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Abstract

Numerical evidence is provided that there are non-constant permittivity pro�les which force so-

lutions to a two-dimensional coupled moving boundary problem modelling microelectromechanical

systems to be positive, while the corresponding small-aspect ratio model produces solutions which

are always non-positive.
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1 Introduction

In this note we report on some recent investigations of qualitative properties of solutions to microelec-
tromechanical systems (MEMS) with general permittivity. Idealised MEMS devices consist of two key
components: a rigid ground plate and a thin dielectric elastic membrane that is suspended above the
ground plate and �xed along its boundary. In practice the mem- brane's upper surface is often coated
with a thin conducting �lm. By applying a given voltage to the conducting �lm, such that the ground
plate and the membrane are at di�erent electric potentials, a Coulomb force is induced across the de-
vice. The transformation of electrostatic energy into mechanical energy in turn causes a deformation of
the membrane, see �gure ??. Mathematical models have been set up to predict the evolution of such
MEMS in which the state of the device is fully described by the deformation u of the membrane and the
electrostatic potential ψ. In order to describe the system precisely, let I := (1, 1) denote the dimension-
less horizontal length of the device and let f = f(x) denote a smooth1 and positive permittivity pro�le
de�ned on [−1, 1]. Finally, we assume that there is no variation of both, u and ψ in the y-direction, i.e.
the horizontal direction orthogonal to the x-direction. Then we consider the coupled system consisting
of the semilinear parabolic initial boundary value problem

ut − uxx = −λ
(
ε2ψ2

x(t, x, u) + ψ2
z(t, x, u)

)
+ 2λεΨx(t, x, u), t > 0, x ∈ I, (1)

u(t,±1) = 0, t > 0, (2)

u(0, x) = u∗(x), x ∈ I (3)

describing the time evolution of the displacement u = u(t, x) of the membrane, whereas the electrostatic
potential ψ = ψ(t, x, z) is given as the solution to the rescaled elliptic free boundary value problem

ε2ψxx + ψzz = 0, t > 0, (x, z) ∈ Ω(u(t)), (4)

ψ(t, x, z) =
1 + z

1 + u(t, x)
f(x), t > 0, (x, z) ∈ ∂Ω(u(t)). (5)

In the above system ε > 0 denotes the aspect ratio of the unscaled device, i.e. the ratio of the undeformed
gap size to the length of the device. Recall that the aspect ratio ε, appearing in particular in (4), is a
positive constant, expressing the fact that the nominal gap of the device is not negligible. This means that
we do not ignore e�ects due to fringing �elds. However, we consider a membrane of vanishing thickness
and describe dielectric properties2 of it by the so- called permittivity pro�le f = f(x), x ∈ I, appearing

1Smoothness is assumed solely for simplicity, see theorem 1.1
2We assume the elastic plate / membrane to be of in�nitesimal thickness, whence its dielectric properties are summarised

in the function f = f(x). The introduction of the pro�le f = f(x) is also suitable to model piezoelectric e�ects of the
membrane.
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Figure 1: Cross section of a MEMS device.

in the inhomogeneous Dirichlet boundary condition (5), see [12�15], and thus also on the right-hand side
of (1).

As the membrane de�ects with time the region

Ω(u(t)) = {(x, z) ∈ I × (−1,∞);−1 < z < u(t, x)} (6)

between the rigid ground plate and the membrane changes with time as well.
Observe that the right-hand side of the evolution equation depends on the partial derivatives of the

potential ψ, whence the equations (1) and (4) are strongly coupled. Even more: given the fact that ψ
is the solution to the elliptic free boundary value problem (4) and (5), the coupling in (1) is not only
nonlinear, but in fact nonlocal as well. Nonetheless, this system is well-posed locally in time. In order
to state a precise result, let us introduce the following notation. Given q ∈ (2,∞) and κ ∈ (0, 1) , de�ne
the set

Sq(κ) :=
{
u ∈W 2

q,D(I); ‖u‖W 2
q,D(I) < 1/κ and − 1 + κ < u(x) for x ∈ I

}
and

W 2
q,D(I) :=

{
u ∈W 2

q (I); u(±1) = 0
}
.

Using this notation we may formulate the following result, �rst established in [10, theorem 3.5 (i)].

