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Hölder-type inequalities and their applications to
concentration and correlation bounds

Christos Pelekis* Jan Ramon† Yuyi Wang‡

November 29, 2016

Abstract

Let Yv, v ∈ V, be real-valued random variables having a dependency graph G =
(V,E). We show that

E

[∏
v∈V

Yv

]
≤
∏
v∈V

{
E
[
Y
χb
b

v

]} b
χb
,

where χb is the b-fold chromatic number of G. This inequality may be seen as a
dependency-graph analogue of a generalised Hölder inequality, due to Helmut Finner.
Additionally, we provide applications of the aformentioned Hölder-type inequalities
to concentration and correlation bounds for sums of weakly dependent random vari-
ables whose dependencies can be described in terms of graphs or hypergraphs.

Keywords: fractional chromatic number; Finner’s inequality; Janson’s inequality; depen-
dency graph; hypergraphs

1 Introduction and related work

The main purpose of this article is to illustrate that certain Hölder-type inequalities can
be employed in order to obtain concentration and correlation bounds for sums of weakly
dependent random variables whose dependencies are described in terms of graphs, or
hypergraphs. Before being more precise, let us begin with some notation and definitions
that will be fixed throughout the text.
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A hypergraphH is a pair (V, E) where V is a finite set and E is a family of subsets of V . The
set V is called the vertex set of H and the set E is called the edge set of H; the elements of
E are called hyperedges or just edges. The cardinality of the vertex set will be denoted by
|V | and the cardinality of the edge set by |E|. A hypergraph is called k-uniform if every
edge from E has cardinality k. A 2-uniform hypergraph is a graph. The degree of a vertex
v ∈ V is defined as the number of edges that contain v. A hypergraph will be called d-
regular if every vertex has degree d. A subset V ′ ⊆ V is called independent if it does not
contain any edge from E . A fractional matching of a hypergraph, H = (V, E), is a function
φ : E → [0, 1] such that

∑
e:v∈e φ(e) ≤ 1, for all vertices v ∈ V . The fractional matching

number ofH, denoted ν∗(H), is defined as maxφ
∑

e∈E φ(e) where the maximum runs over
all fractional matchings of H. The fractional chromatic number of a graph G is defined in
the following way. A b-fold colouring of G is an assignment of sets of size b to the vertices
of the graph in such a way that adjacent vertices have disjoint sets. A graph is (a : b)-
colourable if it has a b-fold colouring using a different colours. The least a for which the
graph is (a : b)-colourable is the b-fold chromatic number of the graph, denoted χb(G). The
fractional chromatic number of a graph G is defined as χ∗(G) = infb

χb(G)
b . Here and later,

P[·] and E[·] will denote probability and expectation, respectively.

Let us also recall Hölder’s inequality. Let (Ω,A,P) be a probability space. Let A be a
finite set and let Ya, a ∈ A, be random variables from Ω into R. Suppose that wa, a ∈ A
are non-negative weights such that

∑
a∈Awa ≤ 1 and each Ya has finite 1

wa
-moment, i.e.,

E
[
Y

1/wa
a

]
< +∞, for all a ∈ A. Hölder’s inequality asserts that

E

[∏
a∈A

Ya

]
≤
∏
a∈A

E
[
Y 1/wa
a

]wa
.

This is a classic result (see [2]). In this article we shall be interested in applications of
Hölder-type inequalities to concentration and correlation bounds for sums of weakly de-
pendent random variables. We focus on two particular types of dependencies between
random variables. The first one is described in terms of a hypergraph.

Definition 1 (hypergraph-correlated random variables). Let H = (V, E) be a hypergraph.
Suppose that {Ye}e∈E is a collection of real-valued random variables, indexed by the edge set ofH,
which satisfy the following: there exist independent random variables {Xv}v∈V indexed by the
vertex set V such that, for every edge e ∈ E , we have Ye = fe(Xv; v ∈ e) is a function that depends
only on the random variables Xv with v ∈ e. We will refer to the aforementioned random variables
{Ye}e∈E asH-correlated, or simply as hypergraph-correlated, when there is no confusion about
the underlying hypergraph.

