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Abstract

Let G be a simple undirected graph. A broadcast on G is a function f : V (G) → N such
that f(v) ≤ eG(v) holds for every vertex v of G, where eG(v) denotes the eccentricity of v in
G, that is, the maximum distance from v to any other vertex of G. The cost of f is the value
cost(f) =

∑
v∈V (G) f(v). A broadcast f on G is independent if for every two distinct vertices

u and v in G, dG(u, v) > max{f(u), f(v)}, where dG(u, v) denotes the distance between u and
v in G. The broadcast independence number of G is then defined as the maximum cost of an
independent broadcast on G.

In this paper, we study independent broadcasts of caterpillars and give an explicit formula
for the broadcast independence number of caterpillars having no pair of adjacent trunks, a trunk
being an internal spine vertex with degree 2.

Keywords: Independence; Distance; Broadcast independence; Caterpillar.
MSC 2010: 05C12, 05C69.

1 Introduction

All the graphs we consider in this paper are simple and loopless undirected graphs. We denote
by V (G) and E(G) the set of vertices and the set of edges of a graph G, respectively.

For any two vertices u and v of G, the distance dG(u, v) between u and v in G is the length
(number of edges) of a shortest path joining u and v. The eccentricity eG(v) of a vertex v in G
the maximum distance from v to any other vertex of G. The minimum eccentricity in G is the
radius rad(G) of G, while the maximum eccentricity in G is the diameter diam(G) of G. Two
vertices u and v with dG(u, v) = diam(G) are said to be antipodal.

A function f : V (G) → {0, . . . ,diam(G)} is a broadcast if for every vertex v of G, f(v) ≤
eG(v). The value f(v) is called the f -value of v. Given a broadcast f on G, an f -broadcast vertex
is a vertex v with f(v) > 0. The set of all f -broadcast vertices is denoted V +

f . If u ∈ V +
f is a

broadcast vertex, v ∈ V (G) and dG(u, v) ≤ f(u), we say that u f-dominates v. In particular,
every f -broadcast vertex f -dominates itself. The cost cost(f) of a broadcast f on G is given by

cost(f) =
∑

v∈V (G)

f(v) =
∑
v∈V +

f

f(v).

A broadcast f on G is a dominating broadcast if every vertex of G is f -dominated by some
vertex of V +

f . The minimum cost of a dominating broadcast on G is the broadcast domination
number of G, denoted γb(G). A broadcast f on G is an independent broadcast if every f -
broadcast vertex is f -dominated only by itself. The maximum cost of an independent broadcast
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on G is the broadcast independence number of G, denoted βb(G). An independent broadcast
on G with cost β is an independent β-broadcast. An independent βb(G)-broadcast on G is an
optimal independent broadcast. Note here that any optimal independent broadcast is necessarily
a dominating broadcast.

The notions of broadcast domination and broadcast independence were introduced by D.J. Er-
win in his Ph.D. thesis [9] under the name of cost domination and cost independence, respec-
tively. During the last decade, broadcast domination has been investigated by several authors,
see e.g. [1, 2, 3, 5, 6, 7, 12, 13, 14, 15, 16, 17], while independent broadcast domination has
attracted much less attention.

In particular, Seager considered in [16] broadcast domination of caterpillars. She charac-
terized caterpillars with broadcast domination number equal to their domination number, and
caterpillars with broadcast domination number equal to their radius. Blair, Heggernes, Horton
and Manne proposed in [1] an O(nr)-algorithm for computing the broadcast domination number
of a tree of order n with radius r.

However, determining the independent broadcast number of trees seems to be a difficult
problem. We propose in this paper a first step in this direction, by studying a subclass of the
class of caterpillars. Recall that a caterpillar is a tree such that deleting all its pendent vertices
leaves a simple path called the spine. The subclass we will consider is the subclass of caterpillars
having no pair of adjacent trunks, a trunk being an internal spine vertex with degree 2.

We now review a few results on independent broadcast numbers. Let G be a graph and
A ⊂ V (G), |A| ≥ 2, be a set of pairwise antipodal vertices in G. The function f defined by
f(u) = diam(G)− 1 for every vertex u ∈ A, and f(v) = 0 for every vertex v 6∈ A, is clearly an
independent |A|(diam(G)− 1)-broadcast on G.

Observation 1 (Dunbar, Erwin, Haynes, Hedetniemi and Hedetniemi [8])
For every graph G of order at least 2 and every set A ⊂ V (G), |A| ≥ 2, of pairwise antipodal
vertices in G, βb(G) ≥ |A|(diam(G)−1). In particular, for every tree T , βb(T ) ≥ 2(diam(G)−1).

An independent broadcast f on a graph G is maximal independent if there is no independent
broadcast f ′ 6= f such that f ′(v) ≥ f(v) for every vertex v ∈ V (G). In [9], D.J. Erwin proved
the following result (see also [8]).

Theorem 2 (Erwin [9])
Let f be an independent broadcast on G. If V +

f = {v}, then f is maximal independent if and

only if f(v) = eG(v). If |V +
f | ≥ 2, then f is maximal independent if and only if the following

two conditions are satisfied:

1. f is dominating, and

2. for every v ∈ V +
f , f(v) = min

{
dG(v, u) : u ∈ V +

f \ {v}
}
− 1.

Erwin proved that βb(Pn) = 2(n−2) = 2(diam(Pn)−1) for every path Pn of length n ≥ 3 [9].
In [4], Bouchemakh and Zemir determined the independent broadcast number of square grids.

Theorem 3 (Bouchemakh and Zemir [4])
Let Gm,n denote the square grid with m rows and n columns, m ≥ 2, n ≥ 2. We then have:

1. βb(Gm,n) = 2(m+ n− 3) = 2(diam(Gm,n)− 1) if m ≤ 4,

2. βb(G5,5) = 15, βb(G5,6) = 16, and

3. βb(Gm,n) =
⌈
mn
2

⌉
for every m,n, 5 ≤ m ≤ n, (m,n) 6= (5, 5), (5, 6).
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Figure 1: The caterpillar CT (1, 0, 2, 1, 1, 2, 1, 0, 3)

In this paper, we determine the broadcast independence number of caterpillars having no
pair of adjacent trunks. The paper is organised as follows. We introduce in the next section the
main definitions and a few preliminary results on independent broadcasts of caterpillars. We
then consider in Section 3 the case of caterpillars having no pair of adjacent trunks and prove
our main result, which gives an explicit formula for the broadcast independence number of such
caterpillars. We finally propose a few directions for future research in Section 4.

2 Preliminaries

Let G be a graph and H be a subgraph of G. Since dH(u, v) ≥ dG(u, v) for every two vertices
u, v ∈ V (H), every independent broadcast f on G satisfying f(u) ≤ eH(u) for every vertex
u ∈ V (H) is an independent broadcast on H. Hence we have:

Observation 4 If H is a subgraph of G and f is an independent broadcast on G satisfying
f(u) ≤ eH(u) for every vertex u ∈ V (H), then the restriction fH of f to V (H) is an independent
broadcast on H.

A caterpillar of length k ≥ 0 is a tree such that removing all leaves gives a path of length k,
called the spine. Following the terminology of [16], a non-leaf vertex is called a spine vertex and,
more precisely, a stem if it is adjacent to a leaf and a trunk otherwise. A leaf adjacent to a stem
v is a pendent neighbour of v. We will always draw caterpillars with the spine on a horizontal
line, so that we can speak about the leftmost of rightmost spine vertex of a caterpillar.

Note that a caterpillar of length 0 is nothing but a star K1,n, for some n ≥ 1. The indepen-
dent broadcast number of a star is easy to determine.

Observation 5 For every integer n ≥ 1, βb(K1,n) = n.

Indeed, an optimal broadcast f of K1,n is obtained by setting to 1 the f -value of every
pendent vertex of K1,n, if n > 1, or of one of the two vertices of K1,1. Therefore, in the rest of
the paper, we will only consider caterpillars of length k ≥ 1.

Let N∗ = N \ {0}. We denote by CT (λ0, . . . , λk), k ≥ 1, with (λ0, . . . , λk) ∈ N∗×Nk−1×N∗,
the caterpillar of length k ≥ 1 with spine v0 . . . vk such that each spine vertex vi has λi pendent
neighbours. Note that for any caterpillar CT of length k ≥ 1, diam(CT ) = k + 2. For every i
such that λi > 0, 0 ≤ i ≤ k, we denote by `1i , . . . , `

λi
i the pendent neighbours of vi. Moreover,

we denote by CT [a, b], 0 ≤ a ≤ b ≤ k, the subgraph of CT induced by vertices va, . . . , vb and
their pendent neighbours. The caterpillar CT (1, 0, 2, 1, 1, 2, 1, 0, 3) is depicted in Figure 1.

