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Introduction

With development and progress of computer science, quantile regression (QR) and expectile regression (ER) extended the scope of statistical modeling beyond the classical linear regression of the conditional mean. QR extends the usual univariate quantile to the conditional quantile class, by estimating the conditional quantile of the dependant variable. Similarly, ER extends the univariate expectile to the conditional expectile class. Conditional quantile and conditional expectile retain all the properties inherent to their univariate counterpart. QR and ER are suitable in situations where the eect of an explanatory factor on the conditional mean or median does not capture the impact of the factor in the whole distribution of the response variable. In such situations, the factor does not aect all quantiles/expectiles of the response variable in the same way. QR and ER have similar roles in modeling, as both provide a thorough and detailed insight of the inuence of risk factors on the distribution of the dependent variable. However, they are distinguished by their properties, advantages and disadvantages.

Quantile of level α of a variable is a common descriptive statistic. Quartiles are among the most familiar and most common quantiles. In a descriptive analysis, they provide a complete picture of the distribution of the variable. Until recently, the advantage of laying out a complete picture of the distribution of a variable from a few statistics was only accessible in the univariate case. The relationship of multiple variables was studied by the estimation of the conditional mean. Today, with the introduction of the QR, it is possible to study the impact of a factor, taking into account other factors, not only on the conditional mean, but also upon other functions of the distribution of the dependent variable.

QR estimator or weighted asymmetric least absolute deviation estimator was introduced in 1978 by Koenker and Basset [START_REF] Koenker | Regression quantiles. Econometrica[END_REF] to analyse the relationship between the conditional quantiles of the response distribution and a set of regressors. Since its appearance, its theoretical and empirical development have continuously increased. Today, its scope span all areas of applied science [START_REF] Yu | Quantile regression: Applications and current research areas[END_REF]. A large part of QR literature focuses on solving problems related to estimation of the variances-covariances matrix of the QR estimators and their performance on small samples [START_REF] Buchinsky | Recent advances in quantile regression models: A practical guideline for empirical research[END_REF]. There are also many studies that have adapted the QR to dierent models used previously for the estimation of the conditional mean. Powell [START_REF] Powell | Censored regression quantiles[END_REF] adapted the QR to censored data and Machado [START_REF] José | Quantiles for counts[END_REF] generalized it to count data. Koenker and Bilias [START_REF] Koenker | Quantile regression for duration data: A reappraisal of the pennsylvania reemployment bonus experiments[END_REF], Fitzenberger and Wilke [START_REF] Fitzenberger | The moving blocks bootstrap and robust inference for linear least squares and quantile regressions[END_REF] applied QR to duration data. Lately, QR was adjusted to panel and longitudinal data [START_REF] Koenker | Quantile regression for longitudinal data[END_REF][START_REF] Canay | A simple approach to quantile regression for panel data[END_REF][START_REF] Lamarche | Robust penalized quantile regression estimation for panel data[END_REF]. For further details on the theory and application of the QR, see [START_REF] Koenker | Quantile regression[END_REF].

Weighted asymmetric least square deviation estimator (expectile), was initially studied in [START_REF] Aigner | On the estimation of production frontiers: Maximum likelihood estimation of the parameters of a discontinuous density function[END_REF]. However, it is in [START_REF] Newey | Asymmetric least squares estimation and testing[END_REF] that it is named "expectile" for the rst time, although other qualications (gravile, heftile, loadile, projectile) were used elsewhere in the past to identify it. The best well known expectile is the expectile of level τ = 0.5 corresponding to the mean. Aside from the mean, the other expectiles are less well known, and are not as easily interpretable as the mean or the quantiles. However, they are a reliable alternative to the quantiles. Similarly to quantiles, a sequence of expectiles can be sucient to describe the distribution of a variable, especially with the mean and a few expectiles above and below the mean.

The usefulness of this new class of estimator and its resemblance to the class of weighted asymmetric least absolute deviation (or quantile) estimator were put forward in [START_REF] Efron | Regression percentiles using asymmetric squared error loss[END_REF]. Today, there is growing interest in the literature [START_REF] Kneib | Beyond mean regression[END_REF][START_REF] Schulze Waltrup | Expectile and quantile regressiondavid and goliath? Statistical Modelling[END_REF][START_REF] Sobotka | Geoadditive expectile regression[END_REF][START_REF] Schnabel | Optimal expectile smoothing[END_REF] toward the expectile estimator. This increased interest is explained partly by the close link between expectiles and quantiles, and also by the attractive properties of expectiles and the limits of quantiles. Unlike QR estimators, ER estimators have explicit form and are analytically estimable. Moreover, the overlap problem of QR estimator is less common with ER estimator [START_REF] Schulze Waltrup | Expectile and quantile regressiondavid and goliath? Statistical Modelling[END_REF].

Panel data also known as longitudinal data or dependant data is by far the most appreciated observational data. Longitudinal data are characterized by recording measurements of the same individuals repeatedly through time. They oer the opportunity to control unobserved individual heterogeneity. Longitudinal data arises in many application studies such as in econometrics [START_REF] Hsiao | Panel data analysisadvantages and challenges[END_REF], epidemiology [START_REF] Rothman | Modern Epidemiology[END_REF], genetic [START_REF] Furlotte | Genomewide association mapping with longitudinal data[END_REF], etc.

Random eect and xed eect models are the most popular approaches used in econometrics to adjust panel data [START_REF] Hsiao | Panel data analysisadvantages and challenges[END_REF]. QR model has been generalized to several models for panel or longitudinal data, xed eects model [START_REF] Canay | A simple approach to quantile regression for panel data[END_REF], instrumental variable model [START_REF] Harding | A quantile regression approach for estimating panel data models using instrumental variables[END_REF], linear mixed model [START_REF] Geraci | Linear quantile mixed models[END_REF], penalized xed eect model [START_REF] Koenker | Quantile regression for longitudinal data[END_REF][START_REF] Lamarche | Robust penalized quantile regression estimation for panel data[END_REF], among others. Despite the ubiquity of the classical conditional mean regression, QR has become a standard model. In the meantime generalization of the ER is not eective, regardless of its desirable properties. The aim of this paper is to adapt QR and ER to random eects model for panel data. It provides asymptotic properties of the underlying model parameter estimators and suggests appropriate estimators of their variances-covariances matrices. To the best of our knowledge it is the rst time that ER estimator and its asymptotic properties are considered for random eects model.

The paper is organized as follows. Section 2 introduces the univariate quantile and expectile functions. Section 3 presents the asymptotic properties of the QR and the ER of the linear random eect model with suggested estimators of their variances-covariances matrix. Section 4 presents the performance of the proposed methodology in practice through simulations and a real data analysis. Section 5 contains the conclusion and Section 6 provides proofs of the theorems.

2 Quantiles and Expectiles

Quantiles

The quantile of level α ∈ [0, 1] of a random variable Y is dened by

q(α, Y ) = F -1 Y (α) = inf{y; F Y (y) ≥ α},
where F Y is the cumulative distribution function (c.d.f.) of Y . The quantile function q(•, Y ) characterises the c.d.f. F Y . For intance, when Y ∼ N (µ, σ 2 ) then q(α, Y ) = µ + σΦ -1 (α), where Φ denotes the c.d.f. of N (0, 1).

It is known that the αth quantile can be also dened as the minimizer of the following expected loss

q(α, Y ) = argmin θ ∈ R E{r Q α (Y -θ)}, where r Q α (u) = |α -1(u ≤ 0)| • |u| is the so-called check function. Notice that q(α, Y ) is unique when the c.d.f F Y is absolutely continuous.
Given a random sample {y 1 , • • • , y n }, the αth sample quantile estimate can be obtained by sorting and ordering the n observations. It can be also obtained as

q(α, y) = argmin θ ∈ R r Q α (y -θ)dF n (y) = argmin θ ∈ R 1 n n i=1 r Q α (y i -θ) ,
with F n (.) stands for the empirical distribution function of Y and y = (y 1 , • • • , y n ) T is the n × 1 random sample vector.

Similarly, conditional αth quantile of Y |x can be dened as

q(α, Y, x) = F -1 Y |x (α) = inf{y; F Y |x (y) ≥ α},
where x is a p × 1 random (explanatory) vector and

F Y |x is the conditional c.d.f. of Y |x. If one assume that the conditional quantile is a linear function of x (i.e. F -1 Y |x (α) = x i T β Q (α))
, then the sample conditional αth quantile estimate can be obtained by solving the following optimization problem, with respect to β Q (α)

β Q (α, y, X) = argmin β ∈ R p 1 n n i=1 r Q α (y i -x i T β Q (α)) , (1) 
with

{(y 1 , x 1 ), • • • , (y n , x n )} is a multivariate random sample and X = [x 1 ; • • • ; x n ] T
is the n×p design matrix. This is well known as the quantile regression model [START_REF] Koenker | Quantile regression[END_REF].