As an example of hypergraph-correlated random variables the reader may think of the
indicators of the triangles in an Erdős-Rényi random graph model G(n, p). Recall that
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such a model generates a random graph, G, on n labelled vertices by joining pairs of ver-
tices, independently, with probability p ∈ (0, 1). To see that the indicators of the triangles
in G are hypergraph-correlated, let HG be the hypergraph whose vertex set, V , has an
element for every (potential) edge in G and whose edge set, E , has a hyperedge for ev-
ery triplet of edges in G that form (potential) triangles. Let Xv, v ∈ V, be independent
Bernoulli Ber(p) random variables. For every triangle T in G, let ET be the corresponding
hyperedge of HG. Now notice that the indicator of each triangle, T , in G can be written
as a product

∏
v∈ET Xv. More examples of hypergraph-correlated random variables can

be found in Section 4. Hypergraph-correlated random variables are encountered in the
theory of random graphs and machine learning (see [9, 11, 17, 19] and references therein);
a quintessential question that motivates their study asks for upper bounds on the proba-
bility that a random graph G ∈ G(n, p) contains more triangles than expected. Notice that
the indicators of the triangles in G ∈ G(n, p) are not mutually independent and therefore
the standard Chernoff-Hoeffding bounds do not apply. Another type of ”dependency
structure” that plays a key role in probabilistic combinatorics and related areas involves
the notion of a dependency graph (see also [1, 12]).

Definition 2 (Graph-dependent random variables). A dependency graph for the random
variables {Yv}v∈V , indexed by a finite set V , is any loopless graph, G = (V,E), whose vertex set
V is the index set of the random variables and whose edge set is such that if V ′ ⊆ V and vi ∈ V
is not incident to any vertex of V ′, then Yv is mutually independent of the random variables Yv′
for which v′ ∈ V ′. We will refer to random variables {Yv}v∈V having a dependency graph G as
G-dependent or as graph-dependent.

A difference between the notions of graph-dependent and hypergraph-correlated random
variables is illustrated in Example 2.2 below. An example of graph-dependent random
variables is the indicators of the triangles in a random graph G ∈ G(n, p). Let us remark
that the previous notions of weakly dependent random variables arise in the study of the,
so-called, Lovász Local Lemma. In this setting one is dealing with a (finite) number of
events in some probability space, and is interested in lower bounds on the probability that
none of the events will occur. The events need not be independent and their indicators
are assumed to be graph-dependent, or hypergraph-correlated (see [6, 16]). In this article
we focus on upper bounds on the probability that none of the events will occur.

Notice that if {Ye}e∈E are hypergraph-correlated random variables then they induce a de-
pendency graph whose vertex set is E and with edges joining any two sets e, e′ ∈ E
such that e ∩ e′ 6= ∅. Hence a set of hypergraph-correlated random variables is graph-
dependent. The reader may wonder whether the converse holds true. We will show,
using a particular generalisation of Hölder’s inequality, that this is not the case (see Ex-
ample 2.2 below) and so the aforementioned notions of dependencies between random
variables are not equivalent.
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In the present paper we provide a Hölder-type inequality for graph-dependent random
variables. Our result can be seen as a dependency-graph analogue of the following theo-
rem, due to Helmut Finner.

Theorem 1.1 (Finner [7]). Let H = (V, E) be a hypergraph and let {Ye}e∈E be H-correlated
random variables. If φ : E → [0, 1] is a fractional matching ofH then

E

[∏
e∈E

Ye

]
≤
∏
e∈E

{
E
[
Y 1/φ(e)
e

]}φ(e)
.

Notice that, by applying the previous result to the random variables Ze = Y
φ(e)
e , one

concludes E
[∏

e∈E Y
φ(e)
e

]
≤
∏
e∈E {E [Ye]}φ(e). See [7] for a proof of Theorem 1.1 which

is based on Fubini’s theorem and Hölder’s inequality. Alternatively, see [17] for a proof
that uses the concavity of the weighted geometric mean and Jensen’s inequality. In other
words, Theorem 1.1 provides a Hölder-type inequality for hypergraph-correlated random
variables which is formalised in terms of a fractional matching of the underlying hyper-
graph.

In this article we illustrate how certain Hölder-type inequalities yield concentration and
correlation bounds for sums of hypergraph-correlated random variables as well as for
sums of graph-dependent random variables. In that regard, our contribution is two-fold.
On the one hand, we show that a particular graph-dependent analogue of Theorem 1.1
yields a new proof of the following result, due to Svante Janson, which provides an esti-
mate on the probability that the sum of graph-dependent random variables is significantly
larger than its mean.

