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Abstract

This paper presents a new methodology for the synthesis of Power System Stabilizers
(PSSs) and speed governors in order to satisfy some recent objectives and constraints
imposed by the evolution of large-scale interconnected power systems. As a conse-
quence of the increasing size of these systems, the frequency of some inter-area modes
diminish so much so that these oscillatory phenomena interact with the dynamics of
the speed governors. These low-frequency inter-area modes are also more spread (i.e.,
they involve a larger number of generators) than the other inter-area modes of the
system. This two particularities require several supplementary levels of coordination
when tuning the PSSs and the governors of the machines involved in these oscillatory
phenomena. To ensure this, the synthesis of the aforementioned regulators is done
using a new control model which takes into account the key interactions of the dy-
namics of the power system. It thus allows the coordination of control actions among
several generators as well as between the electrical and mechanical paths. This con-
trol framework ensures also an optimal trade-off performance/robustness. Validation
simulations have been carried out with the Eurostag software on a realistic large-scale
model of the interconnected European power system.
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1. Introduction

Power system stability analysis is generally done in a local way, i.e., study of the local
oscillatory phenomena or the so-called local modes which frequency is usually around
1Hz. The power system stabilizers (PSS), which are additional voltage regulation
loops for the generators, are used to damp these local modes. In power systems
there are also global oscillatory phenomena, i.e., the so-called inter-area modes (see,
e.g., [1]). For the European system, the frequencies of these modes actually range
between 0.4 and 0.17Hz. The inter-area modes have also to be damped using the
same PSS loops used for the local modes which must thus be tuned (at least) for
these two objectives. Notice that the frequency ranges of the two phenomena are
slightly different. This is called in the sequel the first level of coordination.

Contrary to the local modes, the inter-area modes present two properties. First,
they involve a large number of distant machines. Indeed, the damping cannot be
achieved by tuning only one PSS, coordination between the tuning actions for dif-
ferent machines must also be envisaged. This is a second level of coordination which
is required.

To ensure the two above mentioned levels of coordination, information from the
whole system should be taken into account when tuning the parameters of the PSS.
One way to do this is to use distant measures which can be provided by wide-area
measurement systems (WAMS). An alternative is to use a reduced-order model of
the whole system, called a control model. This second path is followed here as it
does not need extra material for the implementation. In [2] and related references,
the control model is obtained by reducing a time-domain model of the overall power
system using standard balancing techniques. Other approaches use diagonal modal
decomposition for the same scope. None of these approaches can be used for large-
scale systems. To overcome this difficulty, we developed here a reduced-order model
directly focused on the modes of interest, i.e., the modes to be damped. This model is
refined by frequency identification for which only a frequency response (Bode plots) is
necessary. The latter can be easily obtained even for large-scale models as indicated
in Section 2. This kind of control model is of very low order and can be considered
as an extension of the one usually used for the tuning of PSS and which consists of
the sensitivities of the modes of interest with respect to the gains of the PSSs (see,
e.g., [3]). It can be alternatively obtained by time-domain identification as in [4], [5],
[6] and related references.

Next, the frequency of the inter-area modes depend on the size of the power system.
The connection of the Turkey zone to the ENTSO-E (European Network of Trans-

2



mission System Operators for Electricity) synchronous zone led to a new inter-area
mode at 0.17Hz. Notice that before this extension, the slowest European inter-
area mode was at 0.22Hz. Moreover, the latest ENTSO-E interconnection feasibility
study [7] has shown that, with this latter potential extension, an inter-area mode at
0.07Hz may exist. Low frequency inter-area modes have already been identified on
the Hydro-Québec network [4] and across the interconnection between the Northwest
and Southwest American power systems [8]. When the frequencies of the inter-area
modes diminish so much, these oscillatory phenomena interact with the dynamics
of the speed governors as shown in [1]. These interactions have been taken into
account in the work presented here by coordinating the synthesis of the PSSs with
the one of the speed governors. This corresponds to a third level of coordination.
It has already been shown in [8] that the governors can be used to damp system
oscillations. In [9] these oscillations are ”filtered” at the governor loop level. In [10],
modern control methods are used to re-design at a glance the AVR and the governor
functions of a given system which leads to a new controller given in a general (i.e.,
state-space) form. In the present work, standard PSSs (i.e., generally IEEE lead-lag
forms [11] used in practice) are tuned in a coordinated manner with supplementary
control actions in standard governors. For this, the control model mentioned above
is extended in order to take into account the governor’s dynamics.

Robustness is an important topic in modern control, especially in the case of power
systems where, due to the large scale of the problem, the models used for the dynamic
studies are a priori simplified. A lot of work has been dedicated to robust control
techniques. The more direct approach consists in tuning the parameters of given
standard PSSs’ structures in order to achieve the desired performances and level of
robustness. This leads to a problem of optimization under constraints [12], [13]. This
framework has been used in the work reported here for the tuning of fixed standard
structures of PSSs and speed governors for several machines in order to ensure the
multilevel coordinations specified above.