Notice that β Q (α, y, X) the solution of ( 1) can be also viewed as maximum likelihood estimator of β Q (α) when the disturbances, i (α) = y i -

x i T β Q (α),
arise from the asymmetric Laplace distribution [START_REF] Geraci | Quantile regression for longitudinal data using the asymmetric laplace distribution[END_REF][START_REF] Geraci | Linear quantile mixed models[END_REF].

Quantiles have attractive equivariance properties that are very useful in reducing the computation time of the algorithms. For example, q(α, h(Y )) = h(q(α, Y )) if h is an increasing function. In particular, q(α, sY

+ t) = sq(α, Y ) + t, with (s, t) ∈ R + × R.
With the multivariate random sample we have the following properties [START_REF] Koenker | Regression quantiles. Econometrica[END_REF]:

β Q (α, λy, X) = λ β Q (α, y, X), λ ∈ [0, ∞), β Q (1 -α, λy, X) = λ β Q (α, y, X), λ ∈ (-∞, 0], β Q (α, y + Xγ, X) = β Q (α, y, X) + γ, γ ∈ R p , β Q (α, y, XA) = A -1 β Q (α, y, X), A p×p is nonsingular.

Expectiles

The expectile of level τ ∈ [0, 1] of a random variable Y is dened by

µ(τ, Y ) = argmin θ ∈ R E{r E τ (Y -θ)} with r E τ (u) = |τ -1(u ≤ 0)| • u 2 . ( 2 
)
Similarly to the quantile function q(•, Y ), the expectile function µ(•, Y ) characterises the c.d.f of Y . The following equation summarizes such a relationship

µ(τ, Y ) = µ - 1 -2τ 1 -τ E {Y -µ(τ, Y )}1{Y > µ(τ, Y )} , (3) 
with µ = µ(0.5, Y ) = E(Y ). For example, if Y ∼ N (µ, σ 2 ) then µ(τ, Y ) = µ(τ )
is the solution of the following equation:

(2τ -1)µ(τ )Φ µ(τ ) -µ σ +µ = τ µ(τ )+(1-τ )λ - µ(τ ) -µ σ -τ λ µ(τ ) -µ σ
where λ(x) = φ(x)/(1 -Φ(x)) denotes the hazard function and φ(x) the standard normal density function. Expectile is location and scale equivariant.

In fact, for s > 0 and t ∈ R, one has

µ(τ, sY + t) = sµ(τ, Y ) + t, s > 0 and t ∈ R.
An empirical estimate of (2) can be derived as a solution of

µ(τ, y) = argmin θ ∈ R 1 n n i=1 r E τ (y i -θ) .
Conditional τ th expectile of Y given x can be dened as

µ(τ, Y, x) = argmin θ ∈ R E{r E τ (Y -θ)|x}.
If one assume that µ(τ, x) = x T β E (τ ) is a linear function in x, then the derivation of a sample conditional τ th expectile estimate leads to the following sample estimate of β E (τ )

β E (τ, y, X) = argmin β ∈ R p 1 n n i=1 r E τ (y i -x i T β E (τ )) .
This minimization problem with respect to β E (τ ) is known as expectile regression. One note that this estimator can also be derived by a likelihoodbased approach from a Gaussian density with unequal weights placed on positive and negative disturbances [START_REF] Aigner | On the estimation of production frontiers: Maximum likelihood estimation of the parameters of a discontinuous density function[END_REF].

Note that several characteristics and expressions of quantiles have there analogous for expectiles. For instance, for quantiles we have

α = F (q(α)) = E[1(Y < q(α))]. (4) 
Re-arrangement of equation (3) leads to analogous expression for expectiles

τ = E[|Y -µ(τ )|1{Y < µ(τ )}] E[|Y -µ(τ )|] . (5) 
Equations ( 4) and [START_REF] Efron | Regression percentiles using asymmetric squared error loss[END_REF] show that expectiles are determined by tail expectations of Y , while quantiles are determined by the distribution function.

Moreover, one can show that for each αth quantile q(α) there is a unique τ α th expectile, µ(τ α ), such that µ(τ α ) = q(α). One can write then

τ α = q(α) -E[Y 1{Y < q(α)}] µ -2 E[Y 1(Y < q(α))] -q(α)(1 -2α)
.

Furthermore, when the c.d.f. function of Y is given by

F (y) = 1/2{1 + sign(y) 1 + 4/(4 + y 2 )}, y ∈ R
the αth quantile coincides with the αth expectile. That is, τ α = α, [START_REF] Koenker | When are expectiles percentiles?[END_REF]. Finally, we close this section with a comparison between quantile and expectile functions of the standard normal distribution, given in Figure 1. The two functions intersect at point α = τ = 0.5. Both functions are strictly increasing and cover all values of

I F = {y|0 < F (y) < 1}.
Given all these analogous relationships between quantiles and expectiles and the fact that the mean is a particular expectile with τ = 0.5, one can interpret expectiles as quantilized means.

Quantile and Expectile regression for panel data

Panel data is by far the most appreciated observational data. They oer the opportunity to control unobserved individual heterogeneity. Panel data are characterized by recording multiple observations on individuals over several periods.

A standard panel-data linear regression model relies a response y to predictors as follow

y it = x it T β + u i + v it , t ∈ {1, 2 . . . , T i }, i ∈ {1, 2 . . . , n} (6) 
with y it is a dependent variable, x it = (x 1 it , x 2 it , . . . , x p it ) T is a vector of p independent variables measured on individual i at time t, u i an unobserved individual-specic eect and v it an error term.

Fixed eects and random eects methods are most popular approaches to adjust model [START_REF] Fitzenberger | The moving blocks bootstrap and robust inference for linear least squares and quantile regressions[END_REF] in econometrics. Both approaches have advantages and limitations and the comparison between the two is delicate and has been widely discussed in the literature [START_REF] Hsiao | Panel data analysisadvantages and challenges[END_REF].

Quantile regression for xed eects model

In the xed eect (FE) paradigm the eects of unobserved heterogeneity are assumed to be xed parameters and the model ( 6) is conveniently written as

y = Xβ + Zu + v. ( 7 
)
where the vector y is N ×1, X is N ×p matrix, Z is a N ×n incidence matrix and N = n i=1 T i . The vectors u and v are respectively N × 1 individualspecic eect and error vectors. The corresponding QR xed eects (QRFE) model proposed by Koenker [16] is formulated as

q(α, y it , x it ) = u i + x it T β(α). (8) 
The individual-specic eects, u i , are treated as xed parameters in the model and have to be estimated in addition to the structural parameters β(α). The QRFE model parameters can be obtained by solving

min β,u n i=1 T i t=1 r Q α {y it -u i -x it T β(α)}.
Because of the dimension of the incidental parameters, u i , estimation is challenging particularly as n → ∞. Also, adaptation of techniques used for the FE approach from classical least square estimation are not directly applicable in the QR context. To remedy this problem, Koenker [START_REF] Koenker | Quantile regression for longitudinal data[END_REF] exploited the sparse property of the full-model design-matrix (X, Z) to reduce the computational burden problem of QRFE model. He also derived asymptotic properties of the model parameter estimators as n and T i → ∞. Koenker introduced a more general class for the QRFE model, namely a class of penalized QRFE model by solving

min β,u q k=1 n i=1 T i t=1 w k r Q α k {y it -u i -x it T β(α k )} + λ n i=1 |u i |,
where w k is a relative weight associated to the q quantiles {α 1 , . . . α q } and λ is a shrinkage parameter. Koenker used the l 1 penalty for its advantages over the l 2 penalty. In fact, the l 1 penalty serves to shrink the incidence parameter toward zero and then provides sparse solutions for estimates of u i , and at the same time improves the performance of the estimate of the structural parameters.

The choice of the shrinkage parameter, λ, inuences heavily the inference for the parameter of interest [START_REF] Geraci | Quantile regression for longitudinal data using the asymmetric laplace distribution[END_REF][START_REF] Lamarche | Robust penalized quantile regression estimation for panel data[END_REF]. For example, the case λ → ∞ is equivalent to the ordinary QR, while λ → 0 coresponds to the QRFE model.

Lamarche [START_REF] Lamarche | Robust penalized quantile regression estimation for panel data[END_REF] focused on the problem of selecting the optimal regularization parameter, and Canay [START_REF] Canay | A simple approach to quantile regression for panel data[END_REF] suggested a consistent and asymptotically normal two-stage estimator for β(α), which copes with the incidental parameters curse in the rst stage.

Quantile regression for random eects model

In this section we propose to handle panel data using a QR random eect (QRRE) model. Our main contribution in this section is the derivation of asymptotic distribution of the QRRE model parameter estimators and provide a consistent estimator of their variances-covariances matrix.