Theorem 1.2 (Janson [11]). Let {Yv}v∈V be [0, 1]-valued random variables having a dependency
graph G = (V,E). Set q := 1

|V |E [
∑

v Yv]. If t = n(q + ε) for some ε > 0, then

P

[∑
v

Yv ≥ t

]
≤ exp

(
−2ε2|V |

χ∗

)
,

where χ∗ = χ∗(G) is the fractional chromatic number of G.

See [11, Theorem 2.1] for a proof of this result which is based on breaking up the sum into
a particular linear combination of sums of independent random variables. On the other
hand, we show that Finner’s inequality applies to the following problem, that is interest-
ing on its own.

Problem 1.3. Fix a hypergraphH = (V, E) and let I be a random subset of V formed by including
vertex v ∈ V in I with probability pv ∈ (0, 1), independently of other vertices. What is an upper
bound on the probability that I is independent?
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Here and later, given a set of parameters in (0, 1), say p = {pv}v∈V , indexed by the vertex
set of a hypergraph H, we will denote by π(p,H) the probability that I is independent.
Let us remark that Problem 1.3 has attracted the attention of several authors and appears
to be related to a variety of topics (see [4, 8, 13, 15, 19] and references therein). A particular
line of research is motivated by question about independent sets and subgraph counting
in random graphs. In this context, Problem 1.3 has been considered by Janson et al. [13],
Krivelevich et al. [15] and Wolfovitz [19]. It is observed in [15] that when H is k-uniform,
d-regular and pv = p for all v ∈ V , an exponential estimate on π(p,H) can be obtained
using the so-called Janson’s correlation inequality. Additionally, it is shown in [15, Sec-
tion 5] that under certain ”mild additional assumptions” the bound provided by Janson’s
inequality can be improved to

π(p,H) ≤ exp
(
−Ω

(
p|E|

(1− p)kd

))
.

See [15] for a precise formulation of the ”mild additional assumptions” and a proof of this
result which is based on a martingale-type concentration inequality.

The remaining part of our paper is organised as follows. In the Section 2 we collect our
main results. In particular, we provide a Hölder-type inequality for graph-dependent
random variables and we apply this result in order to deduce upper bounds on the prob-
ability that a sum of graph-dependent random variables is significantly larger than its
mean. We also show that Finner’s inequality yields an upper bound on π(p,H). The
proofs of our main results are deferred to Section 3. Finally, in Section 4, we illustrate that
Finner’s inequality can be seen as an alternative to the, well-known, Janson’s correlation
inequality. Our paper ends with Section 5 in which we briefly sketch how one can apply
similar ideas to yet another class of weakly dependent random variables.

2 Main results

In this section we collect our main results. Our first result provides an analogue of Theo-
rem 1.1 for random variables having a dependency graph G. The corresponding Hölder-
type inequality is formalised in terms of the b-fold chromatic number of G and reads as
follows.

Theorem 2.1. Let {Yv}v∈V be real-valued random variables having a dependency graph G =
(V,E). Then, for every b-fold colouring of G using χb := χb(G) colours, we have

E

[∏
v∈V

Yv

]
≤
∏
v∈V

{
E
[
Y

χb
b

v

]} b
χb
.
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We prove Theorem 2.1 in Section 3. The proof employs the concavity of the weighted geo-
metric mean and the definition of b-fold chromatic number. Recall that Finner’s inequality
applies to hypergraph-correlated random variables and that such an ensemble of random
variables induces a dependency graph. However, as is shown in the following example,
there exist graph-dependent random variables which are not hypergraph-correlated and
therefore Theorem 2.1 provides a Hölder-type inequality can be applied to more general
ensembles of ”weakly dependent” random variables.

Example 2.2 (R.v.’s that are graph-dependent but not hypergraph-correlated). Let G be a
cycle-graph on 5 vertices {v1, . . . , v5} such that vi is incident to vi+1, for i ∈ {1, 2, 3, 4} and
v5 is incident to v1. Let Y = (Y1, . . . , Y5) be a vector of Bernoulli 0/1 random variables whose
distribution is defined as follows. The vector Y takes the value (0, 0, 0, 0, 0) with probability 1

