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Abstract

Quantile and expectile regression models pertain to the estimation of
unknown quantiles/expectiles of the cumulative distribution function
of a dependent variable as a function of a set of covariates and a vec-
tor of regression coe�cients. Both approaches make no assumption
on the shape of the distribution of the response variable, allowing for
investigation of a comprehensive class of covariate e�ects. This paper
�ts both quantile and expectile regression models within a random
e�ects framework for dependent/panel data. It provides asymptotic
properties of the underlying model parameter estimators and suggests
appropriate estimators of their variances-covariances matrices. The
performance of the proposed estimators is evaluated through exhaus-
tive simulation studies and the proposed methodology is illustrated
using real data. The simulation results show that expectile regression
is comparable to quantile regression, easily computable and has rele-
vant statistical properties. In conclusion, expectiles are to the mean
what quantiles are to the median, and they should be used and inter-
preted as quantilized mean.

Keywords: Expectiles, quantiles, random e�ects, longitudinal, panel
data.
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1 Introduction

With development and progress of computer science, quantile regression
(QR) and expectile regression (ER) extended the scope of statistical mod-
eling beyond the classical linear regression of the conditional mean. QR
extends the usual univariate quantile to the conditional quantile class, by
estimating the conditional quantile of the dependant variable. Similarly, ER
extends the univariate expectile to the conditional expectile class. Condi-
tional quantile and conditional expectile retain all the properties inherent to
their univariate counterpart. QR and ER are suitable in situations where
the e�ect of an explanatory factor on the conditional mean or median does
not capture the impact of the factor in the whole distribution of the response
variable. In such situations, the factor does not a�ect all quantiles/expectiles
of the response variable in the same way. QR and ER have similar roles in
modeling, as both provide a thorough and detailed insight of the in�uence of
risk factors on the distribution of the dependent variable. However, they are
distinguished by their properties, advantages and disadvantages.

Quantile of level α of a variable is a common descriptive statistic. Quartiles
are among the most familiar and most common quantiles. In a descriptive
analysis, they provide a complete picture of the distribution of the variable.
Until recently, the advantage of laying out a complete picture of the distribu-
tion of a variable from a few statistics was only accessible in the univariate
case. The relationship of multiple variables was studied by the estimation of
the conditional mean. Today, with the introduction of the QR, it is possible
to study the impact of a factor, taking into account other factors, not only
on the conditional mean, but also upon other functions of the distribution of
the dependent variable.

QR estimator or weighted asymmetric least absolute deviation estimator was
introduced in 1978 by Koenker and Basset [20] to analyse the relationship
between the conditional quantiles of the response distribution and a set of
regressors. Since its appearance, its theoretical and empirical development
have continuously increased. Today, its scope span all areas of applied sci-
ence [34]. A large part of QR literature focuses on solving problems related
to estimation of the variances-covariances matrix of the QR estimators and
their performance on small samples [2]. There are also many studies that
have adapted the QR to di�erent models used previously for the estimation
of the conditional mean. Powell [26] adapted the QR to censored data and
Machado [23] generalized it to count data. Koenker and Bilias[14], Fitzen-
berger and Wilke [6] applied QR to duration data. Lately, QR was adjusted
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to panel and longitudinal data [16, 3, 22]. For further details on the theory
and application of the QR, see [17].

Weighted asymmetric least square deviation estimator (expectile), was ini-
tially studied in [1]. However, it is in [25] that it is named "expectile" for
the �rst time, although other quali�cations (gravile, heftile, loadile, projec-
tile) were used elsewhere in the past to identify it. The best well known
expectile is the expectile of level τ = 0.5 corresponding to the mean. Aside
from the mean, the other expectiles are less well known, and are not as eas-
ily interpretable as the mean or the quantiles. However, they are a reliable
alternative to the quantiles. Similarly to quantiles, a sequence of expectiles
can be su�cient to describe the distribution of a variable, especially with the
mean and a few expectiles above and below the mean.

The usefulness of this new class of estimator and its resemblance to the
class of weighted asymmetric least absolute deviation (or quantile) estimator
were put forward in [5]. Today, there is growing interest in the literature
[13, 33, 31, 29] toward the expectile estimator. This increased interest is ex-
plained partly by the close link between expectiles and quantiles, and also by
the attractive properties of expectiles and the limits of quantiles. Unlike QR
estimators, ER estimators have explicit form and are analytically estimable.
Moreover, the overlap problem of QR estimator is less common with ER es-
timator [33].