The random eect model or the error component model is a particular type of random coecients model also known as multilevel model, hierarchical linear model or linear mixed model [START_REF] Gelman | Data analysis using regression and multilevel/hierarchical models, volume Analytical methods for social research[END_REF]. In the random eect framework, unobserved heterogeneity eects are treated as random variables and are assumed to be uncorrelated to the explanatory variables. Thus, the linear panel equation ( 6) can be reformulated in matrix notation as

y = Xβ + ε (9) 
where the random vector ε is the sum of the individual-specic eects and the disturbance vector, ε = Zu + v. The corresponding conditional quantile regression model can be written as

q(α, y it , x it ) = x it T β Q (α), t ∈ {1, 2 . . . , T i }, i ∈ {1, 2 . . . , n}.
The parameter β Q (α) models the eect of the independent variables on the location, scale and shape of the conditional distribution of the response.

For example, with one regressor and under the absence of individual-specic eects (i.e. under homoskedasticity condition with ε i are independent and identically distributed, i.i.d.), quantile functions q(α, y it ,

x it ) = β Q 0 (α)+x it β Q 1 are parallel lines with β Q 0 (α) = β Q 0 + F -1 ε (α), with F ε (.
) is the c.d.f function of the error terms. In the presence of individual-specic eects, β Q 1 (α) will vary with α.

The QRRE model parameters can be estimated by solving

argmin β ∈ R p 1 N n i=1 T i t=1 r Q α (y it -x it T β Q (α)). (10) 
This minimization problem is known as weighted asymmetric least absolute deviation (WALAD) estimator of β Q (α) and the solution can be obtained using existing R packages such as [START_REF] Koenker | quantreg: Quantile Regression[END_REF]. In the next section we will derive the asymptotic properties of the WALAD estimator of β Q (α).

From now one we will restrict attention to balanced data (T i = T ). We will assume i.i.d. individual vectors

{y i , i ∈ (1, • • • , n)},
and also assume independence of the individual-specic eects u i and the disturbances v it .

Asymptotic properties of QRRE model

Assume the following regularity conditions:

Condition Q1. Y it is a continuous random variable with absolutely continuous distribution function F it and with a continuous density function f it uniformly bounded away from 0 and ∞ at the points q(α, y it ).

Condition Q2. There are positive denite matrices D 0 and D 1 such that:

1. lim n→∞ N -1 X T {I n ⊗ Σ T ×T (α)}X = D 0 2. lim n→∞ N -1 X T Ω f X = D 1 3. max 1≤i≤n,1≤t≤T
x it 2 / √ N → 0 and for every i ∈ {1, . . . , n} the elements of Σ T ×T (α) are dened by

σ its (α) = α(1 -α) if t = s E[1{ε it (α) < 0, ε is (α) < 0}] -α 2 if t = s and Ω f = Diag f 11 {q(α, y 11 )|x 1 }, . . . , f 1T {q(α, y 1T )|x 1 }, . . . , f n1 {q(α, y n1 )|x n }, . . . , f nT {q(α, y nT )|x n )} .
Our assumptions are standard in the literature of the QR model. The only new assumption is related to the individual-random eect which introduces dependency between observations of the same individual. Under the above set of conditions, we present the main results of the QRRE model parameter estimators.

Theorem 3.1. Assume model ( 9) satises conditions Q1 and Q2. Let β Q (α) be an estimate of the true parameter β Q (α) obtained from the minimization of the loss function in [START_REF] Geraci | Linear quantile mixed models[END_REF]. The following result holds

√ N β Q (α) -β Q (α) d - → N 0, D -1 1 D 0 D -1 1 .
Note that the variances-covariances matrix of the WALAD estimator depends on the density f it and on the joint distribution function F its of y it and y is , for i ∈ {1, . . . , n} and t, s ∈ {1, . . . , T }. Hence, estimating standard errors, variances-covariances matrix as well as condence intervals of the WALAD estimator require estimating f it {q(α, y it )}, and F its {q(α, y it ), q(α, y is )}. Estimation of the density function has been extensively studied [START_REF] Mu | Practical condence intervals for regression quantiles[END_REF] in the context of constructing condence interval and test for inference of linear quantile regression estimator. Now we present an algorithm for estimating the variances-covariances matrix of the WALAD estimator.

1. Estimate ε it (α) = y it -x it T β Q (α) and q(α, y it ) = x it T β Q (α), with β Q (α) the estimator of Theorem 3.1.
2. Estimate f it by one of the consistent estimator of f it suggested in the literature [START_REF] Mu | Practical condence intervals for regression quantiles[END_REF].

3. Estimate the matrix elements σ its (α) of Σ T ×T (α) by

σ its (α) = α(1 -α) if t = s 1 T (T -1)(n-1) n i=1 T l<m 1( ε il (α) < 0, ε im (α) < 0) -α 2 if t = s. 4. Estimate D 0 by D 0 = N -1 n i=1 T t=1 T s=1
x it σ its (α)x is T .

And estimate D 1 by

D 1 = N -1 n i=1 T t=1 f it ( q(α, y it )|x i )x it x it T .
With the estimators D 0 and D 1 of the algorithm, we have the following Theorem:

Theorem 3.2. Under Assumptions Q1 and Q2, for every α ∈ (0, 1) we have

D -1 1 D 0 D -1 1 P - → D -1 1 D 0 D -1 1 .
The proofs of Theorems 3.1 and 3.2 are postponed in Section 5.

Expectile regression for random eects model (ERRE)

In this section we derive the asymptotic properties of the ERRE model parameter estimators and suggest a consistent estimator of their variancescovariances matrix. The asymptotic properties for the classical expectile linear regression have been proven by Newey and Powell [START_REF] Newey | Asymmetric least squares estimation and testing[END_REF] and Sobotka et al. [START_REF] Sobotka | On condence intervals for semiparametric expectile regression[END_REF] has provided the results for the semiparametric regression model estimators.

Let the conditional expectile regression of the random eect model (9) dened as:

µ(τ, y it , x it ) = x it T β E (τ ), t ∈ {1, 2 . . . , T }, i ∈ {1, 2 . . . , n},
for every τ ∈ (0, 1). As with the quantile regression, under a linear homoskedastic regression with one regressor the expectile functions µ(τ,

y it , x it ) = β E 0 (τ ) + x it T β E 1 are parallel lines with β E 0 (τ ) = β E 0 + µ(τ, ε).
The expectile regression estimator of the random eects model ( 9) is dened as solution of:

argmin β ∈ R p 1 N n i=1 T t=1 r E τ y it -x it T β E (τ ) . (11) 
Contrary to the quantile regression estimator, the expectile regression estimator has an explicit form, computable as iterated weighted least squares estimators, given by:

β E (τ ) = n i=1 T t=1 w i,t (τ )x it x it T -1 n i=1 T t=1 w i,t (τ )x it y it , with w it (τ ) = |τ -1(y it < x it T β E (τ ))|.
Since the weighted asymmetric quadratic loss is convex and dierentiable, traditional procedure can be applied to derive the asymptotic properties of the ERRE model parameter estimators.

Asymptotic properties of ERRE model

The asymptotic properties of this new estimator is presented under the assumptions state below. Without loss of generality, let d be a generic constant.

Assumption E1. For each sample z it = (y it , x it T ), i = 1, . . . , n and t = 1, . . . , T of size N = nT, with T xed, we assume y i = (y it , . . . , y iT ) T is i.i.d and has a continuous probability density function f (y i |x i ).

Assumption E2. There is a constant d > 0 and a measurable function α(z) such that: f (y i |x i ) < α(z) and:

z 4+d α(z)dµ z < +∞, α(z)dµ z < +∞.
Assumption E3.

T t=1

x it x it T is nonsingular.

Our assumptions are relatively identical to those set out in [START_REF] Newey | Asymmetric least squares estimation and testing[END_REF]. The main dierence is the exclusion of a misspecication parameter denoted γ in [START_REF] Newey | Asymmetric least squares estimation and testing[END_REF] and the related assumptions.

For

ε it (τ ) = y it -x it T β(τ ) E and w it (τ ) = |τ -1(ε it (τ ) < 0)|, let W = E(W ), W = Diag(w 11 (τ ), . . . w N (τ )) H = X T W X Σ = X T E(W εε T W )X.
Under the above set of conditions, we present the main results of the ERRE model parameter estimators.

Theorem 3.3. Assume model ( 9) satises hypotheses E1-E3. Let β E (τ ) be the estimator of the true parameter β E (τ ) obtained by minimizing the loss function

argmin β ∈ R p 1 N n i=1 T t=1 r E τ y it -x it T β(τ ) E
then, for every τ ∈ (0, 1), we have

√ N β E (τ ) -β E (τ ) d - → N (0, H -1 ΣH -1 ).
As for the QRRE estimator we present an algorithm for estimating the variances-covariances matrix of the ERRE estimator.

