these quantum
numbers labeled by k should not be identified with the usual
momentum, which we denote by p.

At zero temperature, the ground-state many-body wave
function �0 can be expressed as an N × N Slater determinant

�0(x1, . . . ,xN ) = 1√
N !

det
[
ψki

(xj )
]

1�i,j�N
(3)

constructed from the N single-particle wave functions labeled
by a sequence {ki}, i = 1, . . . ,N , with nondecreasing energies
such that εki

� μ where μ is the Fermi energy. For a
sufficiently confining potential, μ generically increases with
increasing N [4,18]. As an example, we consider the isotropic
harmonic oscillator (2). In this case, the energy levels

εk =
d∑

a=1

(
ka + 1

2

)
�ω, ψk(x) =

d∏
a=1

φka
(xa),

φk(x) =
[

α√
π2kk!

]1/2

e− α2x2

2 Hk(αx), (4)

where the ka’s are integers which range from 0 to ∞, Hk(z) is
the kth Hermite polynomial of degree k, and

α =
√

mω/� (5)

is the characteristic inverse length scale. Note that, in this
example, each, non-ground-state, single-particle energy level
is degenerate in d > 1. Hence, the N -body ground state is
degenerate, whenever the last single-particle level is not fully
occupied. This situation will be discussed later in Sec. IV.
For now, since we are interested in the large-N limit where
this effect of degeneracy is subdominant, we will assume that
the last level is fully occupied. In this case, for the harmonic
oscillator, by filling up completely the levels up to μ one
obtains N = ∑

k∈Zd θ [μ − �ω(k1 + · · · + kd )], where θ (x) is
the Heaviside theta function. This leads for large N to

μ 
 �ω[�(d + 1) N ]1/d . (6)

For more general potentials, the relation between μ and N

is usually more complicated (and detailed below), but given
our assumption of an infinite number of bound states, we will
always be able to study the limit of large N � 1, which is the
subject of this paper.

B. Quantum probability and determinantal structure
of correlations

Consider now the quantum probability, i.e., the squared
many-body wave function

|�0(x1, . . . ,xN )|2 = 1

N !
det
[
ψ∗

ki
(xj )

]
det
[
ψki

(xj )
]
. (7)

Using the fact det(AT ) det(B) = det(AB), it can also be written
as a determinant

|�0(x1, . . . ,xN )|2 = 1

N !
det

1�i,j�N
Kμ(xi ,xj ), (8)

where we have defined the kernel Kμ(x,y) as

Kμ(x,y) =
∑

k

θ (μ − εk)ψ∗
k (x)ψk(y). (9)

As we will see later, this kernel will play a central role for
the calculation of the correlations. For instance, one usually
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defines the n-point correlation function Rn(x1, . . . ,xn) as

Rn(x1, . . . ,xn)= N !

(N − n)!

∫
dxn+1 . . . dxN |�0(x1, . . . ,xN )|2

(10)

obtained by integrating over N − n coordinates and keeping n

coordinates {x1, . . . ,xn} fixed. For n = 1 this corresponds to
the marginal density

R1(x) = N

∫
dx2 . . . dxN |�0(x,x2, . . . ,xN )|2. (11)

Incidentally, this is also related to the average local density of
fermions

R1(x) = NρN (x), ρN (x) = 〈ρ̂N (x)〉0,

ρ̂N (x) = 1

N

N∑
i=1

δ(x − xi), (12)

where 〈. . . 〉0 denotes the average w.r.t. the ground-state
quantum probability in Eq. (7). The last equality follows from
the indistinguishability of the fermions, i.e., the fact that the
quantum probability |�0(x1, . . . ,xN )|2 is invariant under the
exchange of any two coordinates. More generally, the Rn’s
contain information about higher correlations of the local
densities, e.g., one has

R2(x,y) =
〈 ∑

1�i �=j�N

δ(x − xi)δ(y − xj )

〉
0

= N2〈ρ̂N (x)ρ̂N (y)〉0 − NρN (x)δ(x − y) (13)

and similarly for higher-order correlations.
Now we note that the kernel Kμ(x,y) has the reproducing

property ∫
Kμ(x,z)Kμ(z,y) dz = Kμ(x,y), (14)

which follows from the orthonormalization of the single-
particle wave functions,

∫
ψ∗

ki
(z)ψkj

(z) dz = δki ,kj
. If the

kernel satisfies the reproducing property in Eq. (14), then there
is a general theorem [13] that states that Rn(x1, . . . ,xn) in
Eq. (10) can be expressed as an n × n determinant

Rn(x1, . . . ,xn) = det
1�i,j�n

Kμ(xi ,xj ). (15)

Note that this result (15) has been obtained here within the
formalism of first quantization. It can also be derived within the
formalism of second quantization: this is then a consequence of
the Wick’s theorem applied to fermionic (i.e., anticommuting)
operators [3]. Indeed, the kernel in Eq. (9) can be expressed,
in the second quantization formalism, as

Kμ(x,y) = 〈�0|�†(x)�(y)|�0〉, (16)

where �†(x) and �(y) are, respectively, the creation and the
annihilation fermionic operators at positions x and y and |�0〉
is the ground state.

Any multiparticle probability distribution, whose n-point
marginal can be expressed as the determinant of a kernel as in
Eq. (15), will generally be referred to as a distribution with a
determinantal structure. The associated random process cor-
responding to the random positions of the N fermions is then

called a d-dimensional determinantal point process [15,16].
Let us also point out a very simple consequence of this
determinantal structure. Setting n = 1 in Eq. (15) simply gives

R1(x) = Kμ(x,x). (17)

This implies, from Eq. (12), that the average density is given
by the kernel evaluated at identical points

ρN (x) = 1

N
Kμ(x,x). (18)

To summarize, the kernel Kμ(x,y) is the key object for
any determinantal process. Once we know the kernel, we can
determine, in principle, any n-point correlation function by
computing an (n × n) determinant [see Eq. (15)].

III. ONE-DIMENSIONAL HARMONIC OSCILLATOR
AT ZERO TEMPERATURE AND RMT

In this section, we consider the special case d = 1 and the
harmonic oscillator potential V (x) = 1

2 m ω2 x2. In this special
case, a host of analytical results for the zero-temperature
quantum statistics have been derived over the years [18,43–47].
It turns out there is a close connection between the ground-state
quantum probability |�0(x1, . . . ,xN )|2 of N fermions in a
1d harmonic trap and the joint probability distribution of N

real eigenvalues of an (N × N ) Gaussian Hermitian random
matrix, known as the Gaussian unitary ensemble (GUE) in
RMT. Although the connection between free fermions and
GUE eigenvalues was known implicitly for a long time [13],
this connection was first used explicitly, to our knowledge, in
the context of studying the statistics of nonintersecting step
edges on the vicinal surface of a crystal [48]. Subsequently,
a connection between nonintersecting lines in presence of a
potential V (x) = x2/2 + c/x2 (with x � 0 and c > 0) and
the eigenvalue statistics of Wishart ensembles of RMT was
established [37]. However, in the precise context of free
fermions in a 1d harmonic trap, this connection to GUE
eigenvalues was noticed and exploited only recently, first
somewhat a posteriori in Ref. [18] and then more explicitly
in Refs. [19,22], in the context of counting the number of
fermions in an interval [−L,L] in the ground state.

To establish the precise connection to GUE eigenvalues, we
consider the first N single-particle levels with energies εk =
(k + 1/2)�ω where k = 0,1,2, . . . ,N − 1. The many-body
ground state is constructed by filling up these first N levels with
N fermions. Thus, the ground-state energy is E0 = N2

2 �ω, and
the Fermi energy μ = (N − 1/2)�ω corresponds to the highest
occupied single-particle energy level in the many-body ground
state. To construct the many-body ground-state wave function,
we substitute the explicit single-particle harmonic oscillator
wave functions [labeled by k = 0,1,2 . . . ,(N − 1) in Eq. (4)]
in the (N × N ) Slater determinant (3). This gives

�0(x1, x2, . . . ,xN ) ∝ e− α2

2

∑N
i=1 x2

i det
1�i,j�N

[Hi(α xj )], (19)

where we recall that Hi(x) is the Hermite polynomial of degree
i and α = √

mω/� is an inverse length scale. By arranging the

 4



rows and columns in the determinant, it is easy to see that it
can be reduced to a Vandermonde determinant up to an overall
constant det[Hi(αxj )] ∝ det[xj−1

i ] ∝ ∏
i<j (xi − xj ). Hence,

the ground-state quantum probability is given by [19]

|�0(x1, . . . ,xN )|2 = 1

zN

∏
i<j

(xi − xj )2e−α2 ∑N
i=1 x2

i , (20)

where zN is a normalization constant.
Consider now a random (N × N ) complex Hermitian

matrix X with independent Gaussian entries, such that the
joint distribution of independent matrix entries is given
by Prob[X] dX ∝ exp[−Tr(X2)] dX. This joint distribution
remains invariant under a unitary transformation X → U †XU ,
which justifies the name of such an ensemble of random
matrices as the GUE [13]. Each realization of this matrix can
be diagonalized to give N real eigenvalues {λ1,λ2, . . . ,λN }
which are also random variables. What can be said about
the joint distribution of these N eigenvalues? To obtain this
eigenvalue distribution, one first makes a change of variables
from the independent matrix entries to the eigenvalues and
eigenvectors of X. Thanks to the rotational invariance, the
eigenvector degrees of freedom decouple from the eigenvalues
and hence can be integrated out. This provides an explicit
expression for the joint distribution of eigenvalues [13]

P (λ1,λ2, . . . ,λN ) = 1

ZN

∏
i<j

(λi − λj )2 e−∑N
i=1 λ2

i , (21)

where ZN is the normalization constant. The Vandermonde
term

∏
i<j (λi − λj )2 in Eq. (21) owes its origin to the

Jacobian of the change of variables from the matrix entries
to eigenvalues and eigenvectors [13].

Comparing Eqs. (20) and (21), it is clear that the quantum
statistics of the Fermion positions xi’s in a 1d harmonic
trap at T = 0 is identical, up to a trivial rescaling factor α,
to the classical statistics of GUE eigenvalues λi’s [19]. The
routes of arrival to the identical joint distribution are, however,
quite different in the two problems. Interestingly, in the RMT
literature, to calculate further observables from this joint
eigenvalue distribution, the determinantal structure of this joint
distribution was noticed and exploited extensively [13,14].
In particular, the joint distribution in Eq. (21) was indeed

expressed as the determinant of a kernel,

P (λ1,λ2, . . . ,λN ) = 1

N !
det

1�i,j�N
K(λi,λj ), with

K(λ,λ′) = 1√
π

e− 1
2 (λ2+λ′2)

N−1∑
k=0

1

2k k!
Hk(λ) Hk(λ′),

(22)

where Hk(z) is the kth Hermite polynomial. We recall that
the Hermite polynomials are orthogonal on the real axis with
respect to (w.r.t.) the Gaussian weight∫ ∞

−∞
e−z2

Hn(z) Hm(z) dz = √
π 2n n! δn,m. (23)

In the RMT literature, this orthogonal property of Her-
mite polynomials was exploited to derive the determinantal
structure of the joint distribution, hence is known in RMT
as the orthogonal polynomial method [13]. But, this is
precisely equivalent to the many-body quantum mechanics
of N fermions in a trap, once one recognizes that the joint dis-
tribution in Eq. (21) is just the square of the Slater determinant
and that e−λ2

Hk(λ) is just the kth single-particle eigenfunction
of a harmonic oscillator. The kernel K(λ,λ′) in Eq. (22) is also
identical, up to a trivial rescaling factor, to the one defined for
fermions in Eq. (9) in the case of a 1d harmonic oscillator.

Thus, to summarize, both the RMT and the many-body
free fermions essentially use the same method to analyze the
joint distribution. Hence, for this analysis, one does not really
need to know anything about random matrices. The starting
point is really the joint distribution in Eq. (20), which can then
be written as the determinant of a kernel Kμ(x,y). From the
general definition of the kernel in Eq. (9), upon summing up
the first N single-particle harmonic oscillator eigenfunctions
in Eq. (4), one obtains

Kμ(x,y)= α√
π

e− 1
2 α2(x2+y2)

N−1∑
k=0

1

2k k!
Hk(α x) Hk(α y). (24)

Note that because the Hermite polynomials are orthogonal
polynomials (23), they satisfy the Christoffel-Darboux iden-
tity [13,14] which allows us to perform the sum over k in
Eq. (24) explicitly, to yield (for N � 1)

Kμ(x,y) =

⎧⎪⎨
⎪⎩

e
− α2

2 (x2+y2)
√

π2N (N−1)!
HN (α x)HN−1(α y)−HN−1(α x)HN (α y)

x−y
for x �= y,

α√
π

e−α2x2

2N−1(N−1)! {N [HN−1(α x)]2 − (N − 1)HN−2(α x)HN (α x)} for x = y.

(25)

Consequently, the average density has the exact expression valid for any N :

ρN (x) = 1

N
Kμ(x,x) = α

N
√

π
e−α2 x2

N−1∑
k=0

1

2k k!
H 2

k (αx) (26)

= α√
π

e−α2x2

2N−1N !
{N [HN−1(αx)]2−(N−1)HN−2(αx)HN (αx)}. (27)

A large number of precise analytical results for the ground-state quantum statistics of free fermions in a 1d harmonic trap have
recently been predicted [18–22], essentially using the determinantal structure of the joint distribution and the explicit kernel in
Eq. (24).
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FIG. 1. The average density, for large N , has the Wigner’s

semicircular form ρN (x) ≈ α2

πN

√
2N

α2 − x2, where α = √
mω/�. The

typical separation between particles in the bulk scales as ∼N−1/2,
where as near the edge it is much larger ∼N−1/6.

While the results in Eqs. (24)–(27) are exact for all N , it
is useful and perhaps more interesting to see how the average
density and the kernel behave asymptotically for large N . In
the RMT literature, the large-N asymptotics have been studied
in great detail, mostly by using the asymptotic properties of
the Hermite polynomials in Eqs. (24) and (27) [13,14]. For the
benefit of readers not familiar with the RMT literature, we list
below the principal RMT predictions for large N . For details
of these derivations, the readers may consult Refs. [13,14].

A. Large-N RMT predictions for the average density

In the large-N limit, the average density of fermions
(equivalently that of GUE eigenvalues) is given by the
celebrated Wigner semicircular law [13,14]:

ρN (x) ≈ α√
N

fW

(
α x√

N

)
, fW (z) = 1

π

√
2 − z2, (28)

with sharp edges at ±√
2N/α (see Fig. 1). Note that the

average density is normalized to unity,
∫

ρN (x) dx = 1 and
ρN (x) has the dimension of α, i.e, inverse length. The result in
Eq. (28) indicates that on an average there are more particles
near the trap center x = 0 and less near the two edges. Thus, in
the “bulk” of the Wigner sea, i.e., far away from the two edges,
the density typically scales as ρN (x) ∼ α N−1/2 for large N .
This means that the typical interparticle separation in the bulk
scales as �(x) ∼ 1/[NρN (x)] ∼ 1

α
N−1/2 for large N .

In contrast, near the two edges, the particles are sparse (see
Fig. 1) and the typical separation between two particles at
the same edge scales as ∼N−1/6 [13,14]. For finite but large
N , the sharp edges at ±√

2N/α get smeared over a width
wN ∼ N−1/6. This is called the “edge” regime (see Fig. 1).
The average density near the edge, for finite but large N , is
described by a finite-size scaling form [49,50]

ρN (x) ≈ 1

N wN

F1

[
x − √

2N/α

wN

]
, (29)

where we have set the width of the edge regime

wN = 1

α
√

2
N−1/6. (30)

The scaling function is given exactly by [49,50]

F1(z) = [Ai′(z)]2 − z[Ai(z)]2, (31)

where Ai(z) is the Airy function and Ai′(z) is its first derivative.
The scaling function F1(z) has the asymptotic behavior

F1(z) ≈
{ 1

π

√|z| as z → −∞,

1
8πz

e− 4
3 z3/2

as z → ∞.
(32)

Far to the left of the right edge, using F1(z) ∼ √|z|/π as
z → −∞ in Eq. (32), it is easy to show that the scaling
form (29) smoothly matches with the semicircular density in
the bulk (28). Recently, the edge scaling function F1(z) has
been shown [18] to be universal, i.e., holds even for potentials
different from the harmonic one, as long as it is smooth and
confining.

B. Large-N RMT predictions for the kernel

The kernel in Eq. (24) can be analyzed similarly in the
large-N limit. For example, consider first the bulk with two
points x and y, both on the scale of the local interparticle
separation �(x), defined as

�(x) = 2

π N ρN (x)
. (33)

Taking the limit N → ∞, and the separation between two
points |x − y| → 0, but keeping the ratio |x − y|/�(x) fixed,
it has been shown that the kernel Kμ(x,y) satisfies the scaling
form

Kμ(x,y) ≈ 1

�(x)
Kbulk

( |x − y|
�(x)

)
, (34)

with the scaling function

Kbulk(z) = sin(2z)

πz
. (35)

This is the celebrated sine kernel which also turns out to
be universal, i.e., independent of the precise shape of the
trap potential V (x) [18]. Note that when z → 0, Kbulk(z) →
2/π and, consequently, the kernel Kμ(x,x) → N ρN (x), in
agreement with Eq. (18).

Similarly, near the edges (say the right edge at xedge =√
2N/α), the kernel Kμ(x,y) in Eq. (24) can be similarly

analyzed in the scaling limit: N → ∞, x → xedge, y → xedge

but with the ratios (x − xedge)/wN and (y − xedge)/wN fixed.
Here, wN denotes the width wN of the edge regime as defined
in Eq. (30). In this scaling limit, one finds [13,14]

Kμ(x,y) ≈ 1

wN

Kedge

(
x − xedge

wN

,
y − xedge

wN

)
, (36)
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where the two-variable scaling function is given by the so-
called Airy kernel [13,14]

Kedge(a,b) = KAiry(a,b) = Ai(a)Ai′(b) − Ai′(a)Ai(b)

a − b

=
∫ +∞

0
du Ai(a + u)Ai(b + u). (37)

At coinciding points, it is easy to check that

KAiry(z,z) = F1(z) = [Ai′(z)]2 − z[Ai(z)]2. (38)

This fact, together with the definition ρN (x) = Kμ(x,x)/N ,
then yields back the edge density result mentioned in Eq. (29).

C. Statistics of the rightmost fermion, of fermion spacings,
and of number fluctuations

From the connection with RMT, one can immediately ob-
tain interesting predictions for various observables associated
to 1d free fermions at T = 0. Indeed, in any determinantal
point process [15,16], the full counting statistics can be
obtained in terms of Fredholm determinants (denoted in this
paper by Det). The Laplace transform of the probability PJ (n)
that there are exactly NJ = n fermions in a given (arbitrary)
subset J of the real axis is given by

〈e−pNJ 〉 = Det[I − (1 − e−p)PJ KμPJ ], (39)

where PJ (x) is an indicator function, such that PJ (x) = 1 if
x ∈ J and PJ (x) = 0 otherwise, i.e., the projector on the in-
terval J . In particular, the hole probability, i.e., the probability
that there is exactly zero fermion in the subset J , is then

PJ (n = 0) = Det[I − PJ KμPJ ]. (40)

There are important applications of this formula both in the
bulk and at the edge, which we now discuss.

Fermion spacing distribution. One example in the bulk con-
cerns the distribution of spacings (or gaps) between fermions,
analog of the famous spacing distribution in RMT. Denoting by
{x(i)}i=1,...,N the ordered set of fermion positions (i.e., x(1) <

x(2) < . . . < x(N)), we define the spacing g = |x(i+1) − x(i)|
between two consecutive fermions. The mean spacing near

the center (which we consider here) is ḡ = 1/[NρN (0)]. The
simplest guess for this spacing distribution is the famous
Wigner surmise

pW
2 (s) = 32s2

π2
e−4s2/π , s = g/ḡ (41)

which is normalized so that
∫ +∞

0 ds pW
2 (s) =∫ +∞

0 ds s pW
2 (s) = 1, i.e., the mean fermion spacing is

set to unity. As is well known, this is the exact result for
N = 2. Thus, it is an exact statement for two fermions in a
quadratic well (at T = 0). It also approximates rather well
the exact distribution for a large number N of fermions. The
latter, close to the origin, can be obtained as

p2(g) = 1

NρN (0)
∂2
gD(g), D(g) = Det[1 − P[0,g]KμP[0,g]].

(42)

In the bulk, setting g = s/[NρN (0)] = s π
2 �(0) (we made this

rescaling by π/2 to conform to the standard convention used
in RMT), one can replace the kernel in Eq. (42) by its limiting
form, namely, the sine kernel in Eq. (35). The fermion spacing
distribution is then described by the so-called Mehta-Gaudin
distribution

p2(g) 
 NρN (0)D̃′′(s), (43)

where D̃(s) can be expressed in terms of a particular solution
of a Painlevé V equation, denoted by σ (x), such that

D̃(s) = exp

[∫ πs

0

σ (x)

x
dx

]
, (44)

where σ (x) satisfies

[x σ ′′(x)]2 + 4[xσ ′(x)−σ ]{xσ ′(x)−σ (x) + [σ ′(x)]2} = 0,

(45)

with the boundary condition σ (x) ∼ −x/π as x → 0. From
the Painlevé equation (45) the asymptotic behaviors of D̃′′(s)
can be obtained as [13,51–53]

D̃′′(s) ∼
{

π2s2

3 − 2π4s4

45 + π6s6

315 − π6s7

4050 − 2π8s8

14175 + 11π8s9

496125 + 2π10s10

467775 + O(s11), s → 0

π4

16

(
2
πs

)1/4[
s2 − 2

π2 + o(1)
]

exp
[

ln 2
12 + 3ζ ′(−1) − π2s2

8

]
, s → +∞.

