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Magnetic induction tomography (MIT) is an imaging modality with a wide range of potential applications due to its non-contact nature. MIT is a member of the electrical tomography family that faces the most difficult imaging challenges, due to its demanding measurement accuracy requirements and its difficult forward and inverse problems. This paper presents for the first time split Bregman total variation (TV) regularization to solve the MIT inverse problem. Comparative evaluations are presented between proposed TV algorithm and more commonly used Tikhonov regularization method. Tikhonov regularization which is based on theis solved linearly while TV is solved using the Split Bregman formulation, which has been shown to be optimal for regularization. Experimental results are quantified by a number of image quality measurements, which show the superiority of the proposed TV method both on low conductivity and high conductivity MIT data. Significant improvement in MIT imaging results will make the proposed TV method a great candidate for both types of MIT imaging.

technique. High conductivity MIT has also been widely used in industrial applications such as non-destructive testing (NDT) for material characterization [START_REF] Borges | Development of electromagnetic tomography (EMT) for industrial applications. Part 2: Image reconstruction and software framework[END_REF].

Although MIT is capable of imaging all PEP, it usually aims at visualizing the conductivity distribution of the object under test, which can be achieved by modeling eddy currents in the forward model [START_REF] Caeiros | An Optimized Forward Problem Solver for the Complete Characterization of the Electromagnetic Properties of Biological Tissues in Magnetic Induction Tomography[END_REF] and then identifying the conductivity distribution using inverse problem. The inverse problem in MIT is severely ill posed, so regularization is needed. Tikhonov regularization method, based on solving the least square solution, is widely used to solve the inverse MIT problem [START_REF] Soleimani | Computational aspects of low frequency electrical and electromagnetic tomography: A review study[END_REF]. However, this leads to suboptimal results, with over smoothed reconstructed images that show blurred edges and boundaries between materials. In addition, it is hard to choose the optimal regularization parameter. A better option is to use anregularization, such as total variation (TV) functional, which has been shown to improve image quality in MIT and other applications, and has received considerable attention in the past few years [START_REF] Puwal | Fourier analysis in magnetic induction tomography: mapping of anisotropic, inhomogeneous resistivity[END_REF][8] [START_REF] Yin | The Design of a Digital Magnetic Induction Tomography (MIT) System for Metallic Object Imaging Based on Half Cycle Demodulation[END_REF]. However, the TV functional is non-differentiable, which is commonly avoided by using an approximation. The TV problem can be efficiently solved using the Split Bregman formulation, which has been shown to be efficient and optimal forregularization problems [START_REF] Jing | Split Bregman iterative algorithm for sparse reconstruction of electrical impedance tomography[END_REF] [START_REF] Abascal | Fluorescence diffuses optical tomography using the split Bregman method[END_REF] [START_REF] Goldsteom | The split Bregman method for L1-regularized problems[END_REF]. In addition, the split Bregman method solves a constrained optimization problem, which has been shown to outperform the unconstrained TV problem [START_REF] Abascal | Fluorescence diffuses optical tomography using the split Bregman method[END_REF]. However, the feasibility of split Bregman TV for improving image quality has not been assessed for MIT.

In this work, we compare Tikhonov and TV regularization methods and evaluate them on experimental MIT data. The TV problem is efficiently solved using the Split Bregman formulation. Methods are quantitatively evaluated on experimental phantoms in both low and high conductivity MIT settings.

II. Methodology

A.

Forward problem

To solve the forward problem, the MIT domain is separated into two regions: the non-conductive region Ω and the eddy current region Ω , (Figure 1), where Ω = Ω + Ω .