2(2−
p)(1− p)2, the value (1, 1, 1, 1, 1) with probability p2+p3

2 , the values

(0, 0, 0, 1, 1), (0, 0, 1, 1, 0), (0, 1, 1, 0, 0), (1, 1, 0, 0, 0), (1, 0, 0, 0, 1)

with probability p(1−p)2
2 , the values

(0, 0, 1, 1, 1), (0, 1, 1, 1, 0), (1, 1, 1, 0, 0), (1, 1, 0, 0, 1), (1, 0, 0, 1, 1)

with probability p2−p3
2 and the remaining values with probability 0. Elementary, though quite

tedious, calculations show that E[Yj ] = p, for j = 1, . . . , 5 and that G is a dependency graph for
{Yj}5j=1. Now assume that {Yj}5j=1 are H-correlated, for some hypergraph H = (V, E). Notice
that the cardinality of E must be equal to 5. If ei ∈ E is the edge corresponding to the random
variable Yi, i = 1, . . . , 5, then the fact that {Yi}5i=1 have G as a depencency graph implies that
ei ∩ e(i+2) mod 5 = ∅, for i ∈ {1, 2, 3, 4, 5}. This means that the fractional matching number ofH
is at least 2.5 and therefore Theorem 1.1 implies that P [Y = (1, 1, 1, 1, 1)] ≤ p2.5. However, the
arithmetic geometric means inequality implies p2+p3

2 > p2.5 and therefore the random variables
{Yj}5j=1 cannot be hypergraph-correlated.

We also show that Theorem 2.1, combined with standard techniques based on exponential
moments, yields, one the one hand, a new proof of Theorem 1.2 and, on the other hand,
the following Bennett-type inequality for graph-dependent random variables.

Theorem 2.3. Let {Yv}v∈V be random variables having a dependency graph G = (V,E). For
every v ∈ V let σ2

v := Var (Yv) and assume further that Yv ≤ 1 and E[Yv] = 0. Set S =
∑

v σ
2
v

and fix t > 0. Then

P

[∑
v

Yv ≥ t

]
≤ exp

(
− S

χ∗(G)
ψ

(
t

S

))
,

where ψ(x) = (1 + x) ln(1 + x)− x.
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Let us remark that Theorem 2.3 improves on [11, Theorem 2.3] which contains the same
bound but with ψ

(
4t
5S

)
instead of our ψ

(
t
S

)
. Note that we assume a one-sided bound on

each Yv. The proof of Theorem 2.3 is based on Theorem 2.1 and can be found in Section
3. Notice also that Theorems 2.1 and 2.3 are concerned with graph-dependent random
variables. Our final result concerns hypergraph-correlated indicators. In Section 3 we
show that Finner’s inequality yields the following upper bound on the probability that a
random subset of the vertex set of a hypergraph is independent.

Theorem 2.4. Let H = (V, E) be a hypergraph and p = {pv}v∈V be a set of parameters from
(0, 1). Then

π(p,H) ≤
∏
e

(
1−

∏
v∈e

pv

)φ(e)

,

where φ : E → [0, 1] is a fractional matching ofH. In particular, if the hypergraphH is k-uniform,
d-regular and pv = p, for all v ∈ V, then

π(p,H) ≤
(

1− pk
)ν∗(H)

≤ exp
(
−pk |E|

d

)
,

where ν∗(H) is the fractional matching number ofH.

Notice that the first bound in the second statement of Theorem 2.4 has a monotonicity prop-
erty, in the sense that ifH1 is a superhypergraph ofH2 then

(
1− pk

)ν∗(H1) ≤
(
1− pk

)ν∗(H2).
In Section 4 we illustrate that Theorem 2.4 may be seen as an alternative to Janson’s cor-
relation inequality.

Let us end this section by noting that Theorem 1.1, combined with standard exponential-
moment ideas, yields concentration inequalities for sums of hypergraph-correlated ran-
dom variables. This has been reported in prior work and so we only provide the statement
without proof. In [17] one can find a proof of the following result.

Theorem 2.5 (Ramon et al. [17]). Let H = (V, E) be a hypergraph and assume that {Ye}e∈E
are H-correlated random variables. Assume further that Ye ∈ [0, 1], for all e ∈ E , and that
E [Ye] = pe, for some pe ∈ (0, 1). Let φ : E → [0, 1] be a fractional matching of H and set
Φ =

∑
e φ(e), p = 1

|E|
∑

e E [Ye]. If t is a real number from the interval (Φp,Φ) such that
t = Φ(p+ ε), then

P

[∑
e∈E

φ(e)Ye ≥ t

]
≤ exp

(
−2Φε2

)
.