(46)

Note that from Eq. (43) one obtains that the average
gap is given ḡ = 1/[NρN (0)] = π�(0)

2 , with �(x) given in
Eq. (33).

Rightmost fermion statistics. One important application
of the formula (40) at the edge is as follows. In order to
probe the statistics at the edge of the cloud of fermions, it
is natural to consider the rightmost fermion xmax(T = 0) =
max1�i�N xi , where the quantum fluctuations of the positions
of the N fermions are described by the quantum probability
in Eq. (20). Now, the cumulative probability distribution of
xmax(T = 0) is precisely related to the hole probability in
Eq. (40): Prob[xmax(T = 0) � y] is precisely the probability

that the interval J ≡ [y, + ∞) is free of particles. Using
the expression (40) for the hole probability associated to
the interval J = [y = xedge + s wN,+∞) (see below), one
obtains that the typical quantum fluctuations of xmax(T = 0),
correctly centered and scaled, are governed by the celebrated
Tracy-Widom (TW) distribution for GUE, F2(x) [23]. Indeed,
one has

xmax(T = 0) = xedge + wN χ2, (47)

where, in the limit of large N , the cumulative distribution func-
tion (CDF) of the random variable χ2 is F2(s) = Pr(χ2 � s),
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which can be written as a Fredholm determinant [54]

F2(s) = Det(I − PsKAiryPs), (48)

where KAiry(a,b) is the Airy kernel given in Eq. (37) and Ps

is a projector on the interval [s,+∞). Note that F2(s) can also
be written in terms of a special solution q(x) of the following
Painlevé II equation [23]

q ′′(x) = xq(x) + 2q3(x), q(x) ∼ Ai(x), x → ∞. (49)

The TW distribution F2(s) can then be expressed as

F2(s) = exp

[
−
∫ ∞

s

(x − s)q2(x) dx

]
. (50)

In particular, its asymptotic behaviors are given by [55]

F2(s) ∼

⎧⎪⎨
⎪⎩

τ2
e
− 1

12 |s|3

|s|1/8

[
1 + 3

26|s|3 + O(|s|−6)
]
, s → −∞

1 − e
− 4

3 s3/2

16πs3/2

[
1 − 35

24s3/2 + O(s−3)
]
, s → +∞

(51)

where τ2 = 21/24eζ ′(−1) where ζ ′(x) is the derivative of the
Riemann zeta function.

Number variance. Another interesting observable is the
number of fermions NL in a symmetric interval [−L,L] (or in
any fixed interval), which is also a random variable. Its mean
is easily computed from the average density ρN (x) in Eq. (12)
as 〈NL〉 = N

∫ +L

−L
ρN (x) dx, which for large N can be easily

evaluated from the limiting semicircle law (28). What about
the higher cumulants of this random variable, for instance,
the variance Var(NL), and eventually the full distribution of
NL? In RMT, the variance was computed a long time ago by
Dyson [56], but only in the bulk limit when L = s �(0) where
�(0) is the interparticle spacing in the center of the trap given
in Eq. (33) for x = 0, and s is a dimensionless number of order
O(1). In particular, for large s, one has

Var(NL=s�(0)) ∼ 1

π2
ln s + O(1), s → ∞ (52)

a result that can also be obtained using the LDA [4]. In the bulk
regime one can show that the full distribution of NL, properly
centered and scaled, is a Gaussian [57,58]. It is only recently
that the fluctuations of NL, beyond the bulk regime, i.e., for
L � �(0), were studied. The variance Var(NL) has indeed
found a renewed interest [18,21,44–47,59] in the context
of free fermions, thanks to its connection to entanglement
entropy (see also below). Its dependence on L was first studied
numerically [18,45] for various trapping potentials, including
the harmonic potential, and it was observed that it displays
a striking nonmonotonic behavior. Recently, a full analytical
computation of the variance as well as the full distribution
of NL for fermions in a harmonic potential was performed in
Refs. [19,22]. Using RMT tools, in particular Coulomb gas
techniques, the variance was computed for any L and large N ,
thus extending the analysis of Dyson [56] far beyond the bulk
regime.

Entanglement entropy. The other interesting observable at
T = 0 is the Rényi entanglement entropy Sq of the interval
[−L,L] around the trap center with the rest of the system.
Consider the many-body fermionic system in its ground state,

so that the density matrix of the full system in this pure
state is simply ρ̂ = |�0〉〈�0|. Consider now the subsystem
A ≡ [−L,L] and let ρ̂A = TrĀρ̂ denote the reduced density
matrix of the subsystem A, obtained by tracing out the
complementary subsystem Ā (so that A and Ā together
constitute the full real line). The Rényi entanglement entropy
of the subsystem A, parametrized by q � 1, is then defined
as Sq = 1

1−q
ln Tr ρ̂

q

A. In the limit q → 1, this reduces to the
standard von Neumann entropy S1 = −Tr[ρ̂A ln ρ̂A]. For free
fermions in a harmonic trap in one dimension at T = 0, the
Rényi entropy was studied numerically [18,45]. Exploiting the
connection of the fermionic system to RMT, the Rényi entropy
was recently computed analytically for large N , and for a wide
range of L [21]. For instance, it was shown [21] that for all
L such that

√
2 N/α − L � wN [where we recall that wN =

1/(α
√

2)N−1/6, see Eq. (30)], there is an exact relationship
between the Rényi entropy and the number variance Var(NL)
discussed above:

Sq = π2

6

(
1 + 1

q

)
Var(NL). (53)

However, around the edge, this relation breaks down and
computing the scaling behavior of Sq near the edge remains a
challenging open problem [21].

Let us close by indicating that, as a property of determinan-
tal point processes which generalizes (39) (see, e.g., [15–17]),
there exists a class of averages over the positions of the
fermions which can be expressed exactly in terms of a
Fredholm determinant (which is valid for any finite N )〈

N∏
i=1

f (xi)

〉
0

= Det(I − Lf ),

Lf (x,y) = [1 − f (x)]Kμ(x,y), (54)

where Kμ(x,y) is the kernel associated with the determinantal
process. In Eq. (54), the average is the quantum average in the
ground state and the function f (x) is arbitrary, provided the
right-hand side exists. Such formula can be useful for studying
linear statistics of free fermions [60].

D. Momentum distribution function for fermions
in a harmonic trap

To close this section, we point out the remarkable property
that the quantum joint PDF in the ground state of N

noninteracting fermions in a harmonic potential is completely
symmetric under the interchange of all positions with all
momenta

(α x1, . . . ,α xN ) ≡in law

(
p1

� α
, . . . ,

pN

� α

)
≡in law (λ1, . . . ,λN )GUE, (55)

each set being distributed as the eigenvalues of a GUE random
matrix as indicated in formulas (20) and (21). This identity
is true for arbitrary N . As a consequence, all properties
obtained in this paper for the positions of the fermions are
also valid for their momenta, as long as we are studying
the harmonic confining potential. In particular, the density in
momentum space n(p) is also, at T = 0, given by the Wigner
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semicircle and exhibits a sharp edge at p = pedge = �α
√

2N .
The fluctuations of the largest momentum take the form, for
large N ,

pmax = � α
√

2N + � α2wNχ2, (56)

where wN is defined in Eq. (30) and χ2 is distributed according
to the Tracy-Widom GUE distribution (50). All the predictions
below for the correlations in the bulk and at the edge, at
zero and finite temperature, and in any dimension, extend
accordingly in momentum space.

IV. CORRELATIONS FOR NONINTERACTING FERMIONS
AT FINITE TEMPERATURE T > 0

We now want to study the effect of nonzero temperature for
N noninteracting fermions in an external confining potential.
The discussion below holds for arbitrary dimensions, but
we will focus for simplicity on the d = 1 case. For the
harmonic oscillator at T = 0 one could use, as in the previous
section, the techniques of RMT. However, at finite temperature,
even for the harmonic oscillator potential, these direct RMT
connections are lost and one needs to develop new techniques.

We will focus on the canonical ensemble at temperature
T = 1/β that corresponds to a fixed number of fermions N ,
which is often the situation studied in cold-atoms experiments.
Before doing that, we first describe the energy basis of
the Hilbert space, and the determinantal properties of the
corresponding wave functions, in a more general setting. This
general formalism is then applied to the harmonic oscillator,
in the following section.

A. N-fermion Hilbert space and occupation number basis

In order to study excited states, we need to consider the
full Hilbert space of the N particles. A natural basis of this
Hilbert space is formed by the eigenstates of the N -particle
Hamiltonian ĤN . For noninteracting fermions, these eigen-
states and this basis can be constructed from the eigenstates
of the single-particle Hamiltonian Ĥ . In the case of the
one-dimensional harmonic oscillator, the eigenfunctions φk(x)
are given in Eq. (4). The associated energy eigenvalues are
εk = �ω(k + 1/2) where k is an integer which ranges from 0 to
∞. From these single-particle eigenstates, one can construct all
many-body eigenfunctions of ĤN by putting N fermions in N

different single-particle levels indexed by k1 < k2 < . . . < kN .
The fermionic nature of the particles allows at most one particle
in a given single-particle level. Hence, one introduces the
set of occupation numbers, denoted by {nk}, k = 0,1,2, . . .

with nk = 0,1, to label the many-body states, with nk1 =
nk2 = · · · = nkN

= 1 for the occupied single-particle states and
nk = 0 otherwise. They satisfy the constraint

∑∞
k=0 nk = N .

The corresponding many-body eigenfunction is given by a
Slater determinant, with the corresponding eigenenergy,

�{nk}({xi}) = 1√
N !

det
1�i,j�N

φki
(xj ), E ≡ E{nk} =

∞∑
k=0

nkεk

(57)

with, e.g., E = �ω (k1 + k2 + · · · + kN + N/2) for the har-
monic oscillator.

An important property, already discussed and used in
Sec. II for the ground state, but which extends to any N -body
eigenstate, i.e., to all the excited states, is that the squared
modulus of the wave function can be written as a determinant

|�{nk}(x1, . . . ,xN )|2 := 1

N !

∣∣∣∣ det
1�i,j�N

φki
(xj )

∣∣∣∣
2

= det
1�i,j�N

K(xi,xj ; {nk}), (58)

where the kernel K(x,x ′; {nk}) is indexed by the set of
occupation numbers and is given by

K(x,x ′; {nk}) =
N∑

j=1

φ∗
kj

(x)φkj
(x ′) =

∞∑
k=0

nk φ∗
k (x)φk(x ′).

(59)

Note that there is one kernel associated to each eigenstate of
the energy operator ĤN . Furthermore, using the orthonormal-
ization of the single-particle eigenfunctions one easily shows
that these kernels obey the following property:

∫
dz K(x,z; {nk})K(z,y; {n′

k}) = K(x,y; {nkn
′
k}) (60)

for any two given sets {nk} and {n′
k}. Specializing (60) to

{nk} = {n′
k} and using that n2

k = nk for any k, we see that each
of these kernels satisfies the reproducing property (14). An
immediate consequence, as in Sec. II, is that if the system is
prepared in any of these states, the density and the correlations
are given by determinants, as in Eqs. (18) and (15).

B. Canonical measure and observables at finite T

Let us first recall the definition of the canonical partition
function ZN (β) for N noninteracting fermions at temperature
T = 1/β (in this paper we set the Boltzmann constant kB = 1)

ZN (β) = Tre−βĤN =
∑

k1<k2<...<kN

e−β (εk1 +···+εkN
), (61)

where the sum is over all possible N -fermion eigenstates of
ĤN labeled as described above in terms of all possible distinct
occupied single-particle eigenstates. It is also convenient to
rewrite it using a labeling by occupation numbers as

ZN (β) =
∑
{nk}

⎡
⎣e−β

∑
k�0 nkεk δ

⎛
⎝∑

k�0

nk,N

⎞
⎠
⎤
⎦, (62)

where
∑

{nk} denotes the sum over all the possible occupation
numbers nk = 0,1 for k = 0,1,2, . . . . In Eq. (62), δ(i,j ) = 1
if i = j and δ(i,j ) = 0 if i �= j : this Kronecker delta function
thus imposes the total number of particles to be exactly N , as
we are working in the canonical ensemble.
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In the canonical ensemble, the quantum joint probability distribution function of the positions xi of the fermions,
Pjoint(x1, . . . ,xN ), is defined in terms of the N -body density matrix ρ̂ = e−βĤN /ZN (β) as

Pjoint(x1, . . . ,xN ) = 〈x1, . . . ,xN |ρ̂|x1, . . . ,xN 〉 = 1

ZN (β)

∑
{nk}

∣∣�{nk}({xi})
∣∣2e−β

∑
k�0 nkεk δ

⎛
⎝∑

k�0

nk,N

⎞
⎠, (63)

where the sum is over all many-body eigenstates. Using Eq. (57), we can rewrite the joint PDF of the particle positions in the
canonical ensemble as the Boltzmann weighted sum of Slater determinants

Pjoint(x1, . . . ,xN ) = 1

N !ZN (β)

∑
k1<···<kN

∣∣∣∣ det
1�i,j�N

φki
(xj )

∣∣∣∣
2

e−β (εk1 +···+εkN
), (64)

where ZN (β) is the canonical partition function (61). It is easy to check that ZN (β) is such that the PDF Pjoint(x1, . . . ,xN ) is
normalized to unity.

The first observable we want to compute is the mean density of fermions at finite temperature T defined as

ρN (x) = 1

N

N∑
i=1

〈δ(x − xi)〉, (65)

where from now on 〈. . .〉 means an average computed with the joint PDF (64). This amounts, up to a multiplicative constant,
to integrating the joint PDF Pjoint(x,x2, . . . ,xN ) over the last N − 1 variables. This amounts to the calculation of the following
integral:

ρN (x) =
∫ ∞

−∞
dx1δ(x − x1)

∫ ∞

−∞
dx2 . . .

∫ ∞

−∞
dxNPjoint(x1, . . . xN ), (66)

where any of the two forms for Pjoint in Eqs. (63) and (64) can be inserted. More generally, we want to calculate the n-point
correlation function Rn(x1, . . . ,xn) at temperature T defined as

Rn(x1, . . . ,xn) = N !

(N − n)!

∫ ∞

−∞
dxn+1 . . .

∫ ∞

−∞
dxNPjoint(x1, . . . ,xn,xn+1, . . . ,xN ). (67)

The question is to handle these multiple integrals in the case of finite T . To understand the difficulty of this calculation, one
can note that the joint PDF in Eq. (64) can be written as a determinant, as it is the case for T = 0 [61]:

Pjoint(x1, . . . xN ) = 1

N !ZN (β)
det

1�i,j�N
G(xi,xj ,β�) (68)

in terms of the Euclidean propagator associated to the one-body Hamiltonian

G(x,y; t) = 〈y|e− t
�

Ĥ |x〉 =
∑

k

e− t
�

εkφ∗
k (x)φk(y). (69)

Unfortunately, and at variance with the case of T = 0, successive integrations over the coordinates xi do not preserve this
determinantal structure. This is because the kernel inside the determinant no longer satisfies the reproducing property since∫ ∞

−∞
dz G(x,z; β�)G(z,y; β�) = G(x,y; 2β�) (70)

which is clearly a different kernel. Hence, the evaluation of these integrals for arbitrary N is very difficult.

C. Saddle-point calculation and equivalence between canonical and grand-canonical ensembles

Fortunately, in the limit of large N , it is possible to use a saddle-point method to calculate the density and the n-point correlation
functions (at fixed n). As we will see, this is a manifestation of the equivalence between the canonical and the grand-canonical
ensembles for large N . Consider the density ρN (x) in Eq. (66). Inserting there the expression (63) for Pjoint(x,x2, . . . ,xN ), and
replacing |�{nk}({xi})|2 by the determinant of the kernel given in Eq. (58) we obtain

ρN (x) = 1

ZN (β)

∑
{nk}

[∫ ∞

−∞
dx1δ(x − x1)

∫ ∞

−∞
dx2 . . .

∫ ∞

−∞
dxN det

1�i,j�N
K(xi,xj ; {nk})

]
e−β

∑
k�0 nkεk δ

⎛
⎝∑

k�0

nk,N

⎞
⎠. (71)
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We now use the property of reproducibility of the kernel for each choice of {nk} noted above in Eq. (60). From the theorem
mentioned in Sec. II leading to Eqs. (15) and (18), we can rewrite this multiple integral as

ρN (x) = 1

ZN (β)

1

N

∑
{nk}

K(x,x; {nk})e−β
∑

k�0 nkεk δ

⎛
⎝∑

k�0

nk,N

⎞
⎠, (72)

where

K(x,x; {nk}) =
∞∑

k=0

nk|φk(x)|2. (73)

Note that in the limit where T → 0, the system is in the ground state characterized by nk = 1 if k = 0,1,2, . . . ,N − 1 and nk = 0
if k � N . Hence, in this limit, Eq. (72) reads as

ρN (x) = 1

N

N−1∑
k=0

|φk(x)|2. (74)

To calculate the correlation functions given by the integral (67) we use the same method, and in particular the determinantal
form (15) obtained after the N − n integrations. We thus obtain the n-point correlations at finite temperature (67) as

Rn(x1, . . . ,xn) = 1

ZN (β)

∑
{nk}

⎡
⎣ det

1�i,j�n
K(xi,xj ; {nk})e−β

∑
k�0 nkεk δ

⎛
⎝∑

k�0

nk,N

⎞
⎠
⎤
⎦. (75)

To compute the expression in Eq. (75), we must evaluate the ratio of two sums over the occupation numbers {nk}, each one
constrained by

∑
k�0 nk = N . Both in the numerator and the denominator, i.e., ZN (β) given by (61), we rewrite the constraint

using an integral representation of the Kronecker delta symbol:

δ

⎛
⎝∑

k�0

nk,N

⎞
⎠ =

∫ 2π

0

dλ

2π
exp

⎡
⎣iλ

⎛
⎝∑

k�0

nk − N

⎞
⎠
⎤
⎦. (76)

Let us first consider the denominator ZN (β). It now reads as

ZN (β) =
∫ 2π

0

dλ

2π
e−iNλ

∑
{nk=0,1}

e−β
∑

k�0(nkεk−iλnk ). (77)

This representation thus makes the nk variables independent of each other and one can perform the sum over each nk separately.
Note that each nk takes values 0 or 1. Performing the sum over nk’s, for all k, we get

ZN (β) =
∫ 2π

0

dλ

2π
e−iNλ

∏
k

(1 + e−β(εk−iλ)). (78)

Introducing the function

J (μ̃) = − 1

β

∑
k

ln(1 + e−βεk+βμ̃) (79)

which is just the free energy in the grand-canonical ensemble at chemical potential μ̃, we can rewrite the partition function
simply as

ZN (β) =
∫ 2π

0

dλ

2π
e
−βJ ( iλ

β
)−iλN

. (80)

We now consider the full expression (75) and use (76) to rewrite it as

Rn(x1, . . . ,xn) = 1

ZN (β)

∫ 2π

0

dλ

2π
e−iNλ

∑
{nk}

det
1�i,j�n

[ ∞∑
k=0

nkφ
∗
k (xi)φk(xj )

]
e−β

∑
k�0(nkεk−iλnk ) (81)

= 1

ZN (β)

∫ 2π

0

dλ

2π
e−iNλ

∑
{nk}

∑
k1<...<kN

nk1 . . . nkN
e−β

∑
k�0(nkεk−iλnk )

∣∣∣∣ det
1�i,j�n

φki
(xj )

∣∣∣∣
2

. (82)
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In the second line we have used the (generalized) Cauchy-Binet-Andreief formula for determinants [62]:

det
1�i,j�n

[ ∞∑
k=0

nkφ
∗
k (xi)φk(xj )

]
=

∑
k1<...<kN

nk1 . . . nkN

∣∣∣∣ det
1�i,j�n

φki
(xj )

∣∣∣∣
2

(83)

valid for any set of {nk}. To perform the sum over the occupation numbers, we introduce the notation for the “expectation value”
of any observable O[{nj }] at fixed λ

〈O[{nj }]〉λ = e
βJ ( iλ

β
)
∑
{nk}

O[{nj }]e−β
∑

k�0(nkεk−iλnk ) (84)

which is such that 〈1〉λ = 1. This allows to rewrite (82) as

Rn(x1, . . . ,xn) = 1

ZN (β)

∫ 2π

0

dλ

2π
e−iNλe

−βJ ( iλ
β

)
∑

k1<...kN

〈nk1 . . . nkN
〉λ
∣∣∣∣ det
1�i,j�n

φki
(xj )

∣∣∣∣
2

(85)

= 1

ZN (β)

∫ 2π

0

dλ

2π
e−iNλe

−βJ ( iλ
β

)
∑

k1<...kN

〈nk1〉λ . . . 〈nkN
〉λ
∣∣∣∣ det
1�i,j�n

φki
(xj )

∣∣∣∣
2

(86)

= 1

ZN (β)

∫ 2π

0

dλ

2π
e−iNλe

−βJ ( iλ
β

) det
1�i,j�n

[ ∞∑
k=0

〈nk〉λφ∗
k (xi)φk(xj )

]
(87)

and 〈nk〉λ = 1
1+eβεk−iλ . In the second line we have used explicitly the independence of the variables nk at fixed λ, as seen from (84).