Let f be an independent broadcast on a caterpillar CT = CT (λ0, . . . , λk). We denote by f∗

the associated mapping from {v0, . . . , vk} to N defined by

f∗(vi) = f(vi) +

j=λi∑
j=1

f(`ji ), if λi > 0, and f∗(vi) = f(vi) otherwise,

for every i, 0 ≤ i ≤ k. Intuitively speaking, when λi > 0, f∗(vi) gives the “weight” of the
star-graph consisting of the vertex vi together with its pendent neighbours.
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We will say that two independent broadcasts f1 and f2 on CT are similar whenever f∗1 = f∗2 .
Observe that any two similar independent broadcasts have the same cost.

From Observation 1, we get that βb(CT ) ≥ 2(k+1) for every caterpillar CT = CT (λ0, . . . , λk).
In particular, the function fc on V (CT ) defined by fc(`

1
0) = fc(`

1
k) = k + 1 and fc(u) = 0 for

every vertex u ∈ V (CT ) \ {`10, `1k} is an independent broadcast on CT with cost 2(k + 1).
In the following, we will call any independent broadcast f similar to fc and such that

|V +
f | = 2 a canonical independent broadcast.

The following lemma shows that, for any caterpillar CT = CT (λ0, . . . , λk), no independent
broadcast f on CT with f(v) > 0 for some stem v can be optimal.

Lemma 6 If CT = CT (λ0, . . . , λk) is a caterpillar of length k ≥ 1 and f is an independent
broadcast on CT with f(vi) > 0 for some stem vi, 0 ≤ i ≤ k, then there exists an independent
broadcast f ′ on CT with cost(f ′) > cost(f).

Proof. Since f(vi) > 0 and f is an independent broadcast, we have f(`ji ) = 0 for every j,
1 ≤ j ≤ λi. Consider the function f ′ defined by f ′(vi) = 0, f ′(`1i ) = f(vi) + 1 and f ′(u) = f(u)
for every vertex u ∈ V (CT ) \ {vi, `1i }. Since dCT (`1i , u) = dCT (vi, u) + 1 for every vertex
u ∈ V (CT ) \ {`1i }, we get that f ′ is an independent broadcast on CT . Moreover, we clearly
have cost(f ′) = cost(f) + 1. �

The following lemma shows that for every optimal independent broadcast on a caterpillar,
at least one pendent vertex of each of the end-vertices of the spine is a broadcast vertex.

Lemma 7 Let CT = CT (λ0, . . . , λk) be a caterpillar of length k ≥ 1. If f is an optimal
independent broadcast on CT , then f∗(v0)− f(v0) 6= 0 and f∗(vk)− f(vk) 6= 0.

Proof. We know by Lemma 6 that f(v0) = 0. Suppose, contrary to the statement of the
lemma, that f(`j0) = 0 for every j, 1 ≤ j ≤ λ0. Let u be the f -broadcast vertex that dominates
`10 and let f(u) = x. By Lemma 6, u is either a leaf or a trunk.

If u is a leaf, say u = `ji , 1 ≤ i ≤ k, 1 ≤ j ≤ λi, let f ′ be the mapping defined by
f ′(`10) = x + i, f ′(u) = 0 and f ′(u′) = f(u′) for every vertex u′ ∈ V (CT ) \ {`10, u}. Note that
every vertex which was f -dominated by u is now f ′-dominated by `10. The mapping f ′ is thus
an independent (cost(f) + i)-broadcast on CT , contradicting the optimality of f .

If u is a trunk, say u = vi, 1 ≤ i ≤ k − 1, we similarly define a mapping f ′ by letting
f ′(`10) = x + i + 1, f ′(u) = 0 and f ′(u′) = f(u′) for every vertex u′ ∈ V (CT ) \ {`10, u}. The
mapping f ′ is thus an independent (cost(f) + i+ 1)-broadcast on CT , again contradicting the
optimality of f .

The case f(`jk) = 0 for every j, 1 ≤ j ≤ λk, follows by symmetry. �

Observe that Lemma 7 can be extended to trees as follows:

Lemma 8 Let T be tree and T ′ be a subtree of T , of order at least 2, with root r. Let f be an
optimal independent broadcast on T . If r is an f -broadcast vertex, then T ′ contains at least one
other f -broadcast vertex. In particular, if T ′ is a subtree of height 1 (that is, eT ′(r) = 1), then
f(r) = 0.

Proof. Suppose to the contrary that f(r) > 0 and f(u) = 0 for every vertex u ∈ V (T ′) \ {r}.
Let t′ = eT ′(r) and t′ = eT−(T ′−r)(r).

If f(r) < t′, the independent broadcast f ′ given by f ′(v) = f(r) for some vertex v in T ′

with dT ′(r, v) = t′ and f ′(u) = f(u) for every vertex u ∈ V ′(T ) \ {v} is such that cost(f ′) =
cost(f) + f(r), contradicting the optimality of f .

If f(r) ≥ t′, then r is the unique f -broadcast vertex, which implies cost(f) < 2(diam(T )−1),
again contradicting the optimality of f by Observation 1.
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Hence t′ > f(r) ≥ t′. Let now v be any neighbour of r in T ′. Since t′ > f(r) ≥ t′, we have
eT (v) = eT (r) + 1 = t′ + 1 > f(r) + 1. The function f ′ defined by f ′(r) = 0, f ′(v) = f(r) + 1
and f ′(u) = f(u) for every vertex u ∈ V (T ) \ {r, v} is therefore an independent broadcast on T
with cost(f ′) = cost(f) + 1, contradicting the optimality of f .

This completes the proof. �

3 Caterpillars with no pair of adjacent trunks

In this section we determine the broadcast independence number of caterpillars with no pair of
adjacent trunks. We first introduce some notation and useful lemmas.

We say that an independent broadcast f of a caterpillar CT is an optimal non-canonical
independent broadcast on CT if

(i) |V +
f | 6= 2 or f∗ 6= f∗c (f is non-canonical), and

(ii) for every independent broadcast f ′ on CT with |V +
f ′ | 6= 2 or f ′∗ 6= f∗c , cost(f) ≥ cost(f ′)

(f is optimal among all non-canonical independent broadcasts).

Let CT = CT (λ0, . . . , λk) be a caterpillar of length k ≥ 1 with no pair of adjacent trunks.
We denote by

λ(CT ) =
i=k∑
i=0

λi

the number of leaves of CT , and by

τ(CT ) = |{i | 1 ≤ i ≤ k − 1 and λi = 0}|

the number of trunks of CT .
We will compute the broadcast independence number of a caterpillar with no pair of adjacent

trunks by counting the number of some specific patterns. More precisely, we say that a pattern
of length p + 1, Π = π0 . . . πp, p ≥ 0, πi ∈ N for every i, 0 ≤ i ≤ p, occurs in a caterpillar
CT = CT (λ0, . . . , λk) if there exists an index i0, 0 ≤ i0 ≤ k − p, such that CT [i0, i0 + p] =
CT (π0, . . . , πp), that is, λi0+j = πj for every j, 0 ≤ j ≤ p. We will also say that the caterpillar
CT contains the pattern Π and that the subgraph CT (λi0 , . . . , λi0+p) of CT is an occurrence
of the pattern Π. For instance, the caterpillar CT (1, 0, 2, 1, 1, 2, 1, 0, 3), depicted on Figure 1,
contains once the pattern 211 and twice the pattern 10.

We now extend the notation for patterns as follows:

• By π+i , we mean a spine vertex having at least πi pendent neighbours;

• By π−i , we mean a spine vertex having at most πi pendent neighbours;

• By [Π, we mean that the pattern Π occurs and starts at the leftmost stem v0,

• By Π], we mean that the pattern Π occurs and ends at the rightmost stem vk,

• By {Π,Π′}, we mean either the pattern Π or the pattern Π′.

• By π0(π1π2)
+rπ3, we mean a maximal pattern of the form

π0π1π2π3 or π0 π1π2 . . . π1π2︸ ︷︷ ︸
r times, r ≥ 2

π3,

where maximal here means that the subpattern π1π2 is repeated at least once and as many
times as possible.

• By π0(π1π2)
∗rπ3, we mean a maximal pattern of the form

π0π3, π0π1π2π3 or π0 π1π2 . . . π1π2︸ ︷︷ ︸
r times, r ≥ 2

π3,

where maximal here means that the subpattern π1π2 is repeated as many times as possible.
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[11+
1+11+

1+2−(02−)+r1+

02−(02−)∗r]

Figure 2: Sample patterns involved in the definition of β∗(CT )

We can also combine these notations, so that, for instance, π+i ] denotes that the rightmost
stem vk has at least πi pendent neighbours, and {πi, [}Π denotes either the pattern πiΠ or the
pattern [Π.

