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Abstract

This paper is devoted to the numerical simulation of the compressible two-layer model developed in [15]. The
latter is an hyperbolic two-fluid two-pressure model dedicated to gas-liquid flows in pipes, especially stratified air-
water flows. Using explicit schemes, one obtains a CFL condition based on the celerity of (fast) acoustic waves which
typically brings large numerical diffusivity for the (slow) material waves and small time steps. In order to overcome
these drawbacks, the proposed scheme involves an operator splitting and an implicit-explicit time discretization.
Thus, the full system is split into two hyperbolic sub-systems. The first one deals with the transport equation on
the liquid height using an explicit scheme and upwind fluxes. The second one deals with the averaged mass and
momentum conservation equations of both phases using an implicit scheme which handles the propagation of acoustic
waves. At last, the positivity of heights and densities is ensured under a CFL condition which involves material
velocities. Numerical experiments are performed using acoustic as well as material time steps. Adding the Rusanov
scheme for comparison, the best accuracy is obtained with the proposed scheme used with acoustic time steps.
Focusing on material waves of the convective system, the efficiency of the latter is improved when using material
steps. However, considering the whole system with relaxation source terms, an efficient approximation of slow
dynamics, typically a gravity driven flow, is still challenging.

Keywords: Implicit-explicit scheme, operator splitting, two-layer model, gas-liquid flows.

1 Introduction

In this work, we focus on the compressible two-layer model developed in [15]. The latter deals with transient gas-
liquid flows in pipes, especially stratified air-water flows which occur in several industrial areas such as nuclear power
plants, petroleum industries or sewage pipelines. It is a five-equation system which results from a depth averaging
of the isentropic Euler set of equations for each phase where the classical hydrostatic assumption is applied to the
liquid. This system is composed by a transport equation on the liquid height in addition to averaged mass and averaged
momentum conservation equations for both phases. The derivation process presents similarities with the work exposed
in [24]. Thus, the resulting model is a two-fluid two-pressure model and displays the same structure as an isentropic
Baer-Nunziato model which provides a statistical description of two-phase flows, especially granular flows or bubbly
flows (see for instance [3, 16]). In this context, interesting mathematical properties are obtained such as hyperbolicity,
entropy inequality, explicit eigenstructure as well as Riemann invariants and uniqueness of jump conditions. Note that
the numerical discretization of this compressible two-layer model has not been considered yet in the literature such
that the work presented herein is a first attempt.

From a numerical point of view, the compressible two-layer model, as the isentropic Baer-Nunziato model, are
complex to deal with for several reasons. The first difficulty arises from the large size of the system which makes the
Riemann problem difficult to solve regarding the convective part and Godunov-type methods. The second difficulty
is linked to the presence of non-conservative products in the governing equations such that the model does not admit
a full conservative form. However, the non-conservative products vanish and the system reduces to two decoupled



2. The compressible two-layer model

isentropic Euler-type systems on both sides of a linearly degenerate field which is parameterized using the correspond-
ing Riemann invariants. The third difficulty results from the non-linearity in pressure laws which renders even more
difficult the derivation of Riemann solvers. When dealing with the full system, one also has to account for relaxation
phenomena, in particular pressure relaxation and velocity relaxation given by the source terms, which bring numerical
issues regarding the involved time scales.

Despite the mentioned difficulties, some successful solvers are proposed in the literature focusing on the convective
part of the Baer-Nunziato system. They are mainly time-explicit Godunov-type methods such as Roe-like scheme,
HLL or HLLC scheme and relaxation scheme, see [10, 28, 2, 1, 13, 26] among others. For stability reasons, such
methods have to comply with the usual Courant-Friedrichs-Lewy (CFL) condition on the time step which involves
the celerity of (fast) acoustic waves and can be very restrictive. In our framework of two-layer pipe flows, even if we
are interested in the accurate description of fast waves when the pipe is full of water (in water hammer situation for
instance), we are also interested in the dynamics of slow waves associated to material velocities. Thus, an additional
difficulty relies in the mix of two types of waves, namely the (fast) acoustic and the (slow) material waves. A possible
way to tackle this issue is to use a fractional step method or equivalently an operator splitting. It consists in a multi-step
algorithm where each step deals with a system containing exclusively acoustic or material waves. This approach is
developed in [4, 6] for the Euler model and in [9] for the isentropic Baer-Nunziato model, among others. Note also that
some similarities may be found with the so-called flux splitting approach used in [31] for the Euler model and recently
in [29] for the Baer-Nunziato model. However, the above-mentioned references are explicit in time and the CFL
condition on the time step still relies on the celerity of fast waves. In order to obtain a less restrictive CFL condition,
an implicit-explicit scheme may be used where the fast waves are treated implicitly and the slow waves explicitly to
preserve accuracy. Combining the splitting approach and the implicit-explicit treatment, one obtains a CFL condition
based on material velocities and consequently a large time-step scheme. This was initially proposed in the context
of the Euler model, see [11, 8, 21], and an extension to the Baer-Nunziato model was proposed in [7]. Particularly,
the latter reference use a Lagrange-Projection approach that consists in approximating the gas dynamics equation
using the Lagrange coordinates and then remapping the solution onto an Eulerian mesh. Note that implicit-explicit
strategies are also used to derive all speed or all Mach schemes with asymptotic preserving properties regarding the
compressible Euler model and its incompressible limit, see [19, 12, 23, 8]. Thus, one can obtain accurate schemes in
the low Mach regime with large time steps. Nonetheless, such low Mach properties are still difficult to acquire for
two-fluid two-pressure models as the limit model is not clearly defined.

The work presented herein provides numerical results regarding the compressible two-layer model and the related
challenges exposed above. Thus, in addition to consider a classical explicit Rusanov scheme known for its robustness,
i.e. a first-order finite volume scheme with Rusanov fluxes [25, 30], we propose a large time-step implicit-explicit
scheme relying on an operator-splitting approach. The five-equation system is split into two hyperbolic sub-systems.
The first one deals with the transport equation on the liquid height using an explicit scheme and upwind fluxes. The
second one deals with the averaged mass and momentum conservation equations using an implicit scheme which
handles the propagation of acoustic waves. At the end, the positivity of heights and densities is ensured under a CFL
condition which involves material velocities. Numerical experiments with grid convergence studies are performed
with both schemes using analytical solutions for the convective part of the system. The source terms are then handled
accounting for the interactions between the convective dynamics and relaxation phenomena. The dambreak test case
is first considered where the numerical solutions are compared with a reference solution given by the incompressible
one-layer shallow-water system. Secondly, one considers a so-called mixed flow test case which involves a transition
to the pressurized regime (pipe full of water) through a pipe filling.

The chapter is organized as follows. The governing equations of the model under consideration are recalled in
section 2 as well as its main mathematical properties. Focusing on the convective part of the system, the splitting
approach and the associated implicit-explicit scheme are presented in section 3. Numerical experiments are then
performed in section 4 building analytical solutions thanks to the available jump conditions and Riemann invariants.
In the last part, the full model with the source terms is handled and tested against the dambreak problem and a mixed-
flow configuration.