The paper is organized as follows: in Section 2, a control model is built for the first
two levels of coordination. It is further used in Section 3 for the control synthesis. In
Section 4 it is explained why and how the synthesis of the PSSs and governors should
be coordinated. The control model introduced in Section 2 as well as the control
method in Section 3 are extended in Section 5 to the general case in which all the
three levels of coordination can be achieved. Section 6 is devoted to conclusions and
remarks.

All the simulations presented in this paper are carried out with the Eurostag transient
stability simulator software [14].
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2. Multi-frequency control model

2.1. Degrees of detail of the modeling

To synthesize a regulator, a reduced order dynamic model is needed for the system to
be controlled. It is called a control model and its particularity is to capture only the
features which are relevant to the control objectives. In general, the control model
most used for the machines of the power systems consists in a machine connected to
an infinite bus through a line of variable reactance. The value of the reactance of this
line is used to model the short-circuit power at the grid bus to which the machine
is connected. However, doing so, it is difficult to capture both local and inter-area
oscillatory phenomena especially when they are of quite different frequencies. To
move towards a coordination of tuning of the PSSs for several local and inter-area
modes in the new context mentioned in the Introduction, sensitivities between the
damping of the modes of interest and the gains of the PSSs selected for tuning were
used as a control model in [3] and related references as follows : the sensitivity of
a closed-loop eigenvalue λi with respect to the gain Kj of the PSS transfer function
Γj(s) is given by [15]

∂λi

∂Kj
= rjj

i (1)

where rjj
i is the residue of λi in the open-loop transfer function Hjj(s) from Vsj

to
ωj in Fig. 1. Vsj

is the stabilizing signal of the AVR of machine j, while ωj is the
speed of the same machine. Notice also that the transfer function mentioned above
is computed before the installation of the PSS Γj(s).

This residue can be computed from the right (vi) and the left (wi) eigenvectors of λi

and the input (Bj), respectively the output (Cj) matrices of a minimal state-space
realization of Hjj(s):

rjj
i = Cjviw

T
i Bj . (2)

The residues in (2) are usual outputs of softwares for small-signal analysis like, e.g.,
[16]. From (1) one deduces the impact of small variations of the gain Kj of the modes
of interest:

λi = λ0
i + riKj (3)
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where λ0
i is the mode computed on the open-loop, i.e., the situation in Fig. 1 without

Γj(s).

However, this static characterization can be further enriched to take into account
the dynamics of interest of the overall system. Overall dynamic models are usually
available for the interconnected systems. They consist in a detailed model of the
machines of the system of significant installed power (usually the ones of more than
100 MW) along with their regulations and the 400 kV/220 kV transmission grid (see
[17] and [7] for the case of the European system). Although simplified with respect
to reality, this kind of model, called simulation model is too complex (about 20000
state variables in the case of the European system) for a control model. It is used
for the full nonlinear simulation of the behavior of the power system, in particular
for a posteriori validation of an already synthesized controller. However, it can be
used to extract a suitable control model as shown below.

2.2. Choice of the control model structure

Let Λ = {λ1, ..., λl} be the oscillatory modes (local and inter-area) to be damped
and M = {M1, ..., Mm} the machines for which PSS loops have been chosen to
be installed or adapted to perform the damping task. The latter are among the
machines with the greatest participation factors in the modes in the set Λ. The way
to choose these machines have been addressed in several preceding works (see, e.g.,
[1], [3]) and the set M is considered here as input data.

The control model concerns the power system seen from the PSSs (see Fig. 1), i.e.,
the transfer matrix H(s) between the stabilizing signals Vsi

of the PSS loops of the
machines in the set M and their speeds ωj:

ω(s) = H(s)Vs(s) (4)

where

ω(s) =

⎡
⎢⎣

ω1(s)
...

ωm(s)

⎤
⎥⎦ and Vs(s) =

⎡
⎢⎣

Vs1(s)
...

Vsm(s)

⎤
⎥⎦ . (5)
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This transfer matrix can be made available in practice using a mixed nonlinear/linear
analysis framework for power systems like, e.g., [18]. More precisely, the nonlinear
system is linearized around a given operation point and, next, the frequency response
from all the modes can be made available by numeric computation of the frequency
response even for the large-scale systems. Bode plots of two entries of H(s) for the
case of the ENTSO-E system are given in Fig. 3. A control model can be obtained
from H(s) if each of its entries Hij(s) is written as a limited order development plus

a correction. Indeed, Hij(s) =
∑n

k=1
rij
k

s−pk
, where rij

k denotes the residue of the pole
pk of Hij . Obviously, n, the total number of poles of H , is huge since it equals
the order of the full simulation model (between 8000 and 20000 for the European
system). However, for the control model, the concerned dynamics are defined within
the frequency band of the modes in the set Λ. We propose as control model the
following approximation of Hij(s), i, j ∈ {1, ..., m}:

H̃ij(s) =
A(s)

B(s)
+

P (s)

Q(s)
;

A(s)

B(s)
=

l∑
k=1

[
rij
k

s − λk
+

r̄ij
k

s − λ̄k

] (6)

where rij
k , r̄ij

k , k = 1, ..., l are known (by r̄ij
k we denote the complex conjugate of rij

k )
and the polynomials P (s) and Q(s) are computed such that H̃ij(s) fits Hij(s) in the
frequency working band mentioned above.