In the third line we have used again the Cauchy-Binet-Andreief formula (in reverse). Thus, we finally obtain the n- point
correlation function in the form

Rn(x1, . . . ,xn) =
∫ 2π

0
dλ
2π

[det1�i,j�n K(xi,xj ; {〈nk〉λ})] e
−βJ ( iλ

β
)−iλN∫ 2π

0
dλ
2π

e
−βJ ( iλ

β
)−iλN

(88)

with

K(x,x ′; {〈nk〉λ}) =
∞∑

k=0

〈nk〉λφk(x)φk(x ′), 〈nk〉λ = 1

1 + eβεk−iλ
(89)

and J (μ̃) as defined in Eq. (79). At this stage, Eqs. (88), (89), and (79) provide an exact representation for the correlation function
in the canonical ensemble for arbitrary N and n, where the integrals over λ still need to be performed. In particular, it holds for
R1(x) = NρN (x).

As a remark, we note that the crucial property which made this representation possible is the following identity:〈
det

1�i,j�n

[ ∞∑
k=0

nkφ
∗
k (xi)φk(xj )

]〉
= det

1�i,j�n

[ ∞∑
k=0

〈nk〉φ∗
k (xi)φk(xj )

]
(90)

which holds for arbitrary averaging 〈. . .〉 for which the variables nk are independent. It can be proved using the Andreief formula
twice, as done above. Here, we have further used the fact that the variables nk at fixed λ are independent Bernoulli random
variables. These identities have been used also in the mathematical literature [63] in the context of determinantal processes.

The next step is to evaluate the remaining integral over λ using the saddle-point method, which becomes exact in the limit of
large N . Let us first study the denominator in Eq. (88), i.e., the partition sum. There, the saddle point occurs, in our notation, at
λ = λsp = −iβμ̃ where μ̃ is the chemical potential. It is related to the total number of particles N as N = −∂J/∂μ̃, which reads
as

N =
∞∑

k=0

1

eβ(εk−μ̃) + 1
. (91)

Hence, the chemical potential μ̃ = μ̃(T ,N ) depends on T and N . In the zero-temperature limit, as evident from the above
equation, μ̃(T = 0,N) = μ, where μ is the Fermi level introduced in Sec. II.

In the thermodynamic language, this amounts to use the equivalence, in the large-N limit, between the canonical ensemble
and the grand-canonical ensemble. As is well known, the values of the average occupation numbers nk at the saddle point are
given by the Fermi factor and denoted as

〈nk〉 := 〈nk〉λsp , 〈nk〉 = 1

eβ(εk−μ̃) + 1
, N =

∞∑
k=0

〈nk〉, (92)

where we recall that for the harmonic oscillator εk = �ω(k + 1
2 ) for k = 0,1,2, . . . .
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The same saddle-point analysis can be performed to
calculate the correlation in Eq. (88). It remains valid as long
as the quantity that is averaged does not grow too fast with N

[e.g., as exp(cNa) where a < 1]. In this case, the value of the
chemical potential at the saddle point is not modified. Here,
this quantity is det1�i,j�n K(xi,xj ; {〈nk〉λ}) and it is reasonable
to expect that these conditions are satisfied. Therefore, in the
large-N limit, one obtains from Eq. (88) our main result

Rn(x1, . . . ,xn) 
 det
1�i,j�n

Kμ̃(xi,xj ), (93)

where the finite-temperature kernel is given by

Kμ̃(x,x ′) =
∞∑

k=0

φ∗
k (x)φk(x ′)

eβ(εk−μ̃) + 1
, (94)

and the chemical potential μ̃ is fixed by Eq. (91). The case
n = 1 then yields the result for the density

ρN (x) 
 1

N

∞∑
k=0

〈nk〉|φk(x)|2 =
∞∑

k=0

|φk(x)|2
eβ(εk−μ̃) + 1

. (95)

Note that we reserve the notations μ and Kμ(x,x ′) for the
zero-temperature chemical potential and kernel, respectively,
while we denote by μ̃ and Kμ̃(x,x ′) their finite-temperature
versions. When T → 0, we recall that μ̃ → μ, but at finite
T > 0, not only the chemical potential μ̃ differs from μ, but
also the full kernel functions are different. Note also that in
the limit T → 0 the Fermi factor becomes θ (μ − εk) and the
kernel becomes equal to the one associated with the ground
state, given in Eq. (9) and the same result holds for the density.

Hence, we find that the correlations at fixed n are asymptot-
ically determinantal at large N in the canonical ensemble. Al-
ternatively, it is also possible to define the problem of fermions
in an external potential directly in the grand-canonical ensem-
ble. Indeed, the quantities Rn(x1, . . . ,xn)dx1 . . . dxn are the
probabilities that there is a particle in each of the intervals
[xi,xi + dxi], 1 � i � n (referred to as the correlation density
in the mathematics literature). Clearly, such quantities exist
and make sense for ensembles where the particle number
varies. In fact in the grand-canonical ensemble, Eq. (93) is an
exact equality. Hence, the kernel Kμ̃(xi,xj ) exactly describes
the statistics of a system in the grand-canonical ensemble at
the chemical potential μ̃ corresponding to N for all values of
μ̃, and not only those corresponding to N large. In the physics
literature, this determinantal property of the grand-canonical
ensemble of free fermions is usually derived using Wick’s
theorem [3,64] and has been known for a long time (see
also Ref. [16]). Interestingly, in the mathematics literature,
this property has been studied rigorously only rather recently,
using Cauchy-Binet-Andreief identity in the context of general
determinantal point processes [65]. Of course, both approaches
provide identical results. In this paper, we have preferred
the approach using Cauchy-Binet-Andreief identity to show
that the determinantal property also holds in the canonical
ensemble with fixed fermion number N � 1. We have shown
that this is true provided the saddle-point solution exists. To
prove the existence of such a saddle point rigorously is a
challenging mathematical problem.

We end this section by commenting on the case where
the single-particle spectrum is degenerate. In this case, the

many-body ground state may be degenerate, an example
being the harmonic oscillator in 2d. Each of these degenerate
many-body ground states can be written as a Slater determinant
and each of them constitutes a separate determinantal point
process which can be studied along the lines of Sec. III.
However, the zero-temperature limit of the finite-T measure
in Eq. (63) corresponds to taking a zero-temperature density
matrix where each of these degenerate many-body ground
states appears with equal probability. The resulting mixed state
is not determinantal, as in the finite-T case. However, using the
equivalence between the canonical and the grand-canonical
ensemble in the large-N limit, this case can also be treated
using Eq. (94) with N given by (91), in the limit β → ∞. Note
that, everywhere in the formula given above, the sum over k

has to be understood as a sum over all possible single-particle
states (including their degeneracies).

We now analyze these formulas (91)–(95) first in the bulk
and then at the edge of the Fermi gas.

V. HARMONIC OSCILLATOR IN ONE DIMENSION
AT FINITE TEMPERATURE T > 0

Before applying the general formula for the finite-
temperature kernel and correlations to the harmonic oscillator
case, it is useful to discuss the relevant scales in the problem.
We consider the harmonic oscillator potential V (x) = 1

2mω2x2

in d = 1. We have seen that at T = 0 there is a natural
length scale associated to quantum fluctuations in the confining
potential 1/α = √

�/mω. At T = 0 there are two length
scales �(x) = π/NρN (x) and wN = N−1/6/(α

√
2) denoting,

respectively, the interparticle distance in the bulk and the edge
(see Fig. 1). A finite temperature introduces a length scale
characterizing the width of a wave packet associated with a
quantum particle, the thermal de Broglie wavelength λT =
�
√

2π/(mT ) obtained by the equating kinetic energy and T .
Therefore, the thermal effects dominate over the quantum
effects only if λT is smaller than the typical interparticle
distance, in which case the system behaves classically. In the
bulk of the Fermi gas, comparing λT and l the quantum-to-
classical crossover occurs at a temperature scale

T ∼ N�ω. (96)

Similarly at the edge, comparing λT and wN we find that the
corresponding crossover occurs at a much lower temperature

T ∼ N1/3
�ω. (97)

We will thus focus on these two regimes (96) and (97) in the
following.

In addition, we know that the average density follows the
Wigner semicircle law at zero temperature, a clear signature
of the quantum effects. In the other limit of large temperature
T � N�ω, the system behaves classically and we expect
the standard Gibbs-Boltzmann distribution of independent
particles

ρN (x)
T �N�ω−−−−→

√
βmω2

2π
e− β

2 mω2x2
. (98)

Our goal below is to study the quantum-to-classical crossover
in the density as well as in the kernel.
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A. High-temperature scaling and results in the bulk

As anticipated by Eq. (96), the bulk scaling regime corresponds to the limit T → ∞, N → ∞, while keeping fixed the
following dimensionless variable:

y = N�ω/T = βμ̃. (99)

Similarly, there is a length scale �T =
√

2T/mω2 associated with the high-temperature thermal fluctuations from Eq. (98), hence,
we can consider the dimensionless length scale, also kept fixed

z = x/�T = x
√

mω2/2T . (100)

In this scaling limit, Eq. (91) fixing the chemical potential μ̃ reads as

N =
∞∑

k=0

1

eβ�ω(k+ 1
2 )e−βμ̃ + 1



∫ +∞

0
dk

1

eky/Ne−βμ̃ + 1
= N

y
ln(1 + eβμ̃), (101)

where we could replace the sum by an integral since β�ω � 1. This yields the relation

eβμ̃ = ey − 1. (102)

Hence, in that scaling regime βμ̃ is also of order O(1).

1. Density of fermions in the bulk

We now analyze the density ρN (x) given in Eqs. (95) and (92) which we evaluate for x = z/
√

βmω2/2 = √
2N/(α

√
y) � 1.

After performing the change of variable k = Np in the sum over k in Eq. (95), one obtains

ρN (x) 
 1

N

∞∑
k=0

φk(x)2

eβ�ω(k+ 1
2 )e−βμ̃ + 1



∫ ∞

0
dp

{φNp[x = z
√

2N/(α
√

y)]}2

eyp(ey − 1)−1 + 1
, (103)

where we have replaced μ̃ by its value given in Eq. (102) and where φk(x) is given in Eq. (4). We now need an asymptotic
expansion of φk(x) for large k (and large x). This expansion is provided by the Plancherel-Rotach formula [as given for instance
in Eqs. (3.10) and (3.11) of Ref. [66]]. For −1 < X < 1, one has

e−MX2
HM (

√
2MX) =

(
2

π

)1/4 2M/2

(1 − X2)1/4
M−1/4(M!)1/2gM (X)

[
1 + O

(
1

M

)]
(104)

with

gM (X) = cos[MX
√

1 − X2 + (M + 1/2) sin−1 X − Mπ/2]. (105)

Using these formulas (104) and (105) for M = Np and X = z/
√

py [see Eq. (103)] (taking into account that X < 1, i.e.,
p > z2/y) one finds

ρN (x = z/
√

βmω2/2) = α
√

2

π

∫ ∞

z2/y

dp
1

eyp(ey − 1)−1 + 1
(Np)−1/2 1√

1 − z2

py

[gNp(z/
√

py)]2 (106)

= α
√

2

π
√

y
√

N

∫ ∞

z2
dq

1

eq(ey − 1)−1 + 1

1√
q − z2

[gNp(z/
√

q)]2, (107)

where, in the second line, we have simply performed the change of variable p = q/y. To obtain the large-N limit of Eq. (107)
we notice that, thanks to the identity cos2 x = 1/2 + cos(2x)/2, one can replace [gNp(z/

√
q)]2, given in Eq. (105), in the integral

over q in Eq. (107) by 1
2 (the remaining cosine being highly oscillating for large N and thus subleading). If one finally performs

the change of variable q → q + z2 in Eq. (107), one obtains finally

ρN (x = z/
√

βmω2/2) = α

π
√

y
√

2N

∫ ∞

0
dq

1

eq+z2 (ey − 1)−1 + 1

1√
q

= − α√
2Nπy

Li1/2[−(ey − 1)e−z2
], (108)

where Lin(x) = ∑∞
k=1 xk/kn is the polylogarithm function. Hence, from Eq. (108) we obtain the main result of this section: the

fermion density in the bulk takes the scaling form

ρN (x) ∼ α√
N

R(y = βN�ω,z = x
√

βmω2/2) (109)
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with the bulk scaling function

R(y,z) = − 1√
2πy

Li1/2[−(ey − 1)e−z2
], (110)

which is plotted in Fig. 2. Note that it should not be confused with Rn that denotes correlation functions.
We now show, from an asymptotic analysis of R(y,z), that Eq. (109) interpolates between the Wigner semicircle (28) in the

limit T → 0 and the classical Gibbs-Boltzmann distribution for T → ∞:

ρN (x)
T →+∞−−−−→

√
β m ω2

2π
exp

[
−β

2
m ω2 x2

]
, (111)

which holds also in the scaling limit β → 0, x → ∞ but keeping x
√

β fixed (with the limit N → ∞ already taken). Note that
the physical mechanism behind this interpolation is very different from those found earlier in other matrix models [67,68].

To analyze the T → ∞ and the T → 0 limits of ρN (x) in Eqs. (108) and (110), we need the following asymptotic behaviors
of the polylogarithm function:

Li1/2(X) ∼ X, X → 0 (112)

and

Li1/2(−eX) ∼ − 2√
π

X1/2, X → ∞. (113)

From these behaviors in Eqs. (112) and (113), one finds the asymptotic behaviors of the scaling function R(y,z) in Eq. (110):

R(y,z) ∼

⎧⎪⎨
⎪⎩
√

y

2π
e−z2

, y → 0

√
2

π

√
1 − z2

y
, y → ∞, z → ∞ with z2/y fixed.

(114)

From the first line of Eq. (114), one recovers the T → ∞ limit where the density converges to the Gibbs-Boltzmann (Gaussian)
form, given in Eq. (111). On the other hand, from the second line of Eq. (114), one obtains the T → 0 limit of the density, which
is given by the Wigner semicircle law (28).

2. Kernel and correlations in the bulk

We analyze the kernel Kμ̃(x,x ′) in the bulk where both
x = uN−1/2/α and x ′ = u′N−1/2/α are close to the center of
the trap (and x − x ′ is of the order of the typical interparticle
distance). Hence, we analyze the formulas (91) and (94) in
the limit N → ∞, β → 0 keeping y = βN�ω in Eq. (99)
fixed. In this limit, the chemical potential μ̃ is given by
Eq. (102) and the large-N analysis of Kμ(x,x ′) (94) can
be performed along the same lines as done before for the
density ρN (x) yielding eventually Eq. (107). Indeed, using the
Plancherel-Rotach asymptotic expansions (104) and (105), we

4

-4
-2

0

2z

5

10

0

0

0.2

0.4

y

R(y, z)

FIG. 2. Plot of the scaling function R(y,z) associated with the
density ρN (x) (109), given in Eq. (110).

obtain

Kμ̃(x = uN−1/2/α,x ′ = u′N−1/2/α)


 α
√

2N

π

∫ ∞

0

dp√
p

1

ey p(ey − 1)−1 + 1

× gNp

(
u

N
√

p

)
gNp

(
u′

N
√

p

)
. (115)

From the explicit expression of gN (X) in Eq. (105), one obtains
straightforwardly

gNp

(
u

N
√

p

)

 cos

(
2u

√
p − Np

π

2

)
. (116)

Therefore, the product gNp( u
N

√
p

)gNp( u′
N

√
p

) in Eq. (115) reads
as, for large N ,

gNp

(
u

N
√

p

)
gNp

(
u′

N
√

p

)


 1

2
cos[2

√
p(u − u′)] + 1

2
cos[2

√
p(u + u′) − Npπ ].

(117)

The second term in Eq. (117) is highly oscillating in the large-
N limit and hence the leading contribution, once inserted in
the integral over p in Eq. (115), comes from the first term of
Eq. (117), which is independent of N . Therefore, we finally
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obtain

Kμ̃(x = uN−1/2/α,x ′ = u′N−1/2/α)

∼ α
√

N
1

π
√

2

∫ ∞

0

dp√
p

cos[2
√

p(u − u′)]
eyp(ey − 1)−1 + 1

. (118)

Finally, performing the change of variable p → p/y, one
obtains the final form of the finite-temperature kernel in the
bulk

Kμ̃(x,x ′) = αN1/2Kbulk
y [α

√
N (x − x ′)], (119)

where

Kbulk
y (v) = 1

π
√

2y

∫ +∞

0
dp

cos
(√ 2p

y
v
)

[1 + ep/(ey − 1)]
√

p
(120)

(see also Refs. [65,69] for alternative derivations of this
kernel). In the inset of Fig. 4 we show a plot of the two-
point correlation function in the bulk gbulk

y (v) = Kbulk
y (0)2 −

[Kbulk
y (v)]2 for different scaled temperature parameter y.

B. Low-temperature scaling: Density and kernel at the edge

1. Density at the edge

We now focus on the density near the zero-temperature edge
at xedge =

√
2N
α

. We recall that at zero temperature the density
strictly vanishes at the edge, and the edge region has a width
wN = 1

α
√

2
N− 1

6 which corresponds to the typical separation
between particles near the edge. To analyze how this density
profile gets modified near the edge we set

x =
√

2N

α
+ s wN. (121)

We have also seen from Eq. (97) that in the edge region
the crossover from quantum to classical regime occurs at
temperature T ∼ N1/3

�ω. Hence, we define the dimensionless
(inverse temperature) parameter b,

b = �ω

T
N1/3, (122)

which will be kept fixed in the large-N and large-T limits
in this edge regime. From (99) we see that the variable y =
bN2/3 � 1 in this regime. Hence, from (102) we can set βμ̃ 

y = bN2/3. We insert this value of βμ̃ in Eq. (95), and use εk =
�ω(k + 1/2). Making further a shift k − N = m (neglecting
the 1

2 factor compared to N ) we obtain the following expression
for the density:

ρN (x) 
 1

N

∞∑
m=−N

[φN+m(x)]2

exp(bm/N1/3) + 1
. (123)

Using the Plancherel-Rotach formula for Hermite polynomials
at the edge (see for instance Ref. [66]) yields

φN+m

(√
2N

α
+ s√

2α
N− 1

6

)
∼ √

α
2

1
4

N
1
12

Ai

(
s − m

N
1
3

)
,

(124)

up to terms of order O(N−2/3). Hence, by inserting this
asymptotic formula (124) into (123) and replacing the discrete
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FIG. 3. Plot of the scaling function F1,b(s) for the density, given
in Eq. (126), corresponding to two different (scaled) temperatures
b = 0.5 (dotted line) and b = 5 (solid line). Inset: plot of F1,b(s) cor-
responding to b → ∞ (zero temperature) shown here for comparison
with the main plot.

sum over m ∼ N1/3 by an integral, we obtain the scaling form
of the density near the edge

ρN (x) 
 1

NwN

F1,b

(
x − xedge

wN

)
, (125)

where the finite-temperature scaling function F1,b(s) is ob-
tained as

F1,b(s) =
∫ +∞

−∞
du

Ai(s + u)2

1 + e−bu
. (126)

In the zero-temperature limit b → ∞, the Fermi factor be-
comes a Heaviside step function, and we recover F1,b=+∞(s) =
F1(s) given in Eq. (31). In Fig. 3, we show how F1,b(s) behaves
for different values of the reduced inverse temperature b.
Note that the oscillations are more and more attenuated as
temperature increases.

Density at the edge: Temperature dependence. It is inter-
esting to discuss the value of the density exactly at the edge
x = xedge. One has

NρN (xedge) 
 N1/6α
√

2fe(T/N1/3
�ω),

fe(t) = t

∫ +∞

−∞
du

Ai(ut)2

1 + e−u
. (127)

In the low-temperature scaling regime T ∼ N1/3
�ω the two

limiting behaviors are

ρN (xedge) 


⎧⎪⎪⎨
⎪⎪⎩

α
√

2
32/3�( 1

3 )2 N
−5/6, T � N1/3

�ω

(1−√
2)ζ ( 1

2 )α√
2π

1
N

√
T
�ω

, T � N1/3
�ω.

(128)

Note that we display the complete low-temperature series, as
an expansion in power of T 2, in Appendix B.

We recall that in the bulk high-temperature regime
T ∼ N�ω, one has from (109) and (110)

ρN (xedge) 
 − α√
2πNy

Li1/2(e−y − 1), y = N�ω/T (129)
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which gives the two limiting behaviors

ρN (xedge) 


⎧⎪⎨
⎪⎩

(1−√
2)ζ ( 1

2 )α√
2π

1
N

√
T
�ω

, T � N�ω√
mω2

2πT
, T � N�ω

(130)

which shows a perfect matching of the high-temperature end
of the low-T (edge) scaling regime [second line of Eq. (128)],
with the low-temperature end of the high-T (bulk) regime
[first line of Eq. (130)]. We recall that in the high-T regime,
the Fermi gas extends well beyond the T = 0 edge. Note that
for fixed (large) N this density first increases as a function of T

in the low-T regime and then exhibits a maximum for T ∼ N

in the high-T regime before decreasing again.
Right tail of the density. Let us consider the behavior of the

density scaling function F1,b(s) to the right of the edge, for
large positive s. The analysis of the integral in Eq. (126) in
that limit was performed in Ref. [70]. It is found that there are
two regimes depending on whether the parameter s̃ = s/b2 is
smaller or larger than the critical value s̃c = 1

4 :

F1,b(s) 

⎧⎨
⎩

1
4b2

√
s̃ sin(2π

√
s̃)

exp
(− 4

3 s3/2
)
, 1 � s < b2

4

1√
4πb

exp
(−bs + b3

12

)
, s > b2

4 .