2 The compressible two-layer model

The considered model deals with stratified gas-liquid flows in pipes, see figure 1 for a typical configuration. It
results from a depth-averaging of the isentropic Euler set of equations for each phase where the classical hydrostatic
assumption is made for the liquid, see [15] for details. The governing equations of the model and its main mathematical
properties are exposed below.
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Figure 1: Geometric description for horizontal channels.

2.1 Governing equations

Considering a two-layer air-water flow through an horizontal pipe of height H, see figure 1, the model reads:

∂h1

∂ t
+UI

∂h1

∂x
= λp(PI−P2(ρ2)), (2.1a)

∂hkρk

∂ t
+

∂hkρkuk

∂x
= 0, (2.1b)

∂hkρkuk

∂ t
+

∂hk(ρku2
k +Pk(ρk))

∂x
−PI

∂hk

∂x
= (−1)k

λu(u1−u2), (2.1c)

where k = 1 for water, k = 2 for air, and h1 +h2 = H. Here, hk, ρk, Pk(ρk) and uk denote respectively the height, the
mean density, the mean pressure and the mean velocity of phase k. Surface dynamics is represented by (2.1a) while
mass and momentum conservation for each phase are given respectively by (2.1b) and (2.1c).

The interfacial pressure is denoted by PI and closed by the hydrostatic constraint, while the interfacial velocity is
denoted by UI and closed following an entropy inequality, see section 2.2 and [15] for details. One obtains:

UI = u2,

PI = P1−ρ1g
h1

2
,

(2.2)

where g is the gravity field magnitude. As the phases are compressible, state equations are required for gas and
liquid pressures. For instance, perfect gas law may be used for air and linear law for water:

P1(ρ1) = (ρ1−ρ1,ref)c2
1,ref +P1,ref, (2.3a)

P2(ρ2) = P2,ref

(
ρ2

ρ2,ref

)γ2
, (2.3b)

with some reference density ρk,ref and pressure Pk,ref. The celerity of acoustic waves is defined by:

ck =
√

P′k(ρk), (2.4)

where P
′
k(ρk)> 0. For air, γ2 is set to 7/5 (diatomic gas) and for water, c1 is constant and equals to a reference celerity

denoted c1,ref.

In the following, the thermodynamic reference state is chosen to deal with air-water flows at 20o C: Pk,ref = 1 bar,
ρ1,ref = 998.1115 kg.m−3, c1,ref = 1500 m.s−1, ρ2,ref = 1.204 kg.m−3 and c2 = 350 m.s−1. Note that phase 1 inherits
from the fastest pressure waves. Regarding the source terms, λp and λu are positive bounded functions which account
for relaxation time scales, see appendix A for details.

Denoting W the state variable defined as:

W = (h1,h1ρ1,h1ρ1u1,h2ρ2,h2ρ2u2)
T , (2.5)

and using (2.2), the system (2.1) may be written under the following condensed form:

∂W
∂ t

+
∂F(W )

∂x
+B(W )

∂W
∂x

=C(W ), (2.6)

where:

F(W ) =


0

h1ρ1u1
h1(ρ1u2

1 +P1)
h2ρ2u2

h2(ρ2u2
2 +P2)

 , B(W )
∂W
∂x

=


u2

∂h1
∂x

0
−(P1−ρ1g h1

2 )
∂h1
∂x

0
−(P1−ρ1g h1

2 )
∂h2
∂x

 ,
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and:

C(W ) =


λp(P1−ρ1g h1

2 −P2)
0

−λu(u1−u2)
0

λu(u1−u2)

 .
As discussed in [15], note that this model is consistent with the shallow water equations as well as the depth-averaged
single-phase Euler equations used for pressurized flows. Moreover, its formulation is very close to the isentropic
Baer-Nunziato model suited for dispersed flows. Thus, the numerical method exposed in the sequel applies to this
other model.

2.2 Mathematical properties

In this section, the main mathematical properties of (2.6) are recalled. Details and proofs are available in [15].

Property 2.1 (Entropy inequality). Smooth solutions of system (2.6) comply with the entropy inequality

∂E

∂ t
+

∂G

∂x
≤ 0,

where the entropy E and the entropy flux G are defined by:

E = Ec,1 +Ep,1 +Et,1 +Ec,2 +Et,2,

G = u1(Ec,1 +Ep,1 +Et,1)+u2(Ec,2 +Et,2)+u1h1P1 +u2h2P2,

with:

Ec,k =
1
2

hkρku2
k , Et,k = hkρkΨk(ρk), Ep,1 = ρ1g

h2
1

2
,

and:

Ψ
′
k(ρk) =

Pk(ρk)

ρ2
k

, k = 1,2.

Property 2.2 (Hyperbolicity and structure of the convective system). The convective part of (2.6) is hyperbolic under
the condition:

|u1−u2| 6= c1.

Its eigenvalues are unconditionally real and given by:

λ1 = u2, λ2 = u1− c1, λ3 = u1 + c1, λ4 = u2− c2, λ5 = u2 + c2. (2.7)

The field associated with the 1-wave λ1 is linearly degenerate while the fields associated with the waves λk, k = 2, ..,5,
are genuinely nonlinear. Moreover, all the Riemann invariants can be detailed.

Property 2.3 (Uniqueness of jump conditions). Unique jump conditions hold within each isolated field. For all
genuine non-linear fields corresponding to the k-waves, k = 2, ...,5, the Rankine-Hugoniot jump conditions across a
single discontinuity of speed σ write:

[hk] = 0,
[hkρk(uk−σ)] = 0,
[hkρkuk(uk−σ)+hkPk] = 0,

where brackets [.] denote the difference between the states on both sides of the discontinuity.

Furthermore, as the field associated to the jump of h1 is linearly degenerate, the non-conservative products u2∂xh1
and (P1− ρ1g h1

2 )∂xh1 in (2.6) are well defined. Indeed, one may use the available 1-Riemann invariants to write
explicitly the 1-wave parametrisation.

Property 2.4 (Positivity). Focusing on smooth solutions, the positivity of hk and ρk is verified, as soon as λp may
be written under the form λp = m1m2λ̃p, where λ̃p is a positive bounded function depending on the state variable.
The positivity requirements hold for discontinuous solutions of the Riemann problem associated to the homogeneous
system (2.6).

