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Let G be a simple undirected graph. A broadcast on G is a function

, where d G (u, v) denotes the distance between u and v in G. The broadcast independence number of G is then defined as the maximum cost of an independent broadcast on G.

In this paper, we study independent broadcasts of caterpillars and give an explicit formula for the broadcast independence number of caterpillars having no pair of adjacent trunks, a trunk being an internal spine vertex with degree 2.

Introduction

All the graphs we consider in this paper are simple and loopless undirected graphs. We denote by V (G) and E(G) the set of vertices and the set of edges of a graph G, respectively.

For any two vertices u and v of G, the distance d G (u, v) between u and v in G is the length (number of edges) of a shortest path joining u and v. The eccentricity e G (v) of a vertex v in G the maximum distance from v to any other vertex of G. The minimum eccentricity in G is the radius rad(G) of G, while the maximum eccentricity in G is the diameter diam(G) of G. Two vertices u and v with d G (u, v) = diam(G) are said to be antipodal.

A function f : V (G) → {0, . . . , diam(G)} is a broadcast if for every vertex v of G, f (v) ≤ e G (v). The value f (v) is called the f -value of v. Given a broadcast f on G, an f -broadcast vertex is a vertex v with f (v) > 0. The set of all f -broadcast vertices is denoted V + f . If u ∈ V + f is a broadcast vertex, v ∈ V (G) and d G (u, v) ≤ f (u), we say that u f -dominates v. In particular, every f -broadcast vertex f -dominates itself. The cost cost(f ) of a broadcast f on G is given by cost

(f ) = v∈V (G) f (v) = v∈V + f f (v).
A broadcast f on G is a dominating broadcast if every vertex of G is f -dominated by some vertex of V + f . The minimum cost of a dominating broadcast on G is the broadcast domination number of G, denoted γ b (G). A broadcast f on G is an independent broadcast if every fbroadcast vertex is f -dominated only by itself. The maximum cost of an independent broadcast In this paper, we determine the broadcast independence number of caterpillars having no pair of adjacent trunks. The paper is organised as follows. We introduce in the next section the main definitions and a few preliminary results on independent broadcasts of caterpillars. We then consider in Section 3 the case of caterpillars having no pair of adjacent trunks and prove our main result, which gives an explicit formula for the broadcast independence number of such caterpillars. We finally propose a few directions for future research in Section 4.

Preliminaries

Let G be a graph and H be a subgraph of G. Since d H (u, v) ≥ d G (u, v) for every two vertices u, v ∈ V (H), every independent broadcast f on G satisfying f (u) ≤ e H (u) for every vertex u ∈ V (H) is an independent broadcast on H. Hence we have:

Observation 4 If H is a subgraph of G and f is an independent broadcast on G satisfying f (u) ≤ e H (u) for every vertex u ∈ V (H), then the restriction f H of f to V (H) is an independent broadcast on H.

A caterpillar of length k ≥ 0 is a tree such that removing all leaves gives a path of length k, called the spine. Following the terminology of [START_REF] Seager | Dominating Broadcasts of Caterpillars[END_REF], a non-leaf vertex is called a spine vertex and, more precisely, a stem if it is adjacent to a leaf and a trunk otherwise. A leaf adjacent to a stem v is a pendent neighbour of v. We will always draw caterpillars with the spine on a horizontal line, so that we can speak about the leftmost of rightmost spine vertex of a caterpillar.

Note that a caterpillar of length 0 is nothing but a star K 1,n , for some n ≥ 1. The independent broadcast number of a star is easy to determine. Observation 5 For every integer n ≥ 1,

β b (K 1,n ) = n.
Indeed, an optimal broadcast f of K 1,n is obtained by setting to 1 the f -value of every pendent vertex of K 1,n , if n > 1, or of one of the two vertices of K 1,1 . Therefore, in the rest of the paper, we will only consider caterpillars of length k ≥ 1.

Let

N * = N \ {0}. We denote by CT (λ 0 , . . . , λ k ), k ≥ 1, with (λ 0 , . . . , λ k ) ∈ N * × N k-1 × N * , the caterpillar of length k ≥ 1 with spine v 0 . . . v k such that each spine vertex v i has λ i pendent neighbours. Note that for any caterpillar CT of length k ≥ 1, diam(CT ) = k + 2.
For every i such that λ i > 0, 0 ≤ i ≤ k, we denote by 1 i , . . . , λ i i the pendent neighbours of v i . Moreover, we denote by CT [a, b], 0 ≤ a ≤ b ≤ k, the subgraph of CT induced by vertices v a , . . . , v b and their pendent neighbours. The caterpillar CT (1, 0, 2, 1, 1, 2, 1, 0, 3) is depicted in Figure 1.

Let f be an independent broadcast on a caterpillar CT = CT (λ 0 , . . . , λ k ). We denote by f * the associated mapping from {v 0 , . . . , v k } to N defined by

f * (v i ) = f (v i ) + j=λ i j=1 f ( j i ), if λ i > 0, and f * (v i ) = f (v i ) otherwise,
for every i, 0 ≤ i ≤ k. Intuitively speaking, when λ i > 0, f * (v i ) gives the "weight" of the star-graph consisting of the vertex v i together with its pendent neighbours.

We will say that two independent broadcasts f 1 and f 2 on CT are similar whenever f * 1 = f * 2 . Observe that any two similar independent broadcasts have the same cost.

From Observation 1, we get that β b (CT ) ≥ 2(k+1) for every caterpillar CT = CT (λ 0 , . . . , λ k ). In particular, the function

f c on V (CT ) defined by f c ( 1 0 ) = f c ( 1 k ) = k + 1 and f c (u) = 0 for every vertex u ∈ V (CT ) \ { 1 0 , 1 k
} is an independent broadcast on CT with cost 2(k + 1). In the following, we will call any independent broadcast f similar to f c and such that

|V + f | = 2 a canonical independent broadcast.
The following lemma shows that, for any caterpillar CT = CT (λ 0 , . . . , λ k ), no independent broadcast f on CT with f (v) > 0 for some stem v can be optimal.

Lemma 6 If CT = CT (λ 0 , . . . , λ k ) is a caterpillar of length k ≥ 1 and f is an independent broadcast on CT with f (v i ) > 0 for some stem v i , 0 ≤ i ≤ k, then there exists an independent broadcast f on CT with cost(f ) > cost(f ).

Proof. Since f (v i ) > 0 and f is an independent broadcast, we have f ( j i ) = 0 for every j,

1 ≤ j ≤ λ i . Consider the function f defined by f (v i ) = 0, f ( 1 i ) = f (v i ) + 1 and f (u) = f (u) for every vertex u ∈ V (CT ) \ {v i , 1 i }. Since d CT ( 1 i , u) = d CT (v i , u) + 1 for every vertex u ∈ V (CT ) \ { 1
i }, we get that f is an independent broadcast on CT . Moreover, we clearly have cost(f ) = cost(f ) + 1.

The following lemma shows that for every optimal independent broadcast on a caterpillar, at least one pendent vertex of each of the end-vertices of the spine is a broadcast vertex.

Lemma 7 Let CT = CT (λ 0 , . . . , λ k ) be a caterpillar of length k ≥ 1. If f is an optimal independent broadcast on CT , then f * (v 0 ) -f (v 0 ) = 0 and f * (v k ) -f (v k ) = 0.
Proof. We know by Lemma 6 that f (v 0 ) = 0. Suppose, contrary to the statement of the lemma, that f ( j 0 ) = 0 for every j, 1 ≤ j ≤ λ 0 . Let u be the f -broadcast vertex that dominates 1 0 and let f (u) = x. By Lemma 6, u is either a leaf or a trunk. If u is a leaf, say u = j i , 1 ≤ i ≤ k, 1 ≤ j ≤ λ i , let f be the mapping defined by f ( 1 0 ) = x + i, f (u) = 0 and f (u ) = f (u ) for every vertex u ∈ V (CT ) \ { 1 0 , u}. Note that every vertex which was f -dominated by u is now f -dominated by 1 0 . The mapping f is thus an independent (cost(f ) + i)-broadcast on CT , contradicting the optimality of f .