Total variation regularization with Split Bregman based method in magnetic induction tomography using experimental data F Li , JFPJ Abascal , , , M Desco , , , M Soleimani The forward problem is solved using an edge finite element method (FEM), with the aid of magnetic vector potential ( ) [START_REF] Biro | An edge finite element eddy current formulation using a reduced magnetic and a current vector potential[END_REF]. The ( , ) formulation, can be obtained from the Maxwell's equations [START_REF] Biro | Edge element formulations of eddy current problems[END_REF]:

∇× ∇× + = (1) 
where is the source current density, is electrical conductivity and is magnetic permeability, and is angular frequency. Source current is modeled by Biot-Savart theory [START_REF] Tavares | Electrical impedance tomography reconstruction through simulated annealing using a new outside-in heuristic and GPU parallelization[END_REF] =

| | × (2) 
where is the distance between the current segment and the fixed point, and represents the free space permeability. By introducing electric vector potential , defined as,

= ∇× (3) 
In free space, according to the Ampere's law, the current density = ∇× (4) so can be described by , and

= ( 5 
)
the equation ( 1) is transferred to

∇× ( ∇× ) + = ∇× (6) 
We discretize equation ( 6) by applying Galerkin's formulation and introducing basis function for edge FEM, which leads to the Galerkin's approximation [START_REF] Biro | Edge element formulations of eddy current problems[END_REF][START_REF] Biro | On the use of the magnetic vector potential in the finite element analysis of three-dimensional eddy currents[END_REF].

∇× • 1 ∇× + ( • ) = (∇× • ) (7) 
where is the linear combination of edge shape functions and the right hand side in equation ( 7) can easily been calculated from equation (3), and Ω is entire region and Ω is the current source region (excitation coil). Then the induced voltage in measuring coil can be calculated by using the volume integration equation

= - ( • ) (8)
where is the unit current density passing through coil. Due to the relationship between induced voltage in the sensing coil and conductivity, the element of the Jacobian matrix can be expressed by

= - • (9) 
where is the forward solver of excitation coil excited by , is the forward solver of sensor coil excited by unit current, is the conductivity of pixel and Ω is the volume of the perturbation.

B. Inverse problem

The inverse problem is defined as the retrieval of the unknown conductivity from the measured boundary voltage , represented by the nonlinear equation

= ( ) + ( 10 
)
where F is the forward operator and is the noise in the measurements. In MIT, it is common to linearize this equation for difference data [START_REF] Jing | Split Bregman iterative algorithm for sparse reconstruction of electrical impedance tomography[END_REF] -

( ) = ( -) (11) 
where is the Jacobian or sensitivity matrix ( ∈ × ), which can be obtained from forward problem. Let ∆ = -, ∆ = -( ) and be the initial estimate conductivity, then equation ( 9) can be reduced to

∆ = ∆ (12) 
The conventional method is to solve the least-square problem:

= ∆ ‖ ∆ -∆ ‖ (13) 
 Tikhonov regularization method Since the inverse problem is ill posed, a Tikhonov regularization penalty term (∆ ) can be added to the optimization problem [START_REF] Merwa | Solution of the inverse problem of magnetic induction tomography (MIT)[END_REF] 

= ∆ (‖ ∆ -∆ ‖ + (∆ )) (14) (∆ ) = ‖ (∆ -∆ )‖ ( 15 
)
where R is a regularization matrix and is the regularization parameter.

Minimizing this function means that the least square of the difference between measured voltage and the estimated voltage is minimized while the solution is kept reasonably close to the estimated image ∆ . The equation ( 14) to be minimized can be expanded as follows.
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where equation [START_REF] Merwa | Solution of the inverse problem of magnetic induction tomography (MIT)[END_REF] is the cost function. The minimum of cost function can be obtained by setting its first derivative equal to zero:

∆ - ∆ - ∆ + ∆ = 0 (18)
After simplifying equation [START_REF] Ma | Experimental evaluation of conductive flow imaging using magnetic induction tomography[END_REF], it can be obtained:

( + )∆ = ∆ + ∆ (19) 
The standard Tikhonov method is obtained by replacing R by I, the identity matrix, R=I, and assuming ∆ = 0,