As the jump conditions and the Riemann invariants can be detailed, recall that one can build analytical solutions
for the convective part of (2.6) including the contact discontinuity, shock waves and rarefaction waves. This approach
is used in section 4 to verify the numerical scheme exposed in the next section.
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3 Splitting method and implicit-explicit scheme for the convective part

In this section, we focus on the convective part of (2.6):

∂h1

∂ t
+u2

∂h1

∂x
= 0,

∂mk

∂ t
+

mkuk

∂x
= 0,

∂mkuk

∂ t
+

∂mku2
k

∂x
+

∂hkPk

∂x
−PI

∂hk

∂x
= 0,

(S0)

where mk = hkρk, k = 1,2 and h1 + h2 = H. More precisely, the goal is to approximate the weak solutions of the
associated Cauchy problem with discontinuous initial data:

∂W
∂ t

+
∂F(W )

∂x
+B(W )

∂W
∂x

= 0, x ∈ R, t > 0,

W (x,0) =W0(x).
(3.1)

Using classical explicit schemes to discretize (S0) and regarding its eigenvalue in (2.7), one obtains a typical CFL
condition driven by the fast waves which writes formally:

∆t
∆x

max(|u2|, |u1± c1|, |u2± c2|)< 1, (3.2)

where ∆x and ∆t denote respectively the space step and the time step. Dealing with low speed flow, that is |uk| �
|uk±ck|, (3.2) may be very constraining and may induce low precision on the material wave (slow wave) which has a
leading role in this regime. Thus, the goals of this work is to propose an implicit-explicit scheme more accurate than
a classical Rusanov explicit scheme and to examine its ability to relax the CFL condition (3.2). The overall strategy
is to split (S0) between the material wave λ1 and the acoustic waves λk, k = 2, ..,5, in order to adapt the numerical
treatment: roughly speaking, explicit scheme for the slow wave, implicit scheme for the fast waves. As detailed below,
this approach results in CFL conditions which rely on material velocities.

3.1 Splitting approach

It is proposed to split the system (S0) into two sub-systems (S1) and (S2):

∂h1

∂ t
+u2

∂h1

∂x
= 0,

∂mk

∂ t
= 0,

∂mkuk

∂ t
= 0.

(S1)



∂h1

∂ t
= 0,

∂mk

∂ t
+

∂mkuk

∂x
= 0,

∂mkuk

∂ t
+

∂mku2
k

∂x
+

∂hkPk

∂x
−PI

∂hk

∂x
= 0.

(S2)

A physical interpretation of this splitting can be given in the context of porous flows where h1 would stand for the
porosity. In the first step, one updates the porosity in time and space. In the second step, the porosity is frozen w.r.t.
time and the densities and velocities are updated according to this porosity field. In practice, it leads to a splitting of
eigenvalues between (S1) which contains the material wave and (S2) which contains the acoustic waves, with the
following properties:

• (S1) is unconditionally hyperbolic. Its eigenvalues are unconditionally real and given by:

η1 = u2,

ηp = 0, p = 2, ..,5.

All the characteristic fields are linearly degenerate.

5
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• (S2) is unconditionally hyperbolic. Its eigenvalues are unconditionally real and given by:

µ1 = 0,

µ2 = u1− c1, µ3 = u1 + c1,

µ4 = u2− c2, µ5 = u2 + c2.

The field associated with the 1-wave µ1 = 0 is linearly degenerate while the fields associated with µp, p= 2, ..,5,
are genuinely nonlinear.

The numerical strategy is then to use an explicit scheme for (S1) and an implicit scheme for (S2).

3.2 Numerical approximation

In the following, we use the operator splitting method in order to derive a fractional-step numerical scheme. The space
step ∆x is assumed to be constant for simplicity in the notations such that the space is partitioned into cells:

R=
⋃

i∈N∗
Ci with Ci = [xi− 1

2
,xi+ 1

2
[, ∀i ∈ N∗,

where xi+ 1
2
= (i+ 1

2 )∆x are the cell interfaces. The time step is denoted ∆t and is calculated at each iteration. For the
iteration n, the solution of (3.1) is approximated on each cell Ci by a constant value denoted by:

W n
i =

(
(h1)

n
i ,(h1ρ1)

n
i ,(h1ρ1u1)

n
i ,(h2ρ2)

n
i ,(h2ρ2u2)

n
i

)T
.

The following notation is also introduced: {
f+ = max( f ,0),
f− = min( f ,0),

such that f = f++ f− and | f |= f+− f−.

The first step of the proposed numerical scheme is associated to (S1) and updates Wi from W n
i to W ∗i while the

second step is associated to (S2) and updates Wi from W ∗i to W n+1
i , each step being associated to the discrete time ∆t.

The overall numerical scheme is detailed in the next two subsections.

3.3 First step: water height update

In this step, one updates Wi from W n
i to W ∗i . Regarding the last two equations of (S1), one obtains:

m∗k,i = mn
k,i, (3.3)

(mkuk)
∗
i = (mkuk)

n
i . (3.4)

Consequently, mk,i and the velocity uk,i are constant but the density ρk,i may vary as hk,i may vary.

Writing the transport equation on h1 under the equivalent form ∂h1
∂ t + ∂u2h1

∂x −h1
∂u2
∂x = 0, an explicit first order upwind

scheme is proposed:
h∗1,i−hn

1,i

∆t
+

(u2h1)
n
i+ 1

2
− (u2h1)

n
i− 1

2

∆x
−hn

1,i

un
2,i+ 1

2
−un

2,i− 1
2

∆x
= 0,

with:  (u2h1)
n
i+ 1

2
= un,+

2,i+ 1
2
hn

1,i +un,−
2,i+ 1

2
hn

1,i+1,

un
2,i+ 1

2
= 1

2 (u
n
2,i +un

2,i+1).

It yields:

h∗1,i−hn
1,i +

∆t
∆x

((
un,+

2,i+ 1
2
−un,−

2,i− 1
2
− (un

2,i+ 1
2
−un

2,i− 1
2
)
)
hn

1,i−un,+
2,i− 1

2
hn

1,i−1 +un,−
2,i+ 1

2
hn

1,i+1

)
= 0,

such that, using f = f++ f−, one obtains:

h∗1,i =
(

1− ∆t
∆x

(un,+
2,i− 1

2
−un,−

2,i+ 1
2
)
)

hn
1,i +

∆t
∆x

un,+
2,i− 1

2
hn

1,i−1−
∆t
∆x

un,−
2,i+ 1

2
hn

1,i+1. (3.5)

6
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Proposition 3.1 (Positivity of heights). Regarding (3.5), the positivity of h∗k,i is ensured as soon as the following CFL
condition holds:

∆t
∆x

max
i
(un,+

2,i− 1
2
−un,−

2,i+ 1
2
)≤ 1. (3.6)

Proof. Regarding (3.5) and assuming h1,i ≥ 0,∀i ∈ N∗, the positivity of h∗1,i is ensured when:(
1− ∆t

∆x
(un,+

2,i− 1
2
−un,−

2,i+ 1
2
)
)
≥ 0,∀i ∈ N∗,

as un,+
2,i− 1

2
≥ 0 and un,−

2,i+ 1
2
≤ 0 by definition. This later inequality can also be written under the form (3.6).

As expected, this CFL condition only depends on material velocities.