If u is a trunk, say u = v i , 1 ≤ i ≤ k -1, we similarly define a mapping f by letting f ( 1 0 ) = x + i + 1, f (u) = 0 and f (u ) = f (u ) for every vertex u ∈ V (CT ) \ { 1 0 , u}. The mapping f is thus an independent (cost(f ) + i + 1)-broadcast on CT , again contradicting the optimality of f . The case f ( j k ) = 0 for every j, 1 ≤ j ≤ λ k , follows by symmetry.

Observe that Lemma 7 can be extended to trees as follows:

Lemma 8 Let T be tree and T be a subtree of T , of order at least 2, with root r. Let f be an optimal independent broadcast on T . If r is an f -broadcast vertex, then T contains at least one other f -broadcast vertex. In particular, if T is a subtree of height 1 (that is, e T (r) = 1), then f (r) = 0.

Proof. Suppose to the contrary that f (r) > 0 and f (u) = 0 for every vertex u ∈ V (T ) \ {r}.

Let t = e T (r) and t = e T -(T -r) (r). If f (r) < t , the independent broadcast f given by f (v) = f (r) for some vertex v in T with d T (r, v) = t and f (u) = f (u) for every vertex u ∈ V (T ) \ {v} is such that cost(f ) = cost(f ) + f (r), contradicting the optimality of f . If f (r) ≥ t , then r is the unique f -broadcast vertex, which implies cost(f ) < 2(diam(T )-1), again contradicting the optimality of f by Observation 1.

Hence t > f (r) ≥ t . Let now v be any neighbour of r in T . Since t > f (r) ≥ t , we have e T (v) = e T (r) + 1 = t + 1 > f (r) + 1. The function f defined by f (r) = 0, f (v) = f (r) + 1 and f (u) = f (u) for every vertex u ∈ V (T ) \ {r, v} is therefore an independent broadcast on T with cost(f ) = cost(f ) + 1, contradicting the optimality of f . This completes the proof.

3 Caterpillars with no pair of adjacent trunks

In this section we determine the broadcast independence number of caterpillars with no pair of adjacent trunks. We first introduce some notation and useful lemmas. We say that an independent broadcast f of a caterpillar CT is an optimal non-canonical independent broadcast on CT if

(i) |V + f | = 2 or f * = f * c (f is non-canonical)
, and (ii) for every independent broadcast f on CT with

|V + f | = 2 or f * = f * c , cost(f ) ≥ cost(f ) (f is
optimal among all non-canonical independent broadcasts).

Let CT = CT (λ 0 , . . . , λ k ) be a caterpillar of length k ≥ 1 with no pair of adjacent trunks. We denote by

λ(CT ) = i=k i=0 λ i
the number of leaves of CT , and by

τ (CT ) = |{i | 1 ≤ i ≤ k -1 and λ i = 0}|
the number of trunks of CT .

We will compute the broadcast independence number of a caterpillar with no pair of adjacent trunks by counting the number of some specific patterns. More precisely, we say that a pattern of length p + 1, Π = π 0 . . . π p , p ≥ 0, π i ∈ N for every i, 0 ≤ i ≤ p, occurs in a caterpillar CT = CT (λ 0 , . . . , λ k ) if there exists an index i 0 , 0 ≤ i 0 ≤ k -p, such that CT [i 0 , i 0 + p] = CT (π 0 , . . . , π p ), that is, λ i 0 +j = π j for every j, 0 ≤ j ≤ p. We will also say that the caterpillar CT contains the pattern Π and that the subgraph CT (λ i 0 , . . . , λ i 0 +p ) of CT is an occurrence of the pattern Π. For instance, the caterpillar CT (1, 0, 2, 1, 1, 2, 1, 0, 3), depicted on Figure 1, contains once the pattern 211 and twice the pattern 10.

We now extend the notation for patterns as follows:

• By π + i , we mean a spine vertex having at least π i pendent neighbours; • By π - i , we mean a spine vertex having at most π i pendent neighbours; • By [Π, we mean that the pattern Π occurs and starts at the leftmost stem v 0 ,

• By Π], we mean that the pattern Π occurs and ends at the rightmost stem v k ,

• By {Π, Π }, we mean either the pattern Π or the pattern Π .

• By π 0 (π 1 π 2 ) +r π 3 , we mean a maximal pattern of the form

π 0 π 1 π 2 π 3 or π 0 π 1 π 2 . . . π 1 π 2 r times, r ≥ 2 π 3 ,
where maximal here means that the subpattern π 1 π 2 is repeated at least once and as many times as possible.

• By π 0 (π 1 π 2 ) * r π 3 , we mean a maximal pattern of the form

π 0 π 3 , π 0 π 1 π 2 π 3 or π 0 π 1 π 2 . . . π 1 π 2 r times, r ≥ 2 π 3 ,
where maximal here means that the subpattern π 1 π 2 is repeated as many times as possible.

[11 We can also combine these notations, so that, for instance, π + i ] denotes that the rightmost stem v k has at least π i pendent neighbours, and {π i , [}Π denotes either the pattern π i Π or the pattern [Π.

+ 1 + 11 + 1 + 2 -(02 -) +r 1 + 02 -(02 -) * r ]
One can check that the caterpillar CT (1, 0,

, depicted on Figure 1, contains once each of the four patterns [START_REF] Blair | Broadcast domination algorithms for interval graphs, series-parallel graphs and trees[END_REF][START_REF] Bouchemakh | On a conjecture of Erwin[END_REF], 2 + ] and 2111 + , twice the pattern 0{2, 3}, and thrice the pattern 1 + 1 + 1 + . On the other hand, the caterpillar CT (1, 0, 2, 0, 2, 0, 2, 1, 0, 3) contains only once the pattern 1 + 0(20) +r 1 + , namely on the sub-caterpillar CT (1, 0, 2, 0, 2, 0, 2) with explicit pattern 1020202.

For any pattern Π and any caterpillar CT , we will denote by # CT (Π) the number of occurrences of the pattern Π in CT . Moreover, if M is an occurrence of Π in CT , we define the value

α 1 (M ) = max{0, # M (1) -1},
that is, the number of stems v i in M with λ i = 1 minus 1-or 0 if M contains no such stem-, and the value

α 2 (M ) = α 1 (M ) + # M ([1 + ) + # M (1 + ]),
that is, α 1 (M ) plus 0, 1 or 2, depending on whether M contains no end-vertex of CT , one end-vertex of CT or both end-vertices of CT , respectively. We then extend the functions α 1 and α 2 to the whole caterpillar CT by setting

α 1 (CT ; Π) = M occurrence of Π α 1 (M ) and α 2 (CT ; Π) = M occurrence of Π α 2 (M ).
Finally, for any caterpillar CT , we define the value β * (CT ) as follows:

β * (CT ) = λ(CT ) + τ (CT ) + # CT ({1 + , [}1{1 + , ]}) + α 1 (CT ; 1 + 2 -(02 -) +r 1 + ) + α 2 (CT ; 02 -(02 -) * r 0) + α 2 (CT ; [2 -(02 -) * r 0) + α 2 (CT ; 02 -(02 -) * r ]).
Sample patterns involved in the above formula are illustrated in Figure 2. In the figure, a pattern with a line to the left or right hand side of its spine cannot occur at the left or right end of the caterpillar, respectively. A pattern with a dashed line to the left or right hand side of its spine can occur at the left or right end of the caterpillar, respectively, or in the middle of the caterpillar. A dashed edge is an optional edge (used for pattern 2 -, corresponding to a spine vertex with either one or two pendent neighbours).

