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Abstract— In this paper, a new model reduction technique
mixing the balanced and modal truncations is proposed for
power systems. Usually, only the power transmission lines
are approximated such that, when used with the rest of the
power system, the phenomena of interest are reproduced.
Our approach is structural since it is based on the reduction
techniques of the dynamical systems and consider the full power
system rather than the lines alone. It is shown that, to obtain a
good approximation with the balanced or modal truncations, a
large number of dynamics are needed to be kept in the reduced
model. By mixing the balanced and modal truncations, a much
lower order reduced model is obtained and the behaviour of
the full system is faithfully reproduced. This result is useful
in practice since it opens the way to improve the numerical
simulations and behaviour analysis of power systems by making
easy the digital implementations. This new technique is checked
by simulation tests in Matlab and EMTP.

I. INTRODUCTION

A power transmission system is a set of different electric
components interconnected by electric transmission lines.
Indeed, the full dynamic model of such a system is usually
constructed by putting together the dynamic models of each
system component with those of transmission lines. Gener-
ally, the electric components like machines and loads are
finite dimensional systems described by ordinary differential
equations (ODE) unlike the transmission lines which are
distributed parameters (DP) systems described by partial
differential equations (PDE). Therefore, the full model (i.e.,
all interconnected models) is an infinite dimensional system
which can reproduce responses to all kinds of perturbations,
particularly electromagnetic transients or wave propagation
through the lines.

In practice, this full and detailed model is difficult to
be used, and it is usually replaced by one which uses a
priori simplified representation of the lines like, for example,
the π-model [7]. However, since the approximation of the
line models is a priori imposed and not issued from the
analysis of the full model with respect to the purposes of
the modelization process (i.e., the phenomena which are
supposed to be reproduced with the resulting simplified
model), there is no guarantee on the adequacy of the resulting
simplified power system model. For this reason, a structural
truncation (i.e., based on the analysis of the structure of the
whole system) of the full model by using techniques like
balanced [6], [1] or modal truncations [3] is a good manner

to preserve the phenomena of interest by keeping only the
most important dynamics in the reduced model.

The infinite dimensional dynamic models of the trans-
mission power systems have some particularities and the
direct application of the balanced or modal truncations give
not satisfactory results. This is due to the infinite band-
width of such systems (resonance peaks infinitely repeated).
Physically, this is related directly to the wave propagation
phenomena and means that the signals of all frequencies can
propagate through the lines. As a consequence, the Hankel
singular values involved in balanced truncation decay slowly
and there is no significant gap between a previous and next
value. This means that all modes are important from an
energetic point of view and the balanced truncation give a
good result only if a large number of modes are retained in
the reduced model. The same conclusion comes out also for
modal truncation.

To overcome this difficulty, in [8] it is proposed a balanced
truncation but only for a specific, a priori fixed, range of fre-
quency. This is done by weighting the initial dynamic model
which represents the physical power system by artificial low-
pass blocs which leads to a gap in the Hankel singular
values. However, this way of doing is not compliant with our
objectives since, as mentioned before, the resulting reduced
model must be used for the analysis of dynamic phenomena
of which connection to the frequency band restrict is not
obvious.

In this paper, we propose an alternative method to obtain
much lower order reduced models for power systems by
mixing the balanced and modal truncations. More precisely,
only some both strongly controllable and observable modes
(i.e., more important form the energetic point of view) are
kept in the modal truncation.

In addition to the low order of the resulting reduced
system, this method is directly related to the structure of the
whole system and not only to the one of the transmission
lines. As a consequence, the resulting reduced models are
better suited to reproduce structural phenomena like inter-
area and hypo-synchronous oscillations. Also, the adequacy
of the truncation to the reduction objectives is quantitatively
measured a priori (i.e., before the truncation in terms of
magnitude of Hankel singular values), and not a posteriori
like for the existing methods for which a simplified model
is first proposed by expert intuition for the line model. Next,



the phenomena of the resulting reduced model of the whole
power system are checked a posteriori which leads to an
uncertain trial and error process.

