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Abstract

Recent results on pole placement for linear time-varying (LTV) systems are

exploited here for the control of flexible structures. The infinite dimensional

system is approached as usual by a restricted number of modes of interest,

according to the frequency range in which the system is exploited. The dif-

ference with the previous approaches (like, e.g., gain scheduling) is that only

one finite dimension linear model is used and its parameters (frequency and

damping of the modes) are varying according to the operating conditions. The

control model is thus LTV and a regulator is analytically synthesized to en-

sure closed-loop stability and performances. This regulator is also LTV and

thus automatically (without any special switching action) tracks the operating
∗Corresponding author
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conditions of the system. The case of a flexible beam is studied in simulation

as well as in laboratory experimentation. Hence, a suitable application of the

proposed LTV synthesis is done to find a compromise between the complexity

of interpolation and its efficiency. Furthermore, the bad dissipation factor of

flexible systems leads them to be good candidates to proof the efficiency of the

proposed gain scheduling strategy. This work validates on a real system the

LTV pole placement approach and opens the way to a new gain scheduling

strategy for the control of LTV, nonlinear or infinite dimensional systems.

Key words: linear time-varying systems, flexible structures, vibrations at-

tenuation

1 Introduction

Flexible structures are usually encountered in industry. A lot of studies have

been thus devoted to the attenuation of their vibrations (see, e.g., [1] and

[2]). The main difficulty comes from the infinite dimension of such systems

([3] and [4]). Indeed, it is reminded in Section 2 how the behavior of such

a system is given by a class of oscillatory modes. For the control synthesis,

a restricted number of modes is retained according to the frequency range

in which the system is operated [5]. However, on the one hand, the charac-

teristics (frequency and damping) of the members of this subclass of modes

can vary in time [6]. On the other hand, the number of excited modes can

change according to the operating band [7]. Adaptive and gain scheduling

controls have been used to overcome these difficulties (see, e.g., [8]). How-
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ever, in these approaches, it is difficult to guarantee the stability of the overall

control scheme in case of hidden coupling modes (see, e.g., [9]). Moreover,

according to [10], a low damping factor induces sensitivity in the model iden-

tification. Indeed, due to a fast change in their phase inducing a low stability

margin, flexible systems are very sensitive. For this reason, most of the pre-

vious research related to flexible systems deal with their robustness and the

most used criteria are H∞ [11, 12, 13] and sliding mode [14]. Therefore, the

control performance of flexible systems is relegated to a less important target.

The knowledge of the different operating bands (cycle of operation of

the machine, for example, the launch phase of a space launcher and other

cycles) led us to use for the system a linear time-varying (LTV) model in

order to capture the aforementioned variations of the system. The latter

is still considered as infinite-dimensional described by a partial differential

equation. As in the classic approaches, it is modeled by a restricted number

of modes of interest but, in our approach, only one finite dimension linear

model is used and its parameters (frequency and damping of the modes) are

varying according to the operating conditions.

In [15] it has already been shown that necessary conditions for expo-

nential stability can be provided if time-varying Lyapunov functions are

used. Such stability conditions can be more directly obtained if the struc-

ture (poles) of the LTV system is directly considered. More specifically, in

[16] and [17] LTV notch filters have been used to damp vibrations of flexi-
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ble structures and vehicles. They are placed on the control error path and

their dynamics are tuned using the PD-eigenvalue theory introduced in [18]

for differential operators with time-varying coefficients. The latter algebraic

approach was extended and fully developed in [19] and related references to

define poles and provide stability conditions for open as well as closed-loop

LTV systems. In comparison to the PD eigenspectrum mentioned above,

the poles are also defined for LTV systems given by differential operators

which do not have roots over the field of definition of their coefficients. The

field extensions needed in this case to find the poles allowed us to character-

ize stability and to solve the pole placement problem for such general LTV

systems. The output feedback pole placement method introduced in [20]

is used here to analytically synthesize a regulator to directly ensure closed-

loop stability and performances. This overcome the common difficulty to

ensure the closed-loop stability when adapting the regulator to the evolution

of the operating conditions. This latter difficulty is faced, for example, in

the classical gain scheduling where several linear time-invariant (LTI) models

are constructed around each operating point and an LTI regulator is syn-

thesized for each model; the final regulator is obtained by switching among

the members of the class of regulators according to the evolution of the op-

erating conditions. The regulator which results from our approach is also

LTV and thus automatically (without any special switching action) tracks

the operating conditions of the system.

