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Numerical evidence is provided that there are non-constant permittivity proles which force solutions to a two-dimensional coupled moving boundary problem modelling microelectromechanical systems to be positive, while the corresponding small-aspect ratio model produces solutions which are always non-positive.

Introduction

In this note we report on some recent investigations of qualitative properties of solutions to microelectromechanical systems (MEMS) with general permittivity. Idealised MEMS devices consist of two key components: a rigid ground plate and a thin dielectric elastic membrane that is suspended above the ground plate and xed along its boundary. In practice the mem-brane's upper surface is often coated with a thin conducting lm. By applying a given voltage to the conducting lm, such that the ground plate and the membrane are at dierent electric potentials, a Coulomb force is induced across the device. The transformation of electrostatic energy into mechanical energy in turn causes a deformation of the membrane, see gure ??. Mathematical models have been set up to predict the evolution of such MEMS in which the state of the device is fully described by the deformation u of the membrane and the electrostatic potential ψ. In order to describe the system precisely, let I := (1, 1) denote the dimensionless horizontal length of the device and let f = f (x) denote a smooth 1 and positive permittivity prole dened on [-1, 1]. Finally, we assume that there is no variation of both, u and ψ in the y-direction, i.e. the horizontal direction orthogonal to the x-direction. Then we consider the coupled system consisting of the semilinear parabolic initial boundary value problem

u t -u xx = -λ ε 2 ψ 2
x (t, x, u) + ψ2 z (t, x, u) + 2λεΨ x (t, x, u), t > 0, x ∈ I,

u(t, ±1) = 0, t > 0, (1) 
u(0, x) = u * (x), x ∈ I (2) 
describing the time evolution of the displacement u = u(t, x) of the membrane, whereas the electrostatic potential ψ = ψ(t, x, z) is given as the solution to the rescaled elliptic free boundary value problem

ε 2 ψ xx + ψ zz = 0, t > 0, (x, z) ∈ Ω(u(t)), (4) 
ψ(t, x, z) = 1 + z 1 + u(t, x) f (x), t > 0, (x, z) ∈ ∂Ω(u(t)). (5) 
In the above system ε > 0 denotes the aspect ratio of the unscaled device, i.e. the ratio of the undeformed gap size to the length of the device. Recall that the aspect ratio ε, appearing in particular in (4), is a positive constant, expressing the fact that the nominal gap of the device is not negligible. This means that we do not ignore eects due to fringing elds. However, we consider a membrane of vanishing thickness and describe dielectric properties 2 of it by the so-called permittivity prole f = f (x), x ∈ I, appearing in the inhomogeneous Dirichlet boundary condition [START_REF] Esposito | Mathematical Analysis of Partial Dierential Equations Modeling Electrostatic MEMS[END_REF], see [1215], and thus also on the right-hand side of (1). As the membrane deects with time the region

Ω(u(t)) = {(x, z) ∈ I × (-1, ∞); -1 < z < u(t, x)} (6) 
between the rigid ground plate and the membrane changes with time as well.

Observe that the right-hand side of the evolution equation depends on the partial derivatives of the potential ψ, whence the equations ( 1) and ( 4) are strongly coupled. Even more: given the fact that ψ is the solution to the elliptic free boundary value problem ( 4) and ( 5), the coupling in (1) is not only nonlinear, but in fact nonlocal as well. Nonetheless, this system is well-posed locally in time. In order to state a precise result, let us introduce the following notation. Given q ∈ (2, ∞) and κ ∈ (0, 1) , dene the set S q (κ) := u ∈ W 2 q,D (I); u W 2 q,D (I) < 1/κ and -1 + κ < u(x) for x ∈ I and W 2 q,D (I) := u ∈ W 2 q (I); u(±1) = 0 . Using this notation we may formulate the following result, rst established in [10, theorem 3.5 (i)].