Panel data also known as longitudinal data or dependant data is by far the
most appreciated observational data. Longitudinal data are characterized
by recording measurements of the same individuals repeatedly through time.
They o�er the opportunity to control unobserved individual heterogeneity.
Longitudinal data arises in many application studies such as in econometrics
[12], epidemiology [28], genetic [7], etc.

Random e�ect and �xed e�ect models are the most popular approaches used
in econometrics to adjust panel data [12]. QR model has been generalized to
several models for panel or longitudinal data, �xed e�ects model [3], instru-
mental variable model [11], linear mixed model [10], penalized �xed e�ect
model [16, 22], among others. Despite the ubiquity of the classical condi-
tional mean regression, QR has become a standard model. In the meantime
generalization of the ER is not e�ective, regardless of its desirable proper-
ties. The aim of this paper is to adapt QR and ER to random e�ects model
for panel data. It provides asymptotic properties of the underlying model
parameter estimators and suggests appropriate estimators of their variances-
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covariances matrices. To the best of our knowledge it is the �rst time that
ER estimator and its asymptotic properties are considered for random e�ects
model.

The paper is organized as follows. Section 2 introduces the univariate quan-
tile and expectile functions. Section 3 presents the asymptotic properties
of the QR and the ER of the linear random e�ect model with suggested
estimators of their variances-covariances matrix. Section 4 presents the per-
formance of the proposed methodology in practice through simulations and a
real data analysis. Section 5 contains the conclusion and Section 6 provides
proofs of the theorems.

2 Quantiles and Expectiles

2.1 Quantiles

The quantile of level α ∈ [0, 1] of a random variable Y is de�ned by

q(α, Y ) = F−1Y (α) = inf{y;FY (y) ≥ α},

where FY is the cumulative distribution function (c.d.f.) of Y . The quantile
function q(·, Y ) characterises the c.d.f. FY . For intance, when Y ∼ N (µ, σ2)
then q(α, Y ) = µ+ σΦ−1(α), where Φ denotes the c.d.f. of N (0, 1).

It is known that the αth quantile can be also de�ned as the minimizer of
the following expected loss

q(α, Y ) = argmin
θ ∈ R

E{rQα (Y − θ)},

where rQα (u) = |α−1(u ≤ 0)| · |u| is the so-called check function. Notice that
q(α, Y ) is unique when the c.d.f FY is absolutely continuous.

Given a random sample {y1, · · · , yn}, the αth sample quantile estimate can
be obtained by sorting and ordering the n observations. It can be also ob-
tained as

q̂(α,y) = argmin
θ ∈ R

∫
rQα (y − θ)dFn(y)

= argmin
θ ∈ R

{
1

n

n∑
i=1

rQα (yi − θ)

}
,
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with Fn(.) stands for the empirical distribution function of Y and y =
(y1, · · · , yn)T is the n× 1 random sample vector.

Similarly, conditional αth quantile of Y |x can be de�ned as

q(α, Y,x) = F−1Y |x(α) = inf{y;FY |x(y) ≥ α},

where x is a p× 1 random (explanatory) vector and FY |x is the conditional
c.d.f. of Y |x. If one assume that the conditional quantile is a linear function
of x (i.e. F−1Y |x(α) = xi

TβQ(α)), then the sample conditional αth quantile
estimate can be obtained by solving the following optimization problem, with
respect to βQ(α)

β̂Q(α,y,X) = argmin
β ∈ Rp

{
1

n

n∑
i=1

rQα (yi − xiTβQ(α))

}
, (1)

with {(y1,x1), · · · , (yn,xn)} is a multivariate random sample andX = [x1; · · · ;xn]T

is the n×p design matrix. This is well known as the quantile regression model
[17].

Notice that β̂Q(α,y,X) the solution of (1) can be also viewed as maximum
likelihood estimator of βQ(α) when the disturbances, εi(α) = yi−xiTβQ(α),
arise from the asymmetric Laplace distribution [9, 10].

Quantiles have attractive equivariance properties that are very useful in re-
ducing the computation time of the algorithms. For example, q(α, h(Y )) =
h(q(α, Y )) if h is an increasing function. In particular, q(α, sY + t) =
sq(α, Y ) + t, with (s, t) ∈ R+ × R. With the multivariate random sample
we have the following properties [20]:

� β̂Q(α, λy,X) = λβ̂Q(α,y,X), λ ∈ [0,∞),

� β̂Q(1− α, λy,X) = λβ̂Q(α,y,X), λ ∈ (−∞, 0],

� β̂Q(α,y +Xγ,X) = β̂Q(α,y,X) + γ, γ ∈ Rp,

� β̂Q(α,y,XA) = A−1β̂Q(α,y,X), Ap×p is nonsingular.