The paper is organized as follows. In Section 2, the standard modeliza-

tion of flexible structures is briefly recalled. Section 3 gives the basics of the
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LTV output feedback control. In Section 4 it is first shown how an LTV

model for a smart beam can be obtained if some parameters are assumed

varying with the operating conditions. The mathematical background pre-

sented in Section 3 is used next for the synthesis of an LTV regulator which

attenuates the vibrations of the beam. Section 5 presents simulation as well

as laboratory results for the control of the smart beam while Section 6 is

devoted to concluding remarks.

2 Flexible structures modeling

2.1 Dynamic equations

The purpose of modeling is to know the resulting displacement field at any

point of the structure. In the general case, the equations of the dynamics of

the structure lead to partial differential equations (PDE), which do not admit

simple analytical solutions, with the exception of the case of simple structures

(for example, beams and plates simply supported on their contour). It is then

necessary to perform a discretization of the problem where the deformation

−→ω (x, y, z, t) ∈ Rn is approached by

−→ω (x, y, z, t) =
N∑

i=1

−→ηi (x, y, z)qi(t), (1)

where, (x, y, z) ∈ R3 are spatial coordinates, t is time variable, qi ∈ R

are the general coordinates, −→ηi ∈ Rn the approximation functions and N

the number of degrees of freedom (DOF). For the beam, the −→ηi are given

by their proper modes, as shown in Fig 1. In our study, we used SDTools

software to identify proper modes. In the case of the beam, these modes can
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be found analytically [21].
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Figure 1: Modal deformations of clamped-free beam: - Mode 1, - - Mode 2;

· · · Mode 3; - . - Mode 4

The Lagrange formalism is used to provide the dynamic equations. Let T

denote the kinetic energy and U the potential energy of the structure. Using

the system description in equation (1), Lagrange equations can be written

[1]:

∂

∂t

(
∂T
∂q̇i

)
− ∂T

∂qi
+

∂U
∂qi

= Fi (2)

where Fi ∈ R are the generalized efforts on each DOF.

This leads straightforward to the following dynamic equation

Mq̈ + Cq̇ +Kq = F (3)

where F = (F1,F2, . . . ,FN ) is the vector of generalized efforts, M ∈

Rn×n and K ∈ Rn×n are the mass and the stiffness matrices, respectively,
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C ∈ Rn×n is the damping matrix. M is symmetric positive definite and K

is symmetric semipositive definite. C is determined a posteriori because it is

difficult to be modeled using structure characteristics.

We define the modal coordinates v ∈ Rn by projecting the generalized

displacement on the modal basis:

q(t) = Φv(t); v̈(t) + Γv̇(t) + Ω2v(t) = ΦTF(t) (4)

Φ ∈ Rn×n is the modal basis matrix, Ω = diag{ω1, ...,ωN} is the modal

frequencies matrix. If we assume also that Γ = diag{2ω1ξ1, ..., 2ωN ξN}

(Basile’s hypothesis [21]) which is generally verified in such systems [1], we

get N independent equations of second order and every one defines a vibra-

tion mode

v̈i(t) + 2ξiωiv̇i(t) + ω2
i vi(t) = ΦTFi(t) (5)

where ξi,ωi are, respectively, the damping and the frequency of the ith

vibration mode. Fi is the ith element of the vector F .