Theorem 1 (Local well-posedness). Let q ∈ (2,∞), ε > 0, textand λ > 0 be given. Assume further
that an initial value u∗ ∈ W 2

q,D(I) with u∗(x) > −1 for x ∈ I, and f ∈ C1([−1, 1],R) with min(f) > 0
are given. Then there exists a unique maximal solution (u, ψ) to (1-5) on the maximal interval [0, T ) of
existence in the sense that

u ∈ C1 ([0, T ), Lq(I)) ∩ C
(
[0, T ),W 2

q,D(I)
)

satis�es (1-3) with
u(t, x) > −1, t ∈ [0, T ), x ∈ I

and ψ ∈W 2
2 (Ω(u(t))) solves (4) and (5) on Ω(u(t)) for each t ∈ [0, T ).

It is the intention of this contribution to compare recent results on qualitative properties of solutions
to the above coupled system with those concerning the small-aspect ratio model � its still commonly
used reduced counterpart. In this reduction the aspect ratio ε of the device is assumed to be very small,
i.e. the problem is considered as if the two plates were locally parallel. Formally, sending ε to zero in (4)
leads to the explicit expression

ψ(t, x, y) =
1 + z

1 + u(t, x)
f(x), t > 0, (x, z) ∈ Ω(u(t)), (7)

for the solution to the simpli�ed electrostatic problem. As a consequence the displacement of the mem-
brane is required to behave according to the small-aspect ratio model

ut − uxx = −λ
(

f(x)

1 + u(t, x)

)2

t > 0, x ∈ I, (8)

u(t,±1) = 0, t > 0, (9)

u(0, x) = u∗(x), x ∈ I. (10)

This simpli�ed semilinear model equation is able to capture several qualitative properties of the
coupled system (1)�(5), see [2, 3, 5�8]. However, there are also signi�cant di�erences observed in the
dynamic behavior as we shall see below. More precisely, investigating the right-hand sides of the evolution
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equations (1) and (8), respectively, di�erent sign properties of the membrane's displacement become
apparent. It is worthwhile to emphasize that this sign property is strongly related to the structure of the
chosen permittivity pro�le.

The simplest permittivity pro�le � however often used in concrete applications � is f ≡ 1. In this
case the coupled system involves the evolution equation (1) in the form

ut − uxx = −λ
(
ε2ψ2

x(t, x, z) + ψ2
z(t, x, z)

)
, t > 0, x ∈ I.

With ψ(t, x, z) = (1 + z)/(1 + u(t, x)) the corresponding small-aspect ratio equation (8) is given by

ut − uxx = − λ

(1 + u)2
, t > 0, x ∈ I

Consequently, given a non-positive initial datum u∗ 6 0, the parabolic comparison principle implies that
both initial boundary value problems possess non-positive solutions. In other words, in both settings a
constant permittivity pro�le causes non-positive initial de�ections to evolve towards the ground plate.

Given a spatially varying permittivity pro�le f = f(x), the situation is fairly di�erent. In this regime
the evolution equation (1) reads

ut − uxx = −λ
(
ε2ψ2

x(t, x, z) + ψ2
z(t, x, z)

)
+ 2λε2ψx(t, x, z)f ′(x), t > 0, x ∈ I (11)

whereas with ψ(t, x, z) = f(x)(1 + z)/(1 + u(t, x)) the according small-aspect ratio equation (8) is given
by

ut − uxx = −λ
(
f(x)

1 + u

)2

, t > 0, x ∈ I

Consulting again the parabolic comparison principle, it turns out that the solution to the small- as-
pect ratio model is still non-positive for all times t > 0 and all x ∈ I. Due to the additional term
2λε2ψx(t, x, z)f ′(x) on the right-hand side of (11) non-positivity of u can no longer be expected as a
general feature of the equation3. In fact it is the primary concern of this note to provide numerical
evidence for the existence of permittivity pro�les f = f(x) leading to solutions of (1-3) which possess
positive function values; some presumably even never become negative!