2.3. Test system

The techniques for the synthesis of the control model and the PSS loops investigated
in this paper are tested and illustrated on a realistic large-scale representation of the
interconnected European. More precisely, this is a representation of the European
power system before the interconnection with zone 2 (Romania and Bulgaria) and
Turkey. It consists of about 2000 buses, 2400 lines and 810 transformers. The gener-
ators of which power is greater than 100MW (about 400 machines) are represented
by detailed dynamic models along with the detailed models of their regulations. The
rest of the generation is considered as static injection at the load-flow stage. A winter
peak load scenario is considered. The resulting linear model is described by about
8000 state variables. It is well-known that this system exhibits a low damped inter-
area oscillation around 0.22 Hz in which the generators of the eastern part of the
grid are oscillating against the generators of the western part [17]. This phenomenon
is represented by the first two modes of the linearized full model of which dampings
are given in the first line of Table 1.
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They are studied in this paper along with the one in the third column of the same
table which is of different nature; it is an inter-area mode of the Spanish system at a
slightly higher frequency (0.9 Hz) than the first two ones. It is chosen here along with
the slow ones (�1 and �2) in order to be in the situation which requires the ”second
level of coordination” mentioned in the Introduction. Thus, one has (6) with l = 3
and λk, k = 1, ..., 3 given in Table 1.

2.4. Frequency identification of the parameters of the control model

The degrees of the polynomials P and Q in (3) are chosen such that H̃ij is strictly
proper:

Q(s) = sv + qv−1s
v−1 + ... + q0, P (s) = pv−1s

v−1 + ... + p0 (7)

To obtain a control model of order 2l + v, 2v parameters have to be identified as
coefficients of P and Q. This is done using the Bode plots of the Hij(s) as in Fig. 3.
They contain information in the wide frequency range of the full simulation model
(i.e., about 8000 poles). However, for the stabilization problem we want to solve here,
only the frequency range [ω−

Λ ω+
Λ ] which covers the set of modes Λ is of interest.

For the chosen test system, this range is defined around the two major resonance
peaks in Fig. 3 which correspond to λ1 and λ3 in Table 1 (the frequency of λ2 is in
between), i.e., ω−

Λ= 0.15 Hz, ω+
Λ= 2 Hz.

An adequate control model should fit the Bode plots of the full simulation model in
the frequency range [ω−

Λ ω+
Λ ].

The coefficients pi, qi in (7) of each transfer H̃ij(s) in (6) are thus computed via a
frequency identification procedure based on a least squares objective function of the
form

Jident =
∑

ω−
Λ≤ωk≤ω+

Λ

[αk(Ak − |H̃ij(iωk)|)2 + βk(ϕk − arctg(H̃ij(iωk)))
2] (8)

where Ak and ϕk are the values of the magnitude and respectively the phase of
Hij(iωk) and i2 = −1. (Ak, ωk) and (ϕk, ωk) are points of the Bode plots of the
transfer of the full simulation model and are thus input data for the frequency iden-
tification problem
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{pi, qi}i∈{0,...,v−1} = argmin{Jident}. (9)

The weights αk, βk are used to manage the trade-off between magnitude and phase
fitting and, eventually, to give priority to the fitting at specific frequencies.

A stability constraint on the roots of Q could be used in (9) to ensure a stable control
model H̃ij(s).

This identification is repeated as a trial and error iterative procedure with increasing
degrees for the polynomials P and Q above till an acceptable frequency response
fitting is achieved.

Such a situation is shown in Fig. 3a for a transfer function of the diagonal of
H(s). The responses of the full model are in solid lines and the reduced model
is obtained with deg(P ) = 1 and deg(Q) = 2, i.e., for a control model of order 8.
For the transfers of the extra diagonal entries of H the fitting is more difficult since
interactions among different machines should be captured. Fig. 3b shows the result
obtained with the same order (v = 2) for two Spanish machines (i = Almaraz, j =
Cofrentes). The resulting numerical values are given in Table 2. They were obtained
with equal weights ( αk = βk = 1 for all k) and using standard Matlab routines
(fminsearch/lsqnonlin). If necessary, accuracy of the identification can be further
increased by increasing v. However, the order 2 has been retained for the example
treated in this paper since the tuning provided with this model was satisfactory.
Indeed, the main objective here is to tune with the simplest control model.