The parameter identification is done through the minimization of J which

is the quadratic criterion of log modules:

J = ‖log|G(ω)| − log|Ĝ(ω)|‖2 (6)

where G and Ĝ are respectively the transfer functions of the system and

of the model and ω is the pulsation in rad/sec. Since the problem is non-

convex, the proper pulsations are initialized visually for damping factors

as well. Although the algorithm corrects sufficiently good pulsations, the

very low value of the damping factor does not allow a good quality of its
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identification even when using the log scale. As shown in the criterion,

the most energizing modes are those selected by the model and they are at

low frequencies. To minimize J , we use "fmincon" Matlab function on the

frequency domain of interest. We point out that G does not vanish on the

chosen set of frequencies.

2.2 State-space and transfer representations

The choice of the state vector

x = (ω1v1, v̇1,ω2v2, v̇2, . . . ,ωNvN , v̇N )T (7)

[22] leads to the following state-space representation

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(8)

where

A = diag{Ai}, Ai =




0 ωi

−ωi −2ξiωi





B = [0, b1, 0, b2, . . . , 0, bN ]T

C = [cp1 , cv1 , cp2 , cv2 , , . . . , cpN , cvN ]

(9)

bi and u (control input vector) depend on the type of the actuators used,

cpi, cvi and y depend on the sensors type (position or velocity sensors). D is

generally zero [21]. The choice (7) of the state vector gives the same range

of values to its components which leads to a well conditioned problem.

The transfer function of a such structure is composed of the sum of

the transfers of every subsystem. To simplify the exposal, consider a SISO
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Figure 2: Clamped-free beam modeling: input-output transfer.

system. Its state representation (8) leads to the transfer function

H(s) =
N∑

i=1

ki
s2 + 2ξiωis+ ω2

i

(10)

where N → +∞ and ki characterize the static gain of each mode.

The case of a clamped-free (cf. Fig. 4) beam was treated in this work.

Its transfer is given in Fig. 2.

2.3 Flexible structure LTV model

For a control model, only a very restricted number of modes of a flexible

structure model (10) must be considered. The most poorly damped modes

in the frequency range in which the system is excited are usually chosen.

However, the excitation usually varies with the operation conditions of the

system, for example: aircraft taking off sequence. To capture this, a fixed

control model (fixed number of modes) with time-varying characteristics (fre-

quency and damping of the oscillatory modes) has been adopted in the se-

quel. In this case, N in (10) is finite and ξi, ωi are time-varying. This
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leads to an LTV transfer matrix. A specific formalism to handle this kind of

mathematical objects is recalled in the next section.

3 LTV systems and control

3.1 LTV systems

3.1.1 Linear systems as modules

In the algebraic framework initiated by Malgrange [23] and popularized in

systems theory by several authors, a linear system is a finitely presented

module M over the ring R = K[s] of differential operators in s = d/dt with

coefficients in an ordinary differential field K. If K does not exclusively

contains constants (i.e., elements of derivative zero), M is an LTV system.

R = K[s] is an Euclidean domain thus a two-sided Ore domain and

it has a field of left fractions and a field of right fractions which coincide

(see [24], [19]); this field is denoted by Q = K(s). A transfer matrix of an

input-output LTV system (M,u, y) is a matrix with entries in Q [25]. The

following notations are used in the sequel to denote matrices: H (or H(t))

is a matrix with entries in K, H(s) a matrix with entries in R (a polyno-

mial matrix) and H(s) a matrix with entries in Q (a transfer matrix). The

greatest common divisors lead to the following factorizations of a given LTV

transfer matrix:

Proposition 1 [25]: Any LTV transfer matrix H(s) has:

(i) left-coprime factorizations: H(s) = AL(s)−1BL(s), i.e., AL(s)y = BL(s)u
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(ii) right -coprime factorizations: H(s) = BR(s)AR(s)−1, i.e., y = BR(s)ξ

and u = AR(s)ξ

related by the diophantine equation1

AL(s)BR(s)−BL(s)AR(s) = 0. (11)

3.1.2 Autonomous systems

The autonomous part of the system corresponds to the torsion module T ∼=

M/[u]R. The can be given by a state representation ẋ = Ax (where ẋ = dx
dt ),

A ∈ Kn×n or, equivalently, by a scalar differential equation

P (s)y = 0, P (s) = sn +
n−1∑

i=0

ais
i (12)

where y is a generator of T .