We close this introduction by presenting the following convergence result for the limit ε→ 0

Theorem 2 (Small aspect-ratio limit, [11). ] Let λ > 0, q ∈ (2,∞), κ ∈ (0, 1), f ∈ C1 ([−1, 1], (0,∞)),
and let u∗ ∈ Sq(κ) with u∗ < 1 + C for x ∈ I. For ε > 0 let (uε, ψxxε) be the unique solution to (1-5),
on the maximal interval [0, T ) of existence. Then there are τ > 0, ε∗ ∈ (0, 1), and κ∗ ∈ (0, 1), depending
only on q and κ, such that T > τ and u∗(t) ∈ Sq(κ∗) for all t ∈ [0, τ ] and for all ε ∈ (0, ε∗). Moreover,
the small aspect-ratio problem (8-10) has a unique solution

u0 ∈ C1 ([0, τ ], Lq(I)) ∩ C
(
[0, τ ],W 2

q,D(I)
)

satisfying u0(t) ∈ Sq(κ∗) for all t ∈ [0, τ ] and such that the convergences

uε −→ u0 in C1−θ ([0, τ ],W 2θ
q,D(I)

)
, θ ∈ (0, 1),

and
ψε(t)χΩ(uε)(t) −→ ψ0(t)χΩ(u0)(t) in L2(I × (−1, 0)), t ∈ [0, τ ], (12)

hold true as ε→ 0. Here ψ0 is the potential given in (7). Furthermore, there exists a Λ(κ) > 0 such that
the above results hold true for each τ > 0 provided that λ ∈ (0,Λ(κ)).

Combing this convergence result with the numerical experiments provided in the subsequent section it
becomes evident that model reduction of coupled MEMS systems by considering the small-aspect ratio
model demands caution: there are phenomena which may be observed just in the limiting case ε → 0,
whereas even for very small ε > 0 a completely di�erent behaviour may occur. In addition, it is worthwhile
to mention that there are applications where the device's aspect ratio is such that the assumption ε ' 0
is not reasonable or at least debatable.

2 Numerical results

As already mentioned the reduced small-aspect ratio model (8-10) is able to capture various qualitative
properties of the coupled system (1-5), such as evenness with respect to x ∈ I, the existence of a pull-
in voltage λ∗, as well as global existence for small values λ < λ∗ of the applied voltage. In the case

3Su�cient conditions to ensure non-negativity of solutions have been presented recently in [10].
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of a constant permittivity pro�le even the sign property (of u) is preserved when reducing the model
to the small-aspect ratio regime. However, this section serves the purpose of specifying permittivity
pro�les f = f(x) leading even for fairly small ε > 0 to positive deformations u of the membrane. In
contrast to that positivity of solutions u0 to the small aspect-ratio model is impossible as a consequence
of the maximum principle4. A numerical scheme is set up by �rst transforming the elliptic boundary
value problem for the electrostatic potential to the �xed rectangle Ω = I × (−1, 0) by means of the
di�eomorphism

Tu(x, z) :=

(
x,

1 + z

1 + u(x)

)
, (x, z) ∈ Ω(u)

The resulting nonlinear elliptic boundary value problem is then approximated by Galerkin's method using
bilinear �nite elements on an equidistant rectangular grid of size 40Ö80. The nonlinear evolution for the
membrane's displacement is approximated by the Crank�Nicolson method on an equidistant decomposi-
tion of the time interval [0,1] with an increment of 1/100. The resulting system of nonlinear equations is
solved via Newton's method. Furthermore, the numerical integration is realized by a Gauÿ�Legendre
quadrature with two Gauÿ points in both coordinate directions. The implementation is performed in
MATLAB5.

Figure 2: Membrane's de�ection u of the coupled system for f(x) = x8 + 0.1 with u∗ ≡ 0, λ = 1, and
ε ∈ {0.4, 0.6}.

Figures 2�4 illustrate for the permittivity pro�le

f(x) := x8 + 0.1, x ∈ [−1, 1]

the approximate solution to (1�3) with u∗ ≡ 0 at di�erent time levels for decreasing values of the aspect
ratio ε and λ = 1. More precisely, choosing T = 1 and the time increment 1/100, the curves represent
the approximate membrane's displacement at every tenth time step, to be read from bottom up.

Figure 2 reveals that for ε ∈ {0.4, 0.6} the approximate solution instantaneously becomes positive at
all interior points x ∈ I and increases as time passes.