Let us say that two distinct occurrences of patterns overlap if they share a common vertex. Due to the specific structure of the patterns used in the above formula (and, in particular, of the maximality of the number of repetitions of subpatterns of the form Π +r or Π * r ), we have the following:

Observation 9 In every caterpillar CT of length k ≥ 1,
1. no occurrence of the pattern 02 -(02 -) * r 0 can overlap with an occurrence of a pattern

{1 + , [}1{1 + , ]}, 1 + 2 -(02 -) +r 1 + , 02 -(02 -) * r 0, [2 -(02 -) * r 0 or 02 -(02 -) * r ],
2. no occurrence of the pattern [2 -(02 -) * r 0 can overlap with an occurrence of a pattern

{1 + , [}1{1 + , ]}, or 1 + 2 -(02 -) +r 1 + ,
3. no occurrence of the pattern 02 -(02 -) * r ] can overlap with an occurrence of a pattern

{1 + , [}1{1 + , ]} or 1 + 2 -(02 -) +r 1 + , 4. if two occurrences of the patterns [2 -(02 -) * r 0 and 02 -(02 -) * r ] overlap, then CT is a caterpillar with pattern [2 -(02 -) * r ].
We first prove that every caterpillar with no pair of adjacent trunks admits an independent broadcast f with cost(f ) = β * (CT ).

Lemma 10 Every caterpillar CT = CT (λ 0 , . . . , λ k ) of length k ≥ 1, with no pair of adjacent trunks, admits an independent broadcast f with cost(f ) = β * (CT ).

Proof. We will construct a sequence of independent broadcasts f 1 , . . . , f 4 , step by step, such that cost(f 4 ) = β * (CT ). Each independent broadcast f i , 2 ≤ i ≤ 4, is obtained by possibly modifying the independent broadcast f i-1 and is such that cost(f i ) ≥ cost(f i-1 ). Moreover, for each independent broadcast f i , 1 ≤ i ≤ 4, we will have f i (v) = 0 whenever v is a stem. These modifications are illustrated in Figures 3 and4, using the same drawing conventions as in Figure 2. Only useful broadcast values are given in these figures. These figures should help the reader to see that all the proposed modifications lead to a new valid independent broadcast.

Step 1. Let f 1 be the mapping defined by f 1 (v) = 1 if v is a pendent vertex or a trunk, and

f 1 (v) = 0 otherwise. Clearly, f 1 is an independent broadcast on CT with cost(f 1 ) = λ(CT ) + τ (CT ).
Step 2. Let f 2 be the mapping defined by

f 2 (v) = 2 if v = 1 i for some i, 0 ≤ i ≤ k, such that (i) λ i = 1, (ii) i = 0 or λ i-1 ≥ 1, and (iii) i = k or λ i+1 ≥ 1, and f 2 (v) = f 1 (v) otherwise (see Figure 3(a)). Again, f 2 is an independent broadcast on CT with cost(f 2 ) = cost(f 1 ) + # CT ({1 + , [}1{1 + , ]}).
Step 3. Suppose that CT contains the pattern 1 + 2 -(02 -) +r 1 + , of length 2r + 3, and let M = CT [i 0 , i 0 +2r +2] be the corresponding occurrence of this pattern. We thus have f 2 (v) = 1 for every trunk of M and for every pendent neighbour of a stem vertex v j on M with i 0 + 1 ≤ j ≤ i 0 + 2r + 1. Hence, the cost of the restriction

f 2 of f 2 to M is cost(f 2 ) = f * 2 (v i 0 ) + λ(M [i 0 + 1, i 0 + 2r + 1]) + τ (M ) + f * 2 (v i 0 +2r+2 ).
We modify f 2 as follows, to obtain

f 3 . If the subgraph M [i 0 + 1, i 0 + 2r + 1] contains a stem vertex v i with λ i = 1, we let 1 1 -→ 2 1 1 1 1 -→ 1 2 1 (a) From f 1 to f 2 1 1 1 1 1 1 1 -→ 1 1 0 3 0 1 1 (b) From f 2 to f 3 , pattern 1 + 201021 + , cost(f 3 ) = cost(f 2 ) + (1 -1) 1 1 1 1 1 1 1 1 1 1 1 -→ 1 1 0 3 0 3 0 0 3 0 2 (c) From f 2 to f 3 , pattern 1 + 2010201011 + , cost(f 3 ) = cost(f 2 ) + (3 -1)
Figure 3: Proof of Lemma 10: from f 1 to f 3

• f 3 ( 1 i 0 +1 ) = 2 if λ i 0 +1 = 1, • f 3 ( 1 i 0 +2r+1 ) = 2 if λ i 0 +2r+1 = 1, • f 3 ( 1 i 0 +2j+1 ) = 3 (and f 3 ( 2 i 0 +2j+1 ) = 0 if λ i 0 +2j+1 = 2) for every j, 1 ≤ j ≤ r -1, • f 3 (v i 0 +2j ) = 0 for every j, 1 ≤ j ≤ r, (see Figure 3(b) and (c)). The cost of the restriction f 3 of f 3 on M is then cost(f 3 ) = cost(f 2 ) + max{0, # M [i 0 +1,i 0 +2r+1] (1) -1} = cost(f 2 ) + α 1 (M ).
By Observation 9, two occurrences of the pattern 1 + 2 -(02 -) +r 1 + can only overlap on their end-vertices. Therefore, doing the above modification for every occurrence of the pattern

1 + 2 -(02 -) +r 1 + in M , the so-obtained independent broadcast f 3 satisfies cost(f 3 ) = cost(f 2 ) + α 1 (CT ).
Step 4. Suppose first that CT contains the pattern 02 -(02 -) * r 0, of length 2r + 3, and let

M = CT [i 0 , i 0 + 2r + 2], i 0 ≥ 1, i 0 + 2r + 2 ≤ k -1,
be the corresponding occurrence of this pattern. We thus have f 2 (v) = 1 for every trunk of M and for every pendent neighbour of a stem vertex v j on M with i 0 + 1 ≤ j ≤ i 0 + 2r + 1. Hence, the cost of the restriction

f 3 of f 3 to M is cost(f 3 ) = f * 3 (v i 0 ) + λ(M ) + τ (M [i 0 + 1, i 0 + 2r + 1]) + f * 3 (v i 0 +2r+2
). We modify f 3 as follows, to obtain

f 4 . If the subgraph M [i 0 + 1, i 0 + 2r + 1] contains a stem vertex v i with λ i = 1, we let • f 4 ( 1 i 0 +2j+1 ) = 3 (and f 4 ( 2 i 0 +2j+1 ) = 0 if λ i 0 +2j+1 = 2) for every j, 0 ≤ j ≤ r, • f 4 (v i 0 +2j ) = 0 for every j, 0 ≤ j ≤ r, (see Figure 4(a)). The cost of the restriction f 4 of f 4 on M is then cost(f 4 ) = cost(f 3 ) + max{0, # M (1) -1} = cost(f 3 ) + α 2 (M ).
Suppose now that CT contains the pattern [2 -(02 -) * r 0, of length 2r + 2, and let M = CT [0, 2r + 1] be the corresponding occurrence of this pattern. Doing the same type of modification as above (see Figure 4(b)), the cost of the restriction

f 4 of f 4 on M is then cost(f 4 ) = cost(f 3 ) + max{0, # M (1) -1} + 1 = cost(f 3 ) + α 2 (M ).
Finally, if CT contains the pattern 02 -(02 -) * r ] and CT is not a caterpillar with pattern [2 -(02 -) * r ], the same type of modification leads to the same property.