3.1.3 Stability of LTV systems

Let ∆K(α) = {αc = α+ ċc−1, c ∈ K, c '= 0} be the conjugacy class of α over

K. A skew polynomial has an infinite number of (right) roots. They belong

to at most n conjugacy classes, where n is the degree of the polynomial [26].

A fundamental set of roots of a skew polynomial P (s) in (12) is a set

{γ1, ..., γn} of n P-independent (in the sense of definition in [26]) roots. It is

directly linked to a fundamental set of solutions {y1, ..., yn} of the differential

equation (12) [27]: ẏi/yi = γi, i = 1, ..., n. Notice that such a set may not
1When dealing with LTV systems, polynomials in (11) are skew, i.e., belongs to the

noncommutative ring R = K[s] equipped with the commutation rule sa = as+ ȧ, ∀a ∈ K,

which is the Leibniz rule of derivation of a product.

11

Page 11 of 44



exist over K, the initial field of definition of the coefficients of P (s), but over

a field extension Ǩ ⊃ K.

Definition 1: [19]

• A real analytic function f such that lim
t→+∞

f(t) = +∞, ḟ(t) > 0,

lim
t→+∞

ḟ(t)

f(t)
= 0 is called an Ore function.

• If f is an Ore function, C(f) is an Ore field.

Definition 2 [27]: Let γi ∈ Ǩ, i = 1, ..., n be a fundamental set of roots

of the polynomial P (s). If Ǩ is an Ore field, the poles of T are the conjugacy

classes {∆Ǩ(γi), i = 1, ..., n}. A set {γ1, ..., γn} of representatives of these

poles (i.e., γi ∈ ∆Ǩ(γi)) is called fundamental if the γi’s are P -independent,

i.e., if they form a fundamental set of roots.

Theorem 1 [27]: Let {γ1, ..., γn} ∈ Ǩ be a fundamental set of poles

of the autonomous system T . T is exponentially stable if and only if (iff)

lim
t→+∞

Re{γi(t)} < 0, i = 1, ..., n. )

3.2 Closed-loop stability and pole placement

Proposition 2 [20]: It is assumed that the plant of the classical closed-loop

in Fig. 3 is controllable and observable, i.e., completely described by its

transfer matrix H(s). Consider factorizations (i) and (ii) for the plant

Qp×m * H(s) = AL(s)−1BL(s) = BR(s)AR(s)−1 and for the regulator

G(s) = SL(s)−1RL(s) = RR(s)SR(s)−1. Then:

1. Polynomials

Acl(s) = AL(s)SR(s) +BL(s)RR(s) (13)
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and

Acl(s) = SL(s)AR(s) +RL(s)BR(s) (14)

have the same conjugacy classes of roots.

2. If the roots of Acl(s) (or, equivalently, of Acl(s)) belong to an Ore field,

then the poles of the closed-loop system are the conjugacy classes of a

fundamental set of roots of Acl(s) (or Acl(s)).

3. If G(s) is chosen such that the poles of the closed-loop system satisfy

the condition of Theorem 1, then the control-loop system is internally

exponentially stable, i.e., all transfers r +→ y, r +→ v, d +→ y and d +→ v

in Fig. 3 are exponentially stable. )

The output-feedback pole placement problem consists thus in solving

the Bézout equation (13) (or, equivalently, (14)) for SR(s) and RR(s) (or,

equivalently, for SL(s) and RL(s)).