II. POWER SYSTEM MODEL DESCRIPTION

Fig. 1. Power system

The power system in Fig. 1 is composed by three sub-
systems: A generator assumed to be a voltage source V0 (t)
behind an impedance Z0 (which is the usual simplified model
used for voltages studies (see, e.g., [7])), a transmission line
of length ` for which the transverse conductance is neglected,
see, e.g., [9] and a resistive load ZL.

The dynamic model of the full system is thus an inter-
connection between the dynamic models of the elements
mentioned above.

A. Distributed parameters model for power systems

First, the distributed parameters model of a transmission
line can be written as

∂v(x, t)

∂x
= −L∂i(x, t)

∂t
−Ri(x, t), ∂i(x, t)

∂x
= −C ∂v(x, t)

∂t
,

(1)
for 0 ≤ x ≤ `, where v(x, t) and i(x, t) are respectively the
voltage and current along the line, and the positive constant
parameters (i.e., independent of frequency) R, L, C are,
respectively, the resistance, the inductance and the capaci-
tance per unit length. Next, the interconnection between the
transmission line, the load and the generator in Fig. 1 is
performed by using the Kirchhoff’s laws and the boundary
variables of (1) as follows

v (x, t) |x=0 = V0 (t)− Z0i (x, t) |x=0

v (x, t) |x=` = Zi (x, t) |x=`
(2)

Thus, equations (1)-(2) form the full model of the power
system (in Fig. 1) which can be written also under the form[

ż1
ż2

]
︸︷︷︸
ż(t)

=

[
0 − 1

C
∂
∂x

− 1
L
∂
∂x −RL

]
︸ ︷︷ ︸

A

[
z1
z2

]
︸︷︷︸
z(t)

Bz (t) = V0 (t) , Cz (t) = y (t) , z (0, x) = z0 (x) ,

(3)

where z1 (t) = v (x, t), z2 (t) = i (x, t) and with

B [z1 (t) z2 (t)]
T

= v (0, t)− Z0i (0, t) = V0 (t)

the input and C [z1 (t) z2 (t)]
T

= v (`, t) = y (t) , the output.
Equation (3) is a general form of an abstract boundary

control system, where A, B, C are operators defined on a

given Hilbert space Z (see, e.g., [4]). It can be written under
the infinite dimensional general state representation as

ż (t) = Ãz (t) + B̃V0 (t) , y (t) = Cz (t) , z (0, x) = z0 (x)
(4)

where Ã generates an analytic C0-semigroup T (t) = eÃt

on the space Z and the operator B̃ is deduced from (3) (see,
e.g., [4] or [14] for more details and examples).

B. Ad-hoc finite dimensional model of the power system

Fig. 2. the π-model of a transmission line

As previously mentioned, in practice, before aggregating
the model (3) of the full power system, the transmission line
model (1) is replaced by a finite dimensional equivalent like
the π-model in Fig. 2. Hence, the dynamic model of the full
system is given by[
ẋ1

ẋ2

]
=

[
0 1

−
(

2R`+2ZL
LC`2ZL

)
−
(
2L+RC`ZL
LC`ZL

)][x1

x2

]
+

[
0
2

LC`2

]
Ve (t)

(5)
with x1 = Vs (t) and x2 = ẋ1, instead of (3).

Obviously, the model (5) cannot be used instead of (3)
to reproduce all physical phenomena of interest in power
system analysis. It is generally used only to perform load-
flow computations, to analyse transient stability and to design
voltage controllers.

III. STRUCTURAL TRUNCATION OF THE POWER SYSTEM
MODEL

A structural approximation of the power system described
by the distributed parameters model (3), is a way to find a
finite dimensional reduced model where only the important
dynamics (i.e., which have a major impact on the behaviour
of the full power system) are kept. In the balanced trunca-
tion, e.g., [1] these important dynamics are selected from an
energetic point of view based on the Hankel singular values
of the input/output system. In the modal truncation, (e.g.,
[3]) they are selected following their impact on the infinite
norm of the input/output system. Both techniques are recalled
below and their performances are compared when applied to
the simple test system in Fig. 1.