By Observation 9, no two occurrences of the patterns 02 -(02 -) * r 0 and [2 -(02 -) * r 0 (or 02 -(02 -) * r 0 and 02 -(02 -) * r ]) can overlap. Therefore, doing the above modification for every occurrence of these patterns in M , the so-obtained independent broadcast

f 4 satisfies cost(f 4 ) = cost(f 3 ) + α 2 (CT ) = β * (CT ).
This completes the proof.

The next lemma shows that if f is an optimal non-canonical independent broadcast on a caterpillar CT with no pair of adjacent trunks, with cost(f ) > 2(diam(CT ) -1), then there exists an optimal non-canonical independent broadcast f on CT such that the f -values of the pendent neighbours of v 0 and v k only depend on the values of λ 0 , λ 1 and λ k-1 , λ k , respectively: Lemma 11 Let CT = CT (λ 0 , . . . , λ k ) be a caterpillar of length k ≥ 1, with no pair of adjacent trunks. If f is an optimal non-canonical independent broadcast on CT with cost(f ) > 2(diam(CT ) -1), then there exists an optimal non-canonical independent broadcast f on CT , thus with cost( f ) = cost(f ), such that, for every i ∈ {0, k}, we have 

f 3 to f 4 1. if λ i = 1 and λ i ≥ 1, then f ( 1 i ) = 2, 2. if λ i = 1 and λ i = 0, then f ( 1 i ) = 3, 3. if λ i = 2 and λ i ≥ 1, then f ( 1 i ) = f ( 2 i ) = 1, 4. if λ i = 2 and λ i = 0, then f ( 1 i ) = 3 and f ( 2 i ) = 0, 5. if λ i ≥ 3, then f ( j i ) = 1 for every j, 1 ≤ j ≤ λ i , where i = 1 if i = 0, or i = k -1 if i = k.
Proof. Note first that if such a broadcast f exists, then, by Lemma 6, f (u) = 0 for every stem u of CT . Therefore, the value of 1≤j≤λ i f ( j i ) cannot be strictly less than the value claimed in the lemma since otherwise it would contradict the optimality of f . By symmetry, it is enough to prove the lemma for the pendent neighbours of v 0 . Let CT 0 = CT (λ 0 , . . . , λ k ) be a minimal counterexample, with respect to the subgraph order, to the lemma. That is, every sub-caterpillar of CT 0 satisfies the statement of the lemma and, for every optimal non-canonical independent broadcast f on CT 0 with cost(f ) > 2(diam(CT ) -1), there is a pendent neighbour, say 1 0 without loss of generality, of v 0 such that f ( 1 0 ) = x and x is strictly greater than the value claimed by the lemma (note that, in case 3, if f ( 1 0 ) = 2 (resp. 0) and f ( 2 0 ) = 0 (resp. 2), then we can equivalently assign the value 1 to both of them). We will prove that such a minimal counterexample cannot exist.

Let f 0 be any such independent broadcast on CT 0 for which the value f ( 1 0 ) = x is minimal. We thus have x ≥ 3 whenever λ 1 > 0 or λ 0 ≥ 3 (since in this latter case we can assign value 1 to each of the at least three pendent neighbours of v 0 , and thus x = 2 would imply that f 0 is not optimal), and x ≥ 4 whenever λ 1 = 0.

Since f 0 ( 1 0 ) = x > 1, we have f * 0 (v i ) = 0 for every i, 1 ≤ i ≤ x -2, and f 0 (v x-1 ) = 0. Moreover, x -1 < k since f 0 is a non-canonical independent broadcast, and v x-1 cannot be a trunk, since otherwise we could set f 0 ( 1 0 ) = x + 1 (recall that, by Lemma 6, f 0 (v i ) = 0 for every stem v i , and thus f 0 (v x ) = 0), contradicting the optimality of f 0 .

Let now CT 1 = (λ x-1 , . . . , λ k ) be the caterpillar obtained from CT 0 by deleting vertices v 0 , . . . , v x-2 and their pendent neighbours (see Figure 5(a)). Note that f 0 (u) = 0 for every such deleted vertex u = 1 0 . Let f 1 denote the restriction of f 0 to V (CT 1 ). Since f 0 ( 1 0 ) = x, we get

f 1 (u) = f 0 (u) ≤ max{e CT 1 (u), d CT 0 (u, 1 0 )} ≤ e CT 1 (u)
for every vertex u ∈ V (CT 1 ), so that f 1 is an independent broadcast on CT 1 by Observation 4. Moreover, since diam(CT 1 ) = diam(CT 0 ) -x + 1, we have

cost(f 1 ) = cost(f 0 ) -x > 2(diam(CT 0 ) -1) -x = 2(diam(CT 1 ) -1) + x -2.
Since x > 1, we thus have cost(f 1 ) ≥ 2(diam(CT 1 ) -1). Therefore, since CT 0 is a minimal counterexample, we get that either f 1 is a canonical independent broadcast on CT 1 or there exists an optimal non-canonical independent broadcast f 1 on CT 1 with cost(f 1 ) ≥ cost(f 1 ) and f 1 satisfies the statement of the lemma. Suppose first that f 1 is a canonical independent broadcast. This implies cost(f 1 ) = 2(diam(CT 1 ) -1).

Hence, cost(f 0 ) = cost(f 1 ) + x = 2(diam(CT 1 ) -1) + x < 2(diam(CT 0 ) -1), which contradicts our assumption on cost(f 0 ). Therefore, there exists an optimal non-canonical independent broadcast f 1 on CT 1 with cost(f 1 ) ≥ cost(f 1 ) satisfying the statement of the lemma. If cost(f 1 ) > cost(f 1 ), the mapping f 0 given by f 0 (u) = f 1 (u) for every vertex u ∈ V (CT 1 ) and f 0 (u) = f 0 (u) for every vertex u ∈ V (CT 0 ) \ V (CT 1 ), is a non-canonical independent broadcast f 0 on CT 0 (since x ≥ 3) that contradicts the optimality of f 0 .

Hence, f 1 is optimal and thus satisfies the statement of the lemma. Let f1 be the noncanonical independent broadcast satisfying items 1 to 5 of the lemma, and let m = max f1 ( j x-1 ), 1 ≤ j ≤ λ x-1 .

We consider two cases, depending on whether v x-2 is a stem or not. Recall that v x-2 = v 0 , since x ≥ 3.

1. λ x-2 > 0.
Let f 0 be the non-canonical independent broadcast on CT 0 given by f 0

( 1 0 ) = x -1, f 0 ( 1 x-2 ) = 2, f 0 (u) = 0 for every vertex u ∈ V (CT 0 ) \ (V (CT 1 ) ∪ { 1 0 , 1 x-2 })
, and either f 0 (u) = f1 (u) for every vertex u ∈ V (CT 1 ), if m ≤ 2 (see Figure 5(b)), or f 0 ( 1x-1 ) = 2 and f 0 (u) = f1 (u) for every vertex u ∈ V (CT 1 )\{ 1

x-1 }, if m = 3 (see Figure 5(c)). We then get cost(f 0 ) = cost(f 0 ) + 1 if m ≤ 2, contradicting the optimality of f 0 , or cost(f 0 ) = cost(f 0 ) if m = 3, in which case either f 0 satisfies items 1 to 5 of the lemma or contradicts the minimality of x.

2. λ x-2 = 0.