One can check that the caterpillar CT (1, 0, 2, 1, 1, 2, 1, 0, 3), depicted on Figure 1, contains
once each of the four patterns [1, 3], 2+] and 2111+, twice the pattern 0{2, 3}, and thrice the
pattern 1+1+1+. On the other hand, the caterpillar CT (1, 0, 2, 0, 2, 0, 2, 1, 0, 3) contains only
once the pattern 1+0(20)+r1+, namely on the sub-caterpillar CT (1, 0, 2, 0, 2, 0, 2) with explicit
pattern 1020202.

For any pattern Π and any caterpillar CT , we will denote by #CT (Π) the number of oc-
currences of the pattern Π in CT . Moreover, if M is an occurrence of Π in CT , we define the
value

α1(M) = max{0,#M (1)− 1},

that is, the number of stems vi in M with λi = 1 minus 1—or 0 if M contains no such stem—,
and the value

α2(M) = α1(M) + #M ([1+) + #M (1+]),

that is, α1(M) plus 0, 1 or 2, depending on whether M contains no end-vertex of CT , one
end-vertex of CT or both end-vertices of CT , respectively.

We then extend the functions α1 and α2 to the whole caterpillar CT by setting

α1(CT ; Π) =
∑

M occurrence of Π

α1(M)

and
α2(CT ; Π) =

∑
M occurrence of Π

α2(M).

Finally, for any caterpillar CT , we define the value β∗(CT ) as follows:

β∗(CT ) = λ(CT ) + τ(CT ) + #CT ({1+, [}1{1+, ]}) + α1(CT ; 1+2−(02−)+r1+)
+ α2(CT ; 02−(02−)∗r0) + α2(CT ; [2−(02−)∗r0) + α2(CT ; 02−(02−)∗r]).
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Sample patterns involved in the above formula are illustrated in Figure 2. In the figure, a
pattern with a line to the left or right hand side of its spine cannot occur at the left or right
end of the caterpillar, respectively. A pattern with a dashed line to the left or right hand side
of its spine can occur at the left or right end of the caterpillar, respectively, or in the middle
of the caterpillar. A dashed edge is an optional edge (used for pattern 2−, corresponding to a
spine vertex with either one or two pendent neighbours).

Let us say that two distinct occurrences of patterns overlap if they share a common vertex.
Due to the specific structure of the patterns used in the above formula (and, in particular, of
the maximality of the number of repetitions of subpatterns of the form Π+r or Π∗r), we have
the following:

Observation 9 In every caterpillar CT of length k ≥ 1,

1. no occurrence of the pattern 02−(02−)∗r0 can overlap with an occurrence of a pattern
{1+, [}1{1+, ]}, 1+2−(02−)+r1+, 02−(02−)∗r0, [2−(02−)∗r0 or 02−(02−)∗r],

2. no occurrence of the pattern [2−(02−)∗r0 can overlap with an occurrence of a pattern
{1+, [}1{1+, ]}, or 1+2−(02−)+r1+,

3. no occurrence of the pattern 02−(02−)∗r] can overlap with an occurrence of a pattern
{1+, [}1{1+, ]} or 1+2−(02−)+r1+,

4. if two occurrences of the patterns [2−(02−)∗r0 and 02−(02−)∗r] overlap, then CT is a
caterpillar with pattern [2−(02−)∗r].

We first prove that every caterpillar with no pair of adjacent trunks admits an independent
broadcast f with cost(f) = β∗(CT ).

Lemma 10 Every caterpillar CT = CT (λ0, . . . , λk) of length k ≥ 1, with no pair of adjacent
trunks, admits an independent broadcast f with cost(f) = β∗(CT ).

Proof. We will construct a sequence of independent broadcasts f1, . . . , f4, step by step, such
that cost(f4) = β∗(CT ). Each independent broadcast fi, 2 ≤ i ≤ 4, is obtained by possibly
modifying the independent broadcast fi−1 and is such that cost(fi) ≥ cost(fi−1). Moreover,
for each independent broadcast fi, 1 ≤ i ≤ 4, we will have fi(v) = 0 whenever v is a stem.
These modifications are illustrated in Figures 3 and 4, using the same drawing conventions as
in Figure 2. Only useful broadcast values are given in these figures. These figures should help
the reader to see that all the proposed modifications lead to a new valid independent broadcast.

Step 1. Let f1 be the mapping defined by f1(v) = 1 if v is a pendent vertex or a trunk, and
f1(v) = 0 otherwise. Clearly, f1 is an independent broadcast on CT with

cost(f1) = λ(CT ) + τ(CT ).

Step 2. Let f2 be the mapping defined by f2(v) = 2 if v = `1i for some i, 0 ≤ i ≤ k, such that
(i) λi = 1, (ii) i = 0 or λi−1 ≥ 1, and (iii) i = k or λi+1 ≥ 1, and f2(v) = f1(v) otherwise (see
Figure 3(a)). Again, f2 is an independent broadcast on CT with

cost(f2) = cost(f1) + #CT ({1+, [}1{1+, ]}).

Step 3. Suppose that CT contains the pattern 1+2−(02−)+r1+, of length 2r + 3, and let
M = CT [i0, i0+2r+2] be the corresponding occurrence of this pattern. We thus have f2(v) = 1
for every trunk of M and for every pendent neighbour of a stem vertex vj on M with i0 + 1 ≤
j ≤ i0 + 2r + 1. Hence, the cost of the restriction f ′2 of f2 to M is

cost(f ′2) = f∗2 (vi0) + λ(M [i0 + 1, i0 + 2r + 1]) + τ(M) + f∗2 (vi0+2r+2).

We modify f2 as follows, to obtain f3. If the subgraph M [i0 + 1, i0 + 2r + 1] contains a stem
vertex vi with λi = 1, we let
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1 1

−→

2 1

1 1 1

−→

1 2 1

(a) From f1 to f2

1 1

1

1

1

1 1

−→

1 1

0

3

0

1 1

(b) From f2 to f3, pattern 1+201021+, cost(f ′3) = cost(f ′2) + (1− 1)

1 1

1

1

1

1 1

1

1

1

1

−→

1 1

0

3

0

3 0

0

3

0

2

(c) From f2 to f3, pattern 1+2010201011+, cost(f ′3) = cost(f ′2) + (3− 1)

Figure 3: Proof of Lemma 10: from f1 to f3
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• f3(`1i0+1) = 2 if λi0+1 = 1,

• f3(`1i0+2r+1) = 2 if λi0+2r+1 = 1,

• f3(`1i0+2j+1) = 3 (and f3(`
2
i0+2j+1) = 0 if λi0+2j+1 = 2) for every j, 1 ≤ j ≤ r − 1,

• f3(vi0+2j) = 0 for every j, 1 ≤ j ≤ r,
(see Figure 3(b) and (c)). The cost of the restriction f ′3 of f3 on M is then

cost(f ′3) = cost(f ′2) + max{0,#M [i0+1,i0+2r+1](1)− 1} = cost(f ′2) + α1(M).

By Observation 9, two occurrences of the pattern 1+2−(02−)+r1+ can only overlap on their
end-vertices. Therefore, doing the above modification for every occurrence of the pattern
1+2−(02−)+r1+ in M , the so-obtained independent broadcast f3 satisfies

cost(f3) = cost(f2) + α1(CT ).

Step 4. Suppose first that CT contains the pattern 02−(02−)∗r0, of length 2r + 3, and let
M = CT [i0, i0 + 2r + 2], i0 ≥ 1, i0 + 2r + 2 ≤ k − 1, be the corresponding occurrence of this
pattern. We thus have f2(v) = 1 for every trunk of M and for every pendent neighbour of a
stem vertex vj on M with i0 + 1 ≤ j ≤ i0 + 2r + 1. Hence, the cost of the restriction f ′3 of f3
to M is

cost(f ′3) = f∗3 (vi0) + λ(M) + τ(M [i0 + 1, i0 + 2r + 1]) + f∗3 (vi0+2r+2).

We modify f3 as follows, to obtain f4. If the subgraph M [i0 + 1, i0 + 2r + 1] contains a stem
vertex vi with λi = 1, we let

• f4(`1i0+2j+1) = 3 (and f4(`
2
i0+2j+1) = 0 if λi0+2j+1 = 2) for every j, 0 ≤ j ≤ r,

• f4(vi0+2j) = 0 for every j, 0 ≤ j ≤ r,
(see Figure 4(a)). The cost of the restriction f ′4 of f4 on M is then

cost(f ′4) = cost(f ′3) + max{0,#M (1)− 1} = cost(f ′3) + α2(M).