2.2 Expectiles

The expectile of level τ ∈ [0, 1] of a random variable Y is de�ned by

µ(τ, Y ) = argmin
θ ∈ R

E{rEτ (Y − θ)} with rEτ (u) = |τ − 1(u ≤ 0)| · u2. (2)
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Similarly to the quantile function q(·, Y ), the expectile function µ(·, Y ) char-
acterises the c.d.f of Y . The following equation summarizes such a relation-
ship

µ(τ, Y ) = µ− 1− 2τ

1− τ
E
[
{Y − µ(τ, Y )}1{Y > µ(τ, Y )}

]
, (3)

with µ = µ(0.5, Y ) = E(Y ). For example, if Y ∼ N (µ, σ2) then µ(τ, Y ) =
µ(τ) is the solution of the following equation:

(2τ−1)µ(τ)Φ

(
µ(τ)− µ

σ

)
+µ = τµ(τ)+(1−τ)λ

(
−µ(τ)− µ

σ

)
−τλ

(
µ(τ)− µ

σ

)
where λ(x) = φ(x)/(1 − Φ(x)) denotes the hazard function and φ(x) the
standard normal density function. Expectile is location and scale equivariant.
In fact, for s > 0 and t ∈ R, one has

µ(τ, sY + t) = sµ(τ, Y ) + t, s > 0 and t ∈ R.

An empirical estimate of (2) can be derived as a solution of

µ̂(τ,y) = argmin
θ ∈ R

{
1

n

n∑
i=1

rEτ (yi − θ)

}
.

Conditional τth expectile of Y given x can be de�ned as

µ(τ, Y,x) = argmin
θ ∈ R

E{rEτ (Y − θ)|x}.

If one assume that µ(τ,x) = xTβE(τ) is a linear function in x, then the
derivation of a sample conditional τth expectile estimate leads to the follow-
ing sample estimate of βE(τ)

β̂E(τ,y,X) = argmin
β ∈ Rp

{
1

n

n∑
i=1

rEτ (yi − xiTβE(τ))

}
.

This minimization problem with respect to βE(τ) is known as expectile re-
gression. One note that this estimator can also be derived by a likelihood-
based approach from a Gaussian density with unequal weights placed on
positive and negative disturbances [1].

Note that several characteristics and expressions of quantiles have there anal-
ogous for expectiles. For instance, for quantiles we have

α = F (q(α)) = E[1(Y < q(α))]. (4)
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Re-arrangement of equation (3) leads to analogous expression for expectiles

τ =
E[|Y − µ(τ)|1{Y < µ(τ)}]

E[|Y − µ(τ)|]
. (5)

Equations (4) and (5) show that expectiles are determined by tail expecta-
tions of Y , while quantiles are determined by the distribution function.

Moreover, one can show that for each αth quantile q(α) there is a unique
ταth expectile, µ(τα), such that µ(τα) = q(α). One can write then

τα =
q(α)− E[Y 1{Y < q(α)}]

µ− 2E[Y 1(Y < q(α))]− q(α)(1− 2α)
.

Furthermore, when the c.d.f. function of Y is given by

F (y) = 1/2{1 + sign(y)
√

1 + 4/(4 + y2)}, y ∈ R

the αth quantile coincides with the αth expectile. That is, τα = α, [15].
Finally, we close this section with a comparison between quantile and expec-
tile functions of the standard normal distribution, given in Figure 1. The
two functions intersect at point α = τ = 0.5. Both functions are strictly
increasing and cover all values of IF = {y|0 < F (y) < 1}.

Given all these analogous relationships between quantiles and expectiles and
the fact that the mean is a particular expectile with τ = 0.5, one can interpret
expectiles as quantilized means.

3 Quantile and Expectile regression for panel

data

Panel data is by far the most appreciated observational data. They o�er the
opportunity to control unobserved individual heterogeneity. Panel data are
characterized by recording multiple observations on individuals over several
periods.

A standard panel-data linear regression model relies a response y to pre-
dictors as follow

yit = xit
Tβ + ui + vit, t ∈ {1, 2 . . . , Ti}, i ∈ {1, 2 . . . , n} (6)

with yit is a dependent variable, xit = (x1it, x
2
it, . . . , x

p
it)
T is a vector of p in-

dependent variables measured on individual i at time t, ui an unobserved
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individual-speci�c e�ect and vit an error term.