Theorem 1 (Local well-posedness). Let q ∈ (2, ∞), ε > 0, textand λ > 0 be given. Assume further that an initial value u * ∈ W 2 q,D (I) with u * (x) > -1 for x ∈ I, and f ∈ C 1 ([-1, 1], R) with min(f ) > 0 are given. Then there exists a unique maximal solution (u, ψ) to (1-5) on the maximal interval [0, T ) of existence in the sense that

u ∈ C 1 ([0, T ), L q (I)) ∩ C [0, T ), W 2 q,D (I) satises (1-3) with u(t, x) > -1, t ∈ [0, T ), x ∈ I
and ψ ∈ W 2 2 (Ω(u(t))) solves ( 4) and [START_REF] Esposito | Mathematical Analysis of Partial Dierential Equations Modeling Electrostatic MEMS[END_REF] on Ω(u(t)) for each t ∈ [0, T ). It is the intention of this contribution to compare recent results on qualitative properties of solutions to the above coupled system with those concerning the small-aspect ratio model its still commonly used reduced counterpart. In this reduction the aspect ratio ε of the device is assumed to be very small, i.e. the problem is considered as if the two plates were locally parallel. Formally, sending ε to zero in (4) leads to the explicit expression

ψ(t, x, y) = 1 + z 1 + u(t, x) f (x), t > 0, (x, z) ∈ Ω(u(t)), (7) 
for the solution to the simplied electrostatic problem. As a consequence the displacement of the membrane is required to behave according to the small-aspect ratio model

u t -u xx = -λ f (x) 1 + u(t, x) 2 t > 0, x ∈ I, (8) 
u(t, ±1) = 0, t > 0, (9) 
u(0, x) = u * (x), x ∈ I. (10) 
This simplied semilinear model equation is able to capture several qualitative properties of the coupled system (1) [START_REF] Esposito | Mathematical Analysis of Partial Dierential Equations Modeling Electrostatic MEMS[END_REF], see [START_REF] Brubaker | Non-linear eects on canonical MEMS models Euro[END_REF][START_REF] Escher | A parabolic free boundary problem modeling electrostatic MEMS[END_REF]58]. However, there are also signicant dierences observed in the dynamic behavior as we shall see below. More precisely, investigating the right-hand sides of the evolution equations ( 1) and ( 8), respectively, dierent sign properties of the membrane's displacement become apparent. It is worthwhile to emphasize that this sign property is strongly related to the structure of the chosen permittivity prole.

The simplest permittivity prole however often used in concrete applications is f ≡ 1. In this case the coupled system involves the evolution equation ( 1) in the form

u t -u xx = -λ ε 2 ψ 2 x (t, x, z) + ψ 2 z (t, x, z) , t > 0, x ∈ I.
With ψ(t, x, z) = (1 + z)/(1 + u(t, x)) the corresponding small-aspect ratio equation ( 8) is given by

u t -u xx = - λ (1 + u) 2 , t > 0, x ∈ I
Consequently, given a non-positive initial datum u * 0, the parabolic comparison principle implies that both initial boundary value problems possess non-positive solutions. In other words, in both settings a constant permittivity prole causes non-positive initial deections to evolve towards the ground plate.

Given a spatially varying permittivity prole f = f (x), the situation is fairly dierent. In this regime the evolution equation ( 1) reads

u t -u xx = -λ ε 2 ψ 2 x (t, x, z) + ψ 2 z (t, x, z) + 2λε 2 ψ x (t, x, z)f (x), t > 0, x ∈ I (11) 
whereas with

ψ(t, x, z) = f (x)(1 + z)/(1 + u(t, x
)) the according small-aspect ratio equation ( 8) is given by

u t -u xx = -λ f (x) 1 + u 2 , t > 0, x ∈ I
Consulting again the parabolic comparison principle, it turns out that the solution to the small-aspect ratio model is still non-positive for all times t > 0 and all x ∈ I. Due to the additional term 2λε 2 ψ x (t, x, z)f (x) on the right-hand side of ( 11) non-positivity of u can no longer be expected as a general feature of the equation 3 . In fact it is the primary concern of this note to provide numerical evidence for the existence of permittivity proles f = f (x) leading to solutions of (1-3) which possess positive function values; some presumably even never become negative! We close this introduction by presenting the following convergence result for the limit ε → 0

Theorem 2 (Small aspect-ratio limit, [START_REF] Lienstromberg | A free boundary value problem modelling microelectromechanical systems with general permittivity Nonlinear Anal[END_REF]. ] Let λ > 0, q ∈ (2, ∞), κ ∈ (0, 1), f ∈ C 1 ([-1, 1], (0, ∞)), and let u * ∈ S q (κ) with u * < 1 + C for x ∈ I. For ε > 0 let (u ε , ψ xx ε) be the unique solution to (1-5), on the maximal interval [0, T ) of existence. Then there are τ > 0, ε * ∈ (0, 1), and κ * ∈ (0, 1), depending only on q and κ, such that T τ and u * (t) ∈ S q (κ * ) for all t ∈ [0, τ ] and for all ε ∈ (0, ε * ). Moreover, the small aspect-ratio problem (8-10) has a unique solution