In particular, if d is the maximum degree of H and φ(e) = 1
d , for all e ∈ E , then Theorem
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2.5 yields the bound

P

[∑
e

Ye ≥ t

]
≤ exp

(
−2
|E|
d
ε2

)
, for t = |E|(p+ ε).

This inequality has also been obtained in Gavinsky et al. [9] using entropy ideas. As
is mentioned in the introduction, the indicators, say {IT }T , of the triangles in an Erdős-
Rényi random graph are both graph-dependent and hypergraph-correlated; their depen-
dency graph is the graph which is induced from the random variables {IT }T when they
are viewed as hypergraph-correlated. This means that both Theorem 1.2 and Theorem 2.5
provide an upper bound on the probability that G ∈ G(n, p) contains more triangles than
expected. We invite the reader to verify that Theorem 2.5 provides a better bound. An in-
tuitive explanation as to why Theorem 2.5 gives a better bound is that, while considering
the induced dependency-graph of a set of hypergraph-correlated random variables, one
loses information. This behaviour has also been reported in the context of Lovász Local
Lemma (see Kolipaka et al. [14]).

3 Proofs

In this section we prove our main results. We begin with Theorem 2.1, whose proof is
based on the concavity of the weighted geometric mean.

Lemma 3.1. Let β = (β1, . . . , βk) be a vector of non-negative real numbers such that
∑k

i=1 βi =

1. Then the function g : Rk → R defined by g(t) =
∏k
i=1 t

βi
i is concave.

Proof. This is easily verified by showing that the Hessian matrix is positive definite. See
[5], or [17] for details.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. We show that

E

[∏
v∈V
{Yv}

b
χb

]
≤
∏
v∈V
{E [Yv]}

b
χb .

The theorem follows by applying this inequality to the random variables Zv = Y
χb
b

v . For
every colour i = 1, . . . , χb let Ii be the set consisting of the vertices that are coloured with
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colour i. Note that each Ii is an independent subset of V and every vertex v ∈ V appears
in exactly b independent sets Ii. Therefore,

E

[∏
v∈V
{Yv}

b
χb

]
= E

 χb∏
i=1

∏
v∈Ii

{Yv}
1
χb

 = E

 χb∏
i=1

∏
v∈Ii

Yv


1
χb

 .
Lemma 3.1 and Jensen’s inequality combined with the observation that the random vari-
ables {Yv}v∈Ii are mutually independent yield

E

 χb∏
i=1

∏
v∈Ii

Yv


1
χb

 ≤ χb∏
i=1

E

∏
v∈Ii

Yv


1
χb

=

χb∏
i=1

∏
v∈Ii

{E [Yv]}
1
χb .

Now, using again the fact that each vertex v appears in exactly b sets Ii, we conclude

χb∏
i=1

∏
v∈Ii

{E [Yv]}
1
χb =

∏
v∈V
{E [Yv]}

b
χb

and the result follows.

Recall the following, well-known, result whose proof is included for the sake of complete-
ness.

Lemma 3.2. Let X be a random variable that takes values on the interval [0, 1]. Suppose that
E[X] = p, for some p ∈ (0, 1), and let B be a Bernoulli 0/1 random variable such that E[B] = p.
If f : [0, 1]→ R is a convex function, then E [f(X)] ≤ E [f(B)].

Proof. Given an outcome from the random variable X , define the random variable BX
that takes the values 0 and 1 with probability 1 − X and X , respectively. It is easy to
see that E [BX ] = p and so BX has the same distribution as B. Now Jensen’s inequality
implies

E [f(X)] = E
[
f
(
E
[
BX
∣∣X])] ≤ E

[
f
(
BX
∣∣X)] = E [f(BX)] ,

as required.

We now proceed with the proof of Theorem 1.2.
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Proof of Theorem 1.2. Fix h > 0 and let qv = E [Yv], for v ∈ V . Using Markov’s inequality
and Theorem 2.1 we estimate

P

[∑
v∈V

Yv ≥ t

]
≤ e−htE

[
eh

∑
v∈V Yv

]
= e−htE

[∏
v∈V

ehYv

]

≤ e−ht
∏
v∈V

{
E
[
exp

(χb
b
hYv

)]} b
χb

For v ∈ V let Bv be a Bernoulli 0/1 random variable of mean qv. Lemma 3.2 implies

e−ht
∏
v∈V

{
E
[
exp

(χb
b
hYv

)]} b
χb ≤ e−ht

∏
v∈V

{
E
[
exp

(χb
b
hBv

)]} b
χb

= e−ht
∏
v∈V

{
(1− qv) + qve

χb
b
h
} b
χb .