A. Modal truncation

First, consider the model (4) for the particular case of an
open line and ideal voltage source (i.e., the load ZL = ∞
and Z0 = 0 in Fig. 1). Obviously, this case does not occur in
practice but it is useful to give a first view on the dynamic
of the system. As the system becomes simpler in this case,
analytic expressions of the transfer function as well as of the
trajectories of the system are available.



More precisely,

V̂ (`, s)

V̂0 (s)
=

1∏∞
n=1

(
4`2LC

(2n−1)2π2 s2 +
(RL )4`2LC
(2n−1)2π2 s+ 1

) (6)

is the transfer function between the input voltage of sending
end V0 (t) and the output voltage at distance ` from the
sending end v (`, t).

At this stage, a way to obtain a finite dimensional approxi-
mation of (4) is the modal truncation of the transfer function
(6). For n = 1, the poles are

p1,2 = −1

2

R
L
±

√(
R

L

)2

− π2

8

(
8

`2LC

) . (7)

Also, the transfer function of the π-model (5) for ZL =∞
and Z0 = 0, has the poles

λ1,2 = −1

2

R
L
±

√(
R

L

)2

− 8

LC`2

 . (8)

The only difference between (7) and (8) is factor π2

8 . As the
latter factor is close to unity, the first order modal truncation
of (6) is close to the π-model (5) from a structural point of
view (see [2] for details). For trajectories, the Fig. 3 shows
a comparison of the step responses of the full power system
in Fig. 1 for which a π, respectively, a DP model of line is
used.1

Fig. 3. Step responses with of π and DP models for the line

The global shapes of the two trajectories in Fig. 3 are
similar. The differences come from the transient dynamics
due to the interactions between the waves during the prop-
agation and they are observed in the upper and lower parts
of the trajectories provided by the DP model. Thus, the π-
model (first order modal truncation) captures an important
component in the behaviour of the DP one but not the
dynamics related to the waves propagation. In the latter case,
this truncation at the first order is not sufficient and a large
number of fractions is needed to be kept in (6).

1) General approach: Starting from a general state rep-
resentation (4) involving operators, the partial fractions ex-
pansion

G (s) =

∞∑
k=0

rk
s− βk

(9)

1Notice that, to get the trajectories of the DP model, the finite difference
method over a finite grid with a step of 10−1 unit length in [0 `] was used.

of the transfer function can be obtained ( [3], [4], [14]),
where βk are the poles and rk their residues. The modal
truncation consists in keeping only a finite number of these
fractions, i.e., the N th order modal truncation of G (s) is

GN (s) =

N−1∑
k=0

rk
s− βk

.

One has the following bound for the H∞ truncation error:

‖G (s)−GN (s) ‖∞ ≤
∞∑
k=N

|rk|
|Re (βk) |

. (10)

The latter bound shows that the partial fractions in (9)
of large H∞ norm are important to be kept in the reduced
model in order to lower the truncation error.

2) Numerical approximation: For the general case of the
system in Fig. 1 (i.e, with a load) and for power systems of
large scale, it is not possible to analytically obtain the partial-
fraction expansion of the transfer function (9). In this case,
these quantities are numerically approximated by finding an
approximation (An, Bn, Cn) of the operators

(
Ã, B̃, C

)
in

(4) where n is the order of the numerical approximation
scheme.

Now, consider the system (4) with the flowing parameters
R = 0.5Ω/Km, L = 2.10−2H/Km, C = 10−8F/Km,
` = 50Km, ZL = 500Ω, Z0 = 0, n = 1000.