3. Optimal tuning of PSSs

The control model (6) is used to simultaneously tune the PSSs of the machines in
the set M for desired target values ζref

i , i = 1, ..., l of the damping of the modes in
Λ. To ensure a standard IEEE structure for the PSSs, like, e.g.,

Vs(s)

ω(s)
= K

1 + T1s

1 + T2s

1 + T3s

1 + T4s

T5s

1 + T6s
, (10)

(see [11]) the problem is formulated as an optimization one which gives an optimal set
of gains and time constants for each machine (K and Ti in (10)) in the set M .
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3.1. The objective function

The objective function to be minimized should capture the dynamic performance
specified, basically the damping of the oscillatory response of the system. In [19] and
[13] a modal objective function is proposed:

Jcontr =
∑l

k=1[(akΨ(σk, ωk)
∑m

i=1

∑m
j=1 rij

k r̄ij
k )]1/2

Ψ(σk, ωk) =
σ2

k+ω2
k

2σ3
k

(e
2σ3

kT

σ2
k
+ω2

k − 1)
(11)

where rij
k is the residue of the mode λk = σk ± jωk in the transfer Hij(s), ak a

weighting function (ak = 1 if λk is real and ak = 2 if λk is complex) and T > 0 is the
time horizon over which Jcontr is evaluated.

Roughly speaking, (11) contains the integral of the surface under the modal response
envelope through a given time horizon T . First, the computation of this function is
not straightforward in practice and, next, minimizing Jcontr given by (11) leads to a
response with maximum damping which is not necessarily needed. Indeed, only the
level ζref

i , i = 1, ..., l of damping is required and not going below would allow one to
settle a better trade-off robustness/performance (see, e.g., [20]). This led us to test
a simpler and more direct index of performance:

Jcontr =
l∑

i=1

(ζi − ζref
i )2. (12)

Relation (3) can be exploited to obtain in a simplified manner the influence of the
adjustment of the gains of the PSSs on the modes in Λ. Moreover, to reduce the size
of the problem, it is considered that T3 = T1 and T4 = T2 in (10). The optimal PSS
parameters are thus:

{K∗
i , T ∗

1 , T ∗
2 } = argmin{Jcontr} (13)

where Jcontr is now given by (12). The above objective functions have been compared
on the Single Machine Infinite Bus (SMIB) system in Fig. 5 of which parameters
are given in Appendix 1. Without the use of a PSS, the inter-area mode of this
system is −0.0227± j0.4951, i.e., of damping ζ0 = 4.58%. Problem (13) solved with
(12) for ζref = 10% leads to K = 46pu, T1 = 2.17s and T1 = 2.24s which improve
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in closed-loop the damping of the above inter-area mode to ζ = 10%. The same
problem solved with (11) instead of (12) leads to K = 49.01pu, T1 = 4.01s and
T1 = 4.01s which provide a damping of ζ = 0.1075. In this latter case the gain is
larger and the damping is (a little) higher than the target. This is normal because in
this case the damping target is not directly taken into account into the optimization
as with (12). The trade-off between the gain magnitude and the obtained damping
can de managed by adding constraints to problem (13) as explained in the section
below.

3.2. The constraints

Several types of constraints may be considered with (13) or (11). First, physical
bound constraints

⎧⎨
⎩

T1i
≥ 0

T2i
≥ 0

Ki ≥ 0
, i ∈ {1, ..., m} (14)

contain the physical bounds for the gains and the time constants of the PSSs. An
additional upper bound Ki ≤ Kmax

i can be added to (14) to ensure implementable
solutions, i.e., to avoid mathematical solutions with unrealistic high gain. Next,
several nonlinear constraints are added. The main one consists in a stability condition
of the resulting closed-loop (H(s) feedback connected with Γ(s) in Fig. 1. The
eigenvalues of state matrix of the closed-loop should be in the left-half plane:

Max{Re(λcl
k )} < 0, k ∈ {1, ..., 2l + v + 3m}. (15)

Notice that λcl
k are functions of Ki, T1i

and T2i
of the PSSs Γ(s)i of type (10). In

[13] and [21], it was shown how constraints given by H∞-norm of adequate transfer
functions may be used to ensure robustness.

3.3. Validation on the European power system

For the test system presented in Section 2.3, the Spanish machines Almaraz, Cofrentes
and PGR were chosen to damp the modes selected in Table 1 since they have high
participation in these modes and they are not already equipped with PSSs. The
damping target is ζref = 10% for each of the three modes. This objective is inter-
preted as follows: mode #1 is poorly damped and ζ1 should thus be increased, but
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the damping actions should be chosen in order to not degrade the damping of the
other two modes, one directly concerned by the east-west oscillation and the other
one local to the Spanish system.