If x = 3, then λ 1 = 0 which implies x ≥ 4, a contradiction. Hence, we have x ≥ 4, and thus v x-3 = v 0 . Let f 0 be the non-canonical independent broadcast on CT 0 given by

f 0 ( 1 0 ) = x-2, f 0 ( 1 x-3 ) = 2, f 0 (u) = 0 for every vertex u ∈ V (CT 0 )\(V (CT 1 )∪{ 1 0 , 1
x-3 }), and f 0 (u) = f1 (u) for every vertex u ∈ V (CT 1 ) (see Figure 5(d)). We then get cost(f 0 ) = cost(f 0 ), and thus either f 0 satisfies items 1 to 5 of the lemma or contradicts the minimality of x.

This concludes the proof.

We now consider the internal stems of a caterpillar. Recall that, by Lemma 6, f (v i ) = 0 for every internal stem v i of CT , 1 ≤ i ≤ k -1. The next lemma shows that if f is an optimal non-canonical independent broadcast on a caterpillar CT with no pair of adjacent trunks, with cost(f ) > 2(diam(CT ) -1), then there exists an optimal non-canonical independent broadcast f on CT such that f

* (v i ) -f (v i ) = f * (v i ) > 0 for every internal stem v i of CT , 1 ≤ i ≤ k -1.
Lemma 12 Let CT = CT (λ 0 , . . . , λ k ) be a caterpillar of length k ≥ 1, with no pair of adjacent trunks. If f is an optimal non-canonical independent broadcast on CT with cost(f ) > 2(diam(CT ) -1), then there exists an optimal non-canonical independent broadcast f on CT , thus with cost( f ) = cost(f ), such that:

1. f satisfies the five items of Lemma 11, 2. for every i,

1 ≤ i ≤ k -1, if λ i > 0, then f * (v i ) > 0.
Proof. We know by Lemma 11 that there exists an optimal non-canonical independent broadcast f on CT , with cost( f ) = cost(f ), satisfying the five items of Lemma 11. Moreover, one suppose that f has been chosen in such a way that V + f contains the largest possible number of pendent vertices.

Suppose to the contrary that there exists a vertex v i , 1 ≤ i ≤ k -1, with λ i > 0 and f * (v i ) = 0, and that for every j < i, f * (v j ) > 0 whenever λ j > 0. We consider three cases.

1. i = 1 or i = k -1.
By symmetry, it suffices to consider the case i = 1. By Lemma 11, we know that f ( j 0 ) ≤ 2 for every j, 1 ≤ j ≤ λ 0 . Therefore, no pendent neighbour of v 1 is f -dominated by a pendent neighbour of v 0 . Let y be the vertex of CT that f -dominates the pendent neighbours of discussed in Case (a) above, we necessarily have λ i-1 > 0. Moreover, we necessarily have f (y 1 ) = 3 and f (y 2 ) ≥ 2. Let now g be the mapping defined as follows. For every vertex u of CT , let

x v 0 v 1 v x-1 v k (a) The sub-caterpillar CT 1 x 0 m v 0 v x-2 v x-1 -→ x -1 2 m v 0 v x-2 v x-1 (b) λ x-2 > 0 and m ≤ 2 x 0 3 v 0 v x-2 v x-1 -→ x -1 2 2 v 0 v x-2 v x-1 (c) λ x-2 > 0 and m = 3 x 0 m v 0 v x-3 v x-2 v x-1 -→ x -2 2 m v 0 v x-3 v x-2 v x-1 (d) λ x-2 = 0
g(u) =              f (y 1 ) -1 if u = y 1 , f (y 2 ) -1 if u = y 2 , 2 if u = 1 i , 1 if u = 1 i , u is f -dominated only by y 2 and d CT (u, y 2 ) = f (y 2 ), f (u) otherwise.
Note here that no vertex at distance f (y 1 ) from y 1 can be f -dominated only by y 1 . Indeed, suppose that such a vertex, say w, exists. Clearly, w cannot be "to the left of v i " since this would imply w = v i-3 and λ i-2 = 0, but in that case w is also f -dominated by at least one of its pendent neighbours. On the other hand, w cannot be "to the right of v i " since in that case w would also be f -dominated by y 2 . Again, using similar arguments, the above-defined mapping is a non-canonical independent broadcast on CT with cost(g) ≥ cost( f ) and the contradiction arises as in Cases 1 and 2.

We thus get a contradiction in each case. This completes the proof.

Our aim now is to prove that if f is an optimal non-canonical independent broadcast on a caterpillar CT with no pair of adjacent trunks, with cost(f ) > 2(diam(CT ) -1), then cost(f ) = cost(β * ) (Lemma 16 below). We first prove that for every such broadcast f , f (v i ) ≤ 1 for every trunk v i . This easily follows from Lemma 12.

Lemma 13 Let CT = CT (λ 0 , . . . , λ k ) be a caterpillar of length k ≥ 1, with no pair of adjacent trunks. If f is an optimal non-canonical independent broadcast on CT with cost(f ) > 2(diam(CT ) -1), then there exists an optimal non-canonical independent broadcast f on CT , thus with cost( f ) = cost(f ), such that:

1. f satisfies the two items of Lemma 12, 2. for every i,

1 ≤ i ≤ k -1, if λ i = 0, then f * (v i ) ≤ 1.
Proof. We know by Lemma 12 that there exists an optimal non-canonical independent broadcast f on CT satisfying the two items of Lemma 12, so that, in particular, f * (v j ) > 0 for every stem v j , 0 ≤ j ≤ k. Since CT has no pair of adjacent trunks, and f is independent, we thus necessarily have f

* (v i ) ≤ 1 for every trunk v i , 1 ≤ i ≤ k -1.
Finally, the next lemma will show that the cost of any optimal non-canonical independent broadcast on a caterpillar CT of length k ≥ 1 with no pair of adjacent trunks cannot exceed the value β * (CT ).

We first introduce more notation. Let CT be a caterpillar of length k ≥ 1, with no pair of adjacent trunks. We denote by σ a sequence of consecutive spine vertices in CT , that is, σ = v i . . . v i+ -1 , with ≤ k+1 and 0 ≤ i ≤ k-+1. For such a given sequence σ = v i . . . v i+ -1 , we denote by t σ the number of trunks in σ, that is,

t σ = |{v j | i ≤ j ≤ i + -1 and λ j = 0}| .
If f is an independent broadcast on CT , we then denote by f * (σ) the weight of σ, that is,

f * (σ) = 0≤j≤ -1 f * (v i+j ).
Lemma 14 Let CT = CT (λ 0 , . . . , λ k ) be a caterpillar of length k ≥ 1, with no pair of adjacent trunks, and f be an optimal non-canonical independent broadcast on CT with cost(f ) > 2(diam(CT ) -1). Then there exists an optimal non-canonical independent broadcast f on CT , thus with cost( f ) = cost(f ), such that:

1. f satisfies the two items of Lemma 13. Proof. We consider the six items of the lemma.

For every

i, 0 ≤ i ≤ k, if λ i ≥ 3, then f * (v i ) ≤ λ i . 3. If v a v a+1 , 0 ≤ a < k, is an occurrence of the pattern 1 + 2 -(resp. of the pattern 2 -1 + ), then f * (v a+1 ) ≤ 2 (resp. f * (v a ) ≤ 2).
1. We know by Lemma 13 that there exists an optimal non-canonical independent broadcast f on CT satisfying the two items of Lemma 13, so that, in particular, f * (v i ) > 0 for every stem v i , 0 ≤ i ≤ k and f * (v j ) ≤ 1 for every trunk v j , 1 ≤ j ≤ k -1. We thus assume for all following items that such an optimal non-canonical independent broadcast f on CT has been chosen.