3.4 Second step: densities and velocities update

In this step, one updates Wi from W ∗i to W n+1
i . Regarding (S2), the first equation directly yields:

hn+1
1,i = h∗1,i. (3.7)

The proposed time discretization for mass and momentum conservation equations reads:

mn+1
k −m∗k

∆t
+

∂ (mkuk)

∂x

n+1

= 0, (3.8a)

(mkuk)
n+1− (mkuk)

∗

∆t
+

∂ (mkuk)
n+1u∗k

∂x
+hn+1

k
∂ (Pk)

∂x

n+1

+(Pk−PI)
n+1 ∂ (hk)

∂x

n+1

= 0. (3.8b)

This approach is proposed in order to obtain an implicit equation on ρk, or equivalently Pk, and avoid a CFL condition
which would involve the celerity of acoustic waves. The current step is divided into two sub-steps where the densities
are updated first before updating the velocities using (3.8b).

3.4.1 Densities update

At this stage, it is proposed to approximate the densities without considering the terms ∂mku2
k

∂x and (Pk−PI)
∂hk
∂x in (3.8b).

It is a classical approach when using the well-known predictor-corrector schemes in the single-phase framework. Thus,
(3.8b) becomes:

(mkuk)
n+1− (mkuk)

∗

∆t
+hn+1

k
∂ (Pk)

∂x

n+1

= 0, (3.9)

and combining it with (3.8a), one obtains the implicit governing equation of ρk which accounts for the propagation of
acoustic waves:

hn+1
k ρ

n+1
k −∆t2 ∂

∂x

(
hn+1

k
∂Pk(ρk)

∂x

n+1)
= m∗k−∆t

∂ (mkuk)

∂x

∗
. (3.10)

After integration on a cell Ci = [xi− 1
2
,xi+ 1

2
[ and using (3.7), it comes:

h∗k,iρ
n+1
k,i −

∆t2

∆x

(
(h∗k

∂ (Pk)

∂x

n+1

)i+ 1
2
− (h∗k

∂ (Pk)

∂x

n+1

)i− 1
2

)
= m∗k,i−

∆t
∆x

(
(mkuk)

∗
i+ 1

2
− (mkuk)

∗
i− 1

2

)
,

with the corresponding fluxes: (h∗k
∂ (Pk)

∂x

n+1

)i+ 1
2
= h∗k,i+ 1

2

(Pn+1
k,i+1−Pn+1

k,i

∆x

)
,

(mkuk)
∗
i+ 1

2
= u∗,+

k,i+ 1
2
m∗k,i +u∗,−

k,i+ 1
2
m∗k,i+1.

The implicit system to solve finally writes:

(
h∗k,i

ρk(Pn+1
k,i )

Pn+1
k,i

+
(

∆t
∆x

)2
(h∗k,i+ 1

2
+h∗k,i− 1

2
)
)

Pn+1
k,i −

(
∆t
∆x

)2
h∗k,i− 1

2
Pn+1

k,i−1−
(

∆t
∆x

)2
h∗k,i+ 1

2
Pn+1

k,i+1 = S∗k,i, (3.11)
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3.4 Second step: densities and velocities update

where:
S∗k,i =

∆t
∆x

u∗,+
k,i− 1

2
m∗k,i−1 +

(
1− ∆t

∆x
(u∗,+

k,i+ 1
2
−u∗,−

k,i− 1
2
)
)

m∗k,i−
∆t
∆x

u∗,−
k,i+ 1

2
m∗k,i+1. (3.12)

In practice, the interface values h∗
k,i+ 1

2
and u∗

k,i+ 1
2

are defined by h∗
k,i+ 1

2
= 1

2 (h
∗
k,i +h∗k,i+1) and u∗

k,i+ 1
2
= 1

2 (u
∗
k,i +u∗k,i+1).

At last, one obtains a non-linear system to solve which is linearized below regarding the choice of the pressure law
Pk(ρk). As exposed in (2.3), a perfect gas law is used for phase 2 while a linear pressure law is used for phase 1 which
applies to air-water flows. In particular, an optimized approach regarding linear pressure laws is used to get the least
restrictive CFL condition.

Nonlinear pressure laws
Using the relation ∂P2

∂ t = c2
2(ρ2)

∂ρ2
∂ t , one obtains:

ρ
n+1
2,i = ρ

∗
2,i +

Pn+1
2,i −P∗2,i

c∗22,i

. (3.13)

Assuming that the discrete pressure of phase 2 also follows the perfect gas law (2.3b), i.e. P2,i = P2(ρ2,i), note that c2,i

is defined as c2
2,i = P

′
2(ρ2,i) =

γ2P2,i
ρ2,i

. Using (3.13), (3.11) is linearized and reads in matrix form:

A∗2Pn+1
2 = S∗2, (3.14)

with:

A∗2,i j =



h∗2,i
c∗22,i

+
(

∆t
∆x

)2
(h∗

2,i+ 1
2
+h∗

2,i− 1
2
) if i = j,

−
(

∆t
∆x

)2
h∗

2,i+ 1
2

if j = i+1,

−
(

∆t
∆x

)2
h∗

2,i− 1
2

if j = i−1,

0 elsewhere,

and:

Pn+1
2,i = Pn+1

2,i ,

S∗2,i = S∗2,i−
(

1− 1
γ2

)
m∗2,i,

where γ2 =
ρ∗2,ic

∗2
2,i

P∗2,i
= 7

5 is related to the perfect gas law (2.3b). Note that once (3.14) is solved, one has to use (3.13) to

compute ρ
n+1
2,i instead of the pressure law for consistency reasons.

Linear pressure laws
Using the linearity of the pressure law for phase 1, see (2.3a), (3.11) is already linear. Thus, using ρ

n+1
1,i instead of

Pn+1
1,i as an unknown, it reads in matrix form:

A∗1Rn+1
1 = S∗1, (3.15)

with:

A∗1,i j =



h∗1,i +
(

c1
∆t
∆x

)2
(h∗

1,i+ 1
2
+h∗

1,i− 1
2
) if i = j,

−
(

c1
∆t
∆x

)2
h∗

1,i+ 1
2

if j = i+1,

−
(

c1
∆t
∆x

)2
h∗

1,i− 1
2

if j = i−1,

0 elsewhere,

and:

Rn+1
1,i = ρ

n+1
1,i ,

S∗1,i = S∗1,i.

Therefore, the densities are updated solving (3.14) and (3.15), the positivity being ensured under the CFL conditions
exposed below.
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Numerical simulation of a compressible two-layer model

Proposition 3.2 (Positivity of densities). The positivity of ρ
n+1
1 is ensured under the following CFL condition:

∆t
∆x

max
i

(
u∗,+

1,i+ 1
2
−u∗,−

1,i− 1
2

)
≤ 1, (3.16)

while the positivity of Pn+1
2 (and thus ρ

n+1
2 ) is ensured under the following CFL condition:

∆t
∆x

max
i

(
(u∗,+

2,i+ 1
2
−u∗,−

2,i− 1
2
)γ2

)
≤ 1, (3.17)

where γ2 =
ρ∗2,ic

∗2
2,i

P∗2,i
= 7

5 is related to the perfect gas law (2.3b).