(131)

Hence, we obtain a transition between a stretched exponential
tail in the density, as in the zero-temperature case, to a pure
exponential decay in the far tail for s > b2/4. Thus, for a fixed
value of the reduced temperature b (not necessarily large),
the decay is always exponential. Note that the preexponential
factor exhibits a crossover from the two limiting cases
indicated above, in the vicinity of s̃ = 1

4 [70].
Left tail of the density. For s large and negative, the integral

over u in Eq. (126) is dominated by the region u ∈ (−∞,|s|].
Within this interval one can thus replace, for large negative
s, the Airy function by its asymptotic form for large negative
argument Ai(z) 
 1√

π
|z|−1/4sin( 2

3 |z|3/2 + π/4) for z → −∞.
By substituting the Airy function by its asymptotic behavior
in the integral over u in Eq. (126), one finds straightforwardly
that F1,b(s) behaves asymptotically as

F1,b(s) 
 1

π

√
|s| for s → −∞, (132)

which matches, as it should, with the Wigner semicircle
expanded close to xedge = √

2N/α (28).

2. Kernel at the edge

We now consider the finite-temperature kernel with both x

and x ′ close to the edge xedge = √
2N/α. We set x = xedge +

wNs and x ′ = xedge + wNs ′. We insert these coordinates into
Eq. (94) and follow the same analysis as in the case of the
density (see above). This finally gives in the scaling limit

Kμ(x,x ′) 
 1

wN

Kedge
b

(
x − xedge

wN

,
x ′ − xedge

wN

)
, (133)

where the scaled finite-temperature edge kernel is given by

Kedge
b (s,s ′) =

∫ ∞

−∞

Ai(s + u)Ai(s ′ + u)

e−b u + 1
du. (134)
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y (v) versus v for scaled inverse temperatures y = 0.3, 3,
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For s = s ′ it reduces to the expression (126) for the density.
Note that in the limit of zero temperature, when b → ∞, the
nonzero contribution to the integral over u on the right-hand
side of Eq. (134) comes from u ∈ [0,+∞) and one gets, using
Eq. (37),

lim
b→∞

Kedge
b (s,s ′) =

∫ ∞

0
Ai(s + u)Ai(s ′ + u) du = KAiry(s,s ′).

(135)

The kernel in Eq. (134) is thus the finite-temperature gen-
eralization of the Airy kernel (37). Finally, in Fig. 4 we
show a plot of the two-point correlation function at the
edge g

edge
b (s,s ′) = Kedge

b (s,s)Kedge
b (s ′,s ′) − [Kedge

b (s,s ′)]2 for
different scaled inverse temperatures b.

C. Extremal statistics near the edge at finite temperature

1. Statistics of the rightmost fermion: Exact distribution
and its tails

We are now in position to study the fluctuations of the
position xmax(T ) of the rightmost fermion at finite temperature
T . In principle, it can be derived from the joint PDF of the
fermion positions in Eq. (63) as

Pr[xmax(T ) � w] =
∫ w

−∞
dx1 . . .

∫ w

−∞
dxN Pjoint(x1, . . . ,xN ).

(136)

At T = 0, this distribution has a limiting scaling form given
by the Tracy-Widom distribution [see Eqs. (47) and (48)], as
discussed in Sec. III C. As we have shown in Sec. IV C, in the
limit of large N , the positions of the fermions at finite T form
a determinantal point process, with the kernel parametrized by
temperature as given in Eq. (133). As a result (following the
discussion in Sec. III C), the multiple integral in Eq. (136) can
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be written as a Fredholm determinant [15]. Indeed, at finite
temperature T ∼ O(N1/3) (with b = �ωN1/3/T fixed) and in
the N → ∞ limit, the scaled cumulative distribution function
(CDF), denoted by Qb(s), of xmax(T ) can be expressed as the
following Fredholm determinant [54]:

Pr

[
xmax(T ) �

√
2N

α
+ N− 1

6

α
√

2
s

]
→

N→∞
Qb(s)

:= Det
(
I − PsKedge

b Ps

)
, (137)

where Ps is the projector on the interval [s,+∞), the kernel
Kedge

b is given in Eq. (134), and α = √
mω/�.

The first property to note is that in the limit T → 0, i.e., b →
+∞, since Kedge

b → KAiry this distribution (137) converges to
the TW distribution for GUE given in Eq. (48). Hence, Qb(s)
is a generalization of the TW distribution to finite temperature.
The calculation of the Fredholm determinant (FD) in Eq. (137)
is quite involved. As we have pointed out in Ref. [11], the
same FD occurs in the exact solution of the KPZ equation
with droplet initial conditions. This correspondence is recalled
in Sec. VIII B and here we will borrow some of the results
obtained in that context. This FD can be expressed in terms
of the solution of a nonlocal generalization of the Painlevé II
equation [32], namely, one has

∂2
s ln Qb(s) = −

∫ +∞

−∞
dv σ ′

b(v)[qb(s,v)]2, (138)

where

σb(v) = 1

1 + e−bv
(139)

and σ ′
b(v) = ∂vσb(v). The function qb(s,v) satisfies a nonlinear

integrodifferential equation in the variable s:

∂2
s qb(s,v) =

{
s + v + 2

∫ +∞

−∞
dw σ ′

b(w)[qb(s,w)]2

}
qb(s,v),

(140)

with the boundary condition qb(s,v) 
s→+∞ Ai(s + v). Note
that in the zero-temperature limit b → ∞, σ ′

b(v) → δ(v),
hence one recovers that qb(s,0) satisfies the standard Painlevé
II equation (49) which is related to the TW distribution for
GUE. The analysis of this equation (140) is rather nontrivial.
Alternatively, a numerical evaluation of the FD is possible,
along the lines of Ref. [71] using the method developed by
Borneman [72]. This is left for future studies.

Tails of Qb(s). While we have a formal expression for the
full scaled distribution function Qb(s) in terms of a FD in
Eq. (137), can we determine its tails for large |s| explicitly for
fixed b? Indeed, this is possible for arbitrary b for the right
tail s → +∞. However, for the left tail, we can only provide
results in the scaling limit s → −∞, b → ∞, but keeping the
ratio s/b2 fixed.

We start with the right tail. In the limit of large positive
s, the FD in Eq. (137) can be approximated by the first term
in a trace expansion. Indeed, in this limit, since K

edge
b (s,s ′) is

“small,” one can expand the FD in Eq. (137) in the following

way:

ln Qb(s) := ln Det
(
I − PsKedge

b Ps

)
= −

∞∑
p=1

1

p
Tr
[
Ps K

edge
b Ps

]p
. (141)

Keeping only the leading p = 1 term gives, for large s,

ln Qb(s) ≈ −Tr
[
Ps K

edge
b Ps

] = −
∫ ∞

s

K
edge
b (s ′,s ′) ds ′.

(142)

Taking derivative w.r.t. s, and using lims→∞ Qb(s) = 1, yields

Q′
b(s) 
 K

edge
b (s,s) = F1,b(s) =

∫ +∞

−∞
du

Ai(s + u)2

1 + e−bu
,

(143)

where F1,b(s) is the density near the edge in Eq. (126).
Therefore, the right tail of Qb(s) coincides to leading order
with the edge density. It turns out that, just the leading term
already provides a numerically accurate estimation of the right
tail of Qb(s). Indeed, this is also the case at T = 0, where the
edge density provides a numerically accurate approximation
of the right tail of the TW distribution. From the analysis of
F1,b(s) in Eq. (131), we see that for fixed b, as s → ∞,

Qb(s) ∼ 1√
4πb

exp

(
−bs + b3

12

)
. (144)

However, if one scales b and s such that s̃ = s/b2 is fixed, then
the right tail of Qb(s) undergoes the same crossover as F1,b(s)
at s̃c = 1

4 [as in Eq. (131)].
We now turn to the left tail of Qb(s) as s → −∞. Here,

analyzing the FD for fixed b with s → −∞ turns out to
be difficult. However, one can make progress in the scaling
limit when b → ∞, s → −∞, keeping the ratio s̃ = s/b2

fixed. In fact, in the context of the height distribution of the
KPZ equation at late times (and will be discussed later in
Sec. VIII B), this scaling limit was already investigated in
Ref. [70] by analyzing the solution of the nonlocal Painlevé
equation (140). There it was argued that in this scaling limit
the CDF behaves as

Qb(s) ∼ e−b6�−(s/b2), where �−(z) = 1
12 |z|3. (145)

2. Statistics of the rightmost fermion: Finite-temperature behavior
of the distribution of the position of the rightmost fermion

In the previous subsection we discussed the limiting
distribution of the position of the rightmost fermion in the limit
where T ∼ O(N1/3) and N is large. In that analysis, we kept
the scaling parameter b = �ωN1/3/T fixed and investigated
the CDF Qb(s) as a function of s for fixed b. We were able
to obtain explicit results for the tails of Qb(s) for b large, i.e.,
T � O(N1/3). Thus, in some sense, the system was still in
the vicinity of the T = 0 limit. In this section, we consider the
opposite high-temperature limit where T � O(N1/3), i.e., the
b → 0 limit.

To proceed, we use some recent results from the connection
between the KPZ equation in droplet geometry and the
fermion problem [11] (for details, see Sec. VIII B). The
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height distribution in the KPZ problem was recently analyzed
exactly in the short time limit [73], which corresponds to
high temperature in the fermion problem. This allows one to
obtain the high-temperature expansion, in powers of the small
parameter b, of the cumulants of the position of the rightmost
fermion xmax(T ), and to provide approximate interpolation
formula which should be useful for comparison with cold-atom
experiments.

Cumulants. We start by discussing the mean position and
the variance, as obtained from the analysis of Sec. VIII B. Let
us define the rescaled variable

ξ = xmax(T ) − xedge

wN

, (146)

where xedge = √
2N/α is the edge at T = 0. Note that this

definition differs from the one of the variable ξ defined in
Ref. [73]. The first few terms in the series expansion of the
mean position read as

〈ξ〉 = − 1

2b
ln(4πb3) + γE

b
−
√

π

2

b1/2

2

+
(

32π

9
√

3
− 2 − 3π

2

)
b2

4
+ O(b7/2) (147)

and the variance behaves as

〈ξ 2〉c = 〈ξ 2〉 − 〈ξ 〉2

= π2

6b2
+

√
2π

1

2b1/2

+
(

4 + 5π − 32π

3
√

3

)
b

4
+ O(b5/2). (148)

These formulas give the behavior for small b, and we know
that they should crossover at large b to the zero-temperature
limit given by the cumulants of the GUE Tracy-Widom
distribution. In particular, the mean 〈ξ〉 converges to mTW =
−1.771086807411 . . ., and the variance 〈ξ 2〉c converges to
σ 2

TW = 0.8131947928329 . . . . In fact, we know a bit more: as
shown in the Appendix B the large-b expansion takes the form

〈ξ〉 = mTW + O(b−4), (149)

〈ξ 2〉c = σ 2
TW + π2

3b2
+ O(b−4). (150)

Note that the form of the correction to the variance as a2/b
2

is common to the KPZ universality class [74], although the
prefactor a2 may be nonuniversal. For the continuum KPZ
equation its value is fixed and is computed in Appendix B.

Since the variance is the easiest cumulant to measure in a
cold-atom experiment, we give here an approximation to the
crossover from low to high values of b by constructing a Padé
approximant 〈ξ 2〉c|Pade which (i) reproduces all known terms
in the small-b expansion given in Eq. (148) and (ii) converges
at large b to σ 2

TW as 〈ξ 2〉c|Pade 
 σ 2
TW + a2

b2 . It reads as, with

ξ2 c|Pade

b
σ2

TW
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FIG. 5. Plot of the Padé approximate 〈ξ 2〉c|Pade given in Eq. (151)
with a2 = π 2/3. The horizontal line corresponds to the variance of
the TW distribution σ 2

TW, which is the exact result for b → ∞, i.e.,
in the T → 0 limit.

the value a2 = π2/3,

〈ξ 2〉c|Pade = 1.64493 + 1.13494 b3/2 + a2 b4 + 0.813195 b6

b2(1 − 0.0719632 b3/2 + b4)

(151)

and is plotted in Fig. 5. Although there is some degree of
arbitrariness, this curve should be useful to calibrate the
experiments, given that the range of values of b presently
available is b ∼ 0.5–2. Another way to present the result for
the variance of the fluctuations of the rightmost fermion is to
divide it by the (half) size of the Fermi cloud (at T = 0) xedge,
and write〈[

xmax(T ) − xedge

xedge

]2〉c
= T 2

T 2
F

V
(

b = TF

N2/3T

)
, (152)

where TF = N�ω, and the scaling function V(z) is such
that V(0) = π2

24 [see Eq. (148)] and V(z) 
z→+∞ σ 2
TWz2/4 to

yield back the zero-temperature limit (i.e., as b → ∞). A
Padé approximation of the function V(z) is easily obtained
from (151).

Finally, we also give the third cumulant of the scaled
variable ξ in Eq. (281). For small b it reads as

〈ξ 3〉c = 2ζ (3)

b3
+
(

32

3
√

3
− 6

)
π

4
+ O(b3/2) (153)

which allows to calculate the skewness of the position of the
rightmost fermion (note that the skewness is independent of
any rescaling)

Sk := 〈ξ 3〉c
[〈ξ 2〉c]3/2

= 1.13955 − 1.30237 b3/2

+1.20563 b3 + O(b7/2). (154)

It decreases from the skewness of the Gumbel distribution
(see below) SkGumbel = 1.13955 at high temperature (small
b) to the skewness of the TW distribution for GUE SkTW =
0.224084203610 . . . at zero temperature (large b). Note,
however, that since 〈ξ 3〉c = κ3 + O(b−4) (see Appendix B),
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we find that the approach to the zero-temperature limit is from
below

Sk = SkTW

[
1 − π2

2σ 2
TWb2

+ O(b−4)

]
. (155)

Hence, the skewness is (weakly) nonmonotonic as a function
of the temperature.

High-temperature limit and the Gumbel distribution. In
the high-temperature limit of the edge regime, i.e., T �
N1/3

�ω (equivalently b � 1), the full PDF of ξ becomes a
Gumbel distribution, up to a temperature-dependent constant
shift [65,73]. More precisely, one finds

xmax(T )−xedge

xedge

 1

4y
ln

(
N2

4πy3

)
+ 1

2y
γ, y = �ωN

T
= TF

T
,

(156)

where γ is a Gumbel random variable with PDF p(γ ) =
e−γ−e−γ

. Note that we have used the variable y which
was introduced to study the high-temperature bulk regime
[which is defined by y = O(1)]. Although this formula is
derived here from studying the high-temperature limit of
the low-temperature edge regime, we expect that it should
match in some way with the low-temperature limit of the
high-temperature bulk regime, although as we will see this
matching is not trivial. This result for high temperature in
Eq. (156) together with the T = 0 result [see Eqs. (47)
and (48)] show that the fluctuations of the position of the
rightmost fermion, in the edge regime, interpolates between
a TW-random variable χ2 when T � N1/3

�ω and Gumbel
random variable γ when T � N1/3

�ω [65,73], i.e. (in terms
of the original parameters T and N ),

xmax(T ) − xedge

xedge

∼
⎧⎨
⎩

1
2N−2/3 χ2, T � N1/3

�ω,

T
4N�ω

ln
[

T 3

4πN(�ω)3

]+ T
2N�ω

γ, T � N1/3
�ω.

(157)

It is instructive to compare this Gumbel distribution to the
one that we can infer, from extreme value statistics arguments
(see e.g., Ref. [75]), in the very high-temperature regime
y � 1. In that regime, we know that the positions of the
fermions are independent and identical random variables
drawn from the Boltzmann distribution given in Eq. (98), and
therefore xmax(T ) is also distributed according to a Gumbel
law. This implies

xmax(T ) − xedge

xedge


√

ln N

y
−1− ln(4π ln N )

4
√

y ln N
+ 1

2
√

y ln N
γ̃ ,

(158)

where γ̃ is also a Gumbel random variable [we used the
different notation γ̃ in Eq. (158) to emphasize that this
random variable is different from the Gumbel variable in
Eq. (156), while both of them have the same statistics]. The
behavior (158) is expected to hold for N � 1, and fixed y � 1.
Note that xedge in this formula is the T = 0 edge, while at these

N1/3 N

TW-GUE Gumbel (I) Gumbel (II)

0 T/ ω

FIG. 6. Sketch of the behavior of the distribution of the rightmost
fermion as a function of T/�ω. When T/�ω � N 1/3, the distribution
is given by the TW distribution for GUE [see Eq. (157)] while
for T/�ω � N1/3, and T/�ω � N , it crosses over to a Gumbel
distribution (157), denoted as Gumbel (I) in the figure. The full
crossover, when T/�ω ∼ O(N1/3) is described the finite-temperature
generalization of the TW distribution (137), which also appears in
the KPZ equation in a droplet geometry [see also Eq. (151) for
the second cumulant]. Finally, for T/�ω � N , the distribution is
described by yet another Gumbel distribution [denoted as Gumbel
(II) in the figure], as discussed in the text [see Eq. (158)].

temperatures the density does not display a true edge, and
extends well beyond xedge. We note that, although we obtain
Gumbel laws in the two regimes (156) and (158), the detailed
dependence in y and N is quite different. From its derivation,
the regime (156) should hold for large y. If one compares the
deterministic terms in Eqs. (156) and (158), keeping in mind
that the fluctuations increase with temperature, one obtains the
stronger condition for (156) to hold:

y � ln N, i.e., N1/3 � T

�ω
� N

ln N
. (159)

The interpolation between these two regimes remains an
open problem. It requires to study the Fredholm determinant
associated with the full finite-temperature kernel (94) in the
region y = O(1). Note that, although the fluctuations of
xmax(T ) are universal (this is shown in Sec. VII D) in the
low-temperature scaling regime b = O(1) ([i.e., in Eq. (157)],
the extreme value statistics arguments leading to (158) also
show that the (logarithmic) dependence in N depends on
the power-law index p of the confining potential V (x) ∼
|x|p. These different behaviors of the rightmost fermion, as
described in Eqs. (157) and (158) above, are sketched in Fig. 6.

Note that aside from the regime of typical fluctuations of
xmax(T ) one can also study the large deviations. In the limit
of high temperature of the low-temperature edge regime, this
was done in detail in Ref. [73]. In addition, one can also
study the counting statistics of the number of fermions in a
given interval J , or the PDF of the spacing between nearest-
neighbor fermions near the edge at finite temperature. As a
consequence of the determinantal structure of all correlations
in the large-N limit, these observables are given in terms of
Fredholm determinants by exactly the same formula as (39)
and (42) replacing the kernel KJ there by the finite-T edge
kernel (134). The detailed analysis of such FD is left for future
investigations.

Here, we add a few interesting remarks. First one can extend
the property shown in Eq. (54) to finite temperature, assuming
that again the equivalence canonical-grand canonical goes
through at large N (the property is exact in the grand-canonical
ensemble). It can be written everywhere (bulk and edge) but
let us display it here near the edge. Defining the rescaled
positions of the fermions near the edge ai = xi−xedge

wN
and taking
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the N → ∞ limit, keeping ai’s fixed〈 ∞∏
i=1

f (ai)

〉
T

= Det(I − Lf,b), Lf,b(r,r ′)

= [1 − f (r)]Kedge
b (r,r ′), (160)

where Kedge
b (r,r ′) is given in Eq. (134). In Eq. (160), the

average is performed at finite temperature T and the function
f (x) is arbitrary, provided the right-hand side exists. Next,
since one can rewrite the CDF of the position of the rightmost
fermion in Eq. (137) more explicitly in terms of the Airy kernel
as

Qb(s) := Det
(
I − PsKedge

b Ps

) = Det(I − K̄b,s), (161)

K̄b,s(u,u′)=KAi(u,u′)σs,b(u), σs,b(u)=1/(1+e−b(u−s)),

(162)

we immediately obtain [with PJ (x) denoting the indicator
function of the interval J ]〈 ∞∏

i=0

P(−∞,s](ai)

〉
T

= Qb(s) =
〈 ∞∏

i=0

[1 − σs,b(ai)]

〉
T =0

=
〈 ∞∏

i=0

1

1 + eb(ai−s)

〉
T =0

. (163)

A similar product appeared in a recent paper by Borodin and
Gorin [76].

VI. THE D-DIMENSIONAL ISOTROPIC HARMONIC
OSCILLATOR AT ZERO TEMPERATURE

We now consider the model for noninteracting fermions in
a harmonic potential in arbitrary dimension d , as defined in
Sec. I B. Here, we focus on T = 0, the finite-T case is studied
in the next section. To study this more general problem it is
convenient to use a method based on the one-body Euclidean
propagator that we describe in Sec. VI A. This will lead to
results both in the bulk (Sec. VI B), as well as at the edge
(Sec. VI C) of the d-dimensional Fermi gas. In particular, this
provides a useful alternative (also in d = 1) to the method
relying on the Plancherel-Rotach asymptotic formulas for
Hermite polynomials.

A. Representation of the T = 0 kernel using the one-body
Euclidean propagator in arbitrary d

1. General framework: Kernel and propagator

We start by considering the zero-temperature kernel for N

noninteracting spinless fermions with an arbitrary one-body
Hamiltonian Ĥ , as defined in Eq. (1). As discussed in Sec. II,
the kernel corresponding to a system with Fermi energy μ is
then defined by

Kμ(x,y) =
∑

k

θ (μ − εk)ψ∗
k (x)ψk(y), (164)

where θ (z) is the Heaviside step function and the energy
eigenvalues εk are labeled by d quantum numbers denoted

by k ∈ Zd . We now compute

G(x,y; t) = t

�

∫ ∞

0
dμ exp

(
− tμ

�

)
Kμ(x,y)

=
∑

k

ψ∗
k (x)ψk(y) exp

(
−εkt

�

)
(165)

and immediately see that G(x,y; t) is in fact the one-body
Euclidean propagator associated to the one-body Hamiltonian
Ĥ . By definition, it obeys the imaginary-time Schrödinger
equation

−�
∂G(x,y; t)

∂t
= ĤG(x,y; t), (166)

where Ĥ = Ĥ (y,�

i
∇y) is the quantum Hamiltonian defined in

Eq. (1) acting on the variable y (in our convention). From the
completeness of the basis of the eigenfunctions, it satisfies the
initial condition

G(x,y; 0) = δd (x − y). (167)

If the propagator G is known as a function of t , then the
kernel can be obtained via the Bromwich inversion formula
for Laplace transforms as

Kμ(x,y) =
∫

�

dt

2πit
exp

(
μt

�

)
G(x,y; t), (168)

where � indicates the Bromwich integration contour in the
complex plane.