∆ = ( + ) ∆ (20) 
Although standard Tikhonov is widely used for many applications, recently a hybrid Tikhonov regularization was shown to produce better imaging results [START_REF] Ma | Experimental evaluation of conductive flow imaging using magnetic induction tomography[END_REF]. To provide a fair comparison with the proposed TV algorithm we chose the most advanced hybrid Tikhonov method based on combining Laplacian and Tikhonov based regularization terms [START_REF] Ma | Experimental evaluation of conductive flow imaging using magnetic induction tomography[END_REF] 

∆ = ( + + ) ∆ (21) 
where is an Laplacian regularization term, is an identity matrix, and and are the regularization factors for and , respectively. The hybrid Tikhonov method has showed good quality image in challenging low conductivity MIT data [START_REF] Ma | Experimental evaluation of conductive flow imaging using magnetic induction tomography[END_REF]. Here we empirically selected the regularization parameters for low conductivity and high conductivity reconstruction and used the same parameters in all experimental studies.  Total variation problem solved using the Split Bregman formulation The total variation problem is defined by adding a penalty term to equation ( 15), theof the gradient of the image, or the so called, total variation regularization term (∆ )

(∆ ) = (∆ ) = ‖∇ ∆ ‖ (22)
where is the regularization parameter, ∇ is the gradient and ‖•‖ is the -. We used an isotropic version of the TV functional as proposed in [START_REF] Goldsteom | The split Bregman method for L1-regularized problems[END_REF] given by

‖∇ ∆ ‖ = ∑ (∇ ∆ ) + ∇ ∆ (23) 
Then the problem we wish to solve is the constrained optimization problem

= ∆ ‖∇∆ ‖ ℎ ℎ ‖ ∆ -∆ ‖ < (24)
which can be solved using standard constrained optimization algorithms. However, these methods are computationally demanding for large-scale problems. In addition, the TV functional is not differentiable, which is usually avoided by substituting TV by an approximated functional.

TV regularization was applied to metallic MIT in [START_REF] Soleimani | A three-dimensional inverse finite-element method applied to experimental eddy current imaging data[END_REF][9], so further evaluation was needed for low conductivity MIT. Additionally, a more efficient approach is to use the Bregman iteration, which is an iterative method based on Bregman distance [START_REF] Stanley | An iterative regularization method for total variation based image restoration[END_REF]. For a given convex function ( ), the Bregman distance between and can be defined as

( , ) = ( ) -( )-< , -> (25) 
where is the subgradient of at , and <, > denotes the scalar product. In this case, we set ( ) = ( ) be the total variation function and assume that ∆ is the optimal solution and ∆ is the iterative solution. Then, the Bregman iterative algorithm equivalent to equation ( 24) can be expressed as

∆ = ∆ (∆ , ∆ ) + ‖ ∆ -∆ ‖ (26) 
where the subgradient of the total variation function at the ( + 1) ℎ-iteration is

= - ( ∆ -∆ ) (27) 
Equation ( 26) and ( 27) are the basic formulation of Bregman iterative algorithm, which can be simplified to [START_REF] Jing | Split Bregman iterative algorithm for sparse reconstruction of electrical impedance tomography[END_REF] 

∆ = ∆ { (∆ ) + ‖ ∆ -(∆ ) ‖ } (28) (∆ ) = (∆ ) + ∆ -∆ (29) 
Based on the Bregman iterative algorithm, split Bregman methods can extend the utility of the Bregman iteration to the minimizations of more general regularization terms. Equation (28) can be solved now at each iteration with conventional unconstrained optimization algorithms. However, the term (∆ ) is non-differentiable and difficult to minimize. The Split Bregman iteration method is introduced to address this. An auxiliary variable can be used to convert equation (28) to a constrained optimization problem, easier to solve

(∆ , ) = ∆ , 1 2 ‖ ∆ -∆ ‖ + ‖ ‖ ℎ ℎ = ∇ ∆ (30)
To solve this constrained problem, we processed as above, after applying the Bregman iteration method, the equation (30) can be written as
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Then minimizing equation ( 31) can be achieved by minimizing ∆ and separately as following [START_REF] Abascal | Fluorescence diffuses optical tomography using the split Bregman method[END_REF][START_REF] Goldsteom | The split Bregman method for L1-regularized problems[END_REF]:

 ∆ = ∆ ‖ ∆ -∆ ‖ + 2 -∇∆ -  = ‖ ‖ + -∇∆ -
Solutions to ∆ and are given by analytic expressions that can be efficiently computed [START_REF] Goldsteom | The split Bregman method for L1-regularized problems[END_REF]. Hence, the split Bregman method provides a sequence of solutions (∆ , ) that converges to the solution of the constrained optimization problem (24). One of the benefits of the split Bregman formulation is that it does not require explicit calculation of the derivatives of the TV functional, which must be otherwise approximated because of the no differentiability of the TV functional. These approximations used by more standard approaches are generally non optimal and lead to slow convergence.

C. Experimental setup

Experimental data were acquired from two different MIT systems. MIT system comprises the measuring subsystem, conditioning electronics part, data acquisition & processing subsystem, and the computer used to reconstruct and process the images. Though there are some different types of MIT systems, the characteristics of their components are nearly the same to some degree. The measuring subsystem includes an array of coils placed around the measuring space [START_REF] Goldsteom | The split Bregman method for L1-regularized problems[END_REF]. The size, number and position of the coils vary in different MIT systems.

The conditioning electronics consist of amplification circuit, precision rectifier and low pass filtering. During the experimental process, two sets of measurement are acquired, background data ( ) and the measuring data ( + ∆ ). Background data, considered as reference data, are obtained without any object in the measuring space, while measuring data are captured with the target in the measuring space. After recording these two datasets, the difference between them produces the information of the perturbation signal (∆ ). In this experimental study, two types of MIT system have been used.

 Low conductivity MIT system The MIT system described in this section is the Bath MK-III system (see Figure 2 The working frequency of this system is selected to be 13MHz and the LabView program is used to control the signal generator and to achieve the data acquisition/ channel switching tasks [START_REF] Ma | Electromagnetic techniques for imaging the cross section distribution of molten steel flow in the continuous casting nozzle[END_REF]. The channel-switching card NI2593 was employed in our system to accomplish the 2×8: 1 multiplexer scheme, and thus 8 coils were dedicated to transmitters while the other 8 coils were dedicated to receivers. So the data collection pattern of this system is as following: Tx1-Rx2, Tx1-Rx3, …Tx1-Rx7, Tx2-Rx3, Tx2-Rx4, …Tx2-Rx8, …and Tx8-Rx6, which can provide 8×(8 -2) = 48 measurements. Then the image reconstruction system extracts those independent measurements to LabView and Matlab program to display the reconstructed images.



High conductivity MIT system The Bath MK-II system (Figure 3) consists of the following components:  A signal generator  A National Instrument based data acquisition system (NI USB-6259)  A channel switching board  A sensor array containing several inductive coils  A host computer The channel switching process can be accomplished by the ADG406 multiplexers, which is a 16:1, monolithic CMOS analogue multiplexer, and thus when the first coil is set as the transmitting coil, the rest of the coils are reading the measurements sequentially. For a MIT system with a number of coils, the unique coil pairs are 1-2,1-3,1-…2-3,2-( -1)…( -1)-. The data collection pattern can be described as the following sequence: exciting coil 1 as the first cycle and measuring voltage from the other coils (2 to -1); exciting coil 2 as the second cycle, and measuring the voltage from coil 3 to coil -1, and so on and so forth. This provides = ( -1)/2 independent measurements, which are imported into the image reconstruction. In the case of 8-channel system, there are × = 28 measurements.

D. Data sets

Seven experimental datasets were acquired with low conductivity and high conductivity MIT systems. Four sets of experimental tests were carried out for low conductivity MIT system in Figure 2 at a frequency of 13 . The other three sets of experimental tests were carried out for high conductivity MIT system in Figure 3 by setting amplitude to 15 and frequency to 100

. Free space measurements data were selected to be the background data. All datasets were reconstructed using both Tikhonov and total variation regularization methods.