Suppose now that CT contains the pattern [2−(02−)∗r0, of length 2r + 2, and let M =
CT [0, 2r + 1] be the corresponding occurrence of this pattern. Doing the same type of modifi-
cation as above (see Figure 4(b)), the cost of the restriction f ′4 of f4 on M is then

cost(f ′4) = cost(f ′3) + max{0,#M (1)− 1}+ 1 = cost(f ′3) + α2(M).

Finally, if CT contains the pattern 02−(02−)∗r] and CT is not a caterpillar with pattern
[2−(02−)∗r], the same type of modification leads to the same property.

By Observation 9, no two occurrences of the patterns 02−(02−)∗r0 and [2−(02−)∗r0 (or
02−(02−)∗r0 and 02−(02−)∗r]) can overlap. Therefore, doing the above modification for every
occurrence of these patterns in M , the so-obtained independent broadcast f4 satisfies

cost(f4) = cost(f3) + α2(CT ) = β∗(CT ).

This completes the proof. �

The next lemma shows that if f is an optimal non-canonical independent broadcast on a
caterpillar CT with no pair of adjacent trunks, with cost(f) > 2(diam(CT ) − 1), then there
exists an optimal non-canonical independent broadcast f̃ on CT such that the f̃ -values of the
pendent neighbours of v0 and vk only depend on the values of λ0, λ1 and λk−1, λk, respectively:

Lemma 11 Let CT = CT (λ0, . . . , λk) be a caterpillar of length k ≥ 1, with no pair of ad-
jacent trunks. If f is an optimal non-canonical independent broadcast on CT with cost(f) >
2(diam(CT ) − 1), then there exists an optimal non-canonical independent broadcast f̃ on CT ,
thus with cost(f̃) = cost(f), such that, for every i ∈ {0, k}, we have
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(a) From f3 to f4, pattern 02010201010, cost(f ′4) = cost(f ′3) + (3− 1) + 0
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1
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3 0
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3

0
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0

3 0

0

(b) From f3 to f4, pattern [2010201020, cost(f ′4) = cost(f ′3) + (2− 1) + 1

Figure 4: Proof of Lemma 10: from f3 to f4
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1. if λi = 1 and λi′ ≥ 1, then f̃(`1i ) = 2,

2. if λi = 1 and λi′ = 0, then f̃(`1i ) = 3,

3. if λi = 2 and λi′ ≥ 1, then f̃(`1i ) = f̃(`2i ) = 1,

4. if λi = 2 and λi′ = 0, then f̃(`1i ) = 3 and f̃(`2i ) = 0,

5. if λi ≥ 3, then f̃(`ji ) = 1 for every j, 1 ≤ j ≤ λi,
where i′ = 1 if i = 0, or i′ = k − 1 if i = k.

Proof. Note first that if such a broadcast f̃ exists, then, by Lemma 6, f̃(u) = 0 for every stem
u of CT . Therefore, the value of

∑
1≤j≤λi f̃(`ji ) cannot be strictly less than the value claimed

in the lemma since otherwise it would contradict the optimality of f̃ .
By symmetry, it is enough to prove the lemma for the pendent neighbours of v0. Let

CT0 = CT (λ0, . . . , λk) be a minimal counterexample, with respect to the subgraph order, to
the lemma. That is, every sub-caterpillar of CT0 satisfies the statement of the lemma and, for
every optimal non-canonical independent broadcast f on CT0 with cost(f) > 2(diam(CT )− 1),
there is a pendent neighbour, say `10 without loss of generality, of v0 such that f(`10) = x and
x is strictly greater than the value claimed by the lemma (note that, in case 3, if f(`10) = 2
(resp. 0) and f(`20) = 0 (resp. 2), then we can equivalently assign the value 1 to both of them).
We will prove that such a minimal counterexample cannot exist.

Let f0 be any such independent broadcast on CT0 for which the value f(`10) = x is minimal.
We thus have x ≥ 3 whenever λ1 > 0 or λ0 ≥ 3 (since in this latter case we can assign value 1
to each of the at least three pendent neighbours of v0, and thus x = 2 would imply that f0 is
not optimal), and x ≥ 4 whenever λ1 = 0.

Since f0(`
1
0) = x > 1, we have f∗0 (vi) = 0 for every i, 1 ≤ i ≤ x − 2, and f0(vx−1) = 0.

Moreover, x − 1 < k since f0 is a non-canonical independent broadcast, and vx−1 cannot be a
trunk, since otherwise we could set f0(`

1
0) = x+1 (recall that, by Lemma 6, f0(vi) = 0 for every

stem vi, and thus f0(vx) = 0), contradicting the optimality of f0.
Let now CT1 = (λx−1, . . . , λk) be the caterpillar obtained from CT0 by deleting vertices

v0, . . . , vx−2 and their pendent neighbours (see Figure 5(a)). Note that f0(u) = 0 for every such
deleted vertex u 6= `10. Let f1 denote the restriction of f0 to V (CT1). Since f0(`

1
0) = x, we get

f1(u) = f0(u) ≤ max{eCT1(u), dCT0(u, `10)} ≤ eCT1(u)

for every vertex u ∈ V (CT1), so that f1 is an independent broadcast on CT1 by Observation 4.
Moreover, since diam(CT1) = diam(CT0)− x+ 1, we have

cost(f1) = cost(f0)− x > 2(diam(CT0)− 1)− x = 2(diam(CT1)− 1) + x− 2.

Since x > 1, we thus have cost(f1) ≥ 2(diam(CT1) − 1). Therefore, since CT0 is a minimal
counterexample, we get that either f1 is a canonical independent broadcast on CT1 or there
exists an optimal non-canonical independent broadcast f ′1 on CT1 with cost(f ′1) ≥ cost(f1) and
f ′1 satisfies the statement of the lemma.

Suppose first that f1 is a canonical independent broadcast. This implies

cost(f1) = 2(diam(CT1)− 1).

Hence,
cost(f0) = cost(f1) + x = 2(diam(CT1)− 1) + x < 2(diam(CT0)− 1),

which contradicts our assumption on cost(f0).
Therefore, there exists an optimal non-canonical independent broadcast f ′1 on CT1 with

cost(f ′1) ≥ cost(f1) satisfying the statement of the lemma. If cost(f ′1) > cost(f1), the mapping
f ′0 given by f ′0(u) = f ′1(u) for every vertex u ∈ V (CT1) and f ′0(u) = f0(u) for every vertex
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u ∈ V (CT0) \ V (CT1), is a non-canonical independent broadcast f ′0 on CT0 (since x ≥ 3) that
contradicts the optimality of f0.

Hence, f1 is optimal and thus satisfies the statement of the lemma. Let f̃1 be the non-
canonical independent broadcast satisfying items 1 to 5 of the lemma, and let

m = max
{
f̃1(`

j
x−1), 1 ≤ j ≤ λx−1

}
.

We consider two cases, depending on whether vx−2 is a stem or not. Recall that vx−2 6= v0,
since x ≥ 3.

1. λx−2 > 0.
Let f ′0 be the non-canonical independent broadcast on CT0 given by f ′0(`

1
0) = x − 1,

f ′0(`
1
x−2) = 2, f ′0(u) = 0 for every vertex u ∈ V (CT0) \ (V (CT1) ∪ {`10, `1x−2}), and either

f ′0(u) = f̃1(u) for every vertex u ∈ V (CT1), if m ≤ 2 (see Figure 5(b)), or f ′0(`
1
x−1) = 2 and

f ′0(u) = f̃1(u) for every vertex u ∈ V (CT1)\{`1x−1}, if m = 3 (see Figure 5(c)). We then get
cost(f ′0) = cost(f0) + 1 if m ≤ 2, contradicting the optimality of f0, or cost(f ′0) = cost(f0)
if m = 3, in which case either f ′0 satisfies items 1 to 5 of the lemma or contradicts the
minimality of x.

2. λx−2 = 0.
If x = 3, then λ1 = 0 which implies x ≥ 4, a contradiction. Hence, we have x ≥ 4,
and thus vx−3 6= v0. Let f ′0 be the non-canonical independent broadcast on CT0 given by
f ′0(`

1
0) = x−2, f ′0(`

1
x−3) = 2, f ′0(u) = 0 for every vertex u ∈ V (CT0)\(V (CT1)∪{`10, `1x−3}),

and f ′0(u) = f̃1(u) for every vertex u ∈ V (CT1) (see Figure 5(d)). We then get cost(f ′0) =
cost(f0), and thus either f ′0 satisfies items 1 to 5 of the lemma or contradicts the minimality
of x.

This concludes the proof. �

We now consider the internal stems of a caterpillar. Recall that, by Lemma 6, f̃(vi) = 0 for
every internal stem vi of CT , 1 ≤ i ≤ k − 1. The next lemma shows that if f is an optimal
non-canonical independent broadcast on a caterpillar CT with no pair of adjacent trunks, with
cost(f) > 2(diam(CT )− 1), then there exists an optimal non-canonical independent broadcast
f̃ on CT such that f̃∗(vi)− f̃(vi) = f̃∗(vi) > 0 for every internal stem vi of CT , 1 ≤ i ≤ k − 1.