A di�erent behaviour may be observed in �gures 3 and 4. Here the aspect ratio takes the values
ε ∈ {0.1, 0.15, 0.2}. In the case ε = 0.2 the solution is still increasing in time. Although it develops
initially also negative values it �nally becomes strictly positive at all interior points, see �gure 3(a). In
clear contrast to that is the behaviour when the aspect ratio is reduced to the value ε = 0.1. Then the
membrane moves monotonically towards the ground plate at all interior points x ∈ I, as illustrated in
�gure 3(b).

A quite interesting dynamics may be observed for the value ε = 0.15. Emerging from the initial
position u∗ ≡ 0, the magenta curve in �gure 4 shows the approximate solution at time t = 1/100.
The curves of the approximate solutions at all further time levels seem to coincide in the single blue
curve, since it represents the solutions at time levels t = 10/100, 20/100, 30/100, . . ., until the maximal
computing time T = 1 is reached. That leads to the conjecture that the blue curve in �gure 4 might be

4Note that in the settings f = f(u) and f = f(x, u) this reasoning is no longer possible since in these cases the evolution
equation's right-hand sides are more involved (see [4, 10]).

5Version 8.4.0.150421 (R2014b).
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Figure 3: Membrane's de�ection u of the coupled system for f(x) = x8 + 0.1 with u∗ ≡ 0, λ = 1, and
ε ∈ {0.1, 0.2}.

Figure 4: Membrane's de�ection u of the coupled
system for f(x) = x8 +0.1 with u∗ ≡ 0, λ = 1, and
ε = 0.15.

Figure 5: Approximation solution to the small
aspect-ratio model with u∗ ≡ 0 for f(x) = x8 +0.1
and λ = 1.

an equilibrium of the evolution in the case of an aspect ratio ε = 0.15 and a value λ = 1 of the applied
voltage.

The above observations for the coupled system with positive values of ε have to be compared with the
dynamics of the small-aspect ratio model, see �gure 5: in this �gure the time evolution of the approximate
solution is to be read top down: the de�ection of the membrane (emerging from the initial state u∗ ≡ 0)
becomes immediately negative (in all interior points x ∈ I) and seems to decrease monotonically as time
passes.

We close our presentation of numerical experiments with the following observation. In �gure 6 the
approximate solutions of the coupled system with ε = 0.85 and λ = 1 is depicted. A spike like behaviour
near the boundary points x = ±1 is embedded in the dynamics of sign-changing solutions.

The above numerical experiments may be summarized by the following conjecture and remarks.

Conjecture 1. Let u(t, x) denote the solution to (1�3) emerging from the initial condition u∗ ≡ 0. Then
we expect the following to be true:

(i) Given ε > 0, there exist λ > 0 and smooth positive permittivity pro�les f = f(x) such that we have
u(t, x) > 0 for some t > 0 and some x ∈ I.

(ii) There exist ε > 0, λ > 0 and a smooth positive permittivity pro�les f = f(x) such that u(t, x) > 0
for all t ∈ (0, T ) and all x ∈ I.
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Figure 6: Membrane's de�ection u of the coupled system for f(x) = x8 + 0.1 with u∗ ≡ 0, λ = 1, and
ε = 0.85.

Remark 1. (i) In view of theorem 2 it is apparent that given a positive permittivity pro�le f = f(x),
there is an ε0 > 0 such that u(t, x) 6 0 on [0, T )× [−1, 1] for all ε ∈ (0, ε0).

(ii) In general the maximal existence time T > 0 provided in theorem 1 is �nite. If T <∞ then either
a blow-up of the W 2

q (I)-norm of u or a touchdown takes place. More precisely, the singularities are
of the form

lim inf
t→T

min
x∈[−1,1]

u(t, x) = −1 or lim sup
t→T

‖u(t, ·)‖W 2
q (I) =∞.

If conjecture 1 (ii) is correct then there are ε > 0, λ > 0, and f = f(x) such that a touchdown
is ruled out: either the corresponding solution exists forever or its W 2

q (I)-norm blows up in �nite
time.

(iii) The reported phenomena are not restricted to the pro�le f(x) = x8+0.1. Similar results are observed
e.g. for f(x) = x2k + 0.1 with k ∈ {1, 2n3, . . .} and f(x) = exp(ax2) with a ∈ [1, 3].