1. Estimate ε it (τ ) = y it -x it T β E (τ ) and w it (τ ) = |τ -1( ε it (τ ) < 0)| with β E (τ ) the estimator of Theorem 3.3. 2. Compute W = Diag( w 11 (τ ), . . . , w N (τ )). 3. Compute H = X T W X/N. 4. Compute Σ = X T W ε ε T W X/N.
With the estimators W, H and Σ, we have the following Theorem:

Theorem 3.4. Under Assumptions E1-E3, for every τ ∈ (0, 1) we have

H -1 Σ H -1 P - → H -1 ΣH -1 .
The proofs of Theorems 3.3 and 3.4 are presented in Section 5.

Simulation and Application

In the previous section we presented the asymptotic properties of QRRE and ERRE estimators for the random eects model. In this section, we study their performance in practice through simulations and real data. Performance comparisons of the proposed approaches are realized with respect to the penalized quantile regression (PQR) xed eect approach [START_REF] Koenker | Quantile regression for longitudinal data[END_REF].

From now on we replace α by τ and write q(τ ) for quantiles.

Simulation

Design

Our simulation study follows closely the dierent scenarios proposed in [START_REF] Koenker | Quantile regression for longitudinal data[END_REF]. The simulated data is generated under two dierent models: a location shift and a location-scale shift models given by

y it = x it β + u i + v it , location shift. x it β + u i + (1 + x it γ)v it , location-scale shift.
Regardless which model are used to generate the data, the corresponding QRRE τ th quantile and ERRE τ th expectile are respectively:

q(τ, y it ) = β Q 0 (τ ) + x it β Q 1 (τ ), µ(τ, y it ) = β E 0 (τ ) + x it β E 1 (τ )
. The individual random eect u i and the disturbance v it are generated by the same distribution in three dierent models: normal distribution N (0, 1), Student distribution t 3 with 3 degree of freedom, and central chi-squared distribution χ 2 3 with 3 degree of freedom. The continuous explicative variable x is generated by a normal distribution N (0, 1) in the location shift model and by a central chi-squared distribution χ 2 3 with 3 degree of freedom in the location-scale shift model. We set β = 0 and γ = 1/10.

According to the dierent models and the dierent sample sizes n × T ∈ {50, 100, 500}×{5, 15, 15}, we have created 54 dierent random samples. The three methods ERRE, QRRE and PQR, were tted to each sample replication to estimate quantiles and expectiles of levels τ ∈ {0.1, 0.2, 0.5, 0.8, 0.9}. The PQR approach requires the tuning parameter λ. We set the tuning parameter to be the ratio of scale parameters, i.e. λ = σ v /σ u , as suggested by [START_REF] Koenker | Quantile regression for longitudinal data[END_REF]. With σ 2 u = Var(u i ) and σ 2 v = Var(v it ) in the location shift model and

(1 + x it γ) 2 Var(v it ) in the location scale-shift scenario.
For the measurement of the quality of the dierent methods we calculated the bias 1/m m β (r) and the root-mean-square error 1/m m ( β (r) -β)
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where β = 1/m m β (r) . The reported results are based on m = 400 replications.

As we simulated several samples (54), we estimated a small series of asymmetric point τ ∈ {0.1, 0.2, 0.5, 0.8, 0.9} , and reserved the longer series of asymmetric points to the real data set. All results are presented in Figure ?? and Figure 3, while only results for τ ∈ (0.2, 0.5, 0.8) are presented in Table 1 and Table 2 for ease of reading.

All computations are performed with R CRAN software [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF]. QRRE, ERRE and PQR were adjusted using respectively quantreg [START_REF] Koenker | quantreg: Quantile Regression[END_REF], expectreg [START_REF] Sobotka | expectreg: Expectile and Quantile Regression[END_REF][START_REF] Sobotka | Geoadditive expectile regression[END_REF][START_REF] Schnabel | Optimal expectile smoothing[END_REF] and rqpd [START_REF] Koenker | rqpd: Regression Quantiles for Panel Data[END_REF] packages.

Results

In order to compare quantile regression estimators to least squares estimators, Koenker [START_REF] Koenker | Quantile regression for longitudinal data[END_REF] decided to focus exclusively on the performance of the median slope estimate. With the expectile regression there is no need to make such restriction, we can compare both methods on any asymmetric value.

In Table 1 we reported the estimated bias and the estimated root-meansquared error (RMSE) of the dierent location shift error distributions, and in Table 2 the results for the dierent location-scale shift error distributions.

The results show that for a xed T, the bias decreases as n becomes large. The performance indicators (bias and the RMSE) of the dierent methods are in the same order of magnitude with respect to the dierent simulation scenarios. We expect poor performance in the location-scale scenario, Table 2. Indeed, in this scenario the eect of the covariate x is:

β Q (τ ) = β + γq(τ, v) β E (τ ) = β + γµ(τ, v)
respectively in the quantile regression and expectile regression. For example, in the χ 2 3 distribution the covariate eect for τ ∈ (0.2, 0.5, 0.8) is (0.1, 0.236, 0.464) and (0.191, 0.3, 0.447) respectively for the quantile regression and expectile regression. This explains partly the poor performance of the estimators for the χ 2 3 distribution in the location-scale shift scenario in regard to other distributions. By symmetry, the eect of the covariate on the median or the mean is zero in the Normal and t 3 distributions. But adjustment for the true bias has to be made accordingly for τ ∈ (0.1, 0.2, 0.8, 0.9). This explain why the performance of the dierent methods (ERRE, QRRE, PQR) is more noticeable for the median or the mean compared to the other quantiles or expectiles.

In Table 1, the results showed that the quantile regression estimators (QRRE and PQR) do slightly better than the expectile random eect (ERRE) estimator, but both are competitive. The QRRE estimator performs as well as the PQR estimator, but the penalization is worthwhile. In Table 2, we see that, in general, ERRE is quite competitive with QRRE and PQR except for the χ 2 3 scenario. The performance dierence between QRRE and PQR is more remarkable in the location-scale shift scenario (Table 2) where PQR with the Gaussian tuning parameter (λ = σ v /σ u ) performs better.

One of the main advantages of QR and ER methods is their potential to evaluate the inuence of factors in several points of the distribution of the dependant variable. In order to emphasise this advantage we display graphically the results of the estimated coecient and its condence interval. Figure ?? present the results for the dierent regression methods (ERRE, QRRE and PQR) in the location shift model, and Figure 3 present the results of the location-scale shift version. The results of the graphics conrm that of the Tables and are easy to read. Overall the dierent methods are competitive. We can see clearly in the graphics that the ERRE estimate has lower RMSE.

In conclusion, the performance of the quantile regression and the expectile regression are comparable despite their merits and weaknesses. The quantile regression estimates are more robust and the expectile regression estimates are generalization of the mean regression and are easily computable.

Application

The progress and technological innovation contribute to the creation and disappearance of employment. This upheaval of the labor market spawned a renewed interest in the study of economic returns to education. Koop and Tobias [START_REF] Koop | Learning about heterogeneity in returns to schooling[END_REF] studied this subject with data from the US National Longitudinal Survey of Youth (NLSY). They adjusted a Bayesian hierarchical models to the data in order to evaluate the heterogeneity of returns to schooling. Their results show a presence of heterogeneity and conrm Card assumptions [START_REF] Card | Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems[END_REF], who suggested including a random factor (for the intercept and slope) reecting the dierence between individuals and the heterogeneity of the marginal return to education. QR and ER allow the study of heterogeneity of eects without assuming a prior distribution of the model parameters.

Data

We use Koop and Tobias data for application of the methods, QR and ER, to real data. The data is from the US National Longitudinal Survey of Youth (NLSY), which began in 1979. The cohort contained initially 12,686 respondents aged between 14 and 22 years. The survey was still ongoing and is in its 25th cycle in 2012. NLSY is an important collection of data that contains information on several topics including education, employment, income, salary and health, among others. In the data cleansing process, the authors excluded some observations because education or wages were unusable. In the end, the database is comprised of Caucasian men aged 16 years (at the beginning of the survey), who report having worked at least 30 weeks or 800 hours per year and earning an hourly wage between 1 and 100$. Data is freely available on the journal website (Journal of Applied Econometrics).

The log of the hourly wage is used as the dependent variable and the variable of interest is the education of the respondents. 

Results

We estimated conditional quantiles and expectiles for the series of asymmetric points (0.05, 0.06, 0.07, . . . , 0.95) of length 91 and generated condence intervals by bootstrap replications m = 1000. The results of time varying variables, according to the method (QR and ER), are presented in Figure 4 and those of time invariant in Figure 5. The use of asymmetric weight indicates the presence of heterogeneity in the economic returns to education. This eect is signicantly heterogeneous and increases non-linearly with respect to the degree of asymmetry. The results did not show a signicant eect of invariant time variables, except for the ability and the size of the family that appear to have a signicant eect on salary, Figure 5.