Proof. Noting that A∗k is a M-Matrix:

A∗k,ii > 0, A∗k,i6= j ≤ 0, |A∗k,ii|−∑
j 6=i
|A∗k,i j|> 0, (3.18)

one obtains that A∗k is nonsingular and (A∗
−1

k )ii > 0, which provides:

ρ
n+1
k,i > 0,∀i ⇐⇒ S∗k > 0. (3.19)

Thus, regarding nonlinear pressure laws and S∗2, one obtains the CFL condition (3.17). Regarding linear pressure laws,
the condition S∗1 > 0 yields (3.16).

Finally, dealing with air-water flows, one has to solve (3.14) and (3.15) without violating the CFL conditions
(3.17) and (3.16) which involves material velocities.

Remark 3.1. If (3.17) would apply to phase 1 associated to the linearized pressure law (2.3a), one obtains:

ρ∗1,ic
∗2
1,i

P∗1,i
=

P∗1,i +Π1

P∗1,i
,

where Π1 = ρ1,refc2
1,ref−P1,ref. When dealing with water and P1 ∼ 1 bar,

P∗1,i+Π1
P∗1,i

∼ 104 and (3.17) would be very

restrictive on ∆t
∆x . It is thus profitable to use ρ

n+1
1,i instead of Pn+1

1,i as an unknown.

Remark 3.2. Regarding (3.11), one may also propose the approximation
ρk(P

n+1
k,i )

Pn+1
k,i

Pn+1
k,i ≈

ρk(P∗k,i)
P∗k,i

Pn+1
k,i as a linearization

process. Thus, one ends up with the following CFL condition:

∆t
∆x

max
i

(
u∗,+

k,i+ 1
2
−u∗,−

k,i− 1
2

)
≤ 1,

which applies to both phases, independently of the pressure law. Note also that (3.11) may be treated as a nonlinear
system to solve but it will not be considered here for computational efficiency reasons.

Remark 3.3. One may estimate the condition number κ(Ak) of Ak assuming constant heights. Indeed, one obtains a
positive-definite matrix whose condition number scales roughly as:

κ(Ak)∼
1+4(ck

∆t
∆x )

2

1+ 4
N2 (ck

∆t
∆x )

2
,

where N denotes the number of grid points. Under the CFL conditions (3.17) and (3.16), one obtains κ(Ak) ∼ N2,
which is a classical result dealing with the acoustic operator. In the general case, preconditioning techniques may be
used to improve the efficiency of the linear solver.
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4. Numerical experiments

3.4.2 Velocities update

Integrating (3.8a) and (3.8b) on a cell Ci = [xi− 1
2
,xi+ 1

2
[, one obtains:

mn+1
k,i −m∗k,i +

∆t
∆x

(
(mkuk)

n+1
i+ 1

2
− (mkuk)

n+1
i− 1

2

)
= 0, (3.20)

(mkuk)
n+1
i − (mkuk)

∗
i +

∆t
∆x

(
((mkuk)

n+1u∗k)i+ 1
2
− ((mkuk)

n+1u∗k)i− 1
2

)
+

∆t
∆x

(
(hkPk)

n+1
i+ 1

2
− (hkPk)

n+1
i− 1

2
−Pn+1

I,i (hn+1
k,i+ 1

2
−hn+1

k,i− 1
2
)
)
= 0, (3.21)

where the pressure gradient has been used under its conservative form. At this point, the fluxes (mkuk)
n+1
i+ 1

2
are known

using (3.20) but one needs to compute the cell value (mkuk)
n+1
i . To this aim, one considers (3.21) using a first order

upwind scheme for ((mkuk)
n+1u∗k)i+ 1

2
which writes:

((mkuk)
n+1u∗k)i+ 1

2
= (mkuk)

n+1,+
i+ 1

2
u∗k,i +(mkuk)

n+1,−
i+ 1

2
u∗k,i+1, (3.22)

while centered fluxes are used for (hkPk)
n+1
i+ 1

2
and hn+1

k,i+ 1
2
.

This final step closes the numerical strategy for (S0) as all the variables are now updated.

4 Numerical experiments

In this section, we consider two test cases which are Riemann problems built using the available Riemann invariants
and the jump conditions. Thus, the analytical solution is known and we compare it with the approximate solution
obtained with the proposed implicit-explicit splitting scheme, which is denoted SP hereafter. In addition, we add for
comparison a classical Rusanov explicit scheme applied on (S0), i.e. a first-order finite volume scheme with Rusanov
fluxes [25, 30].

4.1 Time and space step configurations

4.1.1 Time step profiles

Regarding the Rusanov scheme, the associated CFL condition to guarantee the positivity of densities and heights
classically writes:

∆ta
∆x

max
i

( ri+ 1
2
+ ri− 1

2

2

)
=

1
2
, (4.1)

where ri+ 1
2
= max

k∈{1,..,5}
(|λ n

k,i|, |λ n
k,i+1|), λk denoting the eigenvalues of (S0), see (2.7). Note that the CFL number has

been chosen to be 1
2 . In our framework, ∆ta will be referred to as the acoustic time step as it contains the celerity of

acoustic waves given by uk± ck.

Gathering the CFL conditions (3.6), (3.17), (3.16), the SP scheme guarantees the positivity of densities and heights
under the condition:

∆tm
∆x

max
i

(
un,+

2,i− 1
2
−un,−

2,i+ 1
2
,u∗,+

1,i+ 1
2
−u∗,−

1,i− 1
2
,(u∗,+

2,i+ 1
2
−u∗,−

2,i− 1
2
)γ2

)
=

1
2
, (4.2)

where the CFL number has been chosen to be 1
2 . In our framework, ∆tm will be referred to as the material time step as

it contains only material speeds, which consequently yields ∆ta < ∆tm.

In order to evaluate the influence of the time step on the approximated solutions, one introduces two variants for
the SP scheme:

• SPa: SP scheme with the acoustic time step ∆ta defined in (4.1).

• SPm: SP scheme with the material time step ∆tm defined in (4.2).
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Numerical simulation of a compressible two-layer model

The two variants are compared with the Rusanov scheme whose time step is necessarily the acoustic one. To summa-
rize, the time step profiles are sketched on figure 2. Note that a ramp on the CFL number is used in the first iterations
to start the calculations.

iteration

∆t

SPa

Rusanov

∆tm: SPm

∆ta:

Figure 2: Sketch of time step profiles.

4.1.2 Mesh refinement

The solutions are computed on the domain [0,1] of the x-space where homogeneous Neumann conditions are imposed
at the inlet and outlet. A mesh refinement is performed in order to check the numerical convergence of the method. For
this purpose, the discrete L1-error between the approximate solution and the exact one at the final time T , normalized
by the discrete L1-norm of the exact solution, is computed:

error(∆x,T ) =
∑ j |U n

j −Uex(x j,T )|
∑ j |Uex(x j,T )|

, (4.3)

where U denotes the state vector in non conservative variables:

U = (α1,ρ1,u1,ρ2,u2),

and Uex stands for the exact solution. Note that ∆t is defined from ∆x through (4.1) or (4.2). In the refinement process,
the coarser mesh is composed of 100 cells and the most refined one contains 200000 cells. Hereafter, the fields are
plotted with 1000 cells and the error is plotted against ∆x using a log− log scale.