3.3.1. Linear validation

The results obtained minimizing (13) (first position in Table 3) are compared with
the ones provided by the tuning proposed in [3] where only a static control model
is used (second position in the same Table 3). First, the gains obtained with the
procedure presented above are lower than the ones in [3] and thus the robustness
is improved in general. This difference can also be noticed in the Bode plots of the
open-loop transfer functions of the control system, i.e., of Γi(s)Hii(s), given in Fig.
2 for i = Almaraz. The damping factors obtained when the optimal parameters are
used for PSSs are given in the second line of Table 1. Also, notice that only two
machines (Almaraz and Cofrentes) are needed to reach the damping objectives with
the tuning procedure presented here since the gain obtained for PGR is K∗ = 0 as
shown in Table 3. Notice that for this example no robustness constraints have been
taken into account. The optimization problem (13) has been solved with standard
Matlab routines (fmincon).

3.3.2. Full nonlinear validation

It is now shown that the damping level achieved in the preceding section using linear
models is still valid in nonlinear simulation. For the latter validation, the system is
simulated in detail using the Eurostag software for transient stability analysis [14].
Fig. 4 gives the speed responses of machines Almaraz to a short-circuit of 200ms at
the grid connection point of the same machine. It can be seen that the damping of
the response is improved (the more damped curve corresponds to the situation when
the 2 PSSs described in the first entries of Table 3 are used), while the less damped
response is obtained on the initial situation when no PSSs are used on the machines
in the set M).

Remark
Notice that, as shown in Table 1, that damping target ζref = 10% is achieved for
mode �3 and (almost for) mode �2 but not for mode �1 although the damping of the
latter mode has been significantly improved. This is normal since it is the result
of a constrained optimization. From the physical point of view, this means that
the damping means are not sufficient. To further improve the damping in these
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situations, the class M of machines on which PSS are installed/tuned should be
enlarged.

4. Coordinated tuning of PSSs and governors

In this section it is shown in which cases interactions between the PSS and governor
dynamics may occur and how they can be overcome.

4.1. Interactions PSSs/governors

Consider first the simplest situation of the SMIB system in Fig. 5. This system
has an inter-area mode which frequency depends (mainly) on the inertia H of the
generator and the reactance X of the line. The latter parameters (given in Appendix
1 along with all the data of the test system) are chosen such that the frequency of
this mode is f = 0.07Hz. This simple example reproduces a type of inter-are mode
which exists on a large-scale power system with weak interconnections as the one
treated in Section 5.3.

When a standard AVR is used, this mode is poorly damped (ζ = 0.93%) as shown
by the solid line response in Fig. 6a to a 100ms short-circuit applied at the generator
bus.

If a PSS loop is added, the oscillations are damped as shown by the response in
dotted line in the same figure. The PSS structure (10) with T1 = T3 and T2 = T4 was
used and its parameters have been tuned for the target ζ∗ = 7.5% with the classical
technique based on the residues recalled in Section 2.1. This led to

KPSS = 49.7pu, T1PSS = 2.3s, T2PSS = 2.13s. (16)

The latter two simulations have been carried out only with voltage regulations for
the machine, i.e., its mechanical torque has been considered constant. This is the
usual way of tuning the PSS since the voltage and mechanical dynamics are suf-
ficiently decoupled (in frequency) to be considered independent. In other words,
the adjustment of the voltage regulators have no, or little influence, on the turbine
regulation and vice versa. As a consequence, the two classes of regulators are syn-
thesized independently and, afterwards, used together on the machine. This is no
longer valid in the situation considered in this paper. Indeed, if the frequency of
the modes to be damped by the PSS is too low, the voltage correction actions may
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act also on the turbine and vice versa. Consider the structure in Fig. 7 which cor-
responds to a standard governor if the lead-lag bloc in dotted line is not used (i.e.,
T1GOV = T2GOV = 0). In this case, a phase lag action is induced by the PI bloc in
Fig. 7. If the PSS is tuned for a frequency close to the governors dynamics and if
it should provide a phase lead (as it is the case for the parameters (16)), this action
is thus diminished by the PI bloc of the governor and the PSS is thus less efficient
when used in conjunction with the governor. This is the case of the example treated
here. If the governor presented above with R = 20pu, KP = 0.5pu, TI = 10s is used
in conjunction with the PSS tuned before, the damping target is no longer achieved
as shown by the response in dotted line in Fig. 6a.