For the isotropic d-dimensional harmonic oscillator, which
we focus on here, the Euclidean propagator is known exactly
at all times, and is given by [77]

G(x,y; t) =
[

α2

2πsinh(ω t)

]d/2

exp

{
− α2

2sinh(ω t)

× [(x2 + y2)cosh(ω t) − 2 x · y]

}
, (169)

where α = √
mω/�. The Bromwich integral in Eq. (168) is in

general difficult to compute explicitly. However, for a system
with a large number of fermions, the Fermi energy μ will be
large and so we can assume that the integral is dominated by
small values of t . The validity of the approach will be made
more precise below.

2. Short-time expansion of the propagator and of the kernel

As we will make clear later, to obtain all of our results,
we will need the short-time expansion of the propagator up
to O(t3). For this purpose it is useful to write the propagator
G(x,y; t) given in Eq. (169) in the following form:

G(x,y; t) =
[

α2

2πsinh(ω t)

]d/2

exp

(
− α2

2sinh(ω t)

×{(x − y)2 + (x2 + y2)[cosh(ω t) − 1]}
)

,

(170)
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which gives at coinciding points with r = |x|

G(x,x; t) =
[

α2

2πsinh(ω t)

] d
2

exp

[
− tanh

(
ω t

2

)
α2r2

]
. (171)

Expanding the formula (170) to O(t3) gives

G(x,y; t) 

(

m

2π�t

)d/2

exp

{
− m

2π�t
(x − y)2 − mω2t

12�
[3(x2 + y2) − (x − y)2] − dω2t2

12
+ mω4t3

720�
[15(x2 + y2) − 7(x − y)2]

}
.

(172)

In particular, at coinciding points y = x with r = |x| and using α = √
mω/�, one obtains to O(t3)

G(x,x; t) 

[

α2

2πωt

] d
2

exp

(
−α2r2ωt

2
− d ω2t2

12
+ α2r2ω3t3

24

)
. (173)

Substituting the expression (173) into Eq. (168) then yields the short-time expansion to order O(t3) of the kernel:

Kμ(x,y) 

[
α2

ω

] d
2
∫

�

dt

(2πt)1+ d
2 i

exp

(
− m

2π�t
(x − y)2 + t

�

{
μ − mω2

12
[3(x2 + y2) − (x − y)2]

}

− dω2t2

12
+ mω4t3

720�
[15(x2 + y2) − 7(x − y)2]

)
. (174)

At coinciding points, the kernel expanded to O(t3) becomes

Kμ(x,x) ≈
[
α2

ω

] d
2
∫

�

dt

(2πt)1+ d
2 i

exp

(
t

�

[
μ − mω2r2

2

]
− dω2t2

12
+ α2r2ω3t3

24

)
. (175)

The latter two formulas will be used extensively below.

B. Results in the bulk

1. Bulk density profile

We start by analyzing the kernel at coinciding points, i.e.,
x = y, to obtain the density ρN (x) = (1/N )Kμ(x,x) for large
N (equivalently for large μ as we assume now and verify a
posteriori). Our starting point is Eq. (175) where we see that
the effective energy scale entering the Laplace transform is not
simply μ but

ε(r) = μ − mω2r2/2 = μ

(
1 − r2

r2
edge

)
, (176)

which is the difference between the Fermi energy and the
classical potential energy at the radial coordinate r . We have
defined

redge =
√

2μ/mω2, (177)

the radius at which ε(r) vanishes. We will see below that redge

is also the edge where the bulk density vanishes. When ε(r)
is large, which is the case for large μ and away from the
edge, the integral in Eq. (175) can be approximated by the
term of O(t) in the exponential, and is dominated by times
of order t ∼ �/ε(r). The corrections to this approximation
coming from the O(t2) and O(t3) are, respectively,

d

12

[
�ω

ε(r)

]2

+ α2r2

24

[
�ω

ε(r)

]3

. (178)

Hence, the first one is unimportant when

ε(r) � �ω ⇐⇒ |r − redge| � (redgeα)−1/α. (179)

Similarly, the cubic terms can be seen to be unimportant when

α2r2

24

[
�ω

ε(r)

]3

� 1 ⇐⇒ |r − redge| � (redgeα)−
1
3 /α. (180)

We will see below that redge is large for large N . In that case,
sufficiently away from the edge, Eq. (180) is satisfied and this
automatically ensures that Eq. (179) is also satisfied. Hence,
keeping only this leading term to describe the bulk density, we
can use the standard identity∫

�

dt

2πi

1

td/2+1
exp(zt) = zd/2

�
(
1 + d

2

)θ (z) (181)

to write

Kμ(x,x)

≈ 1

�
(
1 + d

2

)[ m

2π�2

] d
2
(

μ − mω2r2

2

) d
2

θ

(
μ − mω2r2

2

)

(182)

= 1

2dπ
d
2 �
(
1 + d

2

)α2d
(
r2

edge − r2) d
2 θ (redge − r), (183)

where θ is the Heaviside step function. Consequently, the bulk
density, as a function of r = |x| is given by

ρN (r) = 1

2dNπ
d
2 �
(
1 + d

2

)α2d
(
r2

edge − r2
) d

2 θ (redge − r).

(184)
Hence, as anticipated above, the bulk density vanishes at the
radius r = redge given in Eq. (177). It should also be noticed

22



that the expression given here for the density is the one obtained
by the local density approximation (LDA) [4].

The value of the chemical potential μ corresponding to a
fixed value of N , the number of fermions, can be evaluated
from the normalization condition

∫
ddx ρN (x) = 1 which

yields

Sd rd
edge

�
(
1 + d

2

)μd
2

(
m

2π�2

) d
2
∫ 1

0
du ud−1(1 − u2)

d
2 = N, (185)

where Sd = 2π
d
2 /�(d/2) is the surface unit area of a unit

sphere in d dimensions. Using∫ 1

0
du ud−1(1 − u2)

d
2 = 1

2
B

(
d

2
,
d

2
+ 1

)
, (186)

where B(p,q) denotes the beta function, as well as Eqs. (177)
and (185), we obtain the Fermi level and the value of the edge
radius as a function of N :

μ = �ω[N�(d + 1)]
1
d , redge = 2

1
2 [�(d + 1)]

1
2d

α
N

1
2d ,

(187)

as anticipated in Eq. (6). Finally, this leads to the final result
for the normalized density as a function of N :

ρN (x) = 1

2dN
1
2 π

d
2 �
(
1 + d

2

)(mω

�

) d
2

×
[

2�(d + 1)
1
d − mω

�N
1
d

r2

] d
2

. (188)

Using the explicit dependence of μ and thus redge on N

from (187) in Eq. (180), we see that this formula for the bulk
density is valid in the regime redge − r � N− 1

6d /α. Below, we
will see how to obtain both the density and the kernel in the
edge regime where redge − r ∼ N− 1

6d /α.
As an example, we consider the simple harmonic oscillator

in two dimensions. We have numerically computed the
density ρN (x) for N = 28 (corresponding to a full Fermi
level) free fermions in a two-dimensional harmonic trap
for α = √

mω/� = 1, by directly summing the modulus
squared of the first 28 wave functions. Shown in Fig. 7 is
the comparison of the numerical summation with the bulk
asymptotic formula (188).

2. Kernel in the bulk

In order to compute the bulk kernel for the isotropic
simple harmonic oscillator, we extend our analysis for the
bulk density, and thus we keep only terms up to order O(t) in
Eq. (174) which gives

Kμ(x,y) ≈
(

m

2π�

) d
2
∫

�

dt

2πi

1

t
d
2 +1

exp

[
μt

�
− m(x − y)2

2�t

−mω2(x2 + y2 + x · y)t

6�

]
. (189)

To proceed, one can use the following integral representation
of the standard Bessel function of the first kind of index ν,

4 2 2 4
r

0.01

0.02

0.03

0.04

Ρ28 r

FIG. 7. Plot of the bulk density (solid line) ρ28(r) for 28 fermions
in an isotropic harmonic potential in two dimensions compared with
the asymptotic formula for the bulk density (188) (the region below
the asymptotic result is shown via the shaded region).

denoted by Jν(x) [78]:∫
�

dt

2πi

1

td/2+1
exp

(
zt − a

t

)
=
(

z

a

)d/4

J d
2
(2

√
a z). (190)

We use this identity to evaluate the representation of the kernel
in Eq. (189) to obtain

Kμ(x,y) ≈
(

α2

2π

) d
2
(3r2

edge − x2 − y2 − x · y

3(x − y)2

) d
4

× J d
2

(
α2

√
3
|x − y|

√
3r2

edge − x2 − y2 − x · y
)

,

(191)

where we recall that μ = 1
2mω2r2

edge. Now, if we consider two
points x′ and y′ both close to a point x in the bulk we find that
the kernel has the scaling form

Kμ(x + x′,x + y′) ≈ �(x)−dKbulk
d [|x′ − y′|/�(x)], (192)

where

�(x) = [NρN (x)γd ]−1/d , γd = Sd/d = πd/2[�(d/2 + 1)]

(193)

is the local typical separation between fermions in the bulk.
The explicit formula for the scaling function in Eq. (192) is
given by

Kbulk
d (x) = Jd/2(2x)

(πx)d/2
, (194)

which has a well-defined limit at the origin with Kbulk
d (0) =

1/γd . In d = 1, using J1/2(z) = √
2/(πz) sin z, we recover the

standard sine kernel Kbulk(x) = sin(2x)
πx

of RMT. The domain
of validity of the bulk analysis carried out above can be
determined by examining the corrections coming from the
quadratic and cubic corrections in t , as was done above for the
study of the density. The result for the bulk kernel in Eq. (189)
is found to be valid when both x and y are in the bulk, away
from the edge redge.

The result for the kernel (194) for relative distances of order
the typical particle separation can also be obtained from the
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LDA [4,79]. Indeed, we remark here that the Fourier transform
of this kernel is Fermi-step function, this can be seen using the
formula∫

|k|<kF

ddk

(2π )d
eik·x =

(
kF

2π |x|
)d/2

Jd/2(kF |x|). (195)

In the expression in Eq. (195) the local Fermi momentum
must be chosen as kF = kF (x) = 2/�(x) = 2[NρN (x)γd ]1/d .
This value is exactly consistent with the one obtained by the
counting of states for a uniform system of density ρN (x),
by setting N ρN (x) = ∫

|k|<kF

ddk
(2π )d = kd

F /(4π )d/2�(1 + d/2).
Thus, to describe correlations on scale �(x) in the bulk, one
can approximate locally the system by free fermions without
any external potential, but at a fixed density ρN (x), assumed
to be slowly varying on that scale. Our method thus gives a
rigorous derivation of the results, within the bulk, obtained
from the heuristic LDA.

C. Results at the edge

1. Density near the edge

We have seen how the density and kernel in the bulk region
can be obtained via a leading-order short-time expansion
of the propagator for the simple harmonic oscillator in
Sec. VI B. However, this expansion becomes insufficient when
the inequalities in Eqs. (179) and (180) are violated: this occurs
near the edge where the density vanishes. As demonstrated
below, the description of the edge regime requires one to
expand the propagator to higher orders in t as in Eq. (173).

We start by investigating the density near r = redge =√
2μ/mω2, for finite but large N , by setting

r = |x| = redge + z wN, wN = bd N−φ, (196)

where the distance from the edge is parametrized by the scaled
dimensionless distance z, while the edge exponent φ is to be
determined a posteriori. For convenience, we introduced the
factor bd = [�(1 + d)]−

1
6d /(α

√
2) which has the dimension of

a length.
To calculate the kernel in this edge region, we need to use

the expansion of the kernel Kμ(x,x) up to O(t3), as given in
Eq. (175). Substituting (196) into (175), we see that the two
terms of O(t) cancel each other inside the argument of the
exponential, leaving only three terms

Kμ(x,x) ≈
(

α2

2πω

)d/2∫
�

d t

2πi

1

td/2+1

× exp

[
−
√

2μ

m
α2 z bdN

−φt− d

12
ω2 t2+ μω2

12�
t3

]
.

(197)

We now determine the exponent φ by comparing the magnitude
of the three terms inside the exponential and using μ ∼ N1/d .
We obtain, in the order that they appear,

T1 ∼z
√

μN−φt ∼zN
1

2d
−φt, T2 ∼ t2, T3 ∼μt3 ∼N

1
d t3.

(198)

Since the first term must be of order O(1), this implies that t ∼
Nφ− 1

2d . We then have only two possibilities a priori. The first

one is to choose φ = 1/(2d) that keeps T2 ∼ O(1), but then
T3 ∼ N1/d and diverges as N → ∞, which is inconsistent.
Hence, in order to make the term T3 = O(1), we must choose

φ = 1

6d
=⇒ t ∼ N− 1

3d , (199)

which is consistent with the assumption of an expansion in
small t . It is easy to check in Eq. (171) that with this scaling
exponent the terms of order higher than O(t3) vanish as N →
∞. Note that this result can be understood qualitatively by
arguing that there should be of order one particle in the typical
fluctuation region, i.e., in a box of linear size wN around the
edge, which leads to(

wN

redge

)d−1 ∫ redge

redge−wN

ρN (r)rd−1dr ∼ 1

N
(200)

which in turn implies wN ∼ N−1/(6d), using the formula (188)
for the density ρN (r) = ρN (|x|). Hence, rescaling t =
N−1/(3d)/{ω[�(d + 1)]1/(3d)} τ , we obtain our main result for
the density

NρN (x) = Kμ(x,x) = 1

wd
N

Fd

(
r − redge

wN

)
, (201)

where we have defined the width of the edge regime in d

dimension

wN = bd N− 1
6d = 1

α
√

2
[�(1 + d)N ]−

1
6d (202)

and the scaling function Fd (z) is given by

Fd (z) = (4π )−d/2
∫

�

dτ

2πi

1

τ d/2+1
e−τ z+τ 3/12. (203)

The expression (203) can be rewritten in the following way.
First, we make use of the identity

1

τ d/2+1
= 1

�(d/2 + 1)

∫ ∞

0
e−τx xd/2 dx (204)

in Eq. (203) to obtain

Fd (z)= 1

�(d/2+1) (4π )d/2

∫ ∞

0
dx xd/2

∫
�

dτ

2πi
e−τ (x+z)+τ 3/12.

(205)

Rescaling τ → 22/3τ and using the integral representation of
the Airy function

Ai(z) =
∫

�

dτ

2πi
e−τz+τ 3/3 (206)

then gives, after a further rescaling x → 2−2/3x, in the integral
expression for Fd (z) in Eq. (205) then yields

Fd (z) = 1

�
(

d
2 + 1

)
2

4d
3 π

d
2

∫ ∞

0
du u

d
2 Ai(u + 22/3 z). (207)

General properties of the density scaling function in d =
1,2,3. This scaling function satisfies some general properties
in any d. For instance, differentiating Eq. (207) w.r.t. z once
and using integration by parts, one finds the recursion formula

dFd (z)

dz
= − 1

4π
Fd−2(z), (208)
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which allows to obtain Fd (z) = 1
4π

∫ +∞
z

Fd−2(z) from the
knowledge of Fd−2(z). In addition, it is easy to see that Fd (z)
satisfies a third-order differential equation

d3Fd (z)

dz3
− 4 z

dFd (z)

dz
+ 2 d Fd (z) = 0, (209)

which must be complemented by appropriate boundary condi-
tions (see below).

Explicit forms of the density scaling function in d = 1,2,3.
In d = 1, the above integral can be performed exactly. We start
with the identity [80]∫ ∞

0
Ai(z + u)

du√
u

= 22/3πAi2
(

z

22/3

)
≡ I (z) (210)

and differentiate it twice with respect to z. Using the Airy
differential equation Ai′′(z) = zAi(z), one obtains∫ ∞

0
du

√
uAi(z + u)

= I ′′(z) − zI (z)

= π21/3

{[
Ai′
(

z

22/3

)]2

− z

22/3
Ai2
(

z

22/3

)}
. (211)

It then follows from Eq. (207), upon setting d = 1, that

F1(z) = Ai′2(z) − zAi2(z), (212)

thus recovering the result obtained in Sec. III A [see Eq. (31)],
which coincides with the well-known RMT result [49,50].
One obtains similar quadratic forms in Ai(z) and Ai′(z) with
polynomial coefficients in z in any odd space dimension by
repeated application of the Airy operator (∂2

z − z) on I (z). For
instance, in d = 3

F3(z) = 1

12π
[2z2Ai(z)2 − Ai(z)Ai′(z) − 2zAi′(z)2]. (213)

In d = 2 one can use the Airy equation and find

F2(z) = 1

2
8
3 π

[− Ai′(2
2
3 z) − 2

2
3 zAi1(2

2
3 z)
]
, (214)

where Ai1(z) = ∫∞
z

dx Ai(x).
Asymptotic behavior of Fd (z). Here, we give the asymptotic

behavior of the scaling functions Fd (z), the full form of which
are plotted in Fig. 8 for d = 1,2,3. We first consider the z →
+∞ limit. In this limit, the Airy function has the leading
asymptotic behavior [80]

Ai(z) ∼ 1

2
√

π
z−1/4 exp

(
−2

3
z3/2

)
. (215)

Substituting this asymptotic behavior in Eq. (207), expanding
for large z, one gets to leading order

Fd (z) ≈ (8π )−
d+1

2 z− d+3
4 exp

(
−4

3
z3/2

)
as z → ∞.

(216)
For the other side z → −∞, it is more convenient to use
the representation in Eq. (203). We set z = −|z| and scale
τ |z| = t . This makes the order τ 3 term to be |z|−3 t3/12 which
can then be dropped for large |z|. The resulting Bromwich

8 6 4 2 2
z

0.1

0.2

0.3

0.4

Fd z

FIG. 8. Plot of the scaling functions Fd (z) in Eq. (207) for d =
1,2,3 (top to bottom) for the density near the edge. The oscillatory
structure of the scaling function becomes less pronounced as the
dimension d increases.

contour integral can be easily evaluated to give the leading
asymptotic behavior

Fd (z) ≈ (4π )−
d
2

�(d/2 + 1)
|z| d

2 as z → −∞. (217)

One can show that when z → −∞, i.e., when r � redge, the
asymptotic behavior in Eq. (217) matches smoothly with the
bulk density given in Eq. (183). This can be seen by noting
that one can write redge = 1/(2w3

Nα4) and then writing r =
redge − |z|wN in Eq. (183), which then becomes

wd
Nρ(redge − |z|wN ) ≈ |z| d

2

(4π )
d
2 �
(
1 + d

2

) , (218)

which coincides with the behavior in Eq. (217).

2. Kernel near the edge

In order to analyze the full kernel Kμ(x,y) near the edge,
we introduce the following scaled dimensionless coordinates
near a point redge on the circle of radius redge as

x = redge + wN a, y = redge + wN b, (219)

where wN is given in Eq. (202) and

redge =
√

2μ/(mω2) 
 [�(d + 1)]1/(2d) N1/(2d)
√

2/α. (220)

Following the analysis for the edge density in the previous
section, we insert (219) into the expansion of Kμ(x,y) up to
order O(t3) given in Eq. (174). We note that if one takes
|a|,|b| = O(1), the diffusion part in Eq. (174) scales as

m

2π�t
(x − y)2 ∼ w2

N

t
∼ N−1/(3d)

t
= O(1), (221)

where we have used Eq. (199). And the analysis for the other
terms is similar to the one performed for the density since one
has

x2 + y2 = 2 r2
edge[1 + wN (an + bn)] + O

(
w2

N

)
, (222)

(x − y)2 = w2
N (a − b)2 � x2 + y2, (223)
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where an = a · redge/redge and bn = b · redge/redge are the
projections of a and b in the radial direction. Putting all
together gives

Kμ(x,y) ≈ 1

Cdw
d
N

∫
�

dτ

2πi

1

τ
d
2 +1

e
− (a−b)2

28/3τ
− (an+bn)τ

21/3 + τ3

3 , (224)

with Cd = (2
4
3
√

π )d and where we have rescaled t =
N−1/(3d)/(ω[�(d + 1)]1/(3d)) τ , followed by τ → 22/3τ as in
the previous section.

One can make a further simplification of Eq. (224) by using
the integral representation of the diffusive propagator

e− (a−b)2

4 D τ

(4πD τ )
d
2

=
∫

ddq

(2π )d
e−D q2τ−iq·(a−b). (225)

We choose D = 22/3 and use this in Eq. (224). This gives our
final result for the scaling behavior of the edge kernel,

Kμ(x,y) ≈ 1

wd
N

Kedge
d

(
x − redge

wN

,
y − redge

wN

)
, (226)

where the scaling function is given explicitly by

Kedge
d (a,b) =

∫
ddq

(2π )d
e−iq·(a−b)Ai1

(
2

2
3 q2 + an + bn

21/3

)
,

(227)

while the function Ai1(z) is given by

Ai1(z) =
∫

�

dτ

2πi

1

τ
e−zτ+τ 3/3 =

∫ ∞

z

Ai(u) du. (228)

This edge kernel is a novel result and generalizes the
standard Airy kernel in d = 1 to higher dimensions. Indeed,
putting d = 1 in Eq. (227) we get

Kedge(a,b) =
∫ ∞

−∞

dq

2π
eiq(a−b)

∫ ∞

22/3q2+2−1/3(a+b)
Ai(z) dz.