Table I presents the poles and the infinite norm of each
partial fraction in the transfer function of the π and DP
model. The infinite norm of the partial fractions of the DP
model decreases very slowly and their is no important gap
between two consecutive norms of partial fractions (i.e.,
‖ Gr ‖∞�‖ Gr+1 ‖∞) which might give an index for the
modal truncation. For this reason, taking, e.g., ε = 0.1 as H∞
error bound of (10), i.e,

∑n
k=N

|rk|
|Re(βk)| = ε, the resulting

reduced model of the modal truncation is of order 981. As a
large number of dynamics are kept in this reduced model, its
trajectories are almost the same with the ones provided by
the DP model shown in Fig. 6. This means that this reduced
model is adequate to reproduce all phenomena of interest in
the power system.

TABLE I
POLES AND H∞ NORM OF EACH PARTIAL FRACTION ‖ · ‖∞=

|rk|
|Re(λk)|

full model π-model
k poles (λk,k+1 ) ‖ · ‖∞ poles ‖ · ‖∞

1; 2 −3, 94.102± 6, 85.105i 1, 0000789 −5, 62.102 1, 03

3; 4 −4, 14.102± 6, 34.105i 1, 0000788 −74, 621.102 0, 07

5; 6 −4, 12.102± 6, 38.105i 1, 0000786

7; 8 −3, 96.102± 6, 81.105i 1, 0000782

9; 10 −3, 97.102± 6, 77.105i 1, 0000777

11; 12 −4, 09.102± 6, 46.105i 1, 0000771

13; 14 −4, 11.102± 6, 42.105i 1, 0000764

15; 16 −4, 06.102± 6, 53.105i 1, 0000757

17; 18 −4, 00.102± 6, 69.105i 1, 0000745

19; 20 −3, 99.102± 6, 73.105i 1, 0000737

.

.

.
591 −5, 48.102 0, 975424

.

.

.



It can also be seen from Table I, that only one pole (i.e.,
−5.62.102) of the π-model is close to a pole (−5.48.102)
of the DP model. Its rank (k = 591) is also very high in
the partial fractions expansion of the DP model. Therefore,
the reduction link explained above between the π and the
DP model for open lines, is not true in this case. Thus, from
a systemic point of view, when only the transmission lines
are replaced by the π-model of power systems in Fig. 1, the
resulting simplified model of the power system cannot be
viewed as a structural truncation of the full one. However,
the mode of null frequency (i.e., real) kept by the π-model
plays an important role in the behaviour of the DP model
as shown in Fig. 6 and it is also kept in the reduced model
(of order 981) issued from the modal truncation. In addition,
the modes judged important in the DP model according to
the H∞ norm are in high frequencies (i.e., pole with large
imaginary part) as shown in Table I. Thus the modes of low
frequencies (small imaginary parts) are of high rank, and to
keep them (like the pole −5.48.102) in the reduced model,
a large number of modes should be kept in the end.

It is obvious from the results exhibited in this section that
the modal truncation does not give satisfactory results from a
practical point of view, since to obtain a good approximation
with this method, a large number of modes should be kept
which leads to a high order reduced model which cannot be
exploited in practice.

B. Balanced truncation

The balanced truncation is an energy based truncation
for which the Hankel singular values are used to keep into
the reduced model the highest energy states. As the latter
correspond to the most controllable and observable modes,
the balanced truncation is performed in two steps. First, get
the balanced realization (11)-(13). Next, truncate the system
Sb
(
Ãb, B̃b, Cb

)
at order r by inspecting the Hankel singular

values, i.e., r such that σr � σr+1.
The balanced realisation of the model (4) is given by (see,

e.g., [4], [12] or [6])

Ãbij =
√
σiσj

σ2
i
−σ2

j

(
σjfi (0)

T
fj (0)− σigi (0)

T
gj (0)

)
, i 6= j,

Ãbii = − 1
2fi (0)

T
fi (0) = − 1

2gi (0)
T
gi (0) ,

(11)

B̃b = [
√
σ1f1 (0) ,

√
σ2f2 (0) , . . .]

T
, (12)

Cb = [
√
σ1g1 (0) ,

√
σ2g2 (0) , . . .] . (13)

where, σ1,...,∞ are the Hankel singular values of the system,
f1,...,∞ (t), g1,...,∞ (t), are the singular vectors of the Hankel
operator (14).