Our ndings are similar to those found in the literature [START_REF] Card | Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems[END_REF] and particularly in [START_REF] Koop | Learning about heterogeneity in returns to schooling[END_REF]. However, we see little dierences here and there. For example, our results show that the heterogeneity to return to schooling ranges between 0.0708 and 0.1111 for ERRE and between 0.0612 and 0.1148 for QRRE. While the models in [START_REF] Koop | Learning about heterogeneity in returns to schooling[END_REF] oers a variation of heterogeneity between -0.04 and 0.27.

Conclusion

We present the QR and ER estimators for the random eects model. We demonstrate their asymptotic properties and propose an estimator of the variances-covariances matrix. We evaluate their performance in practice through simulations and a real data set.

The simulation results show that the QR estimate does slightly better than the ER estimate but both are competitive. The real data analysis show that the two methods are appropriate to study the heterogeneity of the eects of a factor on the dependent variable. The analysis of the performance of the ER method relative to the penalized quantile regression suggests that the extension of the ER to the penalized xed eect model is a promising area of research.

Expectiles are a reliable alternative to the quantiles. They can not be interpreted easily but they have an explicit form and are analytically estimable. Furthermore, estimates of their variances-covariances matrix can be evaluated without estimating the error density function. This is not the case for quantiles. Since both methods characterise the c.d.f of the dependent variable, it is not imperative to nd each series of quantiles corresponding to a series of expectiles when applying the ER method. And as expectiles are to the mean what quantiles are to the median, they should be used and interpreted as quantilized mean. 

Proofs

Notice that in this section the expectations are conditional to X. As the proofs on the quantiles and the expectiles are separated we omit the exponents (Q and E) on β and β.

Proof of Theorem 3.1.

The proof follows closely that of [?, ?]. Consider the new objective function

Z N (δ) = n i=1 T t=1 r α ε it (α) -x it T δ/ √ N -r α {ε it (α)} .
This function {Z N (δ)} and the initial objective function Q N {β(α), α} have the same extremum. Z N (δ) is a sum of convex functions and admits as minimum

δ N = √ N { β(α) -β(α)}.
The idea of the proof is to give an approximation of Z N (δ) by a quadratic function, and to show that δ N has the same asymptotic properties as the extreme value of this quadratic function. The following identity ( [START_REF] Koenker | Quantile regression[END_REF], p.121) provides this approximation.

r α (ε -υ) -r α (ε) = -υψ α (ε) + υ 0 1(ε < s) -1(ε ≤ 0) ds, (12) 
with ψ α (ε) = α -1(ε < 0). From this identity [START_REF] Hsiao | Panel data analysisadvantages and challenges[END_REF], the new risk function is divided in two functions, Z N (δ) = Z 1N (δ) + Z 2N (δ), where:

Z 1N (δ) = - 1 √ N n i=1 T t=1 x it T δψ α {ε it (α)} = - 1 √ N n i=1 δ T X i T ψ α {ε i (α)} and Z 2N (δ) = n i=1 T t=1 υ N it 0 1{ε it (α) < s} -1{ε it (α) ≤ 0} ds = n i=1 T t=1 Z 2N it (δ)
with υ N it = x it T δ/ √ N , and ψ α {ε i (α)} = ψ α {ε i1 (α)}, . . . , ψ α {ε iT (α)} T .

The rst and second moment of the component of the random vector ψ α {ε i (α)} are:

E ψ α {ε it (α)} = 0 Var ψ α {ε it (α)} = α(1 -α) Cov ψ α {ε it (α)}, ψ α {ε is (α)} = σ its (α) = E 1 ε it (α) < 0, ε is (α) < 0 -α 2 .
Then by the Lindeberg-Feller central limit theorem, with condition Q2 it can be deduced that Z 1N (δ)

d - → -δ T W where W ∼ N (0, D 0 ).
The second term of Z N (δ) can be rewritten:

Z 2N (δ) = n i=1 T t=1 E Z 2N it (δ) + n i=1 T t=1 Z 2N it (δ) -E Z 2N it (δ) .
We show that:

n i=1 T t=1 E Z 2N it (δ) = n i=1 T t=1 υ N it 0 E 1{ε it (α) < s} -1{ε it (α) ≤ 0} ds = n i=1 T t=1 υ N it 0 F it {q(α, y it ) + s} -F it {q(α, y it )} ds = n i=1 T t=1 x it T δ 0 1 √ N F it {q(α, y it ) + s/ √ N } -F it {q(α, y it )} ds = N -1 n i=1 T t=1 x it T δ 0 √ N F it {q(α, y it ) + s/ √ N } -F it {q(α, y it )} ds = N -1 n i=1 T t=1 x it T δ 0 f it {q(α, y it )}sds + o(1) = (2N ) -1 n i=1 T t=1 f it {q(α, y it )}δ T x it x it T δ + o(1) → 1 2 δ T D 1 δ. (13) 
The third line of the above equation ( 13) is obtained through substitution of s by s/ √ N and by multiplying by √ N the third line from the bottom follows by condition Q1. Now noticing that, with condition Q2.3:

Var{Z 2N (δ)} ≤ 1 N max x it T δ n i=1 T t=1 E{Z 2N it (δ)} → 0
and applying the Chebychev's Inequality, the remaining term converge to 0 in probability:

Z 2N (δ) -E Z 2N (δ) P - → 0. (14) 
From ( 13) and ( 14), we obtain: Z 2N (δ) P -→ 1 2 δ T D 1 δ. Now from the properties of the rst term Z 1N (δ) and the second term Z 2N (δ) we can deduce that:

Z N (δ) d - → Z 0 (δ) = -δ T W + 1 2 δ T D 1 δ.
Z 0 (δ) has a unique minimum D -1 1 W. Now the two convexity lemmas of [?] state that if a random convex functions Z N (δ) converge in distribution to some function Z 0 (δ) which has a unique minimum D

-1 1 W then δ N d - → D -1 1 W. Hence we conclude that: √ N { β(α) -β(α)} d - → N (0, D -1 1 D 0 D -1 1 ).
Proof of Theorem 3.2.

Without lost of generality, let F N and F be respectively the joint empirical and population distribution function of (y it , y is ).

By Lemma A1 of [?], we have:

F N {x it T β(α), x is T β(α)} P - → F {x it T β(α), x is T β(α)}
uniformly.

With β(α) P -→ β(α), we apply Lemma 4 of [?], then:

F {x it T β(α), x is T β(α)} P - → F {x it T β(α), x is T β(α)}.
Thus:

F N {x it T β(α), x is T β(α)} P - → F {x it T β(α), x is T β(α)}.
Hence σ its (α) P -→ σ its (α), and by the Slutsky theorem

D 1 D 0 D 1 P - → D -1 1 D 0 D -1 1 .
Proof of Theorem 3.3.

Let

R{β(τ ), τ } = E[h i {β(τ )}], with h i {β(τ )} = T t=1 r E τ {y it -x it T β(τ )} and, R N {β(τ ), τ } = N -1 n i=1 T t=1 r E τ {y it -x it T β(τ )} = N -1 n i=1 h i {β(τ )}
The proof follows closely that of [START_REF] Newey | Asymmetric least squares estimation and testing[END_REF]. First we show the consistency of β(τ ) with Lemma A of [START_REF] Newey | Asymmetric least squares estimation and testing[END_REF]. The application of the second order sucient optimality condition allows us to have the uniqueness of β(τ ). Lemma A1 of [?] allows us to obtain the uniform convergence in probability of R N {β(τ ), τ } to R{β(τ ), τ }. Finally, with the convexity of the risk function R N {β(τ ), τ } we have the consistency result.

h i {β(τ )} is sum of convex and dierentiable functions in β(τ ). Then h i {β(τ )} is derivable and its derivative, g i {β(τ )}, is bounded by an integrable function, by assumption E2.