u 0 ∈ C 1 ([0, τ ], L q (I)) ∩ C [0, τ ], W 2 q,D (I)
satisfying u 0 (t) ∈ S q (κ * ) for all t ∈ [0, τ ] and such that the convergences

u ε -→ u 0 in C 1-θ [0, τ ], W 2θ q,D (I) , θ ∈ (0, 1),
and

ψ ε (t)χ Ω(uε)(t) -→ ψ 0 (t)χ Ω(u0)(t) in L 2 (I × (-1, 0)), t ∈ [0, τ ], (12) 
hold true as ε → 0. Here ψ 0 is the potential given in [START_REF] Guo | No touchdown at zero points of the permittivity prole for the MEMS problem[END_REF]. Furthermore, there exists a Λ(κ) > 0 such that the above results hold true for each τ > 0 provided that λ ∈ (0, Λ(κ)).

Combing this convergence result with the numerical experiments provided in the subsequent section it becomes evident that model reduction of coupled MEMS systems by considering the small-aspect ratio model demands caution: there are phenomena which may be observed just in the limiting case ε → 0, whereas even for very small ε > 0 a completely dierent behaviour may occur. In addition, it is worthwhile to mention that there are applications where the device's aspect ratio is such that the assumption ε 0 is not reasonable or at least debatable.

Numerical results

As already mentioned the reduced small-aspect ratio model [START_REF] Guo | Touchdown and pull-in voltage behavior of a MEMS device with varying dielectric properties[END_REF][START_REF] Laurençot | A free boundary problem modeling electrostatic MEMS: I. Linear bending eects Math[END_REF][START_REF] Lienstromberg | On qualitative properties of solutions to microelectromechanical systems with general permittivity[END_REF] is able to capture various qualitative properties of the coupled system (1-5), such as evenness with respect to x ∈ I, the existence of a pullin voltage λ * , as well as global existence for small values λ < λ * of the applied voltage. In the case of a constant permittivity prole even the sign property (of u) is preserved when reducing the model to the small-aspect ratio regime. However, this section serves the purpose of specifying permittivity proles f = f (x) leading even for fairly small ε > 0 to positive deformations u of the membrane. In contrast to that positivity of solutions u 0 to the small aspect-ratio model is impossible as a consequence of the maximum principle 4 . A numerical scheme is set up by rst transforming the elliptic boundary value problem for the electrostatic potential to the xed rectangle Ω = I × (-1, 0) by means of the dieomorphism

T u (x, z) := x, 1 + z 1 + u(x) , (x, z) ∈ Ω(u)
The resulting nonlinear elliptic boundary value problem is then approximated by Galerkin's method using bilinear nite elements on an equidistant rectangular grid of size 40Ö80. The nonlinear evolution for the membrane's displacement is approximated by the CrankNicolson method on an equidistant decomposition of the time interval [0,1] with an increment of 1/100. The resulting system of nonlinear equations is solved via Newton's method. Furthermore, the numerical integration is realized by a GauÿLegendre quadrature with two Gauÿ points in both coordinate directions. The implementation is performed in MATLAB 5 . the approximate solution to (13) with u * ≡ 0 at dierent time levels for decreasing values of the aspect ratio ε and λ = 1. More precisely, choosing T = 1 and the time increment 1/100, the curves represent the approximate membrane's displacement at every tenth time step, to be read from bottom up. Figure 2 reveals that for ε ∈ {0.4, 0.6} the approximate solution instantaneously becomes positive at all interior points x ∈ I and increases as time passes.

A dierent behaviour may be observed in gures 3 and 4. Here the aspect ratio takes the values ε ∈ {0.1, 0.15, 0.2}. In the case ε = 0.2 the solution is still increasing in time. Although it develops initially also negative values it nally becomes strictly positive at all interior points, see gure 3(a). In clear contrast to that is the behaviour when the aspect ratio is reduced to the value ε = 0.1. Then the membrane moves monotonically towards the ground plate at all interior points x ∈ I, as illustrated in gure 3(b).

A quite interesting dynamics may be observed for the value ε = 0.15. Emerging from the initial position u * ≡ 0, the magenta curve in gure 4 shows the approximate solution at time t = 1/100. The curves of the approximate solutions at all further time levels seem to coincide in the single blue curve, since it represents the solutions at time levels t = 10/100, 20/100, 30/100, . . ., until the maximal computing time T = 1 is reached. That leads to the conjecture that the blue curve in gure 4 might be an equilibrium of the evolution in the case of an aspect ratio ε = 0.15 and a value λ = 1 of the applied voltage.