III. Results

A large number of experimental data was used to evaluate these two algorithms. These experiments are numbered from L1-L28, which will be used in image analysis in section (V).

A. Low conductivity MIT

 Test 1 in low conductivity MIT The experimental setup can be seen in Figure 4. The conductivity of background is 1.58 and the samples tested were four insulating inclusion bottles, with diameters of 2, 6.5, 9.5 and 13 cm. TV  Test 2 in low conductivity MIT The experimental setup can be seen in Figure 5. The samples tested were two bottles of 0.9% saline water in two different positions, while the background was free space or tap water. The conductivity of 0.9% saline water samples is 1.58 and the conductivity of this tap water background is 0.06 .

(a) Background-free space (b) Background-tap water Figure 5: The real experimental setup.

Table 3 and4 show separately the reconstructed images obtained when the background is free space and tap water. The images show reconstructions by Tikhonov regularization and Total variation regularization method for first inclusion, second inclusion and both inclusions together. TV  Test 3 in low conductivity MIT The experimental setup can be seen in Figure 6. The background was 3% saline water and the samples were three bottles of different sizes with inclusion of 0.9% saline water. Table 5 shows the reconstruction images for Tikhonov regularization and Total variation regularization method for small, medium and large size of inclusion. TV  Test 4 in low conductivity MIT The experimental setup can be seen in Figure 7. The samples tested were two bottles of silicon oil working as non-conductive inclusions and 5% saline water considered as conductive background. Table 6 shows the reconstruction images obtained by Tikhonov regularization and Total variation regularization methods, where columns correspond to one silicon oil inclusions, silicon oil inclusion at a different position and two silicon oils inclusions together. Table 6.Reconstructed images of two bottles of silicon oil in 5% saline water background Table 7 shows the images reconstructed using Tikhonov and Total variation regularization methods for two positions of the steel sample. Table 9 shows the reconstructed images obtained after this test by Tikhonov and Total variation regularization algorithms, for two circular aluminum samples in different positions separately. 

IV. Result analysis and discussions

It can be seen from imaging results of both low conductivity and high conductivity samples that TV can produce higher quality images. To further demonstrate this, the image quality measures are used to quantitatively show comparison between TV and Tikhonov based algorithms. In this case shape deformation (SD), resolution (RES) and amplitude ration (AR) was selected from GREIT image quality parameters [START_REF] Adler | GREIT: A unified approach to 2D linear EIT reconstruction of lung images[END_REF]. SD shows part of reconstructed images (after some theresholding) that does not fit in a circular shape. For higher quality reconstruction SD should be low and uniform for the same sample size and shape. Resolution (RES) measures the size of reconstructed inclusion as a fraction of size of entire imaging region; this is equivalent to a measure of point spread function (PSF) size. RES should be uniform and small, in order to more accurately represent shape of the inclusion based on their conductivity values. AR measures the ratio of image pixel amplitudes in the inclusion area to that in the reconstructed image. A uniform and smaller AR is a measure of higher quality image. GREIT parameters are widely used for image quantification and quality measures, we refer to [START_REF] Adler | GREIT: A unified approach to 2D linear EIT reconstruction of lung images[END_REF] for more detailed descriptions. Figure 11 show SD, RES, and AR, for low conductivity experiments from L1-L28. Apart from very few points in SD, the TV are universally outperforms the Tikhonov algorithm in terms of all image quality measures. The fact that the neighboring measurements were excluded in low conductivity MIT system, this sometimes create some deformation in shape of inclusions as this act as missing data MIT, this is perhaps responsible for larger numbers for SD, and size dependent SD in both algorithms. The total variation method produced reconstructed images with improved quality for both low conductivity and high conductivity MIT systems. As it can be seen from the results, the differences in the dimension and position of the objects cannot be distinguished from the reconstructed images obtained by Tikhonov regularization method but total variation lead to improved recovery of the size and shape of the target and in particular sharper boundaries between different conductivity regions.