Indeed:

g i {β(τ )} = ∂h i {β(τ )} ∂β = T t=1 ∂ ∂β r E τ {y it -x it T β(τ )} = -2 T t=1 x it ψ τ {y it -x it T β(τ )} = -2X i T W i (τ )ε i (τ ). With ψ τ {y it -x it T β(τ )} = |τ -1{y it < x it T β(τ )}| y it -x it T β(τ ) and W i (τ ) =
Diag{w i1 (τ ), . . . , w iT (τ )}. Then we have:

g i {β(τ )} = 2 T t=1 x it ψ τ (y it -x it T β(τ )) ≤ 2T z 2 (d + d β(τ ) )
By the dominated convergence theorem of Lebesgue, we can interchange derivative and integral sign. We have:

∂ ∂β R{β(τ ), τ } = E[g i {β(τ )}] = -2 T t=1 x it τ +∞ x it T β(τ ) {y it -x it T β(τ )}f (y it )dy it + (1 -τ ) x it T β(τ ) -∞ {y it -x it T β(τ )}f (y it )dy it By Leibniz integral rule [?],
α -∞ (y -α)f (y|x)dy is continuously dierentiable in α, with derivativeα -∞ f (y|x)dy bounded by 1. By the dominated convergence theorem of Lebesgue, ∂R{β(τ ), τ }/∂β is continuously dierentiable, with derivative:

∂ 2 R{β(τ ), τ } ∂β∂β T = 2 T t=1 x it x it T τ +∞ x it T β(τ ) f (y it )dy it + (1 -τ ) x it T β(τ ) -∞ f (y it )dy it = 2 T t=1 x it x it T E τ -1{y it < x it T β(τ )}
By denoting δ = min{τ, (1 -τ )}, we show that ∂ 2 R{β(τ ), τ }/∂β∂β T is a positive denite matrix.

The fact that the function is twice continuously dierentiable will allow us to write the Taylor expansion with a second order of the function R{β(τ ), τ }.

With the convexity property, we can show the existence and uniqueness of a global minimum β(τ ) of the function R{β(τ ), τ }.

Let β(τ ) be a point in the neighbour of β(τ ), then: We have just shown the uniqueness of β(τ ) and the uniform convergence of R N {β(τ ), τ }. All conditions of lemma A of [START_REF] Newey | Asymmetric least squares estimation and testing[END_REF] are satised. We can conclude that β(τ ) exist with probability approaching 1 and it converges in probability to the parameter β(τ ). In others word, β(τ ) is consistent. Now we prove the asymptotic distribution of the estimators.

R{β(τ ), τ } -R{ β(τ ), τ } = ∂R{ β(τ ), τ }/∂β T [β(τ ) -β(τ )] + [β(τ ) -β(τ )] T ∂ 2 R{ β(τ ), τ }/∂β [β(τ ) -β(τ )] ≥ ∂ ∂β R{ β(τ ), τ } T [β(τ ) -β(τ )] + δm x p|β(τ ) -β(τ )| 2 , β ( 
For every λ ∈ R p , let: We have: For every compact B with β(τ ) contained in its interior. Applying Lemma 4 of [?], we can write:

Z N = λ T ∂/
λ T g i {β(τ )} 2 f (y i )dy i = λ T X i T W i (τ )ε i (τ )ε i (τ ) T W i (τ )X i λf (y i )dy i = p k,l T t,s λ k λ l x k it x l is w it (τ )w is (τ )ε it (τ )ε is (τ )f (y i )dy i ≤ p 2 T 2 d λ 2 z 4 α(z) < ∞.
plim ∂ 2 R N { β(τ )} ∂β∂β T = plim ∂ 2 R N { β(τ )} ∂β∂β T = E ∂ 2 h{β(τ )} ∂β∂β T .
Then, Proof of Theorem 3.4.

We have: The rst term after the inequality of equation ( 16) is bounded by the function n 
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 11 Figure 1: Quantile and expectile of the standard normal distribution N (0, 1).
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 22 Figure 2: Estimated coecient and condence interval for the dierent regression methods in the location-scale shift model.

  τ ) is a point of the segment [β(τ ), β(τ )], p is the number of explicative variables and m x is the smallest eigenvalues of T t=1 x it x it T . If we choose a β(τ ) outside the neighbour of β(τ ) and we divide by |β(τ ) -β(τ )| to cancel the rst term of the inequality, we see that R{β(τ ), τ } > R{ β(τ ), τ }. It follows by continuity that the function R{β(τ ), τ } has a minimum, β(τ ), within the neighbour of β(τ ) and that this minimum is a global minimum. Hence β(τ ) is the unique solution of the equation E[g i {β(τ )}] by the convexity of R{β(τ ), τ }. With assumptions E1 and E2 R N {β(τ ), τ } function verify condition of Lemma A1 of [?]. Thus R N {β(τ ), τ } converge uniformly to R{β(τ ), τ } in any compact of β(τ ).

  ∂βR N {β(τ ), τ } λ T Var ∂/∂βR N {β(τ ), τ } λ g i {β(τ )} λ T n i=1 Var g i {β(τ )} λ 1/2

( 15 ). 1 λ∂ 2 R

 1512 With p the number of explicative variables, T the number of repeated observations, d a generic constant and w it (τ ) = |τ -1(ε it (τ ) < 0)|. The convergence of the last equation hold by assumption E3 and for every xed vector λ.Let for every ε > 0,A N ε =    y : λ T g i {β(τ )} > ε λ T n i=1 Var g i {β(τ )} λ   Since by Chebyshev inequality A N ε converges to the empty set and with equation[START_REF] Koenker | When are expectiles percentiles?[END_REF] we have:lim n→∞ T n i=1 Var g i {β(τ )} λ n i=1 A N ε λ T g i {β(τ )} 2 f (y i )dy i = 0Thus the conditions of the Lindeberg-Feller central limit theorem are satised, Z N ∼ N (0, 1). And by the Cramer-Wold device,√ N ∂R N {β(τ ), τ }/∂β ∼ N (0, 4Σ), with: Σ = X T E(W (τ )ε(τ )ε(τ ) T W (τ ))X.Now consider the Taylor expansion of the function R N {β(τ ), τ } in the neighbour of β(τ ). As plim β(τ ) = β(τ ) we have:√ N ∂R N { β(τ ), τ }/∂β = √ N ∂R N {β(τ ), τ }/∂β + ∂ 2 R N { β(τ ), τ }/∂β∂β T √ N { β(τ ) -β(τ )}With β(τ ) which is located in the segment joining [ β(τ ), β(τ )], and then plim β(τ ) = β(τ ). Again the assumptions E1 and E2 used to apply Lemma A1 of [?] and:sup β∈B N {β(τ )} ∂β∂β T -E ∂ 2 h{β(τ )} ∂β∂β T

√

  N [ β(τ ) -β(τ )] = -H -1 √ N ∂R N {β(τ ), τ } ∂β .Hence:√ N { β(τ ) -β(τ )} d -→ N (0, H -1 ΣH -1 )

ww

  it (τ )x it x it T /Nit (τ )x it x it T /N -H(16)

|x it | 2 × 1

 21 x it T | w it (τ ) -w it (τ )|/N.We have: | w it (τ ) -w it (τ )| = 0 ify it < x it T β(τ ) < x it T β(τ ) or y it < x it T β(τ ) < x it T β(τ ) or x it T β(τ ) < x it T β(τ ) < y it or x it T β(τ ) < x it T β(τ ) < y it and | w it (τ ) -w it (τ )| = |2τ -1| if x it T β(τ ) < y it < x it T β(τ ) or x it T β(τ ) < y it < x it T β(τ ). Thus | w it (τ ) -w it (τ )| = |2τ -1|1 |ε it (τ )| < |x it T ( β(τ ) -β(τ ))| and as plim β(τ ) = β(τ ), we have for every ε > 0, | w it (τ ) -w it (τ )| = |2τ -1|1 |ε it (τ )| < p|x it |ε = |2τ -1|1 x it T β(τ ) -p|x it |ε < y it < x it T β(τ ) + p|x it |ε . |ε it (τ )| < |x it |ε ≤ |x it | 2 α ε (x it ) + ε With α ε (x it ) = I(x it ,ε) α(z)dy, et I(x it , ε) = [x it T β(τ ) -ε, x it T β(τ ) + ε]. α ε (x it) is an increasing and bounded function, thus converges to zero by the theorem of monotone convergence. The rst term of the inequality (16) converge to zero in proba. For the second term of the inequality (16), it suces to note that |w it (τ )x it x it T | ≤ z 2 , and use the hypothesis E2 which allows us to apply Lemma A1 [?] to conclude that plim H = H.To show consistency of Σ, we have|x it w it (τ )ε it (τ )w is (τ )ε is (τ )x is T | ≤ z 4 M,with M constant. This result and the assumption E2 allows to apply again Lemma A1 of [?] to show that1 N n i=1 g i {β(τ )}g i {β(τ )} T = 1 N n i=1 X i T W i (τ )ε(τ )ε(τ ) T W i (τ )X i P -→ X T E[W(τ )ε(τ )ε(τ ) T W (τ )]X. This result and β(τ ) P -→ β(τ ) allows to invoke Lemma 4 of [?] and to conclude that: Σ P -→ Σ.
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 1 Bias and root mean squared error (RMSE) for the ERRE, QRRE and PQR models with dierent location shift error distributions.