4.2 Numerical results

4.2.1 Test case 1: one shock within each phase

In this first test case, one considers one shock within each phase. One shock on phase 2 is traveling at λ4 = u2− c2
and linking the left state UL to the state UC. One shock on phase 1 is traveling at λ3 = u1 + c1 and linking the state
UC to the right state UR. In particular, there is no contact discontinuity since the initial condition for h1 is uniform.
Thus, it consists in solving two decoupled isentropic Euler systems, see the wave structure and initial conditions on
figure 3. The fields at T = 16.10−5 s with 1000 cells and the errors are displayed respectively on figures 4 and 5.

u2− c2

u1 + c1

x

t

UL

UC

UR

Variable UL UC UR
h1 0.5 0.5 0.5
ρ1 998.11150 998.11150 997.11339
u1 15 15 13.508384
ρ2 1.204 1.3244 1.3244
u2 10.0 -23.061466 -23.061466

Figure 3: Wave structure, initial conditions (UL, UR) and intermediate state (UC) for test case 1.

As a first comment, one can see on figure 4 that the different methods approximate the relevant shock solutions.
Regarding the fields and the errors for phase 1, the results for SPa and Rusanov are similar. As phase 1 is the fastest
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4.2 Numerical results

one, Rusanov is in its optimal regime regarding the shock waves and compares well with SPa. One observes a loss of
accuracy with SPm which is more diffusive around the shock location. Regarding the fields and the errors for phase 2,
the best accuracy is obtained with SPa which is partly due to the centered pressure gradient in the implicit equation
(3.11). However, overshoots are observed on the fields but the latter are bounded in L∞-norm and do not preclude the
convergence. Regarding coarser meshes, SPm is more accurate than Rusanov and both are comparable when the mesh
is refined.

Dealing with isolated shock waves, one would expect to reach a first order convergence rate. This order is obtained
for phase 2 but not for phase 1 which displays order 1

2 , see figure 5. As an explanation, note that the shock on density
is far weaker for phase 1 (water) than for phase 2 (air). Such configurations are realistic and make the shock more
difficult to capture for phase 1.

Errors in L1-norm against CPU time are displayed on figure 6 for u1 and u2 (ρ1 and ρ2 respectively present the
same trends). Considering a given error, one observes that SPa is the most efficient scheme. Even if SPm is more
efficient than Rusanov on phase 2, it suffers from a lack of accuracy on the fastest phase (i.e phase 1) and the use
of material time steps is not appropriate for this test case. Indeed, one considers only fast waves so that the optimal
regime is obtained with acoustic time steps.
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Figure 5: Errors in L1-norm for test case 1.
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Figure 6: Error in L1-norm against CPU time for test case 1.
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4.2 Numerical results

4.2.2 Test case 2: a complete case with all the waves

In this case, all the waves are considered. The analytical solution contains two shocks for each phase traveling with
the acoustic waves and one contact discontinuity in λ1 = u2 where h1 jumps, see figure 7 and 8.

u1− c1

u2− c2
u2

u2 + c2

u1 + c1

xx

t

UL

U1

U2
U3

U4

UR

Variable UL U1 U2 U3 U4 UR
h1 0.5 0.5 0.5 0.5023747 0.5023747 0.5023747
ρ1 998.11150 998.16140 998.16140 998.16240 998.16240 998.06259
u1 10.0 9.9254584 9.9254584 9.8225555 9.82255555 9.6734610
ρ2 1.204 1.204 1.2642 1.2601362 1.2349335 1.2349335
u2 5.0 5.0 -11.838960 -11.838960 -18.826134 -18.826134

Figure 7: Wave structure, initial conditions (UL, UR) and intermediate states (Uk)k=1,4 for test case 2.

The fields at T = 23.10−5 s with 1000 cells and the errors are displayed respectively on figures 8 and 9. Despite the
great complexity of this second test case, one observes that the intermediate states are correctly captured. The same
trends as in the previous test case are observed. SPa presents the best accuracy for both phases while SPm is more
diffusive for phase 1 and behaves slightly better than Rusanov for phase 2. In particular, the contact discontinuity
traveling at material speed is better captured using the implicit-explicit scheme. Overshoots are still observed with
SPa on the fields but they are bounded in L∞-norm and do not preclude the convergence. Regarding the order of
convergence on figure 9, the expected convergence rate 1

2 is obtained.

The test case is a mix between the (slow) material wave in λ1 = u2 and the fast acoustic waves in λk = uk±ck. On
one hand, focusing on h1 which is (in theory) directly affected by the slow wave, figure 10 shows that SPm is the most
efficient. As expected, the use of material time steps is the best choice to approximate material waves. On the other
hand, regarding u1, the velocity of the fastest phase which is affected by all the waves, SPm yields the worst efficiency
while the use of acoustic time steps through SPa is the best choice. Regarding u2, the best efficiency is still obtained
with SPa while SPm is more efficient that Rusanov. Thus, the efficiency results strongly depend on the wave under
consideration and consequently on the related variables.
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Figure 8: Approximate solution for test case 2 at T = 23.10−5 s with 1000 cells.
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Figure 9: Errors in L1-norm for test case 2.

4.3 Comments

The results presented in this section deal with an implicit-explicit splitting scheme, namely SP, regarding the con-
vective part of the compressible two-layer model. SP is used with acoustic time steps as well as material time steps
and compared with a classical explicit Rusanov scheme which requires acoustic time steps. The considered test cases
highlight the following comments:

• Stability and convergence towards relevant shock solutions are obtained for SP and Rusanov.

• SP with acoustic time steps (SPa) is the most efficient regarding the (fast) acoustic waves.

• SP with material time steps (SPm) is the most efficient regarding the (slow) material wave.

At the end, the best accuracy is obtained with SPa while a competition in terms of variables is observed regarding the
efficiency: best efficiency on the variables (ρ1,u1,ρ2,u2) given by SPa or best efficiency on the variable h1 given by
SPm. Thus, one has to determine the most profitable variant regarding all the fields and the considered test case.

Those comments focus on the convective part of the model. In order to pursue this analysis, the full compressible
two-layer model is considered in the next section with the aim of including the source terms in the SP framework.
Indeed, relaxation phenomena encountered in physical configurations may have great influence regarding the system
behavior.
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Figure 10: Error in L1-norm against CPU time for test case 2.

5 Extension to the full system with source terms

In this section, one deals with the source terms of the compressible two-layer model detailed in (2.1), namely the pres-
sure relaxation and the velocity relaxation. Numerical experiments are performed considering a dambreak problem in
addition to a mixed flow test case which involves a transition to the pressurized regime through a pipe filling.