The above observations for the coupled system with positive values of ε have to be compared with the dynamics of the small-aspect ratio model, see gure 5: in this gure the time evolution of the approximate solution is to be read top down: the deection of the membrane (emerging from the initial state u * ≡ 0) becomes immediately negative (in all interior points x ∈ I) and seems to decrease monotonically as time passes.

We close our presentation of numerical experiments with the following observation. In gure 6 the approximate solutions of the coupled system with ε = 0.85 and λ = 1 is depicted. A spike like behaviour near the boundary points x = ±1 is embedded in the dynamics of sign-changing solutions.

The above numerical experiments may be summarized by the following conjecture and remarks.

Conjecture 1. Let u(t, x) denote the solution to (13) emerging from the initial condition u * ≡ 0. Then we expect the following to be true:

(i) Given ε > 0, there exist λ > 0 and smooth positive permittivity proles f = f (x) such that we have u(t, x) > 0 for some t > 0 and some x ∈ I.

(ii) There exist ε > 0, λ > 0 and a smooth positive permittivity proles f = f (x) such that u(t, x) > 0 for all t ∈ (0, T ) and all x ∈ I. (i) In view of theorem 2 it is apparent that given a positive permittivity prole f = f (x), there is an ε 0 > 0 such that u(t, x) 0 on [0, T ) × [-1, 1] for all ε ∈ (0, ε 0 ).

(ii) In general the maximal existence time T > 0 provided in theorem 1 is nite. If T < ∞ then either a blow-up of the W 2 q (I)-norm of u or a touchdown takes place. More precisely, the singularities are of the form lim inf

t→T min x∈[-1,1] u(t, x) = -1 or lim sup t→T u(t, •) W 2 q (I) = ∞.
If conjecture 1 (ii) is correct then there are ε > 0, λ > 0, and f = f (x) such that a touchdown is ruled out: either the corresponding solution exists forever or its W 2 q (I)-norm blows up in nite time.

(iii) The reported phenomena are not restricted to the prole f (x) = x 8 +0.1. Similar results are observed e.g. for f (x) = x 2k + 0.1 with k ∈ {1, 2n3, . . .} and f (x) = exp(ax 2 ) with a ∈ [1, 3].

A formal derivation of the rst variation of the potential energy

The dierence in the dynamic behaviour of solutions to the coupled system (1) [START_REF] Esposito | Mathematical Analysis of Partial Dierential Equations Modeling Electrostatic MEMS[END_REF] and that of solutions to its small-aspect ratio counterpart originates from the structure of the respective right-hand sides. In this section we formally show that steady states of (1)(5) are critical points of the total potential energy of the system. To make this more clear assume that u ∈ C ∞ ([-1, 1], R) satises u(±1) = 0 and

u xx -λ ε 2 ψ 2 x (t, x, z) + ψ 2 z (t, x, z) -2ε 2 ψ x (t, x, z)f = 0, (13) 
where ψ(x, z) solves

ε 2 ψ xx + ψ zz = 0, (x, z) ∈ Ω(u), (14) 
ψ(x, z) = 1 + z 1 + u(x) f (x), (x, z) ∈ ∂Ω(u). (15) 
We further introduce the linearized stretching energy

E s (u) := 1 2 1 -1 u 2 x dx
and the electrostatic energy

E e (u) := Ω(u) ε 2 ψ 2 x (t, x, z) + ψ 2 z (t, x, z) d(x, z)
The total potential energy is then given by E p (u) = E s (u)-λE e (u), where the parameter λ is proportional to the square of the applied voltage. Given a test function θ ∈ C ∞ c ((-1, 1)) we are going to compute the rst variation δE p (u; θ) of E p (u) in the direction θ, i.e.