Previous work for MIT has used Tikhonov method for conductivity flow imaging [START_REF] Stanley | An iterative regularization method for total variation based image restoration[END_REF], which evaluated several saline solutions with different dimensions/conductivity values in a low conductivity MIT system. The results presented in [START_REF] Stanley | An iterative regularization method for total variation based image restoration[END_REF] showed that the reconstructed images are smooth enough but in the case of testing two or more objects simultaneously, the reconstruction could not reliably recover conductivity contrasts and imaging resolution. However, according to our experimental results, total variation method improved conductivity contrast in all these images. This work is subject to some limitations, mainly due to linear inversion for highly nonlinear inverse problem. It is common practice in MIT to use linear inversion for experimental difference data, which is more robust and less sensitive to the effect of modeling error and noise in measured data. The proposed linear methods have been validated using experimental data covering a wide range of scenarios, with different size and location of inclusions. However, the validation has focused on 2D, so further studies need to be done to address the 3D inverse problem. Besides, due to the nature of eddy currents, the MIT forward problem is a large-scale problem, which will increase the demand of computational resources. Extension to nonlinear methods with experimental data and absolute imaging is still remaining a challenging, partly due to lack of good experimental data and matching with the forward models.

Overall, image quality parameters show consistency good performances in both low and high conductivity case, but as expected metallic MIT tests shows more robust imaging results. Some experiments in low conductivity case present more challenges dues to low conductivity contrasts between background and inclusions. In add these cases TV performed well enough to recover images that was not recovered well by Tikhonov algorithm.

V. Conclusion

A TV method based on the Split Bregman formulation, is presented and validated by experimental MIT data.

Quantitative image quality analysis shows significant improvement of image qualities by using proposed TV algorithm. In experimental work presented here the total variation algorithm produced high quality images, making it a suitable candidate for image reconstruction in both metallic imaging and low conductivity MIT imaging. It is anticipated that the high quality images that can be obtained using TV algorithm and its robustness against image reconstruction parameters, can help stimulate new area of applications for MIT in both industrial tomography and medical imaging. 
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 4 The real experimental setup. Table1 and Table2 show the images reconstructed by Tikhonov regularization and Total variation regularization algorithms. Reconstructed images are shown for bottles with 2, 6.5, 9.5 and 13 cm diameter (in row) and for different positions of the bottle (in column).
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 8 High conductivity MIT experiments involves 9 experiments (we call them H1-H9), which includes various positioning of metallic sample (s).  Test 5 in high conductivity MIT The sample tested in Test 5 was a rectangular aluminum object, and the experimental setup is shown in Figure8. Experimental setup.
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 721 Reconstructed images of a rectangular aluminum sample in position 1 and position high conductivity MIT Test 6 is a circular aluminum sample placed in four different positions and the experimental setup is shown in Figure 9.
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 9 Experimental setup.Table8shows the reconstruction images obtained by this test. The images correspond to reconstructions by Tikhonov and Total variation regularization algorithm for four different positions of the sample. Table 8. The images of a circular aluminum sample in four different positions high conductivity MIT Test 7 used two circular aluminum samples placed in different positions separately (shown in Figure10).
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Table 3 .

 3 Reconstructed images of two bottles saline water in free space background

	Sample1 (L17)	Sample2 (L18)	Sample 1+2 (L19)

Table 4 .

 4 Reconstructed images of two bottles saline water in tap water background

	Sample1 (L20)	Sample2 (L21)	Sample 1+2 (L22)
	Tikh.		

Table 5 .

 5 Reconstructed images of three different sizes samples in 0.9% saline water background

	Small size (L23)	Medium size (L24)	Large size (L25)
	Tikh.		

Table 9 .

 9 Reconstructed images of two circular aluminum samples in different positions

	Position 3& 7 (H7) Position 2 & 7(H8) Position 2 & 6(H9)
	Tikh.
	TV
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