5.1 Splitting approach

Regarding the pressure relaxation term, λp(PI−P2), one may easily demonstrate that the associated relaxation process,
i.e PI →

t→∞
P2, is very fast for air-water flows. The proposed approach is driven by this behavior and consists in plugging

the source terms in (S1) which becomes (S s
1 ). Thus, (S2) is unchanged and the proposed splitting reads:

∂h1

∂ t
+u2

∂h1

∂x
= λp(PI−P2),

∂mk

∂ t
= 0,

∂mkuk

∂ t
= (−1)k

λu(u1−u2).

(S s
1 )



∂h1

∂ t
= 0,

∂mk

∂ t
+

∂mkuk

∂x
= 0,

∂mkuk

∂ t
+

∂mku2
k

∂x
+

∂hkPk

∂x
−PI

∂hk

∂x
= 0.

(S2)

The overall scheme which includes the source terms is denoted SPs. The latter slightly differs from SP regarding
the first sub-system (S s

1 ) which as before, updates the state variable Wi from W n
i to W ∗i . The associated numerical

scheme is detailed below. Note that (S2) is treated as in subsection 3.4 such that no details are provided in the current
section.
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5.2 Numerical treatment of the source terms

5.2.1 Pressure relaxation

The transport equation on h1 is discretized as in subsection 3.3, see (3.5), where the source term is added implicitly
except for the λp parameter. It writes:

h∗1,i−hn
1,i +

∆t
∆x

∫ x
i+ 1

2

x
i− 1

2

un
2

∂hn
1

∂x
dx = ∆tλ n

p,i(P
∗
I,i−P∗2,i), (5.1)

where upwind fluxes are used for the convection term. As mk is constant w.r.t. time in (S s
1 ), it yields P∗2,i = P2(ρ

∗
2,i) =

P2(
mn

2,i
H−h∗1,i

), P∗I,i = P1(
mn

1,i
h∗1,i

)−mn
1,i

g
2 and (5.1) is equivalent to:

f (h∗1,i) = 0 (5.2)

where:

f (y) = y−hn
1,i +

∆t
∆x

∫ x
i+ 1

2

x
i− 1

2

un
2

∂hn
1

∂x
dx−∆tλ n

p,i

(
P1

(mn
1,i

y

)
−mn

1,i
g
2
−P2

( mn
2,i

H− y

))
. (5.3)

One may easily demonstrate that f is strictly increasing on [0;H] with the limits f →
0+
−∞ and f →

H−
+∞, such that

(5.2) admits a unique solution h∗1,i on [0;H]. Thus, h∗1,i can be obtained using classical numerical methods devoted to
nonlinear equations such as the bisection or Newton’s method. In addition, note that in this framework, there is no
need for CFL conditions to ensure the positivity of h∗k,i.

5.2.2 Velocity relaxation

Once h∗k,i is obtained, the remaining unknown is u∗k,i, given by the last equation of (S s
1 ). As for the pressure relaxation,

the source term is treated implicitly except for the λu parameter. Indeed, the latter may include complex functions
depending on the state variable and accounting for friction effects, see appendix A.2. Using the fact that mk is constant
w.r.t. time, the proposed implicit scheme writes:

mn
k,i(u

∗
k,i−un

k,i) = (−1)k
∆tλ n

u,i(u
∗
1,i−u∗2,i). (5.4)

Combining (5.4) for k = 1,2, one obtains the following nonsingular 2×2 system:(
mn

1,i +∆tλ n
u,i −∆tλ n

u,i
−∆tλ n

u,i mn
2,i +∆tλ n

u,i

)(
u∗1,i
u∗2,i

)
=

(
(m1u1)

n
i

(m2u2)
n
i

)
. (5.5)

This system can be solved directly and one obtains an explicit relation for u∗k,i.

At this point, (S s
1 ) is solved accounting for the relaxation processes. (S2) is then solved as in section 3.4 to obtain

the updated state variable W n+1
i . In order to assess this method, two test cases are considered in the next subsection.

5.3 Numerical results

In the sequel, numerical tests are performed with SPs
a and SPs

m which denote respectively the SPs scheme with acoustic
and material time steps. As in section 4, the acoustic time step is denoted ∆ta and defined in (4.1). The material time
step is denoted ∆tm and defined in (4.2) except that the CFL condition regarding the positivity of hk, see (3.6), can be
ignored when including the pressure relaxation term. In addition, one considers the Rusanov scheme applied to (S0)
where the source terms are classically treated in a second step involving only ODEs, see [20]. The latter scheme is
denoted Rusanovs hereafter to be consistent in the notations.

5.3.1 Dambreak test case

A common way to deal with free-surface flows is to use the well-known Saint-Venant or shallow-water equations,
see [18]. In a few words, this model is a one-layer model resulting from a depth averaging process on the Euler
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set of equations and assuming a thin layer of incompressible fluid (water for instance) with hydrostatic pressure law.
Particularly, it admits an analytical solution for the so-called dambreak problem detailed below. Note that this classical
approach is used in [5] to model the free-surface regime in pipe flows without computing the air phase.

In the following, it is proposed to consider the dambreak test case for the compressible two-layer model and to
compare the results with the reference solution provided by the Saint-Venant system for the single water layer. Indeed,
one can expect to obtain the same kind of solution as the derivation processes are very close and the compressibility
of water as well as the additional air layer should have a minor influence here.

The dambreak problem
The dambreak problem is a Riemann problem where the initial condition is a discontinuity on h1 with constant density
and zero speed, see Figure 11. Regarding the water layer, the analytical solution of the incompressible shallow-water
system, denoted SWref hereafter, provides the evolution in time and space for h1 and u1 which contains a rarefaction
wave propagating to the left and a shock wave propagating to the right.

H

h1

h2

water

air

Variable 0≤ x≤ 2 2 < x≤ 4
h1/H 0.6 0.4

ρ1 998.1115 998.1115
u1 0 0
ρ2 1.204 1.204
u2 0 0

Figure 11: Initial conditions for the dambreak problem.

The dynamics of this test case is driven by water gravity waves whose typical celerity is given by
√

gh1. The
compressible two-layer model focuses by construction on the dynamics of acoustic waves whose celerity is given

by c1 =
√

P′1(ρ1) for the water phase. Thus, when
√

gh1
c1
� 1, the approximation of water gravity waves with the

compressible two-layer model is challenging. Consequently, defining the water Mach number as M1 = |u1|
c1

and the

Froude number as Fr = |u1|√
gH , a dimensionless number of interest is given by:

M1

Fr
=

√
gH
c1

, (5.6)

as soon as h1 ∼ H in the applications.

Implementation
The solutions are computed on the domain [0,4] of the x-space where the initial conditions are given on Figure 11.
Regarding the boundary conditions, one imposes homogeneous Neumann conditions at the inlet and outlet. The fields
are presented on a 4000 cells mesh at time T = 0.11s. Two pipe heights are considered, H = 10m and H = 1000m,
which yields M1

Fr ∼ 7.10−3 and M1
Fr ∼ 7.10−2 respectively.