δE p (u; θ) = d dσ E p (u + σθ)| σ=0 .
To this end, we need to parametrise the domains Ω σ = Ω(u + σθ) induced by the family {u + σθ; σ ∈ (-σ 0 , σ 0 )} , where σ 0 > 0 is chosen in such a way that

u(x) + σθ(x) > -1 for all (x, σ) ∈ [-1, 1] × [-σ 0 , σ 0 ].
We denote by ψ(σ; u) the solution to

ε 2 ψ xx (σ; u) + ψ zz (σ; u) = 0, (x, z) ∈ Ω σ , (16) 
ψ(σ; u)(x, z) = 1 + z 1 + u(x) f (x), (x, z) ∈ ∂Ω σ (17) 
Furthermore, we introduce the velocity6 

V := d dσ ψ(σ; u)| σ=0 , (x, z) ∈ Ω(u)
of the path {ψ(σ; u); σ ∈ (-σ 0 , σ 0 )} at u. Given (x, z) ∈ Ω(u), observe now that

ε 2 ψ xx (σ; u) x, z + σθ(x) 1 + z 1 + u(x) + ψ zz (σ; u) x, z + σθ(x) 1 + z 1 + u(x) = 0.
Dierentiating this equality with respect to σ and sending afterwards σ to zero, we arrive at the following equation:

ε 2 V xx + V zz + θ(x) 1 + z 1 + u(x) ε 2 ψ xxz (0; u) + ψ zzz (0; u) = 0, (x, z) ∈ Ω(u).
Invoking (16), we see that

ε 2 ψ xxz (0; u) + ψ zzz (0; u) = 0, (x, z) ∈ Ω(u).
implying that V solves

ε 2 V xx + V zz = 0, (x, z) ∈ Ω(u).
In order to identify the boundary condition satised by V, we note that (167) may be written as ψ(σ; u) x, z + σθ(x)

1 + z 1 + u(x) = 1 + z 1 + u(x) f (x), (x, z) ∈ ∂Ω(u).
Again, dierentiation of this identity with respect to σ and evaluating the result at σ = 0 yields

V(x, z) = -θ(x) 1 + z 1 + u(x) ψ z (0; u)(x, z), (x, z) ∈ ∂Ω(u).
Summarizing the above observations, the function V complies with the elliptic boundary value problem

ε 2 V xx + V zz = 0, (x, z) ∈ Ω(u), (18) 
V(x, z) = -θ(x) 1 + z 1 + u(x) ψ z (0; u)(x, z), (x, z) ∈ ∂Ω(u). (19) 
We now use the transport theorem, see [START_REF] Amann | Analysis III[END_REF]theorem XII.2.11], to obtain

δE e (u; θ) = - Ω(u) 2ε 2 ψ x (0; u)V x + 2ψ z (0; u)V z + div (ε 2 ψ 2 x (0; u) + ψ 2 z (0; u))φ σ (0) d(x, z)
where φ σ (σ) is a dieomorphism which maps Ω(u) = Ω 0 onto Ω 0 σ, e.g.

φ σ (σ)(x, z) := x, z + σθ(x) 1 + z 1 + u(x) , (x, y) ∈ Ω(u)
In order to simplify our notation we set ψ x := ψ x (0; u) and ψ z := ψ z (0; u).

Observing (16), we notice that

div V(ε 2 ψ x , ψ z ) = ε 2 V x ψ x + V z ψ z .
Thus we nd that δE e (u; θ) = -

Ω(u) 2 div V(ε 2 ψ x , ψ z ) + div (ε 2 ψ 2 x + ψ 2 z )φ σ (0) d(x, z) (20) 
It follows from (19) that V vanishes on the ground plate and on the lateral boundaries of Ω(u). The very same is true for φ σ (0), since

φ σ σ (0)(x, z) := 0, θ(x) 1 + z 1 + u(x)
, (x, z) ∈ Ω(u).

Applying the divergence theorem to (20) thus yields

δE e (u; θ) = - 1 -1 [2V(x, u(x)) -ε 2 ψ x (x, u(x))u x (x) + ψ z (x, u(x)) + θ(x) ε 2 ψ 2 x (x, u(x)) + ψ 2 z (x, u(x))
]dx (21) Using the only nontrivial boundary condition for V we nd that

V(x, u(x)) -ε 2 ψ x (x, u(x))u x (x) + ψ z (x, u(x)) = θ(x) ε 2 ψ x (x, u(x))ψ z (xnu(x))u x (x) -ψ 2 z (x, u (x) 
) for all x ∈ I. Dierentiating furthermore the boundary condition ψ(x, u(x)) = f (x) with respect to x, we get

ψ z (x, u(x))u x (x) = f ( x) -ψ x (x, u(x)), x ∈ I
Fusing the last two identities we may conclude that

2V(x, u(x))(-ε 2 ψ x (x, u(x)) + ψ z (x, u(x)))
= 2θ(x) ε 2 ψ x (x, u(x))f (x) -ε 2 ψ 2 x (x, u(x)) -ψ 2 z (x, u(x)) . showing that δE p (u; θ) = 0 thanks to [START_REF] Pelesko | Mathematical modeling of electrostatic MEMS with tailored dielectric properties[END_REF].