2. Suppose to the contrary that there exists some i, 0 ≤ i ≤ k, with f * (v i ) > λ i ≥ 3. This implies that v i has exactly one pendent neighbour, say 1 i without loss of generality, which is an f -broadcast vertex. Since f ( 1 i ) ≥ 4, we necessarily have a stem v with d CT (v i , v) ≤ 2 and f * (v) = 0, contradicting our assumption that f satisfies Lemma 12.

3. Let v a v a+1 , 0 ≤ a < k, be an occurrence of the pattern 1 + 2 -(the case 2 -1 + is similar, by symmetry). By Lemmas 6 and 12, we know that f * (v a ) > 0 and f (v a ) = 0. This clearly implies f * (v a+1 ) ≤ 2.

4. Let v a σv b = v i v i+1 . . . v i+2r+2 be an occurrence of the pattern 1 + 2(02) +r 1 + , for some i, 0 ≤ i ≤ k -2r -2. We thus have t σ = r. Since f satisfies Lemma 13, we have f * (v i ) > 0, f * (v i+2r+2 ) > 0, f * (v i+2j+1 ) > 0 for every j, 0 ≤ j ≤ r, and f * (v i+2j ) ≤ 1 for every j,

1 ≤ j ≤ r. This implies f * (v i+1 ) ≤ 2, f * (v i+2r+1 ) ≤ 2, and f * (v i+2j+1 ) ≤ 3 for every j, 1 ≤ j ≤ r -1. (1) 
We consider three subcases, according to the number of trunks in σ that are broadcast vertices.

(a) f (v i+2j ) = 1 for every j, 1 ≤ j ≤ r.

In that case, every pendent vertex in σ is an f -broadcast vertex, with f -value 1. This gives f * (σ) = λ(σ) + τ (σ) ≤ 2(r + 1) + r = 3r + 2 = 3t σ + 2, if v a σv b is an occurrence of the pattern 1 + 2(02) +r 1 + , and

f * (σ) = λ(σ) + τ (σ) ≤ 1 + 2r + r = 3r + 1 = 3t σ + 1,
otherwise (since we have at least one stem in σ with f -value 1). (b) f (v i+2j ) = 0 for every j, 1 ≤ j ≤ r.

In that case, by (1), we get f * (σ) ≤ 2 + 3(r -1) + 2 = 3r + 1 = 3t σ + 1.

(c) Not all trunks in σ have the same f -value. Suppose that f has been chosen in such a way that the number of trunks in σ with f -value 0 is maximal. In that case, σ contains two consecutive trunks, say v i+2j 0 and v i+2j 0 +2 , 1 ≤ j 0 ≤ r -1, with f (v i+2j 0 ) = 0 and f (v i+2j 0 +2 ) = 1, without loss of generality (by symmetry). This implies f * (v i+2j 0 +1 ) = λ i+2j 0 +1 ≤ 2. We can then modify f by setting f (v i+2j 0 ) = f (v i+2j 0 +2 ) = 0, f ( 1 i+2j 0 +1 ) = 3 (and f ( 2 i+2j 0 +1 ) = 0 if λ i+2j 0 +1 = 2), contradicting our assumption on the maximality of the number of trunks with f -value 0. Therefore, this case cannot occur and we are done.

5. The proof uses the same ideas as the proof of the previous case. Let σ = v i v i+1 . . . v i+2r+2 be an occurrence of the pattern 02 -(02 -) * r 0, for some i, 1 ≤ i ≤ k -2r -3. We thus have t σ = r + 2. Since f satisfies Lemma 13, we have

0 < f * (v i+2j+1 ) ≤ 3 for every j, 0 ≤ j ≤ r, (2) 
and f * (v i+2j ) ≤ 1 for every j, 0 ≤ j ≤ r + 1.

We consider three subcases, according to the number of trunks in σ that are broadcast vertices.

(a) f (v i+2j ) = 1 for every j, 0 ≤ j ≤ r + 1.

In that case, every pendent vertex in σ is an f -broadcast vertex, with f -value 1. This gives f *

(σ) = λ(σ) + τ (σ) ≤ 2(r + 1) + r + 2 = 3r + 4 = 3t σ -2,
if σ is an occurrence of the pattern 02(02) * r 0, and

f * (σ) = λ(σ) + τ (σ) ≤ 1 + 2r + r + 2 = 3r + 3 = 3t σ -3,
otherwise (since we have at least one stem in σ with f -value 1). (b) f (v i+2j ) = 0 for every j, 0 ≤ j ≤ r + 1.

In that case, by ( 2) and (3), we get f * (σ) ≤ 3(r + 1) = 3r + 3 = 3t σ -3.

(c) Not all trunks in σ have the same f -value. Suppose that f has been chosen in such a way that the number of trunks in σ with f -value 0 is maximal. In that case, σ contains two consecutive trunks, say v i+2j 0 and v i+2j 0 +2 , 0 ≤ j 0 ≤ r, with f (v i+2j 0 ) = 0 and f (v i+2j 0 +2 ) = 1, without loss of generality (by symmetry). This implies f * (v i+2j 0 +1 ) = λ i+2j 0 +1 ≤ 2. We can then modify f by setting f

(v i+2j 0 ) = f (v i+2j 0 +2 ) = 0, f ( 1 i+2j 0 +1 ) = 3 (and f ( 2 i+2j 0 +1 ) = 0 if λ i+2j 0 +1 = 2
), contradicting our assumption on the maximality of the number of trunks with f -value 0. Therefore, this case cannot occur and we are done.

6. Let v 0 . . . v 2r+1 be an occurrence of the pattern [2 -(02 -) * r 0 (the case 02 -(02 -) * r ] is similar, by symmetry). We first prove that for every i, 0 ≤ i ≤ r, f * (v 2i ) + f * (v 2i+1 ) ≤ 3. By Lemma 13, we know that f (v 2i+1 ) ≤ 1. If f (v 2i+1 ) = 1, we then have f ( j 2i ) ≤ 1 for every pendent neighbour j 2i of v 2i , and thus f * (v 2i ) ≤ λ 2i ≤ 2. On the other hand, if f (v 2i+1 ) = 0, we have f * (v 2i ) ≤ 3 (which implies f ( j 2i ) = 3 for a pendent neighbour j 2i of v 2i ) since otherwise we would have f * (v 2i+2 ) = 0, contradicting Lemma 12. In both cases, we thus get the desired inequality. Since σ contains exactly r + 1 = t σ distinct pairs of vertices of the form (v 2i , v 2i+1 ), we get

f * (σ) = i=r i=0 f * (v 2i ) + f * (v 2i+1 ) ≤ 3(r + 1) = 3t σ .
By Lemma 14, we know that there exists an optimal non-canonical independent broadcast f with cost( f ) = cost(f ) which satisfies all items of Lemma 14. We have proved that the non-canonical independent broadcast f 4 constructed in the proof of Lemma 10 also satisfies all items of Lemma 14. Thanks to Lemma 15, we thus have cost(f ) = cost( f ) ≤ cost(f 4 ) = β * (CT ), which completes the proof.

We are now able to state our main result, which determines the broadcast independent number of any caterpillar with no pair of adjacent trunks.

Theorem 17 Let CT = CT (λ 0 , . . . , λ k ) be a caterpillar of length k ≥ 1, with no pair of adjacent trunks. The broadcast independence number of CT is then given by:

β b (CT ) = max 2(diam(CT ) -1), β * (CT ) .
Proof. We know by Observation 1 that β b (CT ) ≥ 2(diam(CT ) -1) and we already observed that the canonical independent broadcast f c on CT satisfies cost(f c ) = 2(diam(CT ) -1). According to Lemma 10, it is thus enough to prove that for any optimal non-canonical independent broadcast f on CT with cost(f ) > 2(diam(CT ) -1), cost(f ) ≤ β * (CT ), which directly follows from Lemma 16.