Figure 3: LTV multi-input/multi-output closed-loop
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4 The vibrations control of a smart beam

4.1 Description of the system

The structure studied is an aluminum beam clamped-free, of which charac-

teristics are given in Table 1. The experimental control-loop is presented

in Fig.4. It is equipped with a piezoelectric actuator and sensor, glued on

each side of the beam, at the clamped side. The beam is fixed on a shaker

which generate vibrations. This flexible structure has its modes at low fre-

quency (16Hz for the first mode), the same frequency range as the aviation

structures. The input and output signals are the voltages measured by the

sensor and, respectively, applied to the actuator. The sensor is connected

to a charge amplifier. The aim of this amplifier is to apply, via the opera-

tional amplifier, a zero potential difference between the two electrodes of the

sensor, in order to cancel the influence of capacity (wiring or sensor). The

control law is computed and applied via a dSpaceTM card DS1103. For a

significant deformation of the beam, the voltage amplifier is used with gain

of 13. The magnitude of the Bode plot of the transfer function between the

above input and output is given in Fig.2. A photo of the experiment set-up

is given in Fig. 4.

Length Width Thikness Material Young module Density

30 cm 1 cm 1.56 mm AU4G 78 GPa 2970 kg.m−3

Table 1: beam cracteristics.

The following scenario is considered to reproduce the control problem

with this benchmark. Assume that the shaker excites the beam with a
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Figure 4: Experimental control-loop

sinusoidal signal γ(t) = sin(2πf(t).t) which frequency profile is known. For

our structure, the following frequency function was chosen:

f(t) =
1 + 120t

1 + t
. (15)

This frequency profile excites the first two modes (at f1 = 16Hz and

f2 = 100Hz) and captures the variation of the excitation band.

Parameter k1 ξ1 ω1 k2 ξ2 ω2

Value 2500 0.01 104 rad/s 105 0.5+0.01t
1+t 600 rad/s

Table 2: LTV model parameters.

To attenuate the vibrations of the structure, the classic LTI solution,

called Positive Position Feedback (PPF) controller [2], consists in taking the

two modes into consideration for the controller design whatever the frequency

profile of the exciting signal is. As a result, even if stability is ensured,

performances are low. An LTV model is used to improve these results.
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4.2 LTV model of the beam

A second order LTV model of type (16) for which the most energetic modes

have been considered is used for the beam:

H(s) =
k1

P1(s)
+

k2
P2(s)

(16)

where






P1(s) = s2 + 2ξ1ω1s+ ω2
1

P2(s) = s2 +
(
2ξ2ω2 +

ξ̇2ξ2
1−ξ22

)
s+

(
ω2
2 −

ξ̇2ω2

1−ξ22

) (17)

and the expression of P2(s) is such that H(s) has the following fondamental

set of poles:






λ1,2 = −ξ1ω1 ± jω1

√
1− ξ21

λ3,4 = −ξ2(t)ω2 ± jω2

√
1− ξ2(t)2.

(18)

ξ2(t) is chosen to have the same dynamic as the frequency profile as

shown in Table 2 along with the other parameters of the model. It ranges

from 0.5 at the begining -to model the absence of excitation of the second

mode to 0.01 when the second mode is excited. In order not to change the

phase of the first mode, ξ2(t) does not start at 1.

4.3 LTV controller design

To design the controller, a left-coprime factorization (i) is written for (16)

H(s) = AL(s)
−1BL(s) (19)
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where AL(s) is the (left) minimal polynomial of P1(s) and P2(s) (see,

e.g., [19]):

AL(s) = (P1(s), P2(s))l;BL(s) = k1B1(s) + k2B2(s) (20)

B1(s), B2(s) are such that AL(s) = B1(s)P1(s) = B2(s)P2(s).

As the damping of the modes characterize the amplitude of the vibra-

tions of the structure, the purpose of the active control of vibrations is to

assign desired values ξi to the dampings. The control system in Fig. 4 leads

to the closed loop in Fig. 3, where:

• the reference signal r = 0;

• the disturbance signal d represents the contribution of the shaker in

the sensor output signal;

• the control signal u = −v calculated by the controller gives an output

y that "ideally" neutralize the shaker effect.