Lemma 12 Let CT = CT (λ0, . . . , λk) be a caterpillar of length k ≥ 1, with no pair of ad-
jacent trunks. If f is an optimal non-canonical independent broadcast on CT with cost(f) >
2(diam(CT ) − 1), then there exists an optimal non-canonical independent broadcast f̃ on CT ,
thus with cost(f̃) = cost(f), such that:

1. f̃ satisfies the five items of Lemma 11,

2. for every i, 1 ≤ i ≤ k − 1, if λi > 0, then f̃∗(vi) > 0.

Proof. We know by Lemma 11 that there exists an optimal non-canonical independent broad-
cast f̃ on CT , with cost(f̃) = cost(f), satisfying the five items of Lemma 11. Moreover, one
suppose that f̃ has been chosen in such a way that V +

f̃
contains the largest possible number of

pendent vertices.
Suppose to the contrary that there exists a vertex vi, 1 ≤ i ≤ k − 1, with λi > 0 and

f̃∗(vi) = 0, and that for every j < i, f̃∗(vj) > 0 whenever λj > 0. We consider three cases.

1. i = 1 or i = k − 1.
By symmetry, it suffices to consider the case i = 1. By Lemma 11, we know that f̃(`j0) ≤ 2
for every j, 1 ≤ j ≤ λ0. Therefore, no pendent neighbour of v1 is f̃ -dominated by a pendent
neighbour of v0. Let y be the vertex of CT that f̃ -dominates the pendent neighbours of

12



x

v0 v1 vx−1 vk

(a) The sub-caterpillar CT1

x 0 m

v0 vx−2 vx−1

−→

x− 1 2 m

v0 vx−2 vx−1

(b) λx−2 > 0 and m ≤ 2

x 0 3

v0 vx−2 vx−1

−→

x− 1 2 2

v0 vx−2 vx−1

(c) λx−2 > 0 and m = 3

x 0 m

v0 vx−3 vx−2 vx−1

−→

x− 2 2 m

v0 vx−3 vx−2 vx−1

(d) λx−2 = 0

Figure 5: Configurations for the proof of Lemma 11
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v1 (note that y is necessarily unique), and g be the mapping defined as follows. For every
vertex u of CT , let

g(u) =


f̃(y)− 1 if u = y,
1 if u = `11,

1 if u 6= `11, u is f̃ -dominated only by y and dCT (u, y) = f̃(y),

f̃(u) otherwise.

We claim that the mapping g is a non-canonical independent broadcast on CT with
cost(g) ≥ cost(f̃). Indeed, all vertices x with dCT (x, y) < f̃(y) that were f̃ -dominated
by y are still g-dominated by y, and all vertices x′ 6= `11 with dCT (x′, y) = f̃(y) that were
f̃ -dominated only by y are now g-broadcast vertices with g(x′) = 1 (note that since every
such x′ was f̃ -dominated only by y, we have g(z) = f̃(z) = 0 for every neighbour z of x′).

Now, if there exists a vertex z which is f̃ -dominated only by y, we get cost(g) ≥ cost(f̃)+1,
contradicting the optimality of f̃ . If no such vertex exists, we get cost(g) = cost(f̃) and
V +
g contains more pendent vertices than V +

f̃
, contrary to our assumption.

2. i = 2 and λ1 = 0, or i = k − 2 and λk−1 = 0.
By symmetry, it suffices to consider the case i = 2. By Lemma 11, we know that f̃(`j0) ≤ 3
for every j, 1 ≤ j ≤ λ0. Therefore, no pendent neighbour of v2 is f̃ -dominated by
a pendent neighbour of v0. Let y be the (unique) vertex of CT that f̃ -dominates the
pendent neighbours of v2 (note that we necessarily have f̃(y) ≥ 2).

If y = v3 and f̃(v3) = 3 (since f̃∗(v0) > 0, we necessarily have f̃(v3) ≤ 3), we define the
mapping g as follows. For every vertex u of CT , let

g(u) =


0 if u = v3,
3 if u = `12,

1 if u 6= `12, u is f̃ -dominated only by v3 and dCT (u, y) = 2,

f̃(u) otherwise.

Otherwise (including the case y = v3 and f̃(v3) = 2), the mapping g is defined by

g(u) =


f̃(y)− 2 if u = y,
2 if u = `12,

1 if u 6= `12, u is f̃ -dominated only by y and dCT (u, y) = f̃(y)− 1,

f̃(u) otherwise,

for every vertex u of CT .

In both cases, the mapping g is again a non-canonical independent broadcast on CT with
cost(g) ≥ cost(f̃). Indeed, all vertices x with dCT (x, y) < f̃(y)− 1 that were f̃ -dominated
by y are g-dominated by `21 (if y = v3) or still g-dominated by y (if y 6= v3), and all
vertices x′ 6= `12 with f̃(y) − 1 ≤ dCT (x′, y) ≤ f̃(y) that were f̃ -dominated only by y are
now either g-broadcast vertices (if dCT (x′, y) = f̃(y) − 1) or g-dominated by a vertex x′′

with dCT (x′′, y) = f̃(y)− 1 and g(x′′) = 1.

We then get a contradiction as in Case 1.

3. 2 < i < k − 2, or i = 2 and λ1 > 0, or i = k − 2 and λk−1 > 0.
In this case, we have f̃∗(vj) > 0 for every vertex vj with j < i and λj > 0. Note also that
we have at least two such vertices vj with j < i and λj > 0.

By symmetry, it suffices to consider the cases 2 < i < k − 2, and i = 2 (with λ1 > 0). We
consider three subcases.

(a) Suppose first that the pendent neighbours of vi are f̃ -dominated only by a vertex
y = vj0 or y = `k0j0 with j0 < i and 1 ≤ k0 ≤ λj0 . Observe that the pendent neighbours
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of vi cannot be f̃ -dominated by two such vertices, say y and y′, since we would have
dCT (y, y′) < dCT (y, `1i ) so that f̃ would not be independent. Since f̃∗(vj) > 0 for
every j < i such that λj > 0, we necessarily have, by Lemma 6, either y is a pendent
neighbour of vi−1, if λi−1 > 1, or a pendent neighbour of vi−2, if λi−1 = 0. Moreover,
since f̃∗(vj) > 0 for every j < i such that λj > 0, and since we have at least two
such vertices, we necessarily have f̃(y) ≤ 3. This implies in particular λi−1 > 0, as
otherwise we would have f̃(y) ≤ 3 and dCT (y, `1i ) = 4, contradicting the fact that y
f̃ -dominates `1i , and thus y is a pendent neighbour of vi−1.
Let now g be the mapping defined as follows. For every vertex u of CT , let

g(u) =


f̃(y)− 1 if u = y,
1 if u = `1i ,

1 if u 6= `1i , u is f̃ -dominated only by y and dCT (u, y) = f̃(y),

f̃(u) otherwise.

Again, the mapping g is a non-canonical independent broadcast on CT with cost(g) ≥
cost(f̃). Indeed, all vertices x with dCT (x, y) < f̃(y) that were f̃ -dominated by y are
still g-dominated either by y, and all vertices x′ 6= `1i with dCT (x′, y) = f̃(y) that were
f̃ -dominated only by y are now g-broadcast vertices.
We then get a contradiction as in Cases 1 and 2.

(b) Suppose now that the pendent neighbours of vi are f̃ -dominated only by a vertex
y = vj0 (with λj0 = 0) or y = `k0j0 (1 ≤ k0 ≤ λj0), with j0 > i. Observe that, using
the same argument as in Case (a), such a vertex y must be unique. Moreover, we
necessarily have f̃(y) ≥ 2.
If λi−1 = 0, we consider two cases, as we did in Case 2. If y = vi+1 and f̃(vi+1) = 3,
we define the mapping g by

g(u) =


0 if u = vi+1,
3 if u = `1i ,

1 if u 6= `1i , u is f̃ -dominated only by y and dCT (u, y) = 2,

f̃(u) otherwise,

for every vertex u of CT . Otherwise, the mapping g is defined by

g(u) =


f̃(y)− 2 if u = y,
2 if u = `1i ,

1 if u 6= `1i , u is f̃ -dominated only by y and dCT (u, y) = f̃(y)− 1,

f̃(u) otherwise,

for every vertex u of CT .
Otherwise, that is, λi−1 > 0, we define the mapping g as follows. For every vertex u
of CT , let

g(u) =


f̃(y)− 1 if u = y,
1 if u = `1i ,

1 if u 6= `1i , u is f̃ -dominated only by y and dCT (u, y) = f̃(y),

f̃(u) otherwise.