A combination of the above considerations leads to the following statement.

Observation 1. Stationary solutions to [START_REF] Pelesko | Mathematical modeling of electrostatic MEMS with tailored dielectric properties[END_REF] are critical points of the potential energy E p (u).

As mentioned earlier, the above reasoning is formal since we do not specify the regularity of ψ(σ; u) neither with respect to the parameter σ not with respect to the variables (x, z) ∈ Ω σ . Following however the linear of [9, proposition 2.2], equation (23) may be justied rigorously.

There is a further interpretation of (23). Indeed, given u ∈ W 2 2,D (I), let ∇E p (u) := -u xx + λ ε 2 ψ 2 x (•, u) + ψ 2 z (•, u) -2ε 2 ψ x (•, u)f (x), where ψ(x, z) complies with ( 14) and [START_REF] Pelesko | Nonlocal problems in MEMS device control[END_REF]. Assume further that ∇E p (u) ∈ L 2 (I), which may be realised if u possesses enough spatial regularity 7 . Then we conclude from (23) that (∇E p (u), θ) L2(I) = δE p (u; θ) for all θ ∈ C ∞ c (I).

Thus ∇E p (u) may be considered as a generalized gradient of E p at u in L 2 (I) and ( 11) formally becomes u t = -∇E p (u(t)), t > 0,

i.e. [START_REF] Lienstromberg | A free boundary value problem modelling microelectromechanical systems with general permittivity Nonlinear Anal[END_REF] represents the gradient ow in L 2 (I) induced by E p . 7 In fact it follows from [3, relation (39)] that u ∈ W 2 q (I) with q > 2 is sucient.
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 1 Figure 1: Cross section of a MEMS device.

Figure 2 :

 2 Figure 2: Membrane's deection u of the coupled system for f (x) = x 8 + 0.1 with u * ≡ 0, λ = 1, and ε ∈ {0.4, 0.6}.
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 3 Figure 3: Membrane's deection u of the coupled system for f (x) = x 8 + 0.1 with u * ≡ 0, λ = 1, and ε ∈ {0.1, 0.2}.
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 4 Figure 4: Membrane's deection u of the coupled system for f (x) = x 8 + 0.1 with u * ≡ 0, λ = 1, and ε = 0.15.
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 5 Figure 5: Approximation solution to the small aspect-ratio model with u * ≡ 0 for f (x) = x 8 + 0.1 and λ = 1.
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 6 Figure 6: Membrane's deection u of the coupled system for f (x) = x 8 + 0.1 with u * ≡ 0, λ = 1, and ε = 0.85.
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 11111111 (22) Combining (21) with (22) we arrive atδE e (u; θ) = -(x) -2ε 2 ψ x (x, u(x))f (x) + ε 2 ψ 2 x (x, u(x)) + ψ 2 z (x, u(x)) dxIt remains to calculate the rst variation of the stretching energy:δE s (u; θ) = x (x)θ x (x)dx =xx (x)θ(x)dx.Merging the last two equations we arrive atδE p (u; θ) = -(x) u xx -λ ε 2 ψ 2 x (x, u(x)) + ψ 2 z (x, u(x)) + 2ε 2 ψ x (x, u(x))f (x) dx

Smoothness is assumed solely for simplicity, see theorem 1.1

We assume the elastic plate / membrane to be of innitesimal thickness, whence its dielectric properties are summarised in the function f = f (x). The introduction of the prole f = f (x) is also suitable to model piezoelectric eects of the membrane.

Sucient conditions to ensure non-negativity of solutions have been presented recently in[START_REF] Lienstromberg | On qualitative properties of solutions to microelectromechanical systems with general permittivity[END_REF].

Note that in the settings f = f (u) and f = f (x, u) this reasoning is no longer possible since in these cases the evolution equation's right-hand sides are more involved (see[START_REF] Escher | A qualitative analysis of solutions to microelectromechanical systems with curvature and nonlinear permittivity proles[END_REF][START_REF] Lienstromberg | On qualitative properties of solutions to microelectromechanical systems with general permittivity[END_REF]).

Version 8.4.0.150421 (R2014b).

Note that in fact V is a function of the variables x and z in the sense that V(x, z) := d dσ ψ(σ; u)| σ=0 (x, z).
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