				T = 5			T = 15			T = 25
		τ	50	100	500	50	100	500	50	100	500
	ε ∼ N (0, 1)								
		0.2 0.0372	0.0165	0.0389	0.0398	0.0239	-0.0201 -0.0586 -0.0398 -0.0263
			(0.0699) (0.056) (0.0289) (0.0823) (0.0536) (0.0275) (0.0552) (0.0449) (0.022)
	ERRE	0.5 0.0194 (0.0705) (0.0563) (0.0284) (0.0751) (0.0525) (0.0253) (0.0545) (0.0421) (0.0212) 0.0328 0.0372 0.0755 0.0461 -0.0084 -0.0703 -0.0327 -0.019
		0.8 -0.002	0.0325	0.0245	0.1137	0.0748	2e-04	-0.0809 -0.0203 -0.0154
			(0.0827) (0.0624) (0.0305) (0.0764) (0.0528) (0.0271) (0.0536) (0.0414) (0.0228)
		0.2 0.0321	0.0088	0.0253	-0.0088	0.004	-0.0159	-0.038	-0.0388 -0.0297
			(0.083) (0.0798) (0.0275) (0.0832) (0.0602) (0.0336) (0.0632) (0.0494) (0.025)
	QRRE	0.5 0.0239 (0.0858) (0.0643) (0.0321) (0.084) (0.0552) (0.0253) (0.0644) (0.0388) (0.023) 0.0749 0.0511 0.0634 0.0322 -0.0044 -0.0581 -0.0462 -0.0101
		0.8 0.0373	0.0385	9e-04	0.1656	0.0833	0.0111	-0.0976 -0.0208 -0.0092
			(0.0946) (0.0598) (0.0407) (0.0977) (0.062) (0.0276) (0.0635) (0.0435) (0.0272)
		0.2	0.028	-5e-04	0.0224	-0.0162	0.0049	-0.01	-0.022	-0.0361 -0.0305
			(0.0855) (0.0666) (0.0283) (0.0855) (0.0615) (0.0353) (0.0507) (0.0493) (0.0252)
	PQR	0.5 0.0081 (0.086) (0.071) (0.0342) (0.0784) (0.0614) (0.0267) (0.0637) (0.0423) (0.022) 0.061 0.0475 0.055 0.0357 9e-04 -0.0433 -0.0454 -0.0112
		0.8 0.0122	0.0355	-5e-04	0.1458	0.0894	0.0143	-0.0897 -0.0245 -0.0098
			(0.102) (0.0691) (0.0379) (0.0965) (0.0616) (0.0298) (0.0702) (0.0458) (0.0272)
	ε ∼ t3									
		0.2 0.2455	-0.0087	0.0651	0.1	0.024	0.0289	0.0685	0.0378	0.0325
			(0.153) (0.1734) (0.065) (0.1768) (0.0538) (0.056) (0.0723) (0.0661) (0.0359)
	ERRE	0.5 0.1021 (0.1333) (0.1301) (0.0516) (0.2144) (0.0512) (0.04) (0.0823) (0.0693) (0.0335) -0.1228 0.0382 0.1964 0.0477 0.0219 0.0796 0.039 0.0202
		0.8 -0.0492 -0.3222	0.0019	0.3878	0.0778	0.0315	0.1315	0.0597	0.0214
			(0.138) (0.2474) (0.0716) (0.3343) (0.0504) (0.0421) (0.12) (0.0938) (0.0422)
		0.2 0.3081	-0.0976	0.0747	-0.0364	0.0086	0.04	0.0562	0.0374	0.0389
			(0.1388) (0.128) (0.0489) (0.1696) (0.0624) (0.0431) (0.0839) (0.0601) (0.0332)
	QRRE	0.5	0.112 (0.1199) (0.0909) (0.0366) (0.1202) (0.0582) (0.0293) (0.0878) (0.0722) (0.0332) 0.0251 0.0498 0.0599 0.0334 -0.0083 0.0507 0.0049 0.0011
		0.8 -0.174	-0.2089	0.0492	0.2207	0.0814	0.021	0.0381	0.0086	-0.0063
			(0.2359) (0.1327) (0.0615) (0.178) (0.0651) (0.0337) (0.0918) (0.106) (0.0436)
		0.2 0.2924	-0.1163	0.0729	-0.024	0.0095	0.0443	0.0673	0.0416	0.0428
			(0.1498) (0.1268) (0.0518) (0.1606) (0.0634) (0.0395) (0.079) (0.0637) (0.0346)
	PQR	0.5 0.1199 (0.1249) (0.0909) (0.0359) (0.1221) (0.0623) (0.0311) (0.087) (0.0668) (0.0307) 0.0191 0.0498 0.0641 0.0393 -0.0042 0.0514 0.0162 0.0044
		0.8 -0.1614 -0.2213	0.042	0.2226	0.0887	0.0294	0.0471	0.0106	-0.002
			(0.2255) (0.1378) (0.0631) (0.1777) (0.0642) (0.0362) (0.0984) (0.1036) (0.0392)

Table 1 :

 1 Bias and root mean squared error (RMSE) for the ERRE, QRRE and PQR models with dierent location shift error distributions.

				T = 5			T = 15			T = 25
		τ	50	100	500	50	100	500	50	100	500
	ε ∼ χ 2 3									
		0.2 0.2055	0.0803	0.0635	0.3672	0.1662	0.0082	5e-04	0.0346	0.0399
			(0.178) (0.1405) (0.055) (0.1182) (0.0937) (0.0456) (0.1351) (0.1012) (0.0387)
	ERRE	0.5 0.2134 (0.22) (0.1939) (0.0725) (0.1307) (0.1121) (0.0584) (0.153) (0.1152) (0.0487) 0.0458 0.0969 0.438 0.1823 -0.0021 0.0747 0.0867 0.0815
		0.8 0.2997	0.136	0.12	0.5093	0.2433	-0.031	0.1878	0.1745	0.1342
			(0.2872) (0.261) (0.1007) (0.1592) (0.1605) (0.0792) (0.2112) (0.1529) (0.0634)
		0.2 0.2054	0.0887	0.0196	0.3119	0.1516	0.0106	-0.1255 -0.0301 -0.0041
			(0.1937) (0.1112) (0.0596) (0.1449) (0.1189) (0.045) (0.1721) (0.1051) (0.0429)
	QRRE	0.5 0.0732 (0.2308) (0.2067) (0.0666) (0.134) (0.1078) (0.0627) (0.1862) (0.1254) (0.0595) -0.1211 0.1107 0.4613 0.1351 0.042 -0.0099 0.0308 0.0458
		0.8 0.3619	-0.1012	0.1583	0.4821	0.2339	-0.0878	0.135	0.155	0.2123
			(0.4064) (0.3431) (0.1502) (0.2019) (0.2389) (0.0959) (0.2539) (0.1445) (0.0998)
		0.2 0.2681	0.0916	0.022	0.2493	0.1414	0.0223	-0.1407 -0.0223	0.0024
			(0.1746) (0.1087) (0.0566) (0.1384) (0.1202) (0.0443) (0.1681) (0.1007) (0.0449)
	PQR	0.5 0.1107 (0.2604) (0.1966) (0.0709) (0.1455) -0.0976 0.1305 0.3664	0.1245 (0.1)	0.0529 (0.0608) (0.193) (0.1232) (0.0601) -0.001 0.0487 0.0515
		0.8 0.3827	-0.0633	0.1524	0.5016	0.205	-0.0777	0.1704	0.1523	0.221
			(0.4016) (0.3464) (0.1566) (0.1796) (0.2198) (0.0895) (0.2722) (0.1338) (0.0892)

Table 2 :

 2 Bias and root mean squared error (RMSE) for the ERRE, QRRE and PQR models with dierent location-scale shift error distributions.