(229)

Making a shift z = 22/3q2 + 2−1/3(a + b) + u gives

Kedge(a,b) =
∫ ∞

−∞

dq

2π
eiq(a−b)

×
∫ ∞

0
Ai[u+22/3q2+2−1/3(a+b)] du. (230)

We next use a nontrivial identity involving Airy functions [80]∫ ∞

−∞

dq

2π
e−iq (v−v′) Ai[22/3q2 + 2−1/3(v + v′)]

= 2− 2
3 Ai(v)Ai(v′). (231)

Choosing v = a + 2−2/3u and v′ = b + 2−2/3u, substituting
this identity in Eq. (230) and rescaling u → 2−2/3u gives

Kedge(a,b) =
∫ ∞

0
du Ai(a + u) Ai(b + u). (232)

Since Ai(z) satisfies the differential equation Ai′′(z) −
zAi(z) = 0 we replace Ai(z) by Ai′′(z)/z in Eq. (232). Next,

we use the identity

1

(u + a)(u + b)
= 1

b − a

[
1

u + a
− 1

u + b

]
(233)

and integrate by parts. This then reduces Eq. (232) to the
standard Airy kernel form

Kedge(a,b) = KAiry(a,b)

= [Ai(a) Ai′(b) − Ai′(a) Ai(b)]/(a − b). (234)

VII. GENERAL D-DIMENSIONAL SOFT POTENTIALS
AT FINITE T AND UNIVERSALITY

In this section, we finally consider the most general case of
arbitrary d and finite T . In addition, we show that the results
obtained for the harmonic oscillator in the previous sections
can be extended to a very broad class of smooth confining
potentials. We start by generalizing the method based on the
Euclidean propagator, introduced in the previous section, to
finite temperature (Sec. VII A). To study the large-N limit, we
only need the small time expansion of the propagator, which
is obtained for a general potential in Sec. VII B. Using this
expansion, we obtain results in the bulk in Sec. VII C and at
the edge of the Fermi gas in Sec. VII D. Most of our formulas
will be valid for arbitrary confining smooth potentials V (x).
For the spherically symmetric potentials, in particular those of
the type

V (x) = V (r) = V0

(
r

r0

)p

, (235)

we will obtain additional explicit results. Note that this
parametrization contains some arbitrariness but final results
only depend on V0/r

p

0 . For convenience, we choose

V0 = �
2

2mr2
0

(236)

so that V0,r0 are, respectively, of the order of the single-particle
ground-state energy and its radius. The harmonic oscillator is
recovered for p = 2, r0 = 1/α, and V0 = 1

2 �ω.

A. Representation of the finite-T kernel using
the Euclidean propagator

To deal with finite T we need to generalize to arbitrary d

the method explained in detail for d = 1 in Sec. IV. There
we showed that the canonical and grand-canonical ensembles
lead to the same results for the n-point correlations for large N .
This allows us to work here in the grand-canonical ensemble,
where the method of the one-body Euclidean propagator can
also be applied.

To study the problem at finite T , one considers arbitrary
excited eigenstates of the N -body Hamiltonian ĤN , with
arbitrary potential V (x) in Eq. (1). These states are labeled
by a set of occupation numbers nk = 0,1. As discussed in
Sec. IV, to each excited state one associates a kernel given by

K(x,y; {nk}) =
∑

k

nkψ
∗
k (x)ψk(y), (237)

which generalizes the d = 1 formula (59). We recall that
the εk and ψk are the eigenenergies and eigenfunctions of
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the one-body Hamiltonian. Following the steps presented in
Sec. IV we obtain the generalization of the set of formu-
las (91)–(95). In particular, the n-point correlation functions
Rn are given, in any d , by determinants constructed from
the grand-canonical kernel, as in formula (93). This kernel
is obtained by performing the average over the nk in the
grand-canonical ensemble, leading to

Kμ̃(x,y) := 〈K(x,y; {nk})〉

=
∑

k

1

1 + exp[β(εk − μ̃)]
ψ∗

k (x)ψk(y), (238)

where the chemical potential μ̃ is related to N and the
temperature T via the relation

N =
∑

k

1

1 + exp[β(εk − μ̃)]
. (239)

We recall that, as in d = 1, we reserve the notations μ

and Kμ(x,y) for the zero-temperature chemical potential
and kernel, respectively, while we denote μ̃ and Kμ̃(x,y)
their finite-temperature counterparts. We recall that, as the
temperature goes to zero, μ̃ → μ, but at finite temperature,
not only the chemical potential μ̃ differs from μ, but also the
full kernel functions are different.

A useful representation of the finite-temperature kernel can
now be derived in terms of the Euclidean propagator associated
to the one-body Hamiltonian (1) with arbitrary V (x), defined
in Eq. (166). Using the formula (164) for the zero-temperature
kernel Kμ(x,y), one can rewrite

Kμ̃(x,y) =
∫ ∞

0
dμ

∂Kμ(x,y)

∂μ

1

1 + exp[β(μ − μ̃)]
. (240)

Now, using Eq. (168) we obtain the following representation
of the finite-temperature kernel:

Kμ̃(x,y) =
∫ ∞

0
dμ′ 1

1 + exp[β(μ′ − μ̃)]

×
∫

�

dt

2π�i
exp

(
μ′t
�

)
G(x,y; t), (241)

where we have used μ′ as a running integration variable, rather
than μ, which in the remaining will always denote the chemical
potential at zero temperature.

B. Small time expansion of the propagator for generic potential

We have seen in the previous section, for the d-dimensional
simple harmonic oscillator at T = 0, that in the limit of large
μ the kernel and density can be extracted from the short-time
behavior of the Euclidean propagator. As shown below, this
remains true even at finite temperature, in the relevant regimes
studied here. This extends the short-time expansion analysis
initiated in Ref. [81]. However, for the sake of completeness,
we now display the result for a general soft potential V (x),
and provide an independent probabilistic derivation of this
expansion in Appendix A.

The expansion of G(x,y; t) for a soft potential is, to O(t3),
given by

G(x,y; t) ∼
(

m

2π�t

) d
2

exp

[
− m

2�t
(x − y)2

]

× exp

[
− t

�
S1(x,y)− t2

2m
S2(x,y)+ t3

2m�
S3(x,y)

]
,

(242)

where

S1(x,y) =
∫ 1

0
duV [x + u(y − x)], (243)

S2(x,y) =
∫ 1

0
du u(1 − u)∇2V [x + u(y − x)], (244)

S3(x,y) =
∫ 1

0
du

∫ 1

0
dw [min(u,w) − uw]

×∇V [x + u(y − x)] · ∇V [x + w(y − x)]

− �
2

4m

∫ 1

0
du u2(1 − u)2∇2∇2V [x + u(y − x)].

(245)

With some work it can be checked that the above result agrees
with the short-time expansion given in Eq. (172) when applied
to the simple harmonic oscillator. We see that the occurrence
of derivatives of first and higher order in V , resulting from
the expansion of the term V [x(1 − u) + yu + √

D0tBu] in
Eq. (A1), where Bu denotes the d-dimensional Brownian
bridge, requires that the potential is sufficiently smooth within
the neighborhood of the direct path between x and y. At
coinciding points x = y (the case where one computes the
density), one finds

S1(x,x) = V (x), (246)

S2(x,x) = 1

6
∇2V (x), (247)

S3(x,x) = 1

12
[∇V (x)]2 − �

2

120m
∇2∇2V (x). (248)

Using these results, we now analyze successively the bulk
and the edge regimes.

C. Results in the bulk

1. Zero temperature

The calculation of the bulk density and kernel follows
exactly those of the simple harmonic oscillator in Secs. VI B 1
and VI B 2. Here, only the term to O(t) is retained and one
obtains

Kμ(x,y) = θ [μ − S1(x,y)]

{
[μ − S1(x,y)]m

2π2�2(x − y)2

} d
4

× J d
2

{√
2m(x − y)2[μ − S1(x,y)]

�2

}
. (249)

Let us first discuss the normalized particle density is given
by ρN (x) = Kμ(x,x)/N . Again, we see that its support
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S1(x,x) = V (x) < μ is finite and using Eq. (246) is obtained as

ρN (x) =
(

m

2�2π

) d
2 θ [μ − V (x)]

N�
(
1 + d

2

) [μ − V (x)]
d
2 . (250)

From this formula, by integrating over x, one can calculate the
Fermi energy (or temperature) TF = μ, from the condition∫

dx ρN (x) = 1.
For explicit calculations, let us focus on the case of

spherically symmetric potential of the form (235) with p > 0.
The density vanishes at the edge at r = redge such that

V (redge) = μ ⇐⇒ redge = r0

(
μ

V0

)1/p

. (251)

For the harmonic oscillator in d = 1 one recovers redge =√
2N/α using that in that case μ = N�ω. In the case of general

p, we obtain

TF = μ = ap,dV0N
2p

d(p+2) (252)

with ap,d = (4π )
p

2+p {p �(1 + d/2)/[SdB(1 + d/2,d/

p)]}2p/(d(p+2)) where Sd = 2πd/2/�(d/2) and B(p,q) =∫ 1
0 up−1(1 − u)q−1du and where we used (236). Consequently,

one obtains that

redge ∼ N2/[d(p+2)] (253)

for large N .
Consider now the kernel given in Eq. (249). As in the case of

the simple harmonic oscillator, we consider two generic points
x and y in the bulk (far from the edges) close to each other, with
a separation of order |x − y| ∼ [NρN (x)]−1/d . Equation (249)
then simplifies to the scaling form

Kμ(x,y) ≈ �−d (x)Kbulk
d [|x − y|/�(x)], (254)

where �(x) = [NρN (x)γd ]−1/d is the typical separation be-
tween fermions in the bulk, γd = πd/2[�(d/2 + 1)], and Kbulk

d

is the same scaling function, as given in Eq. (194), respectively,
for the harmonic oscillator. The dependence on the potential
V (x) thus enters only through the local density ρN (x) via the
scale factor �(x). However, the scaling function associated
with the bulk kernel in Eq. (194) is completely universal for
all V (x).

The above result is the general form of the LDA [2], which is
normally obtained from semiclassical or physical arguments.
The range of validity of this approximation can, as was the case
for the simple harmonic oscillator, be established by examining
the corrections due to the quadratic and cubic terms in t in the
short-time expansion of the propagator. Here, we define the
two-point energy function

ε2(x,y) = μ − S1(x,y), (255)

the range of validity of the LDA approximation is thus given
by

ε2(x,y) �
[
�

2 S2(x,y)

m

] 1
2

(256)

and

ε2(x,y) �
[
�

2 S3(x,y)

m

] 1
3

. (257)

If we consider a trapped system with a potential which grows
in a polynomial fashion we see, from power counting, that for
large values of x and y, the second of the above inequalities
determines the validity of the LDA.

2. Bulk statistics at finite temperature and T ∼ TF

At zero temperature, there is a unique length scale asso-
ciated to the quantum fluctuation in the confining potential,
denoted by r0 for the class of potentials (235) above. By
contrast, at finite temperature, for a generic confining potential,
there are two natural length scales in the problem. The first one
is the thermal de Broglie wavelength

λT = �

√
2π

mT
(258)

of the free fermions. The second length is set by the tempera-
ture and the confining potential and is purely classical. In the
case of a power-law spherically symmetric potential (235) it
is given by

βV (rT ) = 1 ⇔ rT = r0

(
T

V0

)1/p

. (259)

Now, let us discuss the energy scales involved. At zero
temperature the natural energy scale is the Fermi energy μ =
TF defined and discussed in the previous section, where we
showed that μ is large for large N , i.e., μ ∼ N2p/[d(p+2)] for
the class of potentials defined in Eq. (235). Significant changes
from the T = 0 properties are expected in the bulk only when
T ∼ TF . In what follows, we will focus on this bulk regime
and consider T ∼ TF = μ. Consequently, the fugacity which
we denote as

ζ = exp(βμ̃) (260)

is also of O(1) when N is large. Introducing the variable u =
βμ′ in Eq. (241) and making the change of variable t = τβ�

we find

Kμ̃(x,y) =
∫ ∞

0
du

1

1 + ζ−1exp(u)

×
∫

�

dτ

2πi
exp(uτ )G(x,y; β�τ ), (261)

which at this stage is still an exact equation.
We now analyze this equation in the large-N limit and

the regime T ∼ TF . This means that β is small, hence the
time variable t in the above propagator G(x,y; t = β�τ ) is
also small. Hence, we can use the short-time expansion of the
Euclidean propagator, as was done for the harmonic oscillator
case. As discussed, there to describe the bulk, one only needs
to keep the first term of order O(t) and one obtains

Kμ̃(x,y) =
∫ ∞

0
du

1

1 + ζ−1exp(u)

∫
�

dτ

2πi

(
m

2πτβ�2

) d
2

× exp

[
−π

τ

(x − y)2

λ2
T

+ τu − τβS1(x,y)

]
, (262)

where λT is given in Eq. (258), ζ by (260) where μ̃ is fixed as
a function of N by Eq. (239).
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To obtain the density, we start by considering the kernel at coinciding points

Kμ̃(x,x) =
∫ ∞

0
du

1

1 + ζ−1exp(u)

∫
�

dτ

2πi

(
m

2πτβ�2

) d
2

exp[τu − τβV (x)]. (263)

The appropriate bulk scaling is thus to choose x such that βV (x) ∼ O(1). Performing the explicit integral over the Bromwich
contour using (181) we obtain

Kμ̃(x,x) =
(

m

2πβ�2

) d
2
∫ ∞

0
du

1

1 + ζ−1exp(u)

θ [u − βV (x)][u − βV (x)]
d
2 −1

�
(

d
2

) . (264)

This can then be rewritten, shifting the integral over u, and leads to our main result for the density

ρN (x) = 1

N
Kμ̃(x,x) = 1

N�
(

d
2

)
λd

T

∫ ∞

0
dq

q
d
2 −1

1 + ζ−1exp[q + βV (x)]
= − 1

Nλd
T

Lid/2(−ζe−βV (x)), (265)

where λT is the thermal wavelength of the free fermions given in Eq. (258) and Lin(x) = ∑∞
k=1 xk/kn is the polylogarithm

function.
Let us provide an explicit example in the case of the power-law potentials (235). We define the scaling variables, which

generalize the 1d result given in Eqs. (99) and (100)

y =
(

TF

T

)d

, z = r/rT , (266)

where TF is given in Eq. (252) and rT is the classical thermal confining length introduced in Eq. (259). The explicit calculation
predicts that the density is given by eliminating the fugacity ζ in the following pair of equations:

ρN (x) = − B2
√

yN
2

p+2

Li d
2
(−ζe−zp

), (267)

1 = − B1

y
p+2
2p

Li d
2 + d

p
(−ζ ), (268)

where B2 = (4π )−d/2r−d
0 a

d/2
p,d , ap,d is given below Eq. (252), and B1 = �(1 + d/2 + d/p). Using the identity∫ +∞

0
dr raLib(−ζe−rp

) = 1

p
�

(
a + 1

p

)
Li 1+a+bp

p
(−ζ ), (269)

we can check that the Eq. (268) is the normalization condition
∫

ddx ρN (x) = 1 of the density given by Eq. (267). Setting
p = 2 in the above formula gives the result for the d-dimensional harmonic oscillator. In particular in d = 1, using that
Li1(−ζ ) = − ln(1 + ζ ), the implicit equation can be solved and one recovers the bulk scaling function for the density presented
in Eqs. (109) and (110) in Sec. V.

The above result agrees with the LDA approximation which we briefly recall here for completeness. In the LDA, the local
(unnormalized density) in position and momentum is given by the Fermi factor

n(x,p) = 1

1 + exp[βE(x,p) − βμ̃]
, (270)

where E(x,p) is given by the classical energy

E(x,p) = p2

2m
+ V (x). (271)

Integration over the momentum with the appropriate Planck volume normalization then gives the local density in space as

NρN (x) = Kμ̃(x,x) = 1

hd

∫
dp

1 + exp[βE(p,x) − βμ̃]
. (272)

Carrying out the angular integration in Eq. (272) yields

ρN (x) = 2π
d
2

N�
(

d
2

)
hd

∫ ∞

0

dp pd−1

1 + exp[βE(p,x) − βμ̃]
. (273)

Finally, making the substitution q = βp2/2m shows that the LDA approximation (273) agrees with Eq. (265).
The formula for the bulk kernel at two unequal points is obtained by analyzing Eq. (262) in the regime of separation

|x − y| ∼ λT , and of temperature such that βV (x) = O(1). In this limit, by expanding V in the integrand of (243), we can
approximate S1(x,y) by its leading term V (x), using that βλT |∇V (x)| � 1 (always valid inside the bulk in this temperature
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regime, as can be checked explicitly). Replacing S1(x,y) by V (x) in Eq. (262) and using the change of variable u − βV (x) = q

and the integral representation of the Bessel function in Eq. (190), we arrive at

Kμ̃(x,y) = 1

π
d−2

4 λd
T

(
λT

|x − y|
) d

2 −1 ∫ ∞

0
dq

q
d−2

4

1 + ζ−1exp[+βV (x)]
J d

2 −1

(
2
√

qπ
|x − y|

λT

)
. (274)

This formula crosses over to the zero-temperature kernel (194) when λT � �(x) where �(x) is the typical separation between
particles defined in Eq. (193). This can be seen by performing a change of variable q → βq, such that the Fermi factor becomes
a Heaviside step function. Thus, in practice the above formula is valid in the range of separation |x − y| ∼ min(λT ,�(x)).
Beyond this scale the kernel decays to zero. Note that in d = 1 and 3 the formula simplifies slightly since one has, respectively,
J− 1

2
(x) = √

2/πx cos(x) and J 1
2
(x) = √

2/πx sin(x).

D. Results at the edge

In the edge region we expect the effects of fluctuations to be larger than in the bulk. To study the bulk we had to scale
the temperature as T ∼ TF . By contrast, in this section, the relevant regime will involve lower temperature, T � TF , hence,
everywhere the variable βμ will be considered to be large. To estimate the chemical potential μ̃ in this range of temperature, we
can thus use the Sommerfeld expansion valid for large βμ � 1 [3]:

μ − μ̃ = π2

6

1

β2

ρ̃ ′(μ)

ρ̃(μ)
+ O

[
1

(βμ)4

]
, (275)

where we denote by ρ̃(ε) = ∑
k δ(ε − εk) the density of states (in energy). Note that for the harmonic oscillator in d = 1 the

density of states is constant, and the corrections are exponentially small.
In this section, we consider the kernel for a pair of points x,y both located near a point redge at the edge, at finite temperature,

in arbitrary d and for the large class of confining potential V (r) described at the beginning of Sec. VII. To proceed, we set

x = redge + a′, y = redge + b′, (276)

where |redge| = redge is defined in Eq. (251) and we assume |a′|,|b′| � redge. The goal of this section is to show that the properly
centered and scaled edge kernel becomes universal, i.e., independent of the details of the potential.

Substituting (276) in Eqs. (243)–(245) and expanding the terms S1, S2, and S3, in a gradient expansion, we obtain

S1 = V (redge) + 1

2
∇V (redge) · (a′ + b′) + · · · , (277)

S2 = 1

6
∇2V (redge) + 1

12
∇[∇2V (redge)] · (a′ + b′) + · · · , (278)

S3 = 1

12

[∇V (redge)
]2 − �

2

120m
∇2∇2V (redge) + · · · . (279)

Note that for potentials increasing as V (r) ∼ rp for large r , each derivative brings an additional factor 1/redge in the expansion,
hence, it is not necessary to keep higher-order terms, at least for the potentials of this class.

Let us start with Eq. (241) and substitute in it the short-time expansion (245). We will justify a posteriori under what conditions
the short-time expansion can be stopped at order O(t3). We make a change of variable β(μ′ − μ̃) = −bu in Eq. (241), where
for convenience we have introduced a dimensionless parameter b whose value will be chosen later. Setting x and y both close to
redge, as in Eq. (276), and using (277)–(279) we obtain

Kμ̃(x,y) 
 b

β

∫ ∞

−∞

du

1 + exp(−bu)

∫
�

dt

2π�i

(
m

2π�t

) d
2

× exp

[
− m

2�t
(a′ − b′)2

]
exp

[
−ubt

β�
− t

2�
|∇V (redge)|(a′

n + b′
n) + t3

24m�
|∇V (redge)|2

]
, (280)

where the upper bound μ̃β/b has been replaced by +∞ since we are studying the limit of large μ̃ (large N ). In deriving this
equation we have kept both terms of S1, but neglected S2 and the second term in S3 in Eqs. (277)–(279), which will be justified
later. Here, a′

n = a′ · redge/redge and b′
n = b′ · redge/redge are projections of a′ and b′ in the radial direction as in Sec. VI C. The

term linear in time t
�

[μ̃ − V (redge)] = t
�

(μ̃ − μ) ∼ t
�β2μ

has been set to zero, using that μ̃ is very close to μ in this temperature
regime as discussed above (we also assume that t is small, as justified below).