The controller is synthesized using the procedure described in Section 3

to reach the following objectives:

• Ensure the stability of the closed-loop system;

• Increase the damping of the two modes: ξ̄1 = ξ̄2 = 0.3;

• Keep the same natural frequencies;

• Ensure the causality of the controller;

17
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• Do not excite the neglected modes.

For this, the poles of the closed-loop system are placed to:






λ1,2 = −ξ1ω1 ± jω1

√
1− ξ

2
1

λ3,4 = −ξ2ω2 ± jω2

√
1− ξ

2
2.

(21)

As a consequence, Acl is chosen to be:

Acl(s) = (s2 + 2ξ̄1ω1s+ ω2
1)(s

2 + 2ξ̄2ω2s+ ω2
2)Q(s) (22)

where Q(s) represents additional exponentially stable poles to ensure the

causality of the controller and not affect the remaining modes. Giving the

forms of H(s) and Acl(s), the factors SR(s) and RR(s) of the controller G(s)

in equation (13) must have the following form:





SR(s) = s3 + s2(t)s2 + s1(t)s+ s0(t)

RR(s) = r3(t)s3 + r2(t)s2 + r1(t)s+ r0(t)
(23)

Moreover, in order to ensure causal solutions G(s) in (13),

Q(s) = (s+ 150)(s + 200)(s + 300). (24)

4.4 LTV controller computation and implementation

Next, the controller coefficients in (23) must be found by solving the Bézout

equation (13) by identifying the coefficients of the two terms.

The computation of SR(s) and RR(s) is done using a symbolic computa-

tion tool. As the obtained coefficients of the two polynomials were too com-

plicated, we proceeded to their first order Padé-type simplification in order

to be easily used in simulations and real-time tests (Table III in Appendix).
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First, notice that the obtained simplified expressions of the coefficients pro-

vide trajectories close the ones of the exacte expressions as shown in Fig. 12

of Appendix.

Next, the simplified controller provides a closed-loop dynamic very close

to the desired one. Fig. 5 shows that the closed-loop poles obtained using

the simplified controller are quite close to the desired poles. Notice that

this kind of simplification can be carried out also when working with large

systems (polynomial AL of higher degree) and leads to simple expressions of

the coefficients of the regulator (as the ones in Table III of Appendix) which

can be easily implemented to obtain a higher order regulator. This opens

the way to applications which need regulators of higher order.

Figure 5: Closed-loop poles.(+ : desired poles, o : variation in time of the

poles obtained with the simplified controller).

To provide a causal implementation of the regulator, one canonical LTV

state-space form is computed from the factors (2) [27]. In our case the right-

form is :
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Actrl =





0 1 0

0 0 1

−s0(t) −s1(t) −s2(t)




, Bctrl =





0

0

1





Cctrl =

[
r0(t)− r3(t)s0(t) r1(t)− r3(t)s1(t) r2(t)− r3(t)s2(t)

]

(25)

5 Control results

The designed LTV controller was both tested in simulation and on the real

system.

5.1 Simulation results

The simulation results in Fig. 6 (a)-(b) show that the controller damps the

two vibration modes at the level expected from the design. It has also been

studied the effect of actuator saturation: when this is taken into account

(Fig. 6 (a)), the damping action is less efficient. Robustness against high

order dynamics has also been tested by injecting a white noise of frequency

150Hz on the measurement y. Fig. 7 shows that this noise is correctly filtered

(at least not amplified) by the closed-loop.

5.2 Experimental results

Four comparisons were performed on the experimental benchmark presented

in Section 4 (for which the saturation of the actuator cannot be avoided):

• the open-loop compared with the LTV closed-loop to illustrate the

effect of such an active control (Fig. 8 (a));
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(a) Control with saturation.
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(b) Control without saturation.