4.2. Mixed control synthesis

To overcome the problem formulated in the section above, the structure of the gov-
ernor has been enriched with the lead-lag filter in dashed line in Fig. 7. This allows
one to shape the frequency profile of the governor without modifying the parameters
obtained for the initial design and which ensure the turbine performances, i.e., the
droop R, the gain KP and the time constant TI of the PI bloc. The tuning of the
parameters T1GOV and T2GOV of this new lead-lag filter is done simultaneously and
in a coordinated way with the tuning of the parameters of the PSS. They are the
result of an constrained optimization of the costs function (12) as in Sections 3.1
and 3.2. Notice, that in this process, the parameters R, KP and TI are considered
as constants. For the SMIB example presented in Section 4.1, the target of this
optimization is ζ∗ = 10% and it is reached with KPSS = 48.9pu, T1PSS = 0.48s,
T2PSS = 0.62s, T1GOV = 1.17s and T2GOV = 0.26s. This can also be checked with
the response of the nonlinear simulation in solid line in Fig. 6b obtained with the
latter parameters.

The same situation is reproduced on the 4-machines test system in Fig. 8 of which
parameters are given in Appendix 1. Indeed, the lines are NHVC1-NHVA1, NHVC1-
NHVD1 and NHVC2-NHVB1 are longer than the other branches of the grid and, as
a consequence, the inter-area mode related to the swing of generator GENC against
the three machines in the south of the system is of low frequency (0.1Hz) and poorly
damped. This mode can be observed in solid line in Fig. 9a which shows the responses
to a short-circuit at bus NHVCEQ. This mode is damped when a standard PSS is
added to machine GENC (dotted-line response in Fig. 9a) but this improvement is
lost when a standard governor is also used for the same machine. In the latter case,
the system is unstable (dashed-line response in Fig. 9a). As in the SMIB case, this
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problem is overcome with the coordinated synthesis of the PSS-governor for which
satisfactory responses are obtained as shown in Fig. 9b (solid line).

5. General multi-level tuning procedure

The results of sections 2, 3 and 4.2 are now aggregated into a general control pro-
cedure in order to satisfy the three levels of coordination described in the Introduc-
tion.

5.1. General control model

The control model introduced in Section 2 is extended in order to take into account
also the dynamics of the turbines of the m generators selected for the control. It
consists of the transfer matrix H(s) in Fig. 10 defined by

[
P
ω

]
= H(s)

[
Pm

V

]
(17)

where P =
[

P1 . . . Pm

]T
is the vector which contains the electrical powers of

the involved machines, ω =
[

ω1 . . . ωm

]T
the vector of the rotor speeds, Pm =[

Pm1 . . . Pmm

]T
the vector of the mechanical powers and V = Vref − VS with

Vref =
[

Vref1 . . . Vrefm

]T
the vector of references of voltage control loops, VS =[

VS1 . . . VSm

]T
the vector of the PSS outputs, Γ(s) = diag{Γ1(s), ..., Γm(s)},

Γ(s) = diag{Γ1(s), ..., Γm(s)} where Γi(s) is the transfer function of the PSS of
machine i, Γi(s) is the transfer function of the governor of machine i and i ∈
{1, ..., m}.
Using the methodology given in Section 2, a reduced order representation is con-
structed for the transfer matrix H(s) defined above in the range of frequency of the
modes to be damped (in the set Λ).

5.2. Tuning procedure

The control model above is used to tune the parameters of the PSSs Γi, i = 1, ..., m
and of the lead-lag filters of the governors Γi, i = 1, ..., m. The same procedure based
on the constraint optimization technique given in Section 3 can be used. The main
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control objective is the damping of the modes directly taken into account in the cost
function (12). Stability and robustness specifications can be taken into account by
adding supplementary constraints to the optimization problem

{K∗
i , T ∗

1i
, T ∗

2i
, T ∗

1GOVi
, T ∗

2GOVi
, } = argmin{Jcontr} (18)

as shown in Section 3, [13] and [21].

5.3. Large-scale test

The general methodology summarized in the preceding section has been applied to
a large-scale power system. A benchmark has been constructed from the ENTSO-E
model presented in Section 2.3 as follows: the dynamic model has been triplicated
and the three samples have been interconnected as shown in Fig. 11. The resulting
benchmark reproduces in an exploitable manner the interaction phenomena described
in the Introduction. More precisely:

• the resulting power system model has a realistic large-scale. It consists of about
1200 generators which is the actual size of the European interconnected power
system (which includes Romania, Bulgaria and Turkey zones).

• the series interconnection in Fig. 11 generates a low-frequency inter-area mode.
The most involved machines are among the nuclear plants of the French zone.
The shape of the oscillation is zone ENTSO-E 2 against ENTSO-E 1 and 3 in
Fig. 11 and the frequency of the mode is 0.09Hz. Indeed, Fig. 12 provides
in dashed and dashed-dotted lines the speed responses of machines BUGEY
of zones ENTSO-E 2 and 3 to a 150ms short-circuit at the connection bus of
machine BUGEY of zone ENTSO-E 2. It can be noticed the phase opposition
of the two oscillatory responses as well as a common period which correspond to
the frequency of the mode. If the specific four-loops voltage regulators (see, e.g.,
[22] and related references) which control the French nuclear plants is replaced
by a standard IEEE AVR (type IEEE X4 - Type 4 excitation system) [11]
without PSS for the three most participant machines in the oscillation (namely
BUGEY, GRAVELINE and PALUEL in zone ENTSO-E 1), the damping of
the aforementioned mode drops to ζ = 3.48% (see again the two responses
aforementioned). The context is thus similar to the one of [7] in which a
very spread and poorly damped inter-area mode has been put into evidence at
0.07Hz.
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• in opposition to study [7], this benchmark is exclusively constructed with Eu-
ropean data.