Following the analysis of the harmonic oscillator at zero temperature, we then introduce the scaled dimensionless vectors a
and b defined via a′ = wN a and b′ = wN b, where the width wN has the dimension of length, and is determined as follows. We
impose that both the second [of order O(t)] and third term [of order O(t3)] in Eq. (280) are of order unity. This determines both
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wN and the typical time scale tN as

wN = |∇V (redge)|−1/3
�

2
3

(2m)
1
3

, tN = |∇V (redge)|−2/3(8m�)
1
3 , (281)

where the amplitudes have been chosen for later convenience. With this choice it is clear that the diffusion term m
2�t

(a′ − b′)2 ∼
w2

N/tN ∼ O(1) is also of order unity. Finally, for the term containing temperature to be also of O(1) and for the parameter b to
be also of order unity, we must scale the temperature as a function of N as follows:

β = btN

2
2
3 �

= b(2m)
1
3

�
2
3 |∇V (redge)| 2

3

. (282)

Specializing to the harmonic oscillator V (r) = 1
2mω2r2, we obtain

β = b(2m)
1
3

�
2
3 (mω2redge)2/3

= b

�ω

1

[�(1 + d)N ]1/(3d)
. (283)

In particular in d = 1,

β = b

�ωN1/3
(284)

in agreement with the result of Sec. V B [see Eq. (122)]. In addition, the above formula (281) for the parameter wN when applied
to the harmonic oscillator yields back the expression in Eq. (202) in any d. Note that for more general potentials V (r) ∼ rp one
finds from (282) that β ∼ b/Tedge where the temperature scale which controls the thermal fluctuations at the edge is

Tedge ∼ N
4(p−1)

3d(p+2) (285)

which generalizes the scale Tedge ∼ N1/3 for p = 2 and d = 1.
Defining τ = t/tN we can now rewrite

Kμ̃(x,y) 
 1

Cdw
d
N

∫ ∞

−∞

du

exp(−bu) + 1

∫
�

dτ

2πi

1

τ
d
2

exp

[
− (a − b)2

2
8
3 τ

− τ

(
an + bn + 2u

2
1
3

)
+ τ 3

3

]
, (286)

where Cd = πd/22(4d−2)/3. Using the integral representation of the diffusive propagator in Eq. (225) and the one of the Airy
function in Eq. (206), we obtain the following scaling form for the edge kernel at finite temperature in arbitrary dimension d for
two points near the edge:

Kμ̃(x,y) 
 1

wd
N

Kedge
d,b

(
x − redge

wN

,
y − redge

wN

)
, (287)

where we recall that wN = |∇V (redge)|− 1
3 �

2
3 (2m)−

1
3 , and the scaling function is given by

Kedge
d,b (a,b) = 2

2
3

∫ ∞

−∞

du

exp(−bu) + 1

∫
dq

(2π )d
e−iq·(a−b)Ai

(
2

2
3 q2 + an + bn + 2u

21/3

)
, (288)

which depends on a single dimensionless parameter b = �
2
3 |∇V (redge)| 2

3 (2m)−
1
3 /T and the dimension of space d. Note that this

result is independent of the precise shape of the potential (within the broad class to be discussed below) and is thus universal.
The dependence on the potential enters only in the width parameter wN , and the dimensionless inverse temperature b.

This representation can be expressed in an alternative form. We first split q = qt + qnn where n = redge/redge is the direction
normal to the edge, and we similarly split a = at + ann and b = bt + bnn. We then carry out the integral over qn using the
identity (231). We obtain the following alternative result for the scaling function of the edge kernel at finite temperature in space
dimension d as

Kedge
d,b (a,b) =

∫ ∞

−∞

du

exp(−bu) + 1

∫
dqt

(2π )d−1
e−iqt ·(at−bt )Ai

(
an + q2

t + u
)
Ai
(
bn + q2

t + u
)

(289)

=
∫

dqt

(2π )d−1
e−iqt ·(at−bt )Kedge

b

(
an + q2

t ,bn + q2
t

)
, (290)

where Kedge
b is precisely the scaled edge kernel at finite temperature in d = 1, given in Eq. (134).

Average edge density at finite temperature. The edge density is obtained simply by setting a = b in Eq. (290). This leads to

NρN (x) = 1

wd
N

F
edge
d,b

(
r − redge

wN

)
, (291)
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where the scaling function in dimension d can be obtained in
terms of the one in d = 1 as

F
edge
d,b (z) =

∫
dqt

(2π )d−1
F

edge
1,b

(
z + q2

t

)
, (292)

where the scaling function in d = 1 is given in Eq. (126),
which we recall here for convenience

F
edge
1,b (s) =

∫ +∞

−∞
du

Ai(s + u)2

1 + e−bu
. (293)

Note that for d = 1 there is no integration over qt to perform
and (292) reduces to an identity. For d > 1 one can perform
an angular integration to obtain

F
edge
d,b (z) = 22−dπ

1−d
2

�
(

d−1
2

) ∫ +∞

0
dq qd−2 F

edge
1,b (z + q2). (294)

Zero-temperature limit. In the limit T → 0, i.e., b → +∞,
the Fermi factor converges to a Heaviside step function

1

exp(−bu) + 1
→ θ (u) (295)

and μ̃ → μ. The first representation of the finite-temperature
kernel in Eq. (288) then recovers exactly the kernel obtained
for the harmonic oscillator and given in Eq. (227). The second
representation (289) leads to the alternative form for the zero-
temperature edge kernel in terms of the Airy kernel (37) as

Kedge
d (a,b) =

∫
dqt

(2π )d
e−iqt ·(at−bt )KAiry

(
an + q2

t ,bn + q2
t

)
.

(296)

This thus generalizes to any d the result given in Eq. (37)
for d = 1, i.e., the standard Airy kernel, and coincides, in an
equivalent alternative form, with the harmonic oscillator result
given in Eq. (227).

Validity of the method. We now return to the question
on the range of validity of this universal edge kernel at
finite temperature. In the derivation we essentially made two
approximations: (i) a short-time expansion keeping terms only
up to order O(t3), (ii) a gradient expansion of the potential,
assuming that higher-order terms are subdominant for large
N . To examine the validity of these two points, let us first
focus on the potentials of the form V (r) ∼ rp (with p > 0). In

this case, we know from (253) that redge ∼ N
2

d(p+2) . It follows
from (281) since |∇V | ∼ r

p−1
edge , that

wN ∼ N− 2
3d

(p−1)/(p+2), tN ∼ w2
N. (297)

Furthermore, one can check that for p > 0 all the neglected
terms are indeed subdominant for large N (see Appendix A).
For instance, the leading term O(t2), from Eq. (278), scales as
∼ t2

m
∇2V ∼ t2

Nr
p−2
edge ∼ N−2/(3d) which is negligible compared

to the main O(1) terms at large N . Similarly, it is easy to check
that the neglected second term in S3 in Eq. (245) is indeed
small since �

2∇4V
m|∇V |2 ∼ r

−p−2
edge ∼ N−2/d . Finally, the gradient

expansion is controlled by the parameter wN/redge ∼ N−2/(3d)

which is small for all fixed p at large N . Our conclusion is
thus that all spherically symmetric polynomial potentials with

leading degree p > 0 do satisfy the validity criteria for our
universal results at the edge.

We expect that the class of such potentials is actually much
broader. The precise conditions are analyzed in Appendix A.
However, there are well-identified cases where this universality
breaks down, for instance, for wall-type potentials. One
example is a box with an infinite hard wall. Another example
is the potential V (r) = 1

r2 + r2 potential. At zero temperature,
the latter is known to be related to Wishart matrices, which
have different edge properties (close the origin) than the GUE
ensemble. In this case, the limiting kernel is the so-called
Bessel kernel [37,82].

In the case of the potential V (r) ∼ rp with 0 < p < 1,
some additional peculiarities arise. First, one finds, from the
above estimates, that the typical width of the edge region wN

increases with increasing N . In addition, the temperature scale
Tedge defined in Eq. (285) decreases with increasing N which
is consistent with the fact that the potential is rather shallow
so even a small temperature is sufficient to excite the system.
Nevertheless, as discussed in Appendix A, the conditions for
the universality class of the p = 2 case studied in this paper
seem to still hold, at least at a perturbative level. To assess
more precisely the validity of this statement for 0 < p < 1
would require further studies.

VIII. DISCUSSION AND OPEN PROBLEMS

A. Bosonization in the bulk and interactions:
Beyond the sine kernel

In the bulk of the Fermi gas, the density NρN (x) varies very
slowly compared to the typical spacing between fermions and
other, more standard, methods can be applied. As discussed in
the text, see around formula (195), the universal sine-kernel
correlations (in d = 1) and its high-dimensional generaliza-
tions can also be derived using the LDA method.

In d = 1, another tool can be applied: the bosonization
technique. We will briefly recall here the results which can
be obtained from this method. One motivation is that it
also allows to treat the case of interacting fermions, hence
to address, to some extent, the question of universality in
presence of interactions. Furthermore, although well known
in the condensed matter community, these results do not seem
widely known to mathematicians working on random matrices.

The bosonization method allows one to represent fermions
in d = 1 with uniform local density ρ(x) := NρN (x) ≈ ρ0,
as some “exponentials” of two conjugated bosonic fields,
described by a quadratic Hamiltonian (see, e.g., [83] for a
pedagogical introduction). This representation is exact for free
fermions with a linear dispersion relation. For more general
dispersion relations, and for interacting fermions, it remains
an accurate effective description in the hydrodynamic limit,
i.e., on spatial scales (x − x ′)ρ0 � 1: this is the so-called
Luttinger liquid (LL). The effective quadratic Hamiltonian
is parametrized by the (renormalized) Luttinger parameter K ,
which contains all the information about the large scales. The
special value K = 1 corresponds to noninteracting fermions,
while attraction leads to K > 1 and repulsion to K < 1.
Using these methods it was shown [83,84] that the correlation
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function of the density at T = 0 is given by [85]

〈ρ(x)ρ(0)〉0 
 ρ2
0

[
1 − 2K

(2πρ0x)2
+

+∞∑
m=1

Am(ρ0x)−2Km2

× cos(2πmρ0x)

]
, (298)

while the correlation function of the fermionic field (which is
the analog of the kernel) is

〈�†(x)�(0)〉0 
 ρ0

+∞∑
m=0

Cm(ρ0x)−
1

2K
−2K(m+ 1

2 )2

× sin

[
2π

(
m + 1

2

)
ρ0x

]
. (299)

These formulas (298) and (299) are valid for ρ0x � 1. Here,
A1 in Eq. (298) and C0 in Eq. (299) represent the leading
behaviors at large ρ0x, while the terms Am, m � 2 and Cm,
m � 1 represent the contributions of higher harmonics (often
neglected in LL studies).

For noninteracting fermions, K = 1, C0 =1, and all Cm =0
for m � 1, and the expression in Eq. (299) becomes exact. It is
precisely the sine kernel sin(πρ0x)/x = �(x)−1Kbulk[x/�(x)]
with �(x) = 2/(πρ0) and Kbulk(y) = sin(2y)/πy, proved in
this paper to further hold for fermions in a trap (in the bulk),
using the mapping to RMT. In presence of interactions we see
that the correlation function of the fermionic field in Eq. (299)
in the ground state now decays at large x as

〈�†(x)�(0)〉0 ∼ sin(πρ0x)/xη, η = 1
2 (K + K−1) (300)

with a nonuniversal prefactor. The exponent η is thus always
larger than for noninteracting fermions, and its precise value
depends on the Luttinger parameter K , hence on the strength
of the interactions.

Unfortunately, the standard bosonization methods fail near
the edge where kF = πρ0 vanishes. We have found in this
paper that for noninteracting fermions in a trap, the correlation
function of the fermion field is described by the Airy kernel.
Deriving that result using bosonization techniques seems
at present out of reach. Nevertheless, it may be possible,
at least qualitatively, to recover the leading asymptotics
of the left tail of that kernel, i.e., the limit where both
points enter into the bulk. Indeed, in the noninteracting case,
we observe that by changing πρ0x → ∫ xedge

x
dy kF (y) and

inserting kF (y) ∼ √
xedge − y in Eq. (299), we obtain the Airy

function asymptotics at large negative arguments. Note that
since the edge regime is diluted, it is possible that the effect of
(at least short-range) interactions is less important than in the
bulk, and the edge universality is more robust. This, however,
remains to be studied in detail.

B. Connection to the KPZ equation

In a recent paper [11] we have unveiled a remarkable
connection between the problem of noninteracting fermions in
a one-dimensional trap at finite temperature and the continuum
1d Kardar-Parisi-Zhang (KPZ) growth equation at finite time,
with the so-called droplet initial condition (also called curved
geometry). The KPZ equation [86] describes the stochastic
time evolution of the height field h(x,t) of an interface, at

point x ∈ R and time t ,

∂th(x,t) = ν∂2
xh(x,t) + λ0

2
[∂xh(x,t)]2 +

√
Dη(x,t), (301)

where ν > 0 is the coefficient of diffusive relaxation, λ0 > 0
is the strength of the nonlinearity, and η(x,t) is a centered
Gaussian white noise with correlator 〈η(x,t)η(x ′,t ′)〉 = δ(x −
x ′)δ(t − t ′). From now on, we express height and time in the
natural units [87]

t∗ = 2(2ν)5/
(
D2λ4

0

)
, x∗ = (2ν)3/

(
Dλ2

0

)
, h∗ = 2ν/λ0.

(302)

Here, we start from the “narrow wedge” initial condition,
h(x,0) = −w|x| + ln(w/2), with w � 1, which gives rise to
a curved (or droplet) mean profile 〈h(x,t)〉 = 〈h(0,t)〉 − x2

4t
as

time evolves. Equivalently to (301) the Cole-Hopf transformed
field Z(x,t) = eh(x,t) satisfies the stochastic heat equation
(with multiplicative noise)

∂tZ(x,t) = ∂2
xZ(x,t) +

√
2η(x,t)Z(x,t), (303)

with initial condition Z(x,t = 0) = δ(x). The continuum KPZ
equation [88] is usually defined by the equation (303) with
the Ito convention, implying that the first moment 〈Z(x,t)〉 =
Z0(x,t) where Z0(x,t) := 1√

4πt
e−x2/(4t) is the free diffusion

propagator [90]. This is the definition we use here. In the
natural units defined above, one can define the scaled height
at position x = 0:

h̃(0,t) = h(0,t) + t
12

t1/3
. (304)

The exact results of Refs. [29–32] can then be expressed as
follows. Let us define the time-dependent generating function

gt (s) = 〈exp(−et1/3[h̃(0,t)−s])〉 (305)

of the rescaled height at x = 0. It is expressed for all time
t > 0 as a Fredholm determinant:

gt (s) = det
(
I − PsK

KPZ
t Ps

)
, (306)

KKPZ
t (x,y) =

∫ ∞

−∞

Ai(z + x)Ai(z + y)

e−t1/3z + 1
dz, (307)

where Ps is the projector on the interval [s,+∞). We can now
compare the finite-time kernel for KPZ, KKPZ

t in Eq. (307),
with the finite-temperature kernel Kedge

b for the fermions at
the edge, given in Eq. (134), and see that they are identical
provided one identifies

b := �ωN1/3

T
≡ t1/3, (308)

i.e., large time in KPZ corresponds to zero temperature of
the fermions, and high temperature for the fermions to small
time in KPZ [in original KPZ units the right-hand side should
be replaced by (t/t∗)1/3]. The correspondence appears more
direct if one introduces an additional random variable γ , inde-
pendent from h(0,t) and distributed according to the Gumbel
distribution P (γ ) = e−γ−e−γ

. Using that 〈θ (x − γ )〉γ = e−e−x

,
we can rewrite the generating function (305) and obtain the
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identity in law

lim
N→+∞,fixedb

ξ := xmax(T ) − xedge

wN

≡in law
h(0,t) + t

12 + γ

t1/3
,

(309)

where the random variables on the left- and right-hand sides
have identical PDF. On the left-hand side, the limit of large
N is taken at fixed b, and the identity in law then holds for
arbitrary t and b related by (308). In the limit of large time
(respectively low T ), the Gumbel variable can be ignored in the
right-hand side and one recovers that both the scaled variable
ξ = xmax(T )−xedge

wN
and the scaled height h̃(0,t) tend to the Tracy-

Widom GUE distribution [of CDF F2(s) given in Eq. (48)].
In the limit of small time one can use the small-t expansion

obtained in Ref. [30]. Using the formulas (11) and (12)
therein (and below the formula for the skewness) with the
correspondence ln z → h(0,t) − ln Z0(0,t) + t/12 and λ3 =
t/4 = b3/4, one first obtains the first three cumulants for the
KPZ height field h(0,t) at small t . From this, using (309),
together with the cumulants of the Gumbel distribution
〈γ n〉cγ = (n − 1)!ζ (n) for n � 2 and 〈γ 〉γ = γE , as well as
the independence of the two random variables, we obtain the
high-temperature expansion of the cumulants of the variable
ξ , i.e., the scaled position of the rightmost fermion. The
corresponding formulas are displayed in Sec. V C 2.

It is interesting to note that the relation (309) between
random variables can be “inverted” to express the PDF of
the KPZ field. Indeed, one can also write [29,30,32]

h̃(0,t) = u − γ ′

t1/3
, (310)

where γ ′ is (yet another) Gumbel random variable, and u is
a random variable, independent of γ ′ and of time-dependent
PDF pt (u) obtained as

pt (u) = Det[I − Pu(Bt − AiAi†)Pu] − Det[I − PuBtPu],

(311)

Bt (r,r
′) = P

∫ +∞

−∞
dv

Ai(r + v)Ai(r ′ + v)

1 − e−t1/3v
(312)

in terms of the kernel Bt and of the projector AiAi†(r,r ′) =
Ai(r)Ai(r ′) and where P denotes the Cauchy principal value.
The large time expansion, i.e., the corrections around the TW
distribution (or low-temperature expansion for the fermions)
is studied in Appendix B by using equivalently (306) or (311).

Our results establish a precise connection between free
fermions at finite temperature and the KPZ equation (301)
at finite time t . At this stage, this connection exists only for the
droplet initial condition of KPZ and also for the one-point
distribution of h(0,t) [the one-point distribution of h(x,t)
being identical up to a shift by its average −x2/(4t)]. Let
us mention two other examples where fermions appear in the
context of models in the KPZ universality class. One is the
polynuclear growth model, also related to a zero-temperature
model of directed paths [27,92]. This problem is related to
fermions on a 1d lattice in a linear potential, with a time-
dependent slope. A second example was studied recently in a
model of semidiscrete directed polymers [93]. It is at present
unclear whether the connection between fermions and the KPZ

equation hides a deeper correspondence, e.g., extending to
many point correlations or different initial conditions.

C. Conclusion

In this paper, we have developed a unified framework to
study the statistical mechanics of N noninteracting fermions
trapped by a confining potential, in any dimension d and at
any finite temperature T . The trapping potential gives rise to
an edge, i.e., a distance from the center of the trap above
which the average density vanishes. Consequently, when N

is large, there are two distinct scaling regimes in the local
correlations: the “bulk regime,” i.e., near the center of the
trap where the density of fermions varies smoothly, and the
“edge regime,” i.e., close to the edge where the density is
vanishing and where the (quantum and thermal) fluctuations
are thus large. In the “bulk regime,” our method recovers and
puts on firmer basis the results of the standard local density
(or Thomas-Fermi) approximation (LDA) [4,9]. On the other
hand, at the edge, where the LDA fails, we have obtained a
detailed description of the correlations. Indeed, we have shown
that, even at finite temperature T > 0, the system, in the limit
of a large number of fermions, is a determinantal point process
characterized by a kernel which depends on both the dimension
d and the temperature T [see Eq. (296)], which generalizes
the Airy kernel (37), which is a fundamental object in RMT.
Remarkably, we have shown, using a path-integral represen-
tation of this kernel, that is universal, i.e., independent of the
details of the trapping potential, for a wide class of spherically
symmetric potentials V (|x|) which behaves at large distance
as V (|x|) ∼ |x|p, with p > 0. In the special case d = 1,
we have studied in detail the cumulative distribution function
of the position of the rightmost fermion xmax(T ) at T > 0
and we have shown that this CDF in Eq. (137) (i) generalizes
the well-known Tracy-Widom distribution, which describes
the fluctuations of xmax(T = 0) and (ii) displays a remarkable
connection with the (1+1)-dimensional Kardar-Parisi-Zhang
equation in a droplet geometry (309). Furthermore, in the
case of a harmonic potential in any d we have shown that
all our results also hold in momentum space [in particular,
the Tracy-Widom distributions describes the fluctuations of
the largest momentum (56)]. It is an open question as to
how the latter property extends to nonharmonic traps.