Again, using similar arguments, in each case the above-defined mapping is a non-
canonical independent broadcast on CT with cost(g) ≥ cost(f̃) and the contradiction
arises as in Cases 1 and 2.

(c) Suppose finally that the pendent neighbours of vi are f̃ -dominated both by a vertex
y1 = vj1 or y1 = `k1j1 with j1 < i and 1 ≤ k1 ≤ λj1 , and by a vertex y2 = vj2 or y2 = `k2j2
with j2 > i and 1 ≤ k2 ≤ λj2 (again, both y1 and y2 must be unique). In that case, as
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discussed in Case (a) above, we necessarily have λi−1 > 0. Moreover, we necessarily
have f̃(y1) = 3 and f̃(y2) ≥ 2.
Let now g be the mapping defined as follows. For every vertex u of CT , let

g(u) =



f̃(y1)− 1 if u = y1,

f̃(y2)− 1 if u = y2,
2 if u = `1i ,

1 if u 6= `1i , u is f̃ -dominated only by y2 and dCT (u, y2) = f̃(y2),

f̃(u) otherwise.

Note here that no vertex at distance f̃(y1) from y1 can be f̃ -dominated only by y1.
Indeed, suppose that such a vertex, say w, exists. Clearly, w cannot be “to the left
of vi” since this would imply w = vi−3 and λi−2 = 0, but in that case w is also
f̃ -dominated by at least one of its pendent neighbours. On the other hand, w cannot
be “to the right of vi” since in that case w would also be f̃ -dominated by y2.
Again, using similar arguments, the above-defined mapping is a non-canonical inde-
pendent broadcast on CT with cost(g) ≥ cost(f̃) and the contradiction arises as in
Cases 1 and 2.

We thus get a contradiction in each case. This completes the proof. �

Our aim now is to prove that if f is an optimal non-canonical independent broadcast on a
caterpillar CT with no pair of adjacent trunks, with cost(f) > 2(diam(CT )−1), then cost(f) =
cost(β∗) (Lemma 16 below). We first prove that for every such broadcast f , f(vi) ≤ 1 for every
trunk vi. This easily follows from Lemma 12.

Lemma 13 Let CT = CT (λ0, . . . , λk) be a caterpillar of length k ≥ 1, with no pair of ad-
jacent trunks. If f is an optimal non-canonical independent broadcast on CT with cost(f) >
2(diam(CT ) − 1), then there exists an optimal non-canonical independent broadcast f̃ on CT ,
thus with cost(f̃) = cost(f), such that:

1. f̃ satisfies the two items of Lemma 12,

2. for every i, 1 ≤ i ≤ k − 1, if λi = 0, then f̃∗(vi) ≤ 1.

Proof. We know by Lemma 12 that there exists an optimal non-canonical independent broad-
cast f̃ on CT satisfying the two items of Lemma 12, so that, in particular, f̃∗(vj) > 0 for every
stem vj , 0 ≤ j ≤ k. Since CT has no pair of adjacent trunks, and f̃ is independent, we thus
necessarily have f̃∗(vi) ≤ 1 for every trunk vi, 1 ≤ i ≤ k − 1. �

Finally, the next lemma will show that the cost of any optimal non-canonical independent
broadcast on a caterpillar CT of length k ≥ 1 with no pair of adjacent trunks cannot exceed
the value β∗(CT ).

We first introduce more notation. Let CT be a caterpillar of length k ≥ 1, with no pair
of adjacent trunks. We denote by σ a sequence of ` consecutive spine vertices in CT , that is,
σ = vi . . . vi+`−1, with ` ≤ k+1 and 0 ≤ i ≤ k−`+1. For such a given sequence σ = vi . . . vi+`−1,
we denote by tσ the number of trunks in σ, that is,

tσ = |{vj | i ≤ j ≤ i+ `− 1 and λj = 0}| .

If f is an independent broadcast on CT , we then denote by f∗(σ) the weight of σ, that is,

f∗(σ) =
∑

0≤j≤`−1
f∗(vi+j).
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Lemma 14 Let CT = CT (λ0, . . . , λk) be a caterpillar of length k ≥ 1, with no pair of adja-
cent trunks, and f be an optimal non-canonical independent broadcast on CT with cost(f) >
2(diam(CT )− 1). Then there exists an optimal non-canonical independent broadcast f̃ on CT ,
thus with cost(f̃) = cost(f), such that:

1. f̃ satisfies the two items of Lemma 13.

2. For every i, 0 ≤ i ≤ k, if λi ≥ 3, then f̃∗(vi) ≤ λi.
3. If vava+1, 0 ≤ a < k, is an occurrence of the pattern 1+2− (resp. of the pattern 2−1+),

then f̃∗(va+1) ≤ 2 (resp. f̃∗(va) ≤ 2).

4. If vaσvb is an occurrence of the pattern 1+2−(02−)+r1+, then f̃∗(σ) ≤ 3tσ + 2 if vaσvb is
an occurrence of the pattern 1+2(02)+r1+, and f̃∗(σ) ≤ 3tσ + 1 otherwise.

5. If σ is an occurrence of the pattern 02−(02−)∗r0, then f̃∗(σ) ≤ 3tσ − 2 if vaσvb is an
occurrence of the pattern 02(02)∗r0, and f̃∗(σ) ≤ 3tσ − 3 otherwise.

6. If σ is an occurrence of the pattern [2−(02−)∗r0 or of the pattern 02−(02−)∗r], then f̃∗(σ) ≤
3tσ.

Proof. We consider the six items of the lemma.

1. We know by Lemma 13 that there exists an optimal non-canonical independent broadcast
f̃ on CT satisfying the two items of Lemma 13, so that, in particular, f̃∗(vi) > 0 for every
stem vi, 0 ≤ i ≤ k and f̃∗(vj) ≤ 1 for every trunk vj , 1 ≤ j ≤ k − 1. We thus assume for
all following items that such an optimal non-canonical independent broadcast f̃ on CT
has been chosen.

2. Suppose to the contrary that there exists some i, 0 ≤ i ≤ k, with f̃∗(vi) > λi ≥ 3. This
implies that vi has exactly one pendent neighbour, say `1i without loss of generality, which
is an f̃ -broadcast vertex. Since f̃(`1i ) ≥ 4, we necessarily have a stem v with dCT (vi, v) ≤ 2
and f̃∗(v) = 0, contradicting our assumption that f̃ satisfies Lemma 12.

3. Let vava+1, 0 ≤ a < k, be an occurrence of the pattern 1+2− (the case 2−1+ is similar, by
symmetry). By Lemmas 6 and 12, we know that f̃∗(va) > 0 and f̃(va) = 0. This clearly
implies f̃∗(va+1) ≤ 2.

4. Let vaσvb = vivi+1 . . . vi+2r+2 be an occurrence of the pattern 1+2(02)+r1+, for some i,
0 ≤ i ≤ k− 2r− 2. We thus have tσ = r. Since f̃ satisfies Lemma 13, we have f̃∗(vi) > 0,
f̃∗(vi+2r+2) > 0, f̃∗(vi+2j+1) > 0 for every j, 0 ≤ j ≤ r, and f̃∗(vi+2j) ≤ 1 for every j,
1 ≤ j ≤ r. This implies

f̃∗(vi+1) ≤ 2, f̃∗(vi+2r+1) ≤ 2, and f̃∗(vi+2j+1) ≤ 3 for every j, 1 ≤ j ≤ r − 1. (1)

We consider three subcases, according to the number of trunks in σ that are broadcast
vertices.

(a) f̃(vi+2j) = 1 for every j, 1 ≤ j ≤ r.
In that case, every pendent vertex in σ is an f̃ -broadcast vertex, with f̃ -value 1. This
gives

f̃∗(σ) = λ(σ) + τ(σ) ≤ 2(r + 1) + r = 3r + 2 = 3tσ + 2,

if vaσvb is an occurrence of the pattern 1+2(02)+r1+, and

f̃∗(σ) = λ(σ) + τ(σ) ≤ 1 + 2r + r = 3r + 1 = 3tσ + 1,

otherwise (since we have at least one stem in σ with f̃ -value 1).