3 A formal derivation of the �rst variation of the potential energy

The di�erence in the dynamic behaviour of solutions to the coupled system (1)�(5) and that of solutions
to its small-aspect ratio counterpart originates from the structure of the respective right-hand sides. In
this section we formally show that steady states of (1)�(5) are critical points of the total potential energy
of the system. To make this more clear assume that u ∈ C∞ ([−1, 1],R) satis�es u(±1) = 0 and

uxx − λ
(
ε2ψ2

x(t, x, z) + ψ2
z(t, x, z)− 2ε2ψx(t, x, z)f ′

)
= 0, (13)

where ψ(x, z) solves

ε2ψxx + ψzz = 0, (x, z) ∈ Ω(u), (14)

ψ(x, z) =
1 + z

1 + u(x)
f(x), (x, z) ∈ ∂Ω(u). (15)

We further introduce the linearized stretching energy

Es(u) :=
1

2

∫ 1

−1

u2
xdx

and the electrostatic energy

Ee(u) :=

∫
Ω(u)

(
ε2ψ2

x(t, x, z) + ψ2
z(t, x, z)

)
d(x, z)

The total potential energy is then given by Ep(u) = Es(u)−λEe(u), where the parameter λ is proportional
to the square of the applied voltage. Given a test function θ ∈ C∞c ((−1, 1)) we are going to compute the
�rst variation δEp(u; θ) of Ep(u) in the direction θ, i.e.

δEp(u; θ) =
d

dσ
Ep(u+ σθ)|σ=0.
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To this end, we need to parametrise the domains Ωσ = Ω(u+ σθ) induced by the family

{u+ σθ;σ ∈ (−σ0, σ0)} ,

where σ0 > 0 is chosen in such a way that

u(x) + σθ(x) > −1 for all (x, σ) ∈ [−1, 1]× [−σ0, σ0].

We denote by ψ(σ;u) the solution to

ε2ψxx(σ;u) + ψzz(σ;u) = 0, (x, z) ∈ Ωσ, (16)

ψ(σ;u)(x, z) =
1 + z

1 + u(x)
f(x), (x, z) ∈ ∂Ωσ (17)

Furthermore, we introduce the velocity6

V :=
d

dσ
ψ(σ;u)|σ=0, (x, z) ∈ Ω(u)

of the path {ψ(σ;u);σ ∈ (−σ0, σ0)} at u. Given (x, z) ∈ Ω(u), observe now that

ε2ψxx(σ;u)

(
x, z + σθ(x)

1 + z

1 + u(x)

)
+ ψzz(σ;u)

(
x, z + σθ(x)

1 + z

1 + u(x)

)
= 0.

Di�erentiating this equality with respect to σ and sending afterwards σ to zero, we arrive at the following
equation:

ε2Vxx + Vzz + θ(x)
1 + z

1 + u(x)

(
ε2ψxxz(0;u) + ψzzz(0;u)

)
= 0, (x, z) ∈ Ω(u).

Invoking (16), we see that

ε2ψxxz(0;u) + ψzzz(0;u) = 0, (x, z) ∈ Ω(u).

implying that V solves
ε2Vxx + Vzz = 0, (x, z) ∈ Ω(u).

In order to identify the boundary condition satis�ed by V, we note that (167) may be written as

ψ(σ;u)

(
x, z + σθ(x)

1 + z

1 + u(x)
=

1 + z

1 + u(x)
f(x), (x, z) ∈ ∂Ω(u).

)
Again, di�erentiation of this identity with respect to σ and evaluating the result at σ = 0 yields

V(x, z) = −θ(x)
1 + z

1 + u(x)
ψz(0;u)(x, z), (x, z) ∈ ∂Ω(u).

Summarizing the above observations, the function V complies with the elliptic boundary value problem

ε2Vxx + Vzz = 0, (x, z) ∈ Ω(u), (18)

V(x, z) = −θ(x)
1 + z

1 + u(x)
ψz(0;u)(x, z), (x, z) ∈ ∂Ω(u). (19)

We now use the transport theorem, see [1, theorem XII.2.11], to obtain

δEe(u; θ) = −
∫

Ω(u)

[
2ε2ψx(0;u)Vx + 2ψz(0;u)Vz + div

(
(ε2ψ2

x(0;u) + ψ2
z(0;u))φ′σ(0)

)]
d(x, z)

where φσ(σ) is a di�eomorphism which maps Ω(u) = Ω0 onto Ω0σ, e.g.