Results
On Figure 12, SPs

a is compared with Rusanovs with M1
Fr ∼ 7.10−3. As a first comment, note that both schemes seem to

follow the SWref solution regarding h1 and u1, which is the expected trend for the compressible two-layer model since
the air layer has minor influence here. In addition, admitting SWref as a reference solution, one observes that SPs

a is
more accurate than Rusanovs as for the homogeneous test cases presented in Section 4.

On Figure 13, SPs
m is compared with Rusanovs at M1

Fr ∼ 7.10−3. In practice ∆tm ∼ 100∆ta and one observes that
SPs

m is unable to restore the SWref solution. The solution obtained for h1 is totally inaccurate so that the comments
given in Subsection 4.3 cannot be extended to SPs

m. Refining the mesh, one obtains the expected structure but SPs
m is

inefficient for all the variables compared to SPs
a and Rusanovs. Consequently, the use of material time steps with the

proposed implicit-explicit splitting scheme seems to be too sharp regarding such a gravity driven test case.

When the dimensionless number
√

gH
c1

is multiplied by a factor 10, M1
Fr ∼ 7.10−2, and SPs

m is able to restore the
structure of the SWref solution although the profiles are very diffusive, see Figure 14. SPs

a is still more accurate than
Rusanovs but diffusivity is also observed. At last, those results illustrate the difficulties to approximate slow gravity
waves with the compressible two-layer model with even more challenges at large time steps.
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Figure 12: Approximate solution at T = 0.11s with M1
Fr ∼ 7.10−3 and 4000 cells (Rusanovs and SPs
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Figure 13: Approximate solution at T = 0.11s with M1
Fr ∼ 7.10−3 and 4000 cells (Rusanovs and SPs
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Figure 14: Approximate solution at T = 0.11s with M1
Fr ∼ 7.10−2 and 4000 cells.

5.3.2 A first attempt to deal with mixed flows: pipe filling test case

In this test case, one considers a more complex configuration which involves a transition from the free-surface regime
to the pressurized regime, namely a mixed flow. As exposed in [15], the compressible two-layer model degenerates
correctly towards an isentropic Euler set of equations for the water phase when the height of the air phase goes to
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zero. The latter equations are commonly used to describe pressurized flows but in our framework, one has to handle
numerically the vanishing air phase which may be a tough challenge.

In order to enable a transition to the pressurized regime, one considers a sloping pipe with a wall boundary
condition at the outlet and a classical homogeneous Neumann boundary condition at the inlet. The initial conditions
are the same as the ones used for the dambreak test case, see figure 11, except that the pipe is inclined by 20 degrees to
the horizontal. The computations are still done on the domain [0,4] of the x-space with a 4000 cells mesh. There is no
analytical solution but the idea is to obtain qualitative results. Note that the exposed results mainly involve ongoing
work.

On figure 15, one displays a snapshot w.r.t. time regarding the height of the water phase. The Rusanovs scheme is
used and one obtains encouraging results. Indeed, the vanishing air phase configuration seems to be handled providing
a realistic qualitative behavior. However, the SPs scheme is not able to reproduce this behavior. As a first explanation,
one notices that when the height of the air phase goes to zero, the matrix A∗2 involved in (3.14) to compute the air
pressure goes as well to zero and the system becomes hard to solve numerically. In order to cope with that issue, the
use of preconditioning techniques could be an area of investigation.

Figure 15: Snapshots w.r.t. time for the pipe filling case using the Rusanovs scheme. Height of the water phase in
blue.

This test may illustrate the ability of the compressible two-layer model to handle mixed flows at least using a
diffusive scheme as the Rusanovs scheme. Further investigations have to be led in order to adapt the SPs scheme to
the vanishing phases configuration.

6 Conclusion and further works

An implicit-explicit splitting scheme, namely SP, is presented to approximate the solutions of the compressible two-
layer model developed in [15]. The CFL condition associated to this scheme relies on material velocities but numerical
experiments are performed using acoustic as well as material time steps. In short, adding the Rusanov scheme for
comparison, the best accuracy is obtained with the proposed scheme used with acoustic time steps. Focusing on
material waves of the convective system, the efficiency of the latter is improved when using material steps.

More precisely, one obtains convergent approximations of analytical discontinuous solutions regarding the con-
vective part. As expected, the use of acoustic time steps leads better efficiency on fast waves while the material time
steps yields better efficiency on slow waves. When considering the source terms and the dambreak problem, the latter
comments cannot be extended. The use of acoustic time steps leads to encouraging results which meet the expected
behavior of the compressible two-layer model. However, the use of material time steps in this context yields unsatis-
factory results. Indeed, the approximation of slow gravity waves is particularly challenging and the proposed scheme
may not be fitted to deal correctly with it.

Dealing with mixed flows, one may also consider vanishing phases occurring in pressurized or dry flows. A first
attempt to address this challenge is done herein with the pipe filling test case. The explicit Rusanov scheme displays
interesting qualitative results but they are very diffusive. The proposed scheme is unable to compute this configuration
due to a lack of robustness in its implicit part.

Thus, the simulation of mixed flows using the compressible two-layer model needs further investigations. The
implicit-explicit approach seems relevant for the targeted applications but the associated splitting has to better account
for slow propagation phenomena and particularly gravity waves. Furthermore, a particular interest has to be paid to
vanishing phases introducing for instance preconditioning or threshold techniques to ensure the transition. Taking
advantage on the first results exposed herein, further works are conducted in that sense [14].

Acknowledgments. This work has been partially funded by ANRT and EDF through an EDF-CIFRE contract
749/2014. Computational facilities were provided by EDF.
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Appendix A Closure laws for the source terms

A.1 Pressure relaxation

In order to determine the time scale associated to pressure relaxation, one considers in [17] the evolution of a bubble
in an infinite medium using the Rayleigh-Plesset equation. Regarding the source term λp(PI −P2) in (2.1), the latter
approach is extended to our framework so that the λp function reads:

λp =
3

4πµ1

h1h2

H
, (A.1)

where µ1 is the dynamic viscosity of phase 1. For water, µ1 = 10−3 Pa.s at T = 20o C.

A.2 Velocity relaxation

Regarding the averaged momentum conservation equation (2.1c), the source λu(u2−u1) accounts for friction effects
between phases. Therefore, the function λu is modeled as a classical interfacial drag force which writes:

λu =
1
2

fiρ2|u1−u2|, (A.2)

where fi is a friction factor. In order to define fi, several experimental studies have been led since the pioneer work
of Taitel and Dukler in 1976, see [27]. In particular, fi should ideally depends on the flow regime. In the present
work, a constant value relying on experimental results for stratified air-water flows is chosen, that is fi ∼ 0.015
(see [22]). Indeed, the performed numerical experiments do not involve strong interfacial shear between the phases.
However, note that the numerical scheme proposed hereafter is independent from λu such that more complex laws can
be implemented.
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