Therefore, we believe that the results presented here open
the way for interesting bridges between the techniques of
many-body physics and of random matrix theory. We hope
that our results will stimulate further works at this interface.
In addition, one of the main outcomes of our paper is a precise
set of predictions for systems of noninteracting cold fermions
at finite temperature. It would be exciting if our theoretical
predictions could be verified in cold-atom experiments, for
example, using the state-of-the-art quantum microscopes
[6–8], or more conventional time-of-flight experiments.
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APPENDIX A: GENERAL SHORT-TIME EXPANSION OF THE IMAGINARY-TIME SCHRÖDINGER PROPAGATOR

Here we derive, using probabilistic methods, the general short-time expansion for the imaginary-time propagator of a one-body
Hamiltonian with an arbitrary soft potential. The semiclassical expansion of the path integral for the quantum mechanical
propagator, an expansion in �, has been extensively studied in the literature [94]. However the short-time expansion has received
less attention [81]. As shown in the text, and detailed again in the next appendix, this expansion allows the calculation of the
kernel of trapped noninteracting fermions in the bulk and at the edge. We first show the following formula for the propagator:

Proposition. The solution of the imaginary-time Schrödinger equation in Eq. (166) can be written, for an arbitrary potential
V (x), as

G(x,y; t) =
(

m

2π�t

) d
2

exp

[
− m

2t�
(x − y)2

]〈
exp

{
− t

�

∫ 1

0
du V [x(1 − u) + yu +

√
D0tBu]

}〉
B
, (A1)

where D0 = �/m is the diffusion coefficient and Bu = {Biu}di=1 is a d-dimensional Brownian bridge on the interval [0,1], i.e., a
Gaussian process with mean zero and correlation function

〈BiuBju′ 〉B = δij g(u,u′), g(u,u′) = min(u,u′) − uu′, (A2)

hence with B0 = B1 = 0.
Proof. To show this, we use the Feynman-Kac formula [95] to express the propagator as a path integral

G(x,y; t) =
∫

X(0)=x
d[X]δ(Xt − y) exp

{
− 1

�

∫ t

0
ds

[
1

2
m

(
dXs

ds

)2

+ V (Xs)

]}
, (A3)

over all paths staring at x at time t = 0, with a delta function weight so that only paths which end at y at time t contribute. We
now make a shift of variables in the path integral

Xs = x
(t − s)

t
+ y

s

t
+ Zs , (A4)

under which the expression for the propagator becomes

G(x,y; t) = exp

[
− m

2t�
(x − y)2

]〈
exp

{
−1

�

∫ t

0
dsV

[
x

(t − s)

t
+ y

s

t
+ Zt

]}〉
Z

× Nt , (A5)

where Nt = ∫
Z(0)=0 d[Z]δ[Zt ]exp[− m

2�

∫ t

0 ds( dZs

ds
)
2
] is a normalization. In simplifying the kinetic energy contribution we have

used that only paths where Zt = 0 contribute to the path integral, and we denote by 〈. . .〉Z an average with respect to the
normalized measure on the paths Z given by

P (Z) = 1

Nt

δ[Zt ] exp

[
− m

2�

∫ t

0
ds

(
dZs

ds

)2]
. (A6)

To evaluate the normalization Nt , we apply the Feynman-Kac formula again and see that the solution is given by the solution
of the d-dimensional (free) diffusion equation, with a delta function initial condition. This gives Nt = ( m

2π�t
)

d
2 . The process Z

with the measure given in Eq. (A6) is in fact a d-dimensional Brownian bridge, a Gaussian process with zero mean and temporal
correlation function

〈ZisZjs ′ 〉Z = δijD0

[
min(s,s ′) − ss ′

t

]
. (A7)

To show this, we compute the generating functional

g[λ] :=
〈
exp

[
−i

∫ t

0
λ(s) · Zs

]〉
Z

=
〈
δ(Wt ) exp

[− i
∫ t

0 λ(s) · Ws

]〉
W

〈δ(Wt )〉W
, (A8)

where 〈. . .〉W denotes an average with respect to an unconstrained Brownian motion with correlation function

〈WisWjs ′ 〉W = D0 min(s,s ′). (A9)

In the second equality in Eq. (A8) we enforced Wt = 0 by inserting a delta function. The averaging over W can be carried out
by using a Fourier representation of the delta function δ(Wt ) = ∫

dq
(2π )d exp(−iq · Wt ). Inserting this representation, both in the

denominator and in numerator of Eq. (A8), allows the Gaussian averaging to be carried out, yielding

g[λ] =
∫

dq
(2π )d exp

[− D0
2

∫ t

0

∫ t

0 ds ds ′ min(s,s ′)λ(s) · λ(s ′) − D0t

2 q2 − ∫ t

0 ds D0sq · λ(s)
]

∫
dq

(2π )d exp
(−D0t

2 q2
) . (A10)
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Now carrying out the integral over q in both the numerator and denominator gives

g[λ] = exp

(
−D0

2

{∫ t

0

∫ t

0
ds ds ′ min(s,s ′)λ(s) · λ(s ′) − 1

t

[ ∫ t

0
ds sλ(s)

]2})
. (A11)

From this expression for the generating functional of the Gaussian process we immediately see that the temporal correlation
function is given by Eq. (A7). Making now the change of variables s = ut and use Brownian scaling leads to the proof of the
Proposition in Eq. (A1).

The representation of the propagator in Eq. (A1) identifies explicitly the occurrence of the variable t . Let us now derive
the small-t expansion up to O(t3), and recover Eq. (242). To this purpose it is sufficient to Taylor expand the integral in the
exponential on the right-hand side of Eq. (A1) to O(t3), giving∫ 1

0
duV [x(1 − u) + yu +

√
D0tBu)] = A0 + t

1
2 A1 + tA2 + A3t

3
2 + A4t

2 + o(t2). (A12)

The various terms are explicitly given by (using the Einstein summation convention)

A0 = 1

�

∫ 1

0
duV [X(u)], Ap = D

p/2
0

p!�

∫ 1

0
du∇i1 . . . ∇ipV [X(u)]Bi1u . . . Bipu, X(u) = x + u(y − x), (A13)

where X(u) denotes the straight-line path between x and y for u ∈ [0,1]. The resulting expansion can then be averaged using the
cumulant expansion which, keeping only terms of O(t3), gives〈

exp

{
− t

�

∫ 1

0
du V [x(1 − u) + yu +

√
D0tBu]

}〉
B

≈ exp

(
−tA0 − 〈

t
3
2 A1 + t2A2 + t

5
2 A3 + t3A4

〉
B + 1

2
t3
[〈
A2

1

〉
B − 〈A1〉2

B

])
, (A14)

where we have used the fact that A0 does not depend on B. Now, we note that odd moments of B are zero so 〈A1〉B = 〈A3〉B = 0
and, consequently, we have〈

exp

{
− t

�

∫ 1

0
duV [x(1 − u) + yu +

√
D0tBu]

}〉
B

≈ exp

(
−tA0 − t2〈A2〉B + t3

[
1

2

〈
A2

1

〉
B − 〈A4〉B

])
. (A15)

Explicit computation of the moments then leads to the result given in Eq. (242). It is interesting to note that the short-time
expansion as formulated here is an expansion about the, constant velocity, direct straight-line path between x and y (in contrast to
the semiclassical expansion in powers of � for the real-time path integral, which is given about classical paths obeying Newton’s
equation).

An alternative derivation using diagrammatic techniques. To address the calculation of the kernel in a more systematic way,
we now develop a diagrammatic method. Let us consider the formula (168) for the kernel (for simplicity at T = 0) and use the
expression of the propagator in Eq. (A1). Let us further set d = 1 and work in the natural units where m = � = 1, for simplicity.
The generalization to higher dimension is straightforward. One has

Kμ(x,y) =
∫

�

dt

(2πt)3/2i
exp

[
− (x − y)2

2t
+ μt − S(x,y; t)

]
, S(x,y; t) = − ln

〈
e−t

∫ 1
0 du V [x(1−u)+yu+√

tBu]
〉
B. (A16)

Making a standard cumulant expansion of (A16) and Wick contractions for the Gaussian Brownian bridge, one can calculate
term by term using an elegant diagrammatic expansion, as shown below. Let us denote the vertex at position u, and the Brownian
bridge correlator g(u,u′) = 〈BuBu′ 〉B, respectively, by

= −t V (x(1 − u) + yu), = t g(u, u ) . (A17)

Then, the function −S(x,y; t) is the sum of all connected diagrams

−S = (t) + (t2) + (t3) + · · · + (t3) + (t4)

+ (t5) + · · · + (t5) + (t6) + · · ·
(A18)

The first family of diagrams is O(V ), the second O(V 2), the third O(V 3), and so on. The power of t is indicated next to the
graph in parentheses, the rule being, from (A17), that each vertex and each propagator bring a power of t . There is one distinct
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index ui per vertex, each line emerging from a vertex leads to a derivative acting on the vertex, and all the ui’s are integrated at
the end, each in [0,1]. For instance (omitting the combinatorial factor),

=
0

1 1
du1

0
du2g(u1 , u2)V [x(1 − u1) + yu1]V [x(1 − u2) + yu2 ] . (A19)

Until now, all terms in this systematic expansion in powers of t have been written exactly, and are valid for arbitrary potentials
(sufficiently differentiable, although some extensions are possible). At this stage, it is so general that it is not clear what is the
true expansion parameter of the above series (A18), in other words, for the series to be under control, t must be small compared
to what? The answer to that question will depend on the class of physical situations studied.

Now, we assume a soft potential and discuss the gradient expansion near the edge. By definition of the edge, μ = V (xe) and
here, for compactness, we denote xe = xedge. We set x = xe + wNa, y = xe + wNb where a,b are assumed to be of order O(1)
in the large-N limit. Hence, X(u) = x(1 − u) + yu = xe + wN [a(1 − u) + bu] and the scale factor wN is to be fixed later. For
instance, (A19) becomes

= c00V (xe)2 + 2c12V (xe )V (xe )wN + O(w2
N ) (A20)

cpq =
∫ 1

0
du1

∫ 1

0
g(u1,u2)[a(1 − u1) + bu1]p[a(1 − u2) + bu2]q . (A21)

We can now enumerate the various terms, and keep the leading and subleading ones in each family. In the exponential in Eq. (A16),

we have (a − b)2 w2
N

2t
− S, where the terms in S are [after cancellation of μ and V (xe)] (without showing the combinatorial factors)

V (xe )wN t + V (xe)w2
N t + · · · , V (xe) t2 + · · ·

V (xe)2t3 + V (xe)V (xe)wN t3 + · · · , V (xe )2t4 + V (xe )V (xe )wN t4 + · · ·

V (xe)2V (xe )t5 + V (xe)3wN t5 + · · · , V (xe )3t6 + V (xe )2V (xe)wN t6 + · · · .

(A22)

To classify the possible behaviors, we start with the diffusion term (a − b)2 w2
N

2t
. Assume that the exponent (a − b)2 w2

N

2t
− S is

dominated by some typical value of t (called tN in the text). There are three possibilities: (i) the diffusion term blows up, i.e.,
tN � w2

N , (ii) it vanishes, i.e., tN � w2
N , or (iii) it is of order unity tN ∼ w2

N . The cases (i) and (ii) being more exotic, we now
consider the case (iii).

Now, let us first discuss the standard class (leading to the Airy kernel). It is such that the first term in Eq. (A22), using
tN ∼ w2

N , is V ′(xe)wNtN ∼ V ′(xe)w3
N = O(1) which means wN ∼ |V ′(xe)|−1/3, as found in the text. Interestingly, the first term

of the first diagram in the second line of (A22), V ′(xe)2t3
N = [V ′(xe)w3

N ]2 = O(1), is also of order unity, and that leads to the
Airy kernel (37), if we can neglect all other terms. Let us examine now the conditions for neglecting all the other terms.

The diagrams of the first line [tadpoles, O(V ) diagrams] can all be written as ∼tN (wN∂xe
)q(tN∂2

xe
)�V (xe) with � � 0 number

of loops, and q � 0 the degree in the gradient expansion, with (�,q) = (0,0) being excluded. Now, we want all these diagrams to
be subdominant, excluding (�,q) = (0,1) which is O(1). Hence, it requires |V (2�+q)(xe)| � |V ′(xe)|(2�+2+q)/3 for � = 0, q � 2
and for � � 1, q � 0, which is equivalent to the set of conditions

|V (2+n)(xe)| � |V ′(xe)|(4+n)/3 n = 0,1,2, . . . (A23)

with n = 2� + q − 2, the first of these conditions being

|V ′′(xe)| � |V ′(xe)|4/3. (A24)

Similarly, the diagrams on the second line [O(V 2) diagrams] can all be written as ∼t�+3
N (wN∂xe

)q[∂�+1
xe

V (xe)]2 with � � 0 and
q � 0. Now, we want all to be subdominant, excluding (�,q) = (0,0) which is O(1). Hence, it requires

∣∣∂q
xe

[
∂�+1
xe

V (xe)
]2∣∣ ∼

∣∣∣∣∣∣
q∑

p=0

V (�+1+p)(xe)V (�+1+q−p)(xe)

∣∣∣∣∣∣ � |V ′(xe)|(2�+6+q)/3|, � = 0,q � 1 and � � 1,q � 0. (A25)

Remarkably, it is a simple exercise to check that if the conditions (A23) are verified, then this new set of conditions is also
verified.
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It is a tedious exercise to continue this process, and check that if the conditions (A23) are verified then all conditions for all
graphs O(V k), k � 1, are satisfied. As an illustration, let us point out for instance the conditions from the leading terms of the
first two diagrams O(V 3) on the next line. One finds simply (A24). Hence, it means that the set of conditions (A24) defines the
exact basin of attraction of the Airy kernel edge statistics at T = 0.

At this stage we have specified very little about V (x), apart from being smooth. All we know is that

V (xe) = μ, N =
√

2

π

∫
dx
√

μ − V (x) θ [μ − V (x)]. (A26)

The only large parameter being N , this equation determines μ and xe. From there the conditions (A24) can be checked, the
width of the edge region being wN ∼ |V ′(xe)|−1/3. There are many possible cases to consider, especially if one also considers
N -dependent trap potentials. There are, however, two large classes, with either xe → ±∞ or xe → x∗

e as N → +∞.
For the (N -independent) power-law potentials V (x) ∼ |x|p, the condition (A23) becomes

|xe|p−2−n � |xe|(p−1) 4+n
3 ⇒ 1 � |xe|(p+2) 1+n

3 . (A27)

The conditions are thus verified for all p > 0 since in all these cases xe → +∞. This case was studied in the text. It also includes
limiting cases such as V (x) ∝ ln |x|. Note that the width is wN ∼ x

(1−p)/3
e .

The case p < 0 occurs in two situations. The first one is a (bounded from below) confining potential with a power-law tail at
large |x|

V (x) 
|x|→+∞ V0 − c|x|−α (A28)

with α = −p > 0. It is known that such a potential has an infinite number of bound states if α < 2 [96]. Since then |xe| → +∞, the
conditions (A27) are satisfied which indicates that it belongs to the Airy class at T = 0 with a width scaling as wN ∼ x

(1+α)/3
e � xe.

In the case α > 2, there are only a finite number of bound states, which do not enter in the class studied here (since the limit of large
N then cannot be studied). The case α = 2 is marginal and deserves a separate discussion, but there clearly the conditions (A27)
fail.

The second situation with p = −α < 0 corresponds to wall potentials V (x) ∼ 1/xα near x = 0. In this case, the average
density will have a left edge xe → 0+ as N → +∞ and one finds that the condition (A23) is valid only if p < −2, i.e., α > 2.
In addition, the width now scales as wN ∼ x

(1+α)/3
e . Hence, for α > 2 one has wN � xe, which is completely physical, while

for 2 < α < 0 one finds wN � xe which is in contradiction with the assumptions (because of the wall). Hence, both criteria are
valid for α > 2, and break down for 0 < α � 2.

The above analysis concerns the Airy universality at T = 0. While the class V (x) ∼ |x|p leads to the universal finite-
temperature kernel studied in this paper (same as the harmonic oscillator), the class of potential of type (A28) is much more
sensitive to temperature since its spectrum has a continuum part and the fermions can unbind. Hence, we expect there a different
behavior which remains to be studied. Note that for potentials V (x) ∼ |x|p with p < 1 the temperature scale Tedge defined in
Eq. (285) decreases with increasing N .

APPENDIX B: LONG-TIME–LOW-TEMPERATURE EXPANSIONS FOR KPZ OR FERMIONS AROUND THE
TRACY-WIDOM DISTRIBUTION

We start from the solution for droplet initial conditions recalled in the text, expressed as

Pr(ξ < s) = Pr

[
h(0,t) + t

12
+ γ < st1/3

]
= Det

[
I − PsK

KPZ
t Ps

]
, (B1)

where γ is a Gumbel variable, independent of h(0,t). In this form it describes both the fermions, via the variable ξ defined in the
text, and the KPZ height, and we recall that

KKPZ
t (r,r ′) = Kedge

b=t1/3 (r,r ′) =
∫ +∞

−∞
du

Ai(r + u)Ai(r ′ + u)

1 + e−t1/3u
. (B2)

Using that 1
1+e−u = 1 − 1

1+eu and the same manipulations as to derive the Sommerfeld expansion of the Fermi factor (see,
e.g., [97]) we can rewrite

KKPZ
t (r,r ′) = KAi(r,r

′) − t−1/3
∫ +∞

−∞
du

Ai
(
r + u

t1/3

)
Ai
(
r ′ + u

t1/3

)
sgn(u)

1 + e|u| , (B3)

which, until now, is an exact expression for all t .
Let us now perform an expansion for large t , by first expanding the kernel. Expanding in powers of the factor u

t1/3 , and
performing the integrals over u, one finds that only odd terms ∼u1+2q survive, leading to

KKPZ
t (r,r ′) = KAi(r,r

′) − t−2/3
∑
q�0

t−
2q

3 2(1 − 2−1−2q )ζ (2 + 2q)∂1+2q
s [Ai(r + s)Ai(r ′ + s)]|s=0. (B4)
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Replacing t = b3, where b = N1/3
�ω/T , we simultaneously obtain the low-T expansion of the edge kernel for the fermions.

For instance, let us give the complete expansion for the universal scaling function of the density near the edge

F1,b(r) = Kedge
b (r,r) = F1(r) − b−2

∑
q�0

b−2q2(1 − 2−1−2q )ζ (2 + 2q)∂1+2q
r [Ai(r)2]. (B5)

Now, we would like to obtain the large-t expansion of the PDF of the KPZ height, equivalently the low-T expansion of the
PDF of the position of the rightmost fermion, around the Tracy-Widom distribution. For this we need to expand the Fredholm
determinant in Eq. (B1). Let us rewrite the FD as follows:

Det
[
I − PsK

KPZ
t Ps

] = Det[I − P0Kt,sP0], Kt,s(r,r
′) = KKPZ

t (r + s,r ′ + s). (B6)

Let us write the two leading corrections

Kt,s(r,r
′) = KAi,s(r,r

′) − π2

6t2/3
∂s[Ai(r + s)Ai(r ′ + s)] − 7π4

360t4/3
∂3
s [Ai(r + s)Ai(r ′ + s)] + O(t−2), (B7)

where we denote KAi,s(r,r ′) = KAiry(r + s,r ′ + s). Recalling that the CDF of the Tracy-Widom distribution is F2(s) = Det[I −
P0KAi,sP0], we can expand the FD to second order as

Det[I − P0Kt,sP0] = F2(s) + t−2/3 π2

3
Tr[P0(I − P0KAi,sP0)−1Ai′sAi†s]F2(s) + Q4(s)t−4/3 + O(t−2), (B8)

where Ai′sAi†s(r,r
′) = Ai′(r + s)Ai(r ′ + s) and Q4(s) can in principle be computed. We can now use the identity (see a derivation

in Ref. [98])

F ′′
2 (s) = 2F2(s)Tr[P0(I − P0KAi,sP0)−1Ai′sAi†s] (B9)

to simplify the expression in Eq. (B8) and obtain

Det[I − P0Kt,sP0] = F2(s) + t−2/3 π2

6
F ′′

2 (s) + Q4(s)t−4/3 + O(t−2). (B10)

Taking a derivative, we thus obtain the PDF, noted pt (s) of the variable ξ for large t , as

pt (s) = f2(s) + t−2/3 π2

6
f ′′

2 (s) + q4(s)t−4/3 + O(t−2), (B11)

where f2(s) = F ′
2(s) and q4(s) = Q′

4(s). Let us denote mp = 〈χp〉GUE and κp = 〈χp〉cGUE the moments and cumulants of the TW
distribution for GUE, and ap the moments associated to q4(s). From (B11) we obtain

〈ξp〉 = mp + t−2/3 π2

6
p(p − 1)mp−2 + apt−4/3 + O(t−2). (B12)

Let us give the first three cumulants of the variable ξ for the fermions

〈ξ〉 = m1 + a1t
−4/3, (B13)

〈ξ 2〉c = κ2 + π2

3
t−2/3 + (a2 − 2a1m1)t−4/3, (B14)

〈ξ 3〉c = 〈ξ 3〉 − 3〈ξ 2〉〈ξ 〉 + 2〈ξ〉3 = κ3 + (a3 − 3a2m1 − 3a1m2 + 6a1)t−4/3. (B15)

Since the cumulants are additive for uncorrelated variables, one immediately obtains the large-time expansion of the cumulants
for the scaled KPZ field h̃ ≡ h̃(0,t) as

〈h̃p〉c = 〈ξp〉c − γp, (B16)

where the cumulants of the Gumbel distribution are γp = 〈γ p〉cγ = (p − 1)!ζ (p) for p � 2 and γ1 = γE . Note that for the first
three cumulants the leading correction to TW is equal to the corresponding cumulant of minus a Gumbel variable

〈h̃p〉c = κp + (−1)pγpt−p/3 + O(t−4/3), p = 1,2,3 (B17)

the leading correction to all higher cumulants being a priori of order O(t−4/3). This fact is actually known [41]. It can be obtained
equivalently from (310) and (311), showing that pt (u) = f2(u) + O(t−4/3). Indeed, manipulations of the integrals similar as
above allow to show that

Bt (r,r
′) = KAiry(r,r ′) + t−1/3

∫ +∞

−∞
dv

sgn(v)

e|v| − 1

[
Ai

(
r + v

t1/3

)
Ai

(
r ′ + v

t1/3

)
− Ai(r)Ai(r ′)

]
(B18)

= KAiry(r,r ′) + t−2/3 π2

3
[Ai(r)Ai′(r) + Ai′(r)Ai(r)] + O(t−4/3). (B19)
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Now, since AiAi† is a rank-one projector, one can rewrite (311) as

pt (u) = 1
2 Det[I − Pu(Bt − AiAi†)Pu] − 1

2 Det[I − Pu(Bt + AiAi†)Pu], (B20)

and inserting (B19), it is clear that the O(t−2/3) term cancels between the two terms. Thus, the (nontrivial) leading correction to
pt (u) around the TW distribution is O(t−4/3), hence, the first three cumulants are corrected first by (minus) the Gumbel variable
in Eq. (310). The method that we used here, however, allows one to obtain the cumulants for the fermion problem in a more
direct manner.
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