Using the weighted arithmetic-geometric means inequality we conclude

e−ht
∏
v∈V

{
(1− qv) + qve

χb
b
h
} b
χb ≤ e−ht

{∑
v∈V

1

|V |

(
(1− qv) + qve

χb
b
h
)} b

χb
|V |

= e−ht
{

1− q + qe
χb
b
h
} b
χb
|V |
.

If we minimise the last expression with respect to h > 0 we get that h must satisfy e
χb
b
h =

t(1−q)
q(|V |−t) and therefore, since t = |V |(q + ε), we conclude

P

[∑
v∈V

Yv ≥ t

]
≤

{(
q

q + ε

)q+ε( 1− q
1− (q + ε)

)1−(q+ε)
} b

χb
|V |

= e
− b
χb
|V |D(q+ε||q)

,

where D(q + ε||q) is the Kullback-Leibler distance between q + ε and q. Finally, using the
standard estimate D(q + ε||q) ≥ 2ε2, we deduce

P

[∑
v∈V

Yv ≥ t

]
≤ e−

b
χb
|V |2ε2

and the result follows upon minimising the last expression with respect to b.

The proof of Theorem 2.3 is similar.
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Proof of Theorem 2.3. Fix h > 0 to be determined later. As in the proof of Theorem 1.2,
Markov’s inequality and Theorem 2.1 yield

P

[∑
v

Yv ≥ t

]
≤ e−ht

∏
v∈V

{
E
[
exp

(χb
b
hYv

)]} b
χb .

Using an inequality proved in [11] (see inequality (3.7), page 240), we have

E
[
exp

(χb
b
hYv

)]
≤ exp

(
σ2
vg
(χb
b
h
))

,

where g(a) := ea − 1− a. Summarising, we have shown

P

[∑
v

Yv ≥ t

]
≤ exp

(
−ht+

(
b

χb
ehχb/b − b

χb
− h
)
S

)
.

Now choose h = b
χb
· ln
(
1 + t

S

)
to deduce

P

[∑
v

Yv ≥ t

]
≤ exp

(
b

χb
t− S b

χb

(
1 +

t

S

)
ln

(
1 +

t

S

))
= exp

(
−S b

χb
ψ

(
t

S

))
.

The result follows upon minimising the last expression with respect to b.

We end this section with the proof of Theorem 2.4.

Proof of Theorem 2.4. Let Xv, v ∈ V, be indicators of the event v ∈ I. For each e ∈ E set
Ye =

∏
v∈eBv. Clearly, the random variables {Ye}e∈E are H-correlated. Now look at the

probability P [
∑

e Ye = 0]. Notice that if all Ye are equal to zero, then every edge e ∈ E
contains a vertex, v, such that Bv = 0 and vice versa. This implies that if

∑
e Ye = 0 then

the set of vertices, v, for which Bv = 1 is an independent subset of V and vice versa.
Therefore

P

[∑
e∈E

Ye = 0

]
= E

[∏
e∈E

(1− Ye)

]
= π(p,H).

From Theorem 1.1 we deduce

E

[∏
e∈E

(1− Ye)

]
≤ E

[∏
e∈E

(1− Ye)φ(e)

]
≤
∏
e∈E

(E [1− Ye])φ(e)

11



and the first statement follows. To prove the second statement notice that E [Ye] = pk, for
all e ∈ E , and therefore

E

[∏
e∈E

(1− Ye)

]
≤
(

1− pk
)∑

e φ(e)
.

The result follows by maximising the exponent on the right hand side over all fractional
matchings ofH.

In the next section we provide several applications of Theorem 2.4 to the theory of random
graphs.

4 Applications

In this section we discuss comparisons between Finner’s and Janson’s inequality. Jan-
son’s inequality (see Janson [10] and Janson et al. [12, Chapter 2]) is a well known result
that provides upper estimates on the probability that a sum of dependent indicators is
equal to zero. It is described in terms of the dependency graph corresponding to the in-
dicators. More precisely, let {Bv}v∈V be indicators having a dependency graph G. Set
µ = E [

∑
v Bv] and ∆ =

∑
e={u,v}∈G E [BuBv]. Janson’s inequality asserts that

P

[∑
v

Bv = 0

]
≤ min

{
e−µ+∆, exp

(
∆

1−maxv E[Bv]

)∏
v

(1− E[Bv])

}
.