In several cases, the value of β * (CT ) has a simple expression. Consider for instance a caterpillar CT , of length k ≥ 1, having no trunk. We then have β * (CT ) = λ(CT ) + n 1 (CT ), where n 1 stands for the number of spine vertices having exactly one pendent vertex. Since λ(CT ) ≥ n 1 (CT ) + 2(k + 1 -n 1 (CT )) = 2k + 2 -n 1 (CT ) (spine vertices have either one or at least two pendent neighbours), we get β * (CT ) ≥ 2k + 2, with equality if and only if CT contains no stem with at least three pendent neighbours. Since 2(diam(CT ) -1) = 2k + 2, we get the following corollary of Theorem 17.

Corollary 18 Let CT be a caterpillar of length k ≥ 1 having no trunk. We then have β b (CT ) = 2k + 2 = 2(diam(CT ) -1) if CT has no stem with at least three pendent neighbours, and β b (CT ) = λ(CT ) + n 1 (CT ) otherwise.

Moreover, thanks to Observation 4, we can also give the broadcast independent number of caterpillars having adjacent trunks but no stem with at least three pendent neighbours.

Corollary 19 Let CT be a caterpillar of length k ≥ 1. If CT has no stem with at least three pendent neighbours, then β b (CT ) = 2k + 2 = 2(diam(CT ) -1).

Finally, note that if every stem in a caterpillar CT of length k ≥ 1 with no pair of adjacent trunks has at least three pendent neighbours, then no pattern involved in the definition of β * (CT ) can appear in CT . In that case, since τ (CT ) ≤ 

Concluding remarks

In this paper, we studied independent broadcasts of caterpillars and gave an explicit formula for the broadcast independence number of caterpillars having no pair of adjacent trunks. This result concerns a quite restricted subclass of the class of trees, but the broadcast independence number is certainly a difficult parameter to determine for trees, and probably even for caterpillars. It should be noticed here that the computational complexity of the decision problem associated with the broadcast independence number is not known yet, even for trees, although this question was already posed in [START_REF] Dunbar | Broadcasts in graphs[END_REF] and [START_REF] Hedetniemi | Unsolved Algorithmic Problems on Trees[END_REF]. (The only complexity result about a broadcast parameter, among those introduced in [START_REF] Dunbar | Broadcasts in graphs[END_REF], is due to Heggernes and Lokshtanov [START_REF] Heggernes | Optimal broadcast domination in polynomial time[END_REF], who proved that computing the broadcast domination number γ b (G) of any graph G can be done in polynomial time.)

Finally, we consider that the following questions are of particular interest.

1. Can we determine the broadcast independence number of caterpillars? (We should notice here that for caterpillars with adjacent trunks, Lemmas 6 and 7 still hold, while Lemma 12 does not. This explains why we think that this might be a not so easy question.) where k is the maximum size of a set of pairwise antipodal vertices in T ?
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v 1 (note that y is necessarily unique), and g be the mapping defined as follows. For every vertex u of CT , let

, u is f -dominated only by y and d CT (u, y) = f (y), f (u) otherwise.

We claim that the mapping g is a non-canonical independent broadcast on CT with cost(g) ≥ cost( f ). Indeed, all vertices x with d CT (x, y) < f (y) that were f -dominated by y are still g-dominated by y, and all vertices x = 1 1 with d CT (x , y) = f (y) that were f -dominated only by y are now g-broadcast vertices with g(x ) = 1 (note that since every such x was f -dominated only by y, we have g(z) = f (z) = 0 for every neighbour z of x ). Now, if there exists a vertex z which is f -dominated only by y, we get cost(g) ≥ cost( f )+1, contradicting the optimality of f . If no such vertex exists, we get cost(g) = cost( f ) and V + g contains more pendent vertices than V + f , contrary to our assumption. 2. i = 2 and λ 1 = 0, or i = k -2 and λ k-1 = 0.

By symmetry, it suffices to consider the case i = 2. By Lemma 11, we know that f ( j 0 ) ≤ 3 for every j, 1 ≤ j ≤ λ 0 . Therefore, no pendent neighbour of v 2 is f -dominated by a pendent neighbour of v 0 . Let y be the (unique) vertex of CT that f -dominates the pendent neighbours of v 2 (note that we necessarily have f (y) ≥ 2). If y = v 3 and f (v 3 ) = 3 (since f * (v 0 ) > 0, we necessarily have f (v 3 ) ≤ 3), we define the mapping g as follows. For every vertex u of CT , let

Otherwise (including the case y = v 3 and f (v 3 ) = 2), the mapping g is defined by

for every vertex u of CT . In both cases, the mapping g is again a non-canonical independent broadcast on CT with cost(g) ≥ cost( f ). Indeed, all vertices x with d CT (x, y) < f (y) -1 that were f -dominated by y are g-dominated by 2 1 (if y = v 3 ) or still g-dominated by y (if y = v 3 ), and all vertices x = 1 2 with f (y) -1 ≤ d CT (x , y) ≤ f (y) that were f -dominated only by y are now either g-broadcast vertices (if d CT (x , y) = f (y) -1) or g-dominated by a vertex x with d CT (x , y) = f (y) -1 and g(x ) = 1. We then get a contradiction as in Case 1.

3. 2 < i < k -2, or i = 2 and λ 1 > 0, or i = k -2 and λ k-1 > 0.

In this case, we have f * (v j ) > 0 for every vertex v j with j < i and λ j > 0. Note also that we have at least two such vertices v j with j < i and λ j > 0. By symmetry, it suffices to consider the cases 2 < i < k -2, and i = 2 (with λ 1 > 0). We consider three subcases.

(a) Suppose first that the pendent neighbours of v i are f -dominated only by a vertex y = v j 0 or y = k 0 j 0 with j 0 < i and 1 ≤ k 0 ≤ λ j 0 . Observe that the pendent neighbours of v i cannot be f -dominated by two such vertices, say y and y , since we would have d CT (y, y ) < d CT (y, 1 i ) so that f would not be independent. Since f * (v j ) > 0 for every j < i such that λ j > 0, we necessarily have, by Lemma 6, either y is a pendent neighbour of v i-1 , if λ i-1 > 1, or a pendent neighbour of v i-2 , if λ i-1 = 0. Moreover, since f * (v j ) > 0 for every j < i such that λ j > 0, and since we have at least two such vertices, we necessarily have f (y) ≤ 3. This implies in particular λ i-1 > 0, as otherwise we would have f (y) ≤ 3 and d CT (y, 1 i ) = 4, contradicting the fact that y f -dominates 1 i , and thus y is a pendent neighbour of v i-1 . Let now g be the mapping defined as follows. For every vertex u of CT , let

Again, the mapping g is a non-canonical independent broadcast on CT with cost(g) ≥ cost( f ). Indeed, all vertices x with d CT (x, y) < f (y) that were f -dominated by y are still g-dominated either by y, and all vertices x = 1 i with d CT (x , y) = f (y) that were f -dominated only by y are now g-broadcast vertices.

We then get a contradiction as in Cases 1 and 2. (b) Suppose now that the pendent neighbours of v i are f -dominated only by a vertex y = v j 0 (with λ j 0 = 0) or y = k 0 j 0 (1 ≤ k 0 ≤ λ j 0 ), with j 0 > i. Observe that, using the same argument as in Case (a), such a vertex y must be unique. Moreover, we necessarily have f (y) ≥ 2. If λ i-1 = 0, we consider two cases, as we did in Case 2. If y = v i+1 and f (v i+1 ) = 3, we define the mapping g by

for every vertex u of CT . Otherwise, the mapping g is defined by

for every vertex u of CT . Otherwise, that is, λ i-1 > 0, we define the mapping g as follows. For every vertex u of CT , let

otherwise.