(b) f̃(vi+2j) = 0 for every j, 1 ≤ j ≤ r.
In that case, by (1), we get

f̃∗(σ) ≤ 2 + 3(r − 1) + 2 = 3r + 1 = 3tσ + 1.
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(c) Not all trunks in σ have the same f̃ -value.
Suppose that f̃ has been chosen in such a way that the number of trunks in σ with
f̃ -value 0 is maximal. In that case, σ contains two consecutive trunks, say vi+2j0 and
vi+2j0+2, 1 ≤ j0 ≤ r − 1, with f̃(vi+2j0) = 0 and f̃(vi+2j0+2) = 1, without loss of
generality (by symmetry). This implies f̃∗(vi+2j0+1) = λi+2j0+1 ≤ 2. We can then
modify f̃ by setting f̃(vi+2j0) = f̃(vi+2j0+2) = 0, f̃(`1i+2j0+1) = 3 (and f̃(`2i+2j0+1) = 0
if λi+2j0+1 = 2), contradicting our assumption on the maximality of the number of
trunks with f̃ -value 0. Therefore, this case cannot occur and we are done.

5. The proof uses the same ideas as the proof of the previous case. Let σ = vivi+1 . . . vi+2r+2

be an occurrence of the pattern 02−(02−)∗r0, for some i, 1 ≤ i ≤ k− 2r− 3. We thus have
tσ = r + 2. Since f̃ satisfies Lemma 13, we have

0 < f̃∗(vi+2j+1) ≤ 3 for every j, 0 ≤ j ≤ r, (2)

and
f̃∗(vi+2j) ≤ 1 for every j, 0 ≤ j ≤ r + 1. (3)

We consider three subcases, according to the number of trunks in σ that are broadcast
vertices.

(a) f̃(vi+2j) = 1 for every j, 0 ≤ j ≤ r + 1.
In that case, every pendent vertex in σ is an f̃ -broadcast vertex, with f̃ -value 1. This
gives

f̃∗(σ) = λ(σ) + τ(σ) ≤ 2(r + 1) + r + 2 = 3r + 4 = 3tσ − 2,

if σ is an occurrence of the pattern 02(02)∗r0, and

f̃∗(σ) = λ(σ) + τ(σ) ≤ 1 + 2r + r + 2 = 3r + 3 = 3tσ − 3,

otherwise (since we have at least one stem in σ with f̃ -value 1).

(b) f̃(vi+2j) = 0 for every j, 0 ≤ j ≤ r + 1.
In that case, by (2) and (3), we get

f̃∗(σ) ≤ 3(r + 1) = 3r + 3 = 3tσ − 3.

(c) Not all trunks in σ have the same f̃ -value.
Suppose that f̃ has been chosen in such a way that the number of trunks in σ with
f̃ -value 0 is maximal. In that case, σ contains two consecutive trunks, say vi+2j0

and vi+2j0+2, 0 ≤ j0 ≤ r, with f̃(vi+2j0) = 0 and f̃(vi+2j0+2) = 1, without loss of
generality (by symmetry). This implies f̃∗(vi+2j0+1) = λi+2j0+1 ≤ 2. We can then
modify f̃ by setting f̃(vi+2j0) = f̃(vi+2j0+2) = 0, f̃(`1i+2j0+1) = 3 (and f̃(`2i+2j0+1) = 0
if λi+2j0+1 = 2), contradicting our assumption on the maximality of the number of
trunks with f̃ -value 0. Therefore, this case cannot occur and we are done.

6. Let v0 . . . v2r+1 be an occurrence of the pattern [2−(02−)∗r0 (the case 02−(02−)∗r] is similar,
by symmetry). We first prove that for every i, 0 ≤ i ≤ r, f̃∗(v2i) + f̃∗(v2i+1) ≤ 3. By
Lemma 13, we know that f̃(v2i+1) ≤ 1. If f̃(v2i+1) = 1, we then have f̃(`j2i) ≤ 1 for

every pendent neighbour `j2i of v2i, and thus f̃∗(v2i) ≤ λ2i ≤ 2. On the other hand, if

f̃(v2i+1) = 0, we have f̃∗(v2i) ≤ 3 (which implies f̃(`j2i) = 3 for a pendent neighbour `j2i of
v2i) since otherwise we would have f̃∗(v2i+2) = 0, contradicting Lemma 12. In both cases,
we thus get the desired inequality.

Since σ contains exactly r+ 1 = tσ distinct pairs of vertices of the form (v2i, v2i+1), we get

f̃∗(σ) =

i=r∑
i=0

(
f̃∗(v2i) + f̃∗(v2i+1)

)
≤ 3(r + 1) = 3tσ.
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This completes the proof. �

The following lemma states that Lemma 14 covers all possible caterpillars that admit a
non-canonical independent broadcast with sufficiently large cost.

Lemma 15 If CT = CT (λ0, . . . , λk) is a caterpillar of length k ≥ 1, with no pair of adjacent
trunks, such that there exists an optimal non-canonical independent broadcast f on CT with
cost(f) > 2(diam(CT )− 1), then Lemma 14 gives an upper bound on cost(f).

Proof. Let CT = CT (λ0, . . . , λk) be a caterpillar of length k ≥ 1, with no pair of adja-
cent trunks, f be an optimal non-canonical independent broadcast on CT with cost(f) >
2(diam(CT )− 1), and vi, 0 ≤ i ≤ k, a spine vertex of CT .

If λi ≥ 3, then f∗(vi) = λi by item 5 of Lemma 11, and thus by item 1 of Lemma 14.
If λi = 0, then f∗(vi) ≤ 1 by item 2 of Lemma 13, and thus by item 1 of Lemma 14.
Suppose now that 1 ≤ λi ≤ 2. If i = 0 or i = k, then f∗(vi) ≤ 3 by items 1 to 4 of Lemma 11,

and thus by item 1 of Lemma 14. We assume now that 1 ≤ i ≤ k − 1. If λi−1 > 0 or λi+1 > 0,
then f∗(vi) ≤ 2 by item 3 of Lemma 14.

The remaining case is thus 1 ≤ i ≤ k − 1, λi−1 = 0 and λi+1 = 0. We consider the set of
all occurrences of a pattern, in which 0’s and 2−’s alternate, that contain vertices vi−1, vi and
vi+1. Let σ = vava+1 . . . vb, 0 ≤ a ≤ i− 1 < i+ 1 ≤ b ≤ k be such an occurrence with maximal
length. Note here that we necessarily have va 6= vi and vb 6= vi. We consider three cases.

1. λa = λb = 0.
By the maximality of σ, we necessarily have λa−1 ≥ 3 and λb+1 ≥ 3. Therefore, the value
of f∗(σ) is bounded by item 5 of Lemma 14.

2. λa = 0 and λb > 0 (the case λa > 0 and λb = 0 is similar, by symmetry).
By the maximality of σ, we necessarily have λa−1 ≥ 3 and either b = k, or b < k and
λb+1 ≥ 1. If b = k, then the value of f∗(σ) is bounded by item 6 of Lemma 14. If b < k
and λb+1 ≥ 1, then f∗(va . . . vb−1) is bounded by item 5 of Lemma 14.

3. λa > 0 and λb > 0.
By the maximality of σ, we necessarily have (i) either a = 0, or a > 0 and λa−1 ≥ 1, and
(ii) either b = k, or b < k and λb+1 ≥ 1.

If a > 0 and b < k, then the value of f∗(σ) is bounded by item 4 of Lemma 14.

If a = 0 and b < k (the case a > 0 and b = k is similar, by symmetry), then the value of
f∗(va . . . vb−1) is bounded by item 6 of Lemma 14.

Finally, if a = 0 and b = k, the caterpillar CT has pattern 2−(02−)+r. In that case, we
have diam(CT ) = 2r + 2 and thus 2(diam(CT )− 1) = 4r + 2. But by Lemmas 12 and 13
(as discussed in the proof of item 6 of Lemma 14), we have f∗(vj) +f∗(vj+1) ≤ 3 for every
j, 0 ≤ j ≤ 2r − 2. Moreover, by item 2 of Lemma 11, we have f∗(v2r) = 3. Therefore,
f∗(CT ) ≤ 3r + 3 ≤ 4r + 2 = 2(diam(CT ) − 1). This contradicts our assumption on the
value of cost(f), and thus this case cannot occur.

Therefore, in all cases, either f∗(vi) or f∗(σ) for an occurrence σ of a pattern containing vi
is bounded by some item of Lemma 14. This concludes the proof. �

Using Lemmas 14 and 15, we can now prove that no optimal non-canonical independent
broadcast f on CT with cost(f) > 2(diam(CT )− 1) and cost(f) > β∗(CT ) exists.

Lemma 16 Let CT = CT (λ0, . . . , λk) be a caterpillar of length k ≥ 1, with no pair of adja-
cent trunks, and f be an optimal non-canonical independent broadcast on CT with cost(f) >
2(diam(CT )− 1). We then have cost(f) ≤ β∗(CT ).
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Proof. Let us denote by f4 the non-canonical independent broadcast on CT constructed in
the proof of Lemma 10, thus with cost(f4) = β∗(CT ). By considering the four steps involved
in the construction of f4, it clearly appears that f4 satisfies the five items of Lemma 11, item 2
of Lemma 12 and item 2 of Lemma 13. Therefore, f4 satisfies item 1 of Lemma 14. Moreover,
if vi is a trunk that does not appear in any pattern considered in Lemma 14, then f4(vi) = 1.
Indeed, the f4-value of vi is set to 1 in step 1 of Lemma 10 and is not modified in steps 2 to 4.