From (11)-(13) it is clear that σi, fi, gi are firstly needed
to balance the system and finally truncate it. In the literature
(see, e.g., [4]), these quantities are well defined and their
definitions are recalled bellow.

1) Hankel singular values: The Hankel singular values
are σi =

√
λi (WoWc) where Γ is the Hankel operator

Γ (•) =

∫ ∞
0

CT (t) B̃ (•) dt, (14)

2) singular vectors: The singular vectors fi, gi are called
Schmidt pair of Γ and satisfy

Γfi (t) = σigi (t) ,Γ∗gi (t) = σifi (t) . (15)

Notice that in the case of infinite dimensional systems
fi (t) , gi (t) are functions and not vectors as in the finite
dimensional case.

Since the σi and the Schmidt pair (fi, gi) can be computed
in practice only for a few cases [10], the algorithms proposed
e.g., in [12] and [11] give a numerical approximation of these
quantities as in Section III-A.2 and the rth order truncation
is performed when σr � σr+1.

Notice also that other methods like [13] can be used for
finite dimensional approximation.

Consider the system (4) with the same parameters as in
Section III-A. Fig. 4 shows the Hankel singular values of (4)
obtained by finite dimensional approximation as in Section
III-A.2 with n = 1000. It is clear form this figure that
the Hankel singular values decay slowly and there is no
significant gap indicating the order of truncation r (i.e., like
mentioned above) but just two small gaps (at state 428 the
gap is of 2, 9.10−3 between the previous and next state and of
1, 2.10−3 at state 868) which means, that from an energetic
point of view, all modes play an important role in the input-
output transfer or equivalently all modes are both strongly
controllable and observable which means that the system it
is hard to truncate.

Fig. 4. Hankel singular values of the DP model.

The result of Fig. 4 can be explained also from the gain
Bode diagram in Fig. 5. Indeed, the system has an infinite
bandwidth and the resonance peaks caused by the infinite
number of complex conjugate poles have approximatively
the same magnitude and they are infinitely repeated. As
a consequence, the system is sensitive to input in any
frequency range, i.e., any mode when excited (by putting



the frequency of input exactly the same with the frequency
of the mode) produces the same input-output gain, which
means that all modes are important to ensure the bandwidth
of the system.

Fig. 5. Bode diagrams of balanced truncation reduced model and DP
model.

Indeed, the response of the reduced model computed
with r = 428 which corresponds to the first gap in Fig.
4, are given in Figs. 5 and 6. The frequency response in
Fig. 5 shows a bad approximation of the modes of the
full model especially for the low frequencies. The step
responses presented in Fig. 6 show that the reduced model
approximates the full one just at the start and thereafter the
trajectories become very different from the ones provided
by the DP model and the model implemented in EMTP
(Electromagnetic Transient Program) simulator [5].

When r = 868 which corresponds to the second gap
in Fig. 4, the resulting reduced model is much better but
contain a too large number of modes. Finally, as for the

Fig. 6. Step responses comparisons between balanced truncation reduced
model, π, DP and EMTP models.

modal truncation, the number of dynamics to be kept in the
reduced model is large and to overcome this difficulty, a new
alternative technique is proposed in the next section.

IV. NEW TRUNCATION METHODOLOGY: MIX BALANCED
AND MODAL TRUNCATION

As none of the balanced or modal truncations can give a
low order reduced model for the power system, the idea is
to take the advantages of each technique by mixing them.

Indeed, the main advantage of the modal truncation is that
the modes are exactly kept but their choice is not always
adapted to capture the main dynamics in the system. For
the balanced truncation the choice of the dynamics to be
kept is useful since it is based on the energy criteria which
are close to the physic but the truncation when there is
not a significant gap between consecutive Hankel singular
values leads to a bad approximation of the modes. The new
proposed methodology is a modal truncation for which the
modes are chosen from an energetic point of view, i.e., only
the modes which participate actively in the states which
correspond to large Hankel singular values are kept.