When the target damping of the inter-area mode mentioned above is fixed at ζref =
10%, the control synthesis methodology given in Section 5.2 leads to the optimal
parameters given in Table 4 for the three French machines chosen for the control in
zone ENTSO-E 1. The obtained parameters have been implemented in the structures
given by (10) and Fig. 7 on the selected machines in the nonlinear model of the
interconnected benchmark in Fig. 11. The speed response of machine BUGEY of
zone ENTSO-E 2 given in solid line in Fig. 12 shows that the tuned regulators
are efficient, i.e., the target value of 10% of the damping of the inter-area mode is
reached.

Remark
Notice that in the methodology of the mixed-control proposed in Sections 4.2 and
5.2 the governor structure is only modified by adding a lead-lag filter (Fig. 7) which
is tuned on the frequency of the inter-area modes which have to be damped. It acts
thus only when the latter modes are excited and its impact in these situations on the
mechanical torque is limited as shown in Fig. 13a. This figure shows the response
of the mechanical torque of one of the machines used for the synthesis presented
for the large-scale test to the short-circuit at its grid connection point which excites
the target low-frequency (0.09Hz) inter-area mode. Also, the initial function of the
governor is not deteriorated by the added lead-lag filter as shown by the response in
Fig. 13b to a 3% step increase of the power reference of the same machine.

6. Conclusions

This paper shows how several levels of coordination can be simultaneously achieved
for the synthesis of PSSs. These coordinations, especially the one between the tuning
of the PSSs and of the governors of the chosen generators, opens the way to stabilize
very large interconnected power systems in which the frequencies of the slowest inter-
area modes come into the turbine frequency range. The size and the structure
of the actual European interconnected power system are close to the conditions
mentioned above. The next potential extensions of this system [23], [7] might cause
such interactions and the methodology presented here is a way to overcome these
difficulties.

The principles of coordination presented here can be applied to other types of PSSs
like, e.g., the multi-band PSS [11], [4] or to coordinate the damping actions of the
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generators with the ones of other grid devices as, for example, some FACTS (see [24]
and related references).

The key point of the proposed methodology is the use of an efficient control model
for the synthesis of the control laws which allows, in particular, to deal with the
large-scale systems. This model is built to take into account the interactions of the
main dynamics of the system.

The parameters of the regulators are computed via a constraint optimization in or-
der to keep standard structures for the PSSs and governors. First, the constraints of
this problem can be adapted in order to ensure different aspects of performances and
robustness (especially by taken into account several operating points of the system)
for the resulting closed-loop as shown, for example, in [25] and related references.
Next, algorithms with better performances may be used to solve the optimization
problem (18). Indeed, the optimization methodologies have been the subject of on-
going enhancements over the years. A review of the most used in power systems is
given in [26]. Finally, the optimization itself can be replaced by a synthesis technique
with better performances if new structures (like, e.g., state-space forms) are allowed
for the regulators instead of the actual standard ones. From this point of view, the
methodology presented here is an open framework.
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Appendix 1: Data of the test systems

SMIB test system (Fig. 5):

generator parameters (no load pu):
stator resistance 0.005pu, stator leakage 0.219pu, direct reactance 2.57pu, direct
transient reactance 0.422pu, direct sub-transient reactance 0.3pu, direct transient
time constant 7.695s, direct sub-transient time constant 0.061s, quadrature reactance
2.57pu, quadrature transient reactance 0.662pu, quadrature sub-transient reactance
0.301pu, quadrature transient time constant 0.643s, quadrature sub-transient time
constant 0.095s, inertia 50MWs/MVA
block transformer : 24kV/400kV, rate 1.1pu, R=0.005pu, X=0.005pu (base 24kV)
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regulators:
AVR: EFD = K Ke

1+sTe
(Vref − Vt), K=40pu, Te=0.1s, Ke=1pu;

GOVERNOR: constant mechanical power
the line: R=0pu, X=0.7pu (Sbase=100MVA and Vbase=400kV)
load-flow : P=100MW, Q=35MVar, V=24kV, Vinf=400kV