We now prove that f4 satisfies the five last items of Lemma 14 and that, in each case, the
upper bound is attained. We will refer to steps 1 to 4 of the proof of Lemma 10 and to the
corresponding intermediate independent broadcasts f1 to f3. Recall first that in step 1, every
trunk and every pendent vertex is assigned the value 1.

1. Item 2 of Lemma 14.
If vi is a stem with λi ≥ 3, the value of its pendent neighbours is not modified in steps 2
to 4. Therefore, we get f∗4 (vi) = f∗1 (vi) = λi for every such vi.

2. Item 3 of Lemma 14.
Let vava+1, 0 ≤ a < k, be an occurrence of the pattern 1+2− (the case 2−1+ is similar, by
symmetry). Note here that if va+1 is the leftmost vertex of an occurrence of the pattern
1+2(02)+r1+, then the value of its pendent neighbours is not modified in step 3.

If λa+1 = 1, then, in step 2, the value of `1a+1 is set to 2 and not modified in step 4. If
λa+1 = 2, then the value of the pendent neighbours of va+1 is not modified in steps 2
and 4. Therefore, f∗4 (va+1) = 2 in both cases.

3. Item 4 of Lemma 14.
Let vaσvb = vivi+1 . . . vi+2r+2 be an occurrence of the pattern 1+2−(02−)+r1+, for some
i, 0 ≤ i ≤ k − 2r − 2. In that case, we have tσ = r.

If vaσvb is an occurrence of the pattern 1+2(02)+r1+, the value of the vertices of σ are not
modified in steps 2 to 4. Therefore, we have f∗4 (σ) = f∗1 (σ) = 2(r+1)+r = 3r+2 = 3tσ+2.

Suppose now that σ contains at least one stem having only one pendent neighbour. In
step 3, the value of `1i+1 is set to 2 if λi+1 = 1, the value of `1i+2r+1 is set to 2 if λi+2r+1 = 1,
the value of `1i+2j+1, 1 ≤ j ≤ r − 1, is set to 3 (and the value of `2i+2j+1 is set to 0 if
λi+2j+1 = 2), and the value of every trunk is set to 0. We thus get

f∗4 (σ) = f∗3 (σ) = 2 + 2 + 3(r − 1) = 3r + 1 = 3tσ + 1.

4. Item 5 of Lemma 14.
Let σ = vivi+1 . . . vi+2r+2 be an occurrence of the pattern 02−(02−)∗r0, for some i, 1 ≤
i ≤ k − 2r − 3. In that case, we have tσ = r + 2.

If σ is an occurrence of the pattern 02(02)∗r0, the value of the vertices of σ are not modified
in steps 2 to 4. Therefore, we have f∗4 (σ) = f∗1 (σ) = 2(r + 1) + r + 2 = 3r + 4 = 3tσ − 2.

Suppose now that σ contains at least one stem having only one pendent neighbour. In
step 3, the value of `1i+2j+1, 0 ≤ j ≤ r, is set to 3 (and the value of `2i+2j+1 is set to 0 if
λi+2j+1 = 2), and the value of every trunk is set to 0. We thus get

f∗4 (σ) = f∗3 (σ) = 3(r + 1) = 3r + 3 = 3tσ − 3.

5. Item 6 of Lemma 14.
Let v0 . . . v2r+1 be an occurrence of the pattern [2−(02−)∗r0 (the case 02−(02−)∗r] is similar,
by symmetry). In that case, we have tσ = r + 1.

In step 3, the value of `12j , 0 ≤ j ≤ r, is set to 3 (and the value of `22j is set to 0 if λ2j = 2),
and the value of every trunk is set to 0. We thus get

f∗4 (σ) = f∗3 (σ) = 3(r + 1) = 3r + 3 = 3tσ.
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By Lemma 14, we know that there exists an optimal non-canonical independent broadcast
f̃ with cost(f̃) = cost(f) which satisfies all items of Lemma 14. We have proved that the
non-canonical independent broadcast f4 constructed in the proof of Lemma 10 also satisfies all
items of Lemma 14. Thanks to Lemma 15, we thus have

cost(f) = cost(f̃) ≤ cost(f4) = β∗(CT ),

which completes the proof. �

We are now able to state our main result, which determines the broadcast independent
number of any caterpillar with no pair of adjacent trunks.

Theorem 17 Let CT = CT (λ0, . . . , λk) be a caterpillar of length k ≥ 1, with no pair of adjacent
trunks. The broadcast independence number of CT is then given by:

βb(CT ) = max
{

2(diam(CT )− 1), β∗(CT )
}
.

Proof. We know by Observation 1 that βb(CT ) ≥ 2(diam(CT ) − 1) and we already observed
that the canonical independent broadcast fc on CT satisfies cost(fc) = 2(diam(CT ) − 1). Ac-
cording to Lemma 10, it is thus enough to prove that for any optimal non-canonical independent
broadcast f on CT with cost(f) > 2(diam(CT )− 1), cost(f) ≤ β∗(CT ), which directly follows
from Lemma 16. �

In several cases, the value of β∗(CT ) has a simple expression. Consider for instance a
caterpillar CT , of length k ≥ 1, having no trunk. We then have β∗(CT ) = λ(CT ) + n1(CT ),
where n1 stands for the number of spine vertices having exactly one pendent vertex. Since
λ(CT ) ≥ n1(CT ) + 2(k + 1 − n1(CT )) = 2k + 2 − n1(CT ) (spine vertices have either one or
at least two pendent neighbours), we get β∗(CT ) ≥ 2k + 2, with equality if and only if CT
contains no stem with at least three pendent neighbours. Since 2(diam(CT )− 1) = 2k + 2, we
get the following corollary of Theorem 17.

Corollary 18 Let CT be a caterpillar of length k ≥ 1 having no trunk. We then have βb(CT ) =
2k + 2 = 2(diam(CT ) − 1) if CT has no stem with at least three pendent neighbours, and
βb(CT ) = λ(CT ) + n1(CT ) otherwise.

Moreover, thanks to Observation 4, we can also give the broadcast independent number of
caterpillars having adjacent trunks but no stem with at least three pendent neighbours.

Corollary 19 Let CT be a caterpillar of length k ≥ 1. If CT has no stem with at least three
pendent neighbours, then βb(CT ) = 2k + 2 = 2(diam(CT )− 1).

Finally, note that if every stem in a caterpillar CT of length k ≥ 1 with no pair of adjacent
trunks has at least three pendent neighbours, then no pattern involved in the definition of
β∗(CT ) can appear in CT . In that case, since τ(CT ) ≤

⌊
k
2

⌋
and λ(CT ) ≥ 3

(⌈
k
2

⌉
+ 1
)
, we get

β∗(CT ) = λ(CT ) + τ(CT ) > 2k + 2 = 2(diam(CT )− 1).

Therefore, we have:

Corollary 20 Let CT be a caterpillar of length k ≥ 1, with no pair of adjacent trunks. If all
stems in CT have at least three pendent neighbours, then βb(CT ) = λ(CT ) + τ(CT ).
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4 Concluding remarks

In this paper, we studied independent broadcasts of caterpillars and gave an explicit formula
for the broadcast independence number of caterpillars having no pair of adjacent trunks.

This result concerns a quite restricted subclass of the class of trees, but the broadcast
independence number is certainly a difficult parameter to determine for trees, and probably even
for caterpillars. It should be noticed here that the computational complexity of the decision
problem associated with the broadcast independence number is not known yet, even for trees,
although this question was already posed in [8] and [11]. (The only complexity result about a
broadcast parameter, among those introduced in [8], is due to Heggernes and Lokshtanov [12],
who proved that computing the broadcast domination number γb(G) of any graph G can be
done in polynomial time.)

Finally, we consider that the following questions are of particular interest.

1. Can we determine the broadcast independence number of caterpillars? (We should notice
here that for caterpillars with adjacent trunks, Lemmas 6 and 7 still hold, while Lemma 12
does not. This explains why we think that this might be a not so easy question.)

2. Can we determine the broadcast independence number of other subclasses of the class of
trees? In particular, what about k-ary trees?

3. Can we characterize the set of caterpillars CT for which βb(CT ) = 2(diam(CT ) − 1)?
(Partial answers are given by Corollaries 18 and 19.)

4. More generally, can we characterize the set of trees T for which βb(T ) = k(diam(T )− 1),
where k is the maximum size of a set of pairwise antipodal vertices in T?
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