This inequality has been proven to be very useful in the study of the Erdős-Rényi random
graph model G(n, p). For G ∈ G(n, p) let us denote by TG the number of triangles in G. A
typical application of Janson’s inequality provides the estimate

P [G ∈ G(n, p) is triangle-free] ≤ (1− p3)(
n
3) · exp

(
∆

2(1− p3)

)
,

where ∆ = 6
(
n
4

)
p5. In this section we juxtapose the previous bound with the bound pro-

vided by Finner’s inequality.

Proposition 4.1. LetG ∈ G(n, p) be an Erdős-Rényi random graph and denote by TG the number
of triangles in G. Then

P [TG = 0] ≤
(
1− p3

) 1
n−2(n3) .

Proof. We apply Theorem 2.4. Define a hypergraph H = (V, E) as follows. Let vi, i =
1, . . . ,

(
n
2

)
, be an enumeration of all (potential) edges in G and consider v1, . . . , v(n2)

as

12



the vertex set V of the hypergraph H. Let Bvi , i = 1, . . . ,
(
n
2

)
be independent Bernoulli

Ber(p) random variables, corresponding to the edges of G, and let Ei, i = 1 . . . ,
(
n
3

)
, be

an enumeration of all triplets of edges in G that form (potential) triangles in G. Define
E = {E1, . . . , E(n3)

} to be the edge set of H and let Zi be the indicator of triangle Ei;
thus TG =

∑
i Zi. Now form a subset I of V by picking each vertex, independently, with

probability p. Then the probability that I is independent equals P [TG = 0] and, in order
to apply Theorem 2.4, we have to find a fractional matching ofH. Since every vertex ofH
belongs to n − 2 edges in E = {E1, . . . , E(n3)

}, we obtain a fractional matching, φ(·) of H
by setting φ(Ei) = 1

n−2 , for i = 1, . . . ,
(
n
3

)
. The result follows.

Notice that the bound obtained from Janson’s inequality is smaller than the bound given
by Proposition 4.1 for values of p that are close to 0, but the bound of Proposition 4.1 does
better for large values of p. Similar estimates can be obtained for the probability that a
graph G ∈ G(n, p) contains no k-clique, for k ≥ 3. The details are left to the reader.

We now proceed with one more application of Finner’s inequality. Let G ∈ G(n, p) be a
random graph on n labelled vertices. Fix two vertices, say u and v. What is an upper
bound on the probability that there is no path of length k between u and v?

A path of length k is a sequence of edges {v0, v1}, {v1, v2}, . . . , {vk−2, vk−1}, {vk−1, vk} such
that vi 6= vj , for i 6= j. We assume k ≥ 3, otherwise the problem is easy. Let us remark
that it may be cumbersome to apply Janson’s inequality to the previous question. By con-
trast, Theorem 2.4 reduces the problem to a counting one. More explicitly, let {Pi}i be
an enumeration of all (potential) paths of length k between u and v. Clearly, there are(
n−2
k−1

)
· (k − 1)! such paths. Define the hypergraph H = (V, E) as follows. The vertices of

H correspond to the (potential) edges of G and the edges of H correspond to the sets of
edges in G which form a path of length k between u and v. Hence the probability that
there is no path of length k between u and v equals π(p,H). In order to apply Theorem 2.4
we have to find a fractional matching of H and, in order to do so, it is enough to find an
upper bound on the maximum degree of H. To this end, fix an edge, e = {x, y}, in G. In
case one of the vertices x or y is equal to either u or v, then there are

(
n−3
k−2

)
·(k−2)! paths of

length k from u to v that pass through edge e. If none of the vertices x, y is equal to u or v,
then we count the paths as follows. We first create a path, Pk−2, of length k−2 from u to v
that does not pass through any of the points x, y and then we place the edge e = {x, y} in
one of k−2 available edges in the path Pk−2. Since there are two ways of placing the edge
e in each slot of Pk−2 it follows that the number of paths from u to v that go through edge
e is equal to 2(k−2) ·

(
n−4
k−3

)
· (k−3)!. If k ≤ (n−1)/2 then the later quantity is smaller than(

n−3
k−2

)
· (k − 2)!, otherwise it is larger than

(
n−3
k−2

)
· (k − 2)!. Therefore, if k ≤ (n− 1)/2, the

fractional matching number of H is at least (n−2
k−1)·(k−1)!

(n−3
k−2)·(k−2)!