A key point of this approach is the link between the
states and the modes of the system which is established
using the participation factors [15]. More precisely, let
(An, Bn, Cn) be a numerical approximation of operators(
Ã, B̃, C

)
like in Section III-A.2. The participation factors

are the elements of the matrix P =
[
p1, p2, . . . , pn

]
with

pi =
[
φ1iψi1 φ2iψi2 · · · φniψin

]T
where φki is the kth

entry of the ith right eigenvector Φi of An and ψik is the
kth entry of the ith left eigenvector Ψi of An.

The following properties hold ΨiΦi = 1 and
∑n
i=1 pki =∑n

k=1 pik = 1.
Thus, each row i of the matrix P contains the net

participations of all modes in the ith state.
Here, the participation factors are used to select the modes

to be kept in the modal truncation, i.e., from a state for
which the Hankel singular value is large, the participation
factors are computed to identify the modes which have large
participation in this state and finally keep them in the modal
truncation.

Hence, the steps of the methodology we propose are:
1) Compute a balanced realisation as mentioned in Sec-

tion III-B.
2) Select the states for which the Hankel singular values

are large.
3) Compute the participation factors of each mode into

the states selected at step 2.
4) Select the modes with major participation in the states

selected in step 2 by using the participation factors.
5) Construct the reduced model by modal truncation to

the modes found at step 4.
As previously, the system (4) is considered with the pa-

rameters given in Section III-A. The reduced model obtained
by using this new technique is of order 171, which is much
lower than the reduced models obtained by modal (order
981) or balanced (order 868) truncations. Fig. 7 shows a
comparison between the step responses of the new reduced
order model, the DP model and the π-model. The new
reduced model, reproduces faithfully the behaviour of the
full model which means that all dynamics of interest are
kept. Also, Table II shows that the most important (from an
energetic point of view) modes in this new reduced model
have low frequencies unlike to the modes of Table I given
by the modal truncation. This can be seen more precisely
from the Bode diagrams of Fig. 8 which shows that the



Fig. 7. Comparison between step responses of the new reduced model, π
and DP models.

TABLE II
FIRST POLES OF THE NEW REDUCED MODEL

states poles frequency (KHz)

x1
λ1;2 = 5, 35.102 ± 8, 88.103i 1, 41
λ3;4 = 5.35.102 ± 4.44.103i 0, 70

x2
λ5;6 = 5, 35.102 ± 1, 33.103i 2, 11

λ1;2 1, 41

x3
λ7;8 = 5, 35.102 ± 1, 77.103i 2, 81

λ5;6 2, 11

new reduced model approximates exactly the DP model in a
large frequency bandwidth (up to 3, 73.105rad/s). However,
the reduced model issued from modal truncation restricted to
the order of the new reduced model (172) does not capture
the low frequency modes. Consequently, this latter model has
a completely inappropriate time behaviour.

Fig. 8. Bode diagram-comparison between the new reduced, the π and DP
models.

V. CONCLUSION

This paper presents a structural approximation of power
systems by a new reduction methodology which mixes the
balanced and modal truncations.

From the systemic point of view, this new methodology
is advantageous since it allows one to capture the important
dynamics of the system with a reduced model of much lower

order than the ones provided by modal and balanced based
truncations. This advantage is capital in the case where the
system has many (infinite number) of important dynamics
like the power system treated here.

From the physical point of view, the advantage of this
approach is to be structural, i.e., to consider the entire system
when the reduction question is addressed and not to substitute
a priori simplified models for parts of the system like its
transmission lines. The new resulting reduced models are
more adequate to reproduce the phenomena of interest in
the power system and need less trial and error iterations.

This systemic and modal view will be further exploited
to unify and classify some models actually used in different
simulators. In this manner, the Transmission Systems Op-
erators (TSOs) could improve their simulation methodology
and tools by using a reduced number of simulation mod-
els/softwares and better connecting these models to physical
phenomena like inter-area and hypo-synchronous oscilla-
tions. This will also allow the TSOs to take into account
the new electric components (like, e.g., energy sources, High
Voltage Direct Current links (HVDC), electronic switches,..).
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