Intermediate-scale test system (Fig. 8):

common generators’ parameters : the same as for SMIB
generators’ inertias [MW s/MVA] : GENA1 10, GENB1 5, GENB2 5, GENC 10
block transformers: 24kV/380kV, rate=1.1pu, X=0.00769pu for GENA1, X=0.02251pu
for GENB1, X=0.09pu for GENB2, X=0.00769pu for GENC (base 24kV)
regulators:
AVR of each machine: the same as for SMIB with Ke=1pu; K=40pu; Te=0.1s for
GENA1 and GENB1 and K=30pu; Te=1s for GENB2 and GENC
GOVERNOR for GENA1, GENB1, GENB2: Tm = 1

1+0.1s
1

1+0.5s
1+3s
1+10s

(1 − ω)
standard PSS of machine GENC: K = 1.07pu, T1 = 3.11s, T2 = 0.73s
optimal PSS of machine GENC: K = 4.32pu, T1 = 3.09s, T2 = 1.67s
optimal GOVERNOR of machine GENC: T1 = 2.39s, T2 = 2.52s
generation and load:
NGENA1: P=900MW, Q=300MVAR, V=24kV
NGENB1: P=400MW, Q=190MVAR, V=24kV
NGENB2: P=900MW, Q=300MVAR, V=24kV
NGENC: P=2504MW, Q=1500MVAR, V=24kV
NHVA1: P=-1000MW, Q=-100MVAR NHVB1: P=-1000MW, Q=-300MVAR
NHVC1: P=-500MW, Q=-100MVAR NHVC2: P=-600MW, Q=-200MVAR
NHVCEQ:P=-700MW, Q=-150MVAR
line reactances [pu](Sbase=100MVA and Vbase=380kV):
NHVC1-NHVA1: 0.490 NHVC2-NHVB1: 0.5
NHVD1-NHVC1: 0.500 NHVC1-NHVC2: 0.011
NHVD1-NHVB1: 0.011 NHVCEQ-NHVC1 and 2: 0.22
NHVA3-NHVD1: 0.011 NHVA3-NHVA1: 0.02
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Table .1: Damping ζ[%] of the modes in Λ

mode �1 0.23Hz mode �2 0.24Hz mode �3 0.91Hz

without PSSs 3.87 11.7 6.25

with PSSs 8.43 9.97 11.53

Table .2: Coefficients of the control model used in Fig. 3a

s6 s5 s4 s3 s2 s1 s0

P(s) 0.001 -0.11

Q(s) 1 1.55 44.20

A(s) -0.001 -0.01 -0.10 -0.30 -0.33 -0.52

B(s) 1 1.23 38.59 22.53 169.97 46.80 193.85
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Table .3: Comparison of the stabilizer parameters achieved with coordinated tuning and with robust
coordinated tuning

K∗[pu] T ∗
1 = T ∗

3 [s] T ∗
2 = T ∗

4 [s]

Almaraz 0.59 / 2.43 0.22 / 0.21 0.05 / 0.02

Cofrentes 4.81 / 5.74 0.59 / 0.58 0.15 / 0.05

PGR 0 / 0.54 0.71 / 0.61 0.15 / 0.06

Table .4: Parameters tuned for PSSs and governors of the large-scale test system

BUGEY GRAVELINE PALUEL

KPSS[pu] 28.5 27.6 28.5

T1PSS[s] 2.1 2.6 2.1

T2PSS[s] 2.8 2.4 2.7

T1GOV [s] 2.1 2.1 2.1

T2GOV [s] 2.8 2.8 2.8

Table .5: Participations and right eigenvectors’ phase for the 0.07Hz mode of the large-scale system

Zone ENTSO-2 Zones ENTSO-1 and 3

Machine Participation [%] Phase [◦] Machine Participation [%] Phase [◦]

2 BUGEYSF1 70.9 1.2 3 BUGEYSF1 20.6 -175.7

2 GRAVSF1 88.2 1.0 1 PENLYSF1 29 -165.1

2 PALUESF1 100 -0.4 1 PALUESF1 32.1 174.9
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Figure .1: Control model
Figure .2: Bode plots of Γi(s)Hii(s), i=Almaraz:
the coordinated control (blue ’+’ plot) and the
robust coordinated control (red ’.’ plot)

(a) H(s)ii, i = PGR (b) H(s)ij , i = Almaraz, j = Cofrente

Figure .3: Bode plots: the full model (blue ’+’ plot) and the control model (red ’.’ plot)
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Figure .4: Nonlinear validation of the coor-
dinated PSS tuning

Figure .5: SMIB test system: generator con-
nected to an infinite bus
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(a)

(b)

Figure .6: Short-circuit responses of the SMIB test system25



Figure .7: Structure of the improved governor

Figure .8: Medium-scale test system
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(a)

(b)

Figure .9: Short-circuit responses of the medium-scale test system
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Figure .10: General control model Figure .11: Large-scale test system

Figure .12: Short-circuit responses of the large-scale test system
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(a) Short-circuit response (b) Power step response

Figure .13: Responses of the mechanical torque
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