= n − 2. If k > (n − 1)/2 then the

fractional matching number ofH is at least (n−2)(n−3)
2(k−2) . We have thus proven the following.
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Proposition 4.2. Let G ∈ G(n, p). Fix two vertices u, v in G and a positive integer k ≥ 3. Let E
be the event ”there is no path of length k between u and v”. If k ≤ (n− 1)/2 then

P [E] ≤
(

1− pk
)n−2

.

If k > (n− 1)/2, then

P [E] ≤
(

1− pk
) (n−2)(n−3)

2(k−2)
.

We end this section with an estimate on the probability that a G ∈ G(n, p) contains no
vertex of fixed degree.

Proposition 4.3. Let G ∈ G(n, p) and fix a positive integer d ∈ {0, 1, . . . , n − 1}. Then the
probability that there is no vertex in G whose degree equals d is less than or equal to(

1−
(
n− 1

d

)
pd(1− p)n−1−d

)n
2

.

Proof. This is yet another application of Theorem 2.4, so we sketch it. Let v1, . . . , vn be an
enumeration of the vertices of G. Let the hypergraph H = (V, E) be defined as follows.
The vertex set V corresponds to the (potential) edges of G. The edge set E = {E1, . . . , En}
corresponds to the vertices of G. That is, for i = 1, . . . , n the edge Ei contains those u ∈ V
for which the corresponding edges of G are incident to vertex vi. The result follows from
the fact that |E| = n and the maximum degree ofH is equal to 2.

5 Remarks

As mentioned in Janson [11], there exist collections of weakly dependent random vari-
ables that do not have a dependency graph. The dependencies between such collections
of random variables can occasionally be described using an independence system. Recall
that an independence system is a pair A = (V, I) where V is a finite set and I is a collection
of subsets of V (called the independent sets) with the following properties (see [3]):

- The empty set is independent, i.e., ∅ ∈ I . (Alternatively, at least one subset of V is
independent, i.e., I 6= ∅.)

- Every subset of an independent set is independent, i.e., for each A′ ⊂ A ⊂ A, if
A ∈ I then A′ ∈ I . This is sometimes called the hereditary property.

14



Given a set of random variables {Yv}v∈V , we say that their joint distribution is described
with an independence system, say A = (V, I), if for every A ∈ I the random variables
{Ya}a∈A are mutually independent. Let us remark that this definition includes the case of
k-wise independent random variables (see [1, Chapter 16], or [18]). Notice that if {Yv}v∈V
are random variables whose joint distribution is described with an independence system
A = (V, I) then {v} ∈ I , for all v ∈ V . It is easy to see that if the random variables {Yv}v∈V
have a dependency graph then their joint distribution is described with an independence
system. However, the converse need not be true (see [11]). In a similar way as in Section
1, one may define the fractional chromatic number of an independent system as follows.
A b-fold colouring of an independence system A = (V, I) is a function λ : I → Z+

such that
∑

A:v∈A λ(A) = b, for all v ∈ V . The b-fold chromatic number of A is de-
fined as χb(A) := infλ

∑
A∈I λ(A), where the infimum is over all b-fold colourings, λ(·), of

A = (V, I). Finally, the fractional chromatic number of A is χ∗(A) := infb
χb(A)
b .

With these concepts by hand, one can prove a corresponding Hölder-type inequality using
a similar argument as in Theorem 2.1. As a consequence one can obtain tail bounds similar
to Theorem 1.2 and Theorem 2.3, the only difference being that the fractional chromatic
number of the dependency graph, χ∗(G), is replaced with the fractional chromatic number
of the independence system, χ∗(A). We leave the details to the reader.

Acknowledgements The authors are supported by ERC Starting Grant 240186 ”MiGraNT,
Mining Graphs and Networks: a Theory-based approach”. We are grateful to an anony-
mous referee for several suggestions that improved the presentation of the paper.

References

[1] N. Alon and J. Spencer. The Probabilistic Method. J. Wiley and Sons, New York, 3rd
edition, 2008.

[2] V. I. Bogachev. Measure Theory, volume I. Springer, 2007.

[3] J. A. Bondy and U. S. R. Murty. Graph Theory. Graduate Texts in Mathematics 244,
Springer, 2008.

[4] R. Boppana and J. Spencer. A useful elementary correlation inequality. Journal of
Combinatorial Theory, Series A, 50:305–307, 1982.

[5] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge UK, 2004.

15
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