				T = 5			T = 15			T = 25
		τ	50	100	500	50	100	500	50	100	500
	ε ∼ N (0, 1)								
		0.2 -0.0338	0.0162	-0.0526 -0.0224 -0.0656 -0.0528 -0.0758 -0.0759 -0.0425
			(0.0509) (0.0372) (0.0161) (0.0414) (0.0262) (0.0127) (0.029) (0.0202) (0.0099)
	ERRE	0.5 0.0017 (0.0402) (0.031) (0.0152) (0.0346) (0.0268) (0.0115) (0.0299) (0.0176) (0.0095) 0.0658 -0.0137 0.0317 -0.0092 -0.007 -0.0264 -0.0231 0.0034
		0.8 0.0525	0.1055	0.0295	0.0859	0.0445	0.0368	0.0189	0.0313	0.0505
			(0.0424) (0.0296) (0.0158) (0.0339) (0.0277) (0.0117) (0.0355) (0.0187) (0.0096)
		0.2 -0.0246	3e-04	-0.0709 -0.0499 -0.1015 -0.0821 -0.1202	-0.109	-0.066
			(0.0707) (0.051) (0.0173) (0.0472) (0.0336) (0.0156) (0.0371) (0.0283) (0.0105)
	QRRE	0.5 -0.0276 (0.0343) (0.0398) (0.0172) (0.0289) (0.033) (0.012) (0.0306) (0.0163) (0.0109) 0.0681 -0.0243 0.0246 -0.0077 0 -0.0384 -0.0327 -4e-04
		0.8 0.0666	0.1381	0.0395	0.0923	0.078	0.0653	0.0295	0.047	0.0834
			(0.0655) (0.0355) (0.0177) (0.0421) (0.0312) (0.0144) (0.0483) (0.0223) (0.0119)
		0.2 -0.0235 -0.0115	-0.069	-0.0598 -0.1002 -0.0801 -0.1078 -0.1049 -0.0664
			(0.0686) (0.0513) (0.0182) (0.0438) (0.0306) (0.0149) (0.043) (0.0284) (0.0101)
	PQR	0.5 -0.0343 (0.0341) (0.0357) (0.0186) (0.033) (0.031) (0.0132) (0.0352) (0.017) (0.0107) 0.06 -0.0234 0.0128 -0.0087 -9e-04 -0.0277 -0.031 -0.0013
		0.8	0.052	0.1286	0.0395	0.0836	0.0773	0.0646	0.0412	0.0462	0.0824
			(0.0706) (0.0378) (0.0184) (0.0423) (0.0302) (0.015) (0.0451) (0.0233) (0.0115)
	ε ∼ t3									
		0.2 -0.071	0.0603	-0.138	-0.0107 -0.0676 -0.0644 -0.0937 -0.0856 -0.0796
			(0.0759) (0.0842) (0.0437) (0.0798) (0.0265) (0.018) (0.0373) (0.0417) (0.0157)
	ERRE	0.5 0.0318 (0.0621) (0.0995) (0.0269) (0.1097) (0.027) (0.0151) (0.0335) (0.0368) (0.0139) 0.0058 -0.0656 0.0916 -0.011 0.0051 -0.0236 -0.0098 -0.0185
		0.8 0.1321	-0.0974 -0.0167	0.2273	0.0434	0.0795	0.0467	0.0461	0.0437
			(0.0831) (0.2086) (0.0287) (0.1532) (0.0274) (0.0182) (0.0434) (0.0393) (0.0165)
		0.2 -0.0665	0.0503	-0.1423 -0.0779 -0.1051 -0.0822 -0.0976 -0.0832 -0.1027
			(0.1062) (0.0454) (0.0205) (0.0623) (0.0319) (0.0212) (0.0405) (0.032) (0.0164)
	QRRE	0.5	0.021 (0.0713) (0.0512) (0.018) (0.069) (0.0303) (0.0135) (0.0394) (0.0293) (0.0121) 0.0365 -0.0338 0.0316 -0.0099 0.0119 -0.0118 0.0145 -0.0229
		0.8 0.1846	0.1096	0.0353	0.236	0.0792	0.0895	0.0743	0.0645	0.0469
			(0.1014) (0.0839) (0.0237) (0.159) (0.0297) (0.0216) (0.0413) (0.0413) (0.0146)
		0.2 -0.0645	0.046	-0.1411	-0.079	-0.1051 -0.0825 -0.1045 -0.0796 -0.1052
			(0.1079) (0.046) (0.0215) (0.0599) (0.0314) (0.0206) (0.0411) (0.0316) (0.018)
	PQR	0.5 0.0311 (0.0737) (0.0472) (0.0189) (0.0719) (0.0304) (0.0133) (0.0412) (0.0288) (0.0119) 0.0361 -0.0338 0.0299 -0.0134 0.0118 -0.0144 0.0197 -0.0235
		0.8 0.1925	0.1116	0.0337	0.2295	0.0738	0.0893	0.0772	0.0705	0.0466
			(0.0974) (0.076) (0.0245) (0.1539) (0.0312) (0.0208) (0.0419) (0.0384) (0.0134)
					1					

Table 2 :

 2 Bias and root mean squared error (RMSE) for the ERRE, QRRE and PQR models with dierent location-scale shift error distributions.

				T = 5			T = 15			T = 25
		τ	50	100	500	50	100	500	50	100	500
	ε ∼ χ 2 3									
		0.2 0.4884	0.131	0.1862	0.2131	0.2196	0.2226	0.2259	0.2427	0.2332
			(0.1369) (0.0665) (0.0278) (0.0548) (0.0386) (0.021) (0.0567) (0.0356) (0.0182)
	ERRE	0.5 0.6781 (0.1428) (0.0946) (0.0379) (0.0731) (0.0517) (0.0272) (0.0723) (0.0431) (0.0218) 0.2161 0.2834 0.3328 0.282 0.3123 0.3209 0.3375 0.3249
		0.8 0.8936	0.3229	0.4119	0.4926	0.3816	0.4398	0.4439	0.4779	0.4461
			(0.1737) (0.1476) (0.0544) (0.103) (0.0682) (0.0361) (0.0953) (0.0601) (0.0286)
		0.2 0.2112	0.0418	0.1045	0.1336	0.1858	0.1564	0.1354	0.1849	0.1667
			(0.1741) (0.0583) (0.0254) (0.0558) (0.0349) (0.0212) (0.0614) (0.0387) (0.0206)
	QRRE	0.5 0.5525 (0.1717) (0.1011) (0.0485) (0.0864) (0.0462) (0.0284) (0.0956) (0.0479) (0.0256) 0.1528 0.2496 0.3119 0.2357 0.2527 0.2648 0.2561 0.2764
		0.8 0.8481	0.3288	0.4171	0.5088	0.3688	0.4653	0.4136	0.4378	0.4597
			(0.177) (0.1531) (0.074) (0.1077) (0.0763) (0.0486) (0.099) (0.0661) (0.0309)
		0.2 0.2605	0.0371	0.0992	0.084	0.1853	0.1548	0.1335	0.1835	0.1628
			(0.1697) (0.0542) (0.0234) (0.0524) (0.0387) (0.0211) (0.0601) (0.0381) (0.0212)
	PQR	0.5 0.5687 (0.1723) (0.1014) (0.0485) (0.0953) (0.0503) (0.0304) (0.1039) (0.0493) (0.0272) 0.1644 0.2346 0.2653 0.2327 0.2531 0.2694 0.2564 0.2737
		0.8 0.8645	0.3399	0.4059	0.4633	0.3717	0.468	0.4287	0.4409	0.4573
			(0.1747) (0.1531) (0.0773) (0.1053) (0.0744) (0.0472) (0.1174) (0.0642) (0.0302)

  Figure 3: Estimated coecient and condence interval for the dierent regression methods in the location-scale shift model.

										ERRE		QRRE		PQR						
							ERRE ERRE								QRRE QRRE					0.15
																									1	0.1
	Intercept	Ability																						0.5	0 0.05
				0		0.2		0.4		0.6		0.8		1	0		0.2		0.4		0.6		0.8		0 1	-0.05
			0		0.2		0.4		0.6		0.8		1	0		0.2		0.4		0.6		0.8		1		0.04
		Education	Mother educ.																						-0.02 0.05 0.1 0 0.02
				0		0.2		0.4		0.6		0.8		1	0		0.2		0.4		0.6		0.8		0 1
			0		0.2		0.4		0.6		0.8		1	0		0.2		0.4		0.6		0.8		1		0.02
	Experience	Father educ.																						0.05 0.1 0.15 -0.02 0
				0		0.2		0.4		0.6		0.8		1	0		0.2		0.4		0.6		0.8		0 1
			0		0.2		0.4		0.6		0.8		1	0		0.2		0.4		0.6		0.8		1		0
	Experience 2	Broken home																						-0.004 -0.002 0 -0.2 -0.1
				0		0.2		0.4		0.6		0.8		1	0		0.2		0.4		0.6		0.8		1
			0		0.2		0.4		0.6		0.8		1 ε ∼ χ 2 0 3		0.2		0.4		0.6		0.8		1		0.02
	T=5	Time	Nbr of siblings																						-0.02 0 -0.02 0	0.2 0.4 0.6
	T=15		0	0	0.2	0.2	0.4	τ 0.4	0.6 τ	0.6	0.8	0.8	1	0 1	0	0.2	0.2	0.4	0.4	0.6	0.6	0.8	0.8	1	-0.04 1	0.2 0.4 0.6
																										0.6
	T=25													2												0.2 0.4
	0.2		0.4		0.6	0.8				0.2		0.4	0.6	0.8			0.2	0.4	0.6	0.8
														τ											

τ Figure 4: Quantile and expectile estimated coecients of time-varying characteristics with nonparametric condent interval. τ Figure 5: Quantile and expectile estimated coecients of time-invariant characteristics with nonparametric condent interval.