Figure 6: Simulation results: Control with and without saturation.

• the proposed LTV controller compared with the classic (PPF) LTI

controller (Fig. 8 (b));

• the proposed LTV controller compared with the two LTI controllers

designed from its parameters frozen for t → 0 and t → +∞ (Fig. 9 (a)

and (b)).
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Figure 7: Simulation results: robustness test (Up: Output and Noised Out-

put; Down: Output with noised feedback and Output without noised feed-

back).

Fig. 8 (a) shows that the control system ensures stability and good damp-

ing of the vibrations. However, we notice that the second mode is more

damped than the first one. This is mainly due to physical constraints inher-

ent to the system (independent of the controller used). Indeed, the static

gains k1 and k2 reported in Table. 2 show that the actuator has more effect

on the second mode than the first one. This makes the control of the first

mode difficult, knowing the limitation of the actuator in practice. Of course,

this is not the case in simulation with no actuator constraints as shown in

the above section.

Fig. 8 (b) illustrates the advantage of the LTV controller over a conven-

tional controller. Both techniques have similar effects on the first mode, but

the PPF control amplifies the second mode instead of damping it. This is

quite logical, because the PPF control was designed to control only the first
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(a) Open-loop Vs Closed-loop.
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Figure 8: Experimental results: Comparaison LTV controller Vs Open-loop

and PPF controller.

mode, so the second one it is not considered during the design.

Fig. 9 (a) and (b) put into evidence the advantage of variation of the

parameters of the LTV controller to continuously adapt to the disturbance.

The same figures show that the first LTI controller mitigate well the first

mode, but deteriorates progressively when the damping of the second one is

decreasing. The second LTI controller does the opposite. The LTV controller

combines the two advantages and ensures stability in a simple and direct way.

Notice also that, in order to control the two modes with a classic control

(like LQG, H∞), the resulting controller must be at least of order 4 to have

the same performance as our LTV controller of order 3. Notice also that the

good results obtained in experimentation prove, in addition to performances,
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(a) LTV controller Vs LTI controller (LTV at t → 0).
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Figure 9: Experimental results: Comparaison LTV controller Vs LTI con-

trollers (LTV at t → 0) and (LTV at t → ∞).

robustness against unmodeled dynamics. Indeed, on the one hand, the reg-

ulator is synthesized for only 2 modes of the system and, on the other hand,

it is used on the real physical in its simplified form presented in Section 4.4

and Appendix.

6 Conclusions

This work validates on a real physical system the LTV pole placement ap-

proach [20]. Moreover, hints for the practical implementation like, e.g., the

regulator truncation, have been proposed. This opens the way to industrial

applications for which the LTV modelization and control were long time

avoided because both of the lack of theoretical results and the complexity of
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solutions and computations when such results exist.

This LTV approach opens also the way to a new scheduling technique.

Indeed, large operating domains can be covered with an LTV model for

which some parameters are varied. This stands both for nonlinear systems

(for which the linearization around given trajectories give LTV models) and

for infinite dimensional ones as for the case treated here. As for this approach

stability is directly ensured, the forthcoming effort will be concentrated on

the way to choose/construct the scheduling variables in order to optimally

capture the variations of the operating conditions.

The case of flexible structures will be further investigated by considering

higher order systems like the multidimensional structures, e.g., vibrating

plates.
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Appendix

SR(t) RR(t)

s0(t) =
4.02×107+4.89×107t

1+t r0(t) =
−7.04×106−9.01×106t

1+t

s1(t) =
6.90×104+1.66×105t

1+t r1(t) =
1.61×104+5.09×103t

1+t

s2(t) =
4.48×102+1.07×103t

1+t r2(t) =
72.8+82.9t

1+t

r3(t) =
5.86×10−2+0.17t2

1+2.3t+t2

Table 3: Controller simplified coefficients

Figure 10: Controller coefficients (solid line : exact, dotted line : simplified).
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