Again, using similar arguments, in each case the above-defined mapping is a noncanonical independent broadcast on CT with cost(g) ≥ cost( f ) and the contradiction arises as in Cases 1 and 2. (c) Suppose finally that the pendent neighbours of v i are f -dominated both by a vertex y 1 = v j 1 or y 1 = k 1 j 1 with j 1 < i and 1 ≤ k 1 ≤ λ j 1 , and by a vertex

with j 2 > i and 1 ≤ k 2 ≤ λ j 2 (again, both y 1 and y 2 must be unique). In that case, as

This completes the proof.

The following lemma states that Lemma 14 covers all possible caterpillars that admit a non-canonical independent broadcast with sufficiently large cost.

Lemma 15 If CT = CT (λ 0 , . . . , λ k ) is a caterpillar of length k ≥ 1, with no pair of adjacent trunks, such that there exists an optimal non-canonical independent broadcast f on CT with cost(f ) > 2(diam(CT ) -1), then Lemma 14 gives an upper bound on cost(f ).

Proof. Let CT = CT (λ 0 , . . . , λ k ) be a caterpillar of length k ≥ 1, with no pair of adjacent trunks, f be an optimal non-canonical independent broadcast on CT with cost(f ) > 2(diam(CT ) -1), and v i , 0 ≤ i ≤ k, a spine vertex of CT .

If λ i ≥ 3, then f * (v i ) = λ i by item 5 of Lemma 11, and thus by item 1 of Lemma 14.

If λ i = 0, then f * (v i ) ≤ 1 by item 2 of Lemma 13, and thus by item 1 of Lemma 14. Suppose now that 1 ≤ λ i ≤ 2. If i = 0 or i = k, then f * (v i ) ≤ 3 by items 1 to 4 of Lemma 11, and thus by item 1 of Lemma 14. We assume now that 1

The remaining case is thus 1 ≤ i ≤ k -1, λ i-1 = 0 and λ i+1 = 0. We consider the set of all occurrences of a pattern, in which 0's and 2 -'s alternate, that contain vertices v i-1 , v i and v i+1 . Let σ = v a v a+1 . . . v b , 0 ≤ a ≤ i -1 < i + 1 ≤ b ≤ k be such an occurrence with maximal length. Note here that we necessarily have v a = v i and v b = v i . We consider three cases.

By the maximality of σ, we necessarily have λ a-1 ≥ 3 and λ b+1 ≥ 3. Therefore, the value of f * (σ) is bounded by item 5 of Lemma 14. 

. This contradicts our assumption on the value of cost(f ), and thus this case cannot occur.

Therefore, in all cases, either f * (v i ) or f * (σ) for an occurrence σ of a pattern containing v i is bounded by some item of Lemma 14. This concludes the proof.

Using Lemmas 14 and 15, we can now prove that no optimal non-canonical independent broadcast f on CT with cost(f ) > 2(diam(CT ) -1) and cost(f ) > β * (CT ) exists.

Lemma 16

Let CT = CT (λ 0 , . . . , λ k ) be a caterpillar of length k ≥ 1, with no pair of adjacent trunks, and f be an optimal non-canonical independent broadcast on CT with cost(f ) > 2(diam(CT ) -1). We then have cost(f ) ≤ β * (CT ).

Proof. Let us denote by f 4 the non-canonical independent broadcast on CT constructed in the proof of Lemma 10, thus with cost(f 4 ) = β * (CT ). By considering the four steps involved in the construction of f 4 , it clearly appears that f 4 satisfies the five items of Lemma 11, item 2 of Lemma 12 and item 2 of Lemma 13. Therefore, f 4 satisfies item 1 of Lemma 14. Moreover, if v i is a trunk that does not appear in any pattern considered in Lemma 14, then f 4 (v i ) = 1. Indeed, the f 4 -value of v i is set to 1 in step 1 of Lemma 10 and is not modified in steps 2 to 4.

We now prove that f 4 satisfies the five last items of Lemma 14 and that, in each case, the upper bound is attained. We will refer to steps 1 to 4 of the proof of Lemma 10 and to the corresponding intermediate independent broadcasts f 1 to f 3 . Recall first that in step 1, every trunk and every pendent vertex is assigned the value 1.

1. Item 2 of Lemma 14.

If v i is a stem with λ i ≥ 3, the value of its pendent neighbours is not modified in steps 2 to 4. Therefore, we get

Let v a v a+1 , 0 ≤ a < k, be an occurrence of the pattern 1 + 2 -(the case 2 -1 + is similar, by symmetry). Note here that if v a+1 is the leftmost vertex of an occurrence of the pattern 1 + 2(02) +r 1 + , then the value of its pendent neighbours is not modified in step 3.

If λ a+1 = 1, then, in step 2, the value of 1 a+1 is set to 2 and not modified in step 4. If λ a+1 = 2, then the value of the pendent neighbours of v a+1 is not modified in steps 2 and 4. Therefore, f * 4 (v a+1 ) = 2 in both cases. 3. Item 4 of Lemma 14.

Let v a σv b = v i v i+1 . . . v i+2r+2 be an occurrence of the pattern 1 + 2 -(02 -) +r 1 + , for some i, 0 ≤ i ≤ k -2r -2. In that case, we have t σ = r. If v a σv b is an occurrence of the pattern 1 + 2(02) +r 1 + , the value of the vertices of σ are not modified in steps 2 to 4. Therefore, we have f * 4 (σ) = f * 1 (σ) = 2(r+1)+r = 3r+2 = 3t σ +2. Suppose now that σ contains at least one stem having only one pendent neighbour. In step 3, the value of 1 i+1 is set to 2 if λ i+1 = 1, the value of 1 i+2r+1 is set to 2 if λ i+2r+1 = 1, the value of 1 i+2j+1 , 1 ≤ j ≤ r -1, is set to 3 (and the value of 2 i+2j+1 is set to 0 if λ i+2j+1 = 2), and the value of every trunk is set to 0. We thus get

4. Item 5 of Lemma 14.

Let σ = v i v i+1 . . . v i+2r+2 be an occurrence of the pattern 02 -(02 -) * r 0, for some i, 1 ≤ i ≤ k -2r -3. In that case, we have t σ = r + 2. If σ is an occurrence of the pattern 02(02) * r 0, the value of the vertices of σ are not modified in steps 2 to 4. Therefore, we have f * 4 (σ) = f * 1 (σ) = 2(r + 1) + r + 2 = 3r + 4 = 3t σ -2. Suppose now that σ contains at least one stem having only one pendent neighbour. In step 3, the value of 1 i+2j+1 , 0 ≤ j ≤ r, is set to 3 (and the value of 2 i+2j+1 is set to 0 if λ i+2j+1 = 2), and the value of every trunk is set to 0. We thus get f * 4 (σ) = f * 3 (σ) = 3(r + 1) = 3r + 3 = 3t σ -3.

5. Item 6 of Lemma 14. Let v 0 . . . v 2r+1 be an occurrence of the pattern [2 -(02 -) * r 0 (the case 02 -(02 -) * r ] is similar, by symmetry). In that case, we have t σ = r + 1.

In step 3, the value of 1 2j , 0 ≤ j ≤ r, is set to 3 (and the value of 2 2j is set to 0 if λ 2j = 2), and the value of every trunk is set to 0. We thus get f * 4 (σ) = f * 3 (σ) = 3(r + 1) = 3r + 3 = 3t σ .