φσ(σ)(x, z) :=

(
x, z + σθ(x)

1 + z

1 + u(x)

)
, (x, y) ∈ Ω(u)

In order to simplify our notation we set

ψx := ψx(0;u) and ψz := ψz(0;u).

6Note that in fact V is a function of the variables x and z in the sense that V(x, z) := d
dσ
ψ(σ;u)|σ=0(x, z).
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Observing (16), we notice that

div
(
V(ε2ψx, ψz)

)
= ε2Vxψx + Vzψz.

Thus we �nd that

δEe(u; θ) = −
∫

Ω(u)

[
2 div

(
V(ε2ψx, ψz)

)
+ div

(
(ε2ψ2

x + ψ2
z)φ′σ(0)

)]
d(x, z) (20)

It follows from (19) that V vanishes on the ground plate and on the lateral boundaries of Ω(u). The very
same is true for φ′σ(0), since

φσσ
′(0)(x, z) :=

(
0, θ(x)

1 + z

1 + u(x)

)
, (x, z) ∈ Ω(u).

Applying the divergence theorem to (20) thus yields

δEe(u; θ) = −
∫ 1

−1

[2V(x, u(x))
(
−ε2ψx(x, u(x))ux(x) + ψz(x, u(x))

)
+ θ(x)

(
ε2ψ2

x(x, u(x)) + ψ2
z(x, u(x))

)
]dx (21)

Using the only nontrivial boundary condition for V we �nd that

V(x, u(x))
(
−ε2ψx(x, u(x))ux(x) + ψz(x, u(x))

)
= θ(x)

(
ε2ψx(x, u(x))ψz(xnu(x))ux(x)− ψ2

z(x, u(x))
)

for all x ∈ I. Di�erentiating furthermore the boundary condition ψ(x, u(x)) = f(x) with respect to x,
we get

ψz(x, u(x))ux(x) = f(′x)− ψx(x, u(x)), x ∈ I
Fusing the last two identities we may conclude that

2V(x, u(x))(−ε2ψx(x, u(x)) + ψz(x, u(x)))

= 2θ(x)
(
ε2ψx(x, u(x))f ′(x)− ε2ψ2

x(x, u(x))− ψ2
z(x, u(x))

)
. (22)

Combining (21) with (22) we arrive at

δEe(u; θ) = −
∫ 1

−1

θ(x)
[
−2ε2ψx(x, u(x))f ′(x) + ε2ψ2

x(x, u(x)) + ψ2
z(x, u(x))

]
dx

It remains to calculate the �rst variation of the stretching energy:

δEs(u; θ) =

∫ 1

−1

ux(x)θx(x)dx = −
∫ 1

−1

uxx(x)θ(x)dx.

Merging the last two equations we arrive at

δEp(u; θ) = −
∫ 1

−1

θ(x)
[
uxx − λ

(
ε2ψ2

x(x, u(x)) + ψ2
z(x, u(x)) + 2ε2ψx(x, u(x))f ′(x)

)]
dx

showing that δEp(u; θ) = 0 thanks to (13).
A combination of the above considerations leads to the following statement.

Observation 1. Stationary solutions to (1�3) are critical points of the potential energy Ep(u).
As mentioned earlier, the above reasoning is formal since we do not specify the regularity of ψ(σ;u)

neither with respect to the parameter σ not with respect to the variables (x, z) ∈ Ωσ. Following however
the linear of [9, proposition 2.2], equation (23) may be justi�ed rigorously.

There is a further interpretation of (23). Indeed, given u ∈W 2
2,D(I), let

∇Ep(u) := −uxx + λ
(
ε2ψ2

x(·, u) + ψ2
z(·, u)

)
− 2ε2ψx(·, u)f ′(x),

where ψ(x, z) complies with (14) and (15). Assume further that ∇Ep(u) ∈ L2(I), which may be realised
if u possesses enough spatial regularity7. Then we conclude from (23) that

(∇Ep(u), θ)L2(I) = δEp(u; θ) for all θ ∈ C∞c (I).

Thus ∇Ep(u) may be considered as a generalized gradient of Ep at u in L2(I) and (11) formally becomes

ut = −∇Ep(u(t)), t > 0,

i.e. (11) represents the gradient �ow in L2(I) induced by Ep.
7In fact it follows from [3, relation (39)] that u ∈W 2

q (I) with q > 2 is su�cient.
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