Fixed e�ects and random e�ects methods are most popular approaches to
adjust model (6) in econometrics. Both approaches have advantages and
limitations and the comparison between the two is delicate and has been
widely discussed in the literature [12].

3.1 Quantile regression for �xed e�ects model

In the �xed e�ect (FE) paradigm the e�ects of unobserved heterogeneity are
assumed to be �xed parameters and the model (6) is conveniently written as

y = Xβ +Zu+ v. (7)

where the vector y is N×1, X is N×p matrix, Z is a N×n incidence matrix
and N =

∑n
i=1 Ti. The vectors u and v are respectively N × 1 individual-

speci�c e�ect and error vectors. The corresponding QR �xed e�ects (QRFE)
model proposed by Koenker [16] is formulated as

q(α, yit,xit) = ui + xit
Tβ(α). (8)

The individual-speci�c e�ects, ui, are treated as �xed parameters in the
model and have to be estimated in addition to the structural parameters
β(α). The QRFE model parameters can be obtained by solving

min
β,u

n∑
i=1

Ti∑
t=1

rQα {yit − ui − xitTβ(α)}.

Because of the dimension of the incidental parameters, ui, estimation is chal-
lenging particularly as n → ∞. Also, adaptation of techniques used for the
FE approach from classical least square estimation are not directly appli-
cable in the QR context. To remedy this problem, Koenker [16] exploited
the sparse property of the full-model design-matrix (X,Z) to reduce the
computational burden problem of QRFE model. He also derived asymptotic
properties of the model parameter estimators as n and Ti →∞.
Koenker introduced a more general class for the QRFE model, namely a class
of penalized QRFE model by solving

min
β,u

q∑
k=1

n∑
i=1

Ti∑
t=1

wkr
Q
αk
{yit − ui − xitTβ(αk)}+ λ

n∑
i=1

|ui|,

where wk is a relative weight associated to the q quantiles {α1, . . . αq} and
λ is a shrinkage parameter. Koenker used the l1 penalty for its advantages
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over the l2 penalty. In fact, the l1 penalty serves to shrink the incidence
parameter toward zero and then provides sparse solutions for estimates of
ui, and at the same time improves the performance of the estimate of the
structural parameters.

The choice of the shrinkage parameter, λ, in�uences heavily the inference
for the parameter of interest [9, 22]. For example, the case λ→∞ is equiv-
alent to the ordinary QR, while λ → 0 coresponds to the QRFE model.
Lamarche [22] focused on the problem of selecting the optimal regularization
parameter, and Canay [3] suggested a consistent and asymptotically normal
two-stage estimator for β(α), which copes with the incidental parameters
curse in the �rst stage.

3.2 Quantile regression for random e�ects model

In this section we propose to handle panel data using a QR random e�ect
(QRRE) model. Our main contribution in this section is the derivation of
asymptotic distribution of the QRRE model parameter estimators and pro-
vide a consistent estimator of their variances-covariances matrix.

The random e�ect model or the error component model is a particular type of
random coe�cients model also known as multilevel model, hierarchical linear
model or linear mixed model [8]. In the random e�ect framework, unobserved
heterogeneity e�ects are treated as random variables and are assumed to be
uncorrelated to the explanatory variables. Thus, the linear panel equation
(6) can be reformulated in matrix notation as

y = Xβ + ε (9)

where the random vector ε is the sum of the individual-speci�c e�ects and
the disturbance vector, ε = Zu+v. The corresponding conditional quantile
regression model can be written as

q(α, yit,xit) = xit
TβQ(α), t ∈ {1, 2 . . . , Ti}, i ∈ {1, 2 . . . , n}.

The parameter βQ(α) models the e�ect of the independent variables on the
location, scale and shape of the conditional distribution of the response.
For example, with one regressor and under the absence of individual-speci�c
e�ects (i.e. under homoskedasticity condition with εi are independent and
identically distributed, i.i.d.), quantile functions q(α, yit,xit) = βQ0 (α)+xitβ

Q
1

are parallel lines with βQ0 (α) = βQ0 + F−1ε (α), with Fε(.) is the c.d.f function
of the error terms. In the presence of individual-speci�c e�ects, βQ1 (α) will
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vary with α.

The QRRE model parameters can be estimated by solving

argmin
β ∈ Rp

1

N

n∑
i=1

Ti∑
t=1

rQα (yit − xitTβQ(α)). (10)

This minimization problem is known as weighted asymmetric least absolute
deviation (WALAD) estimator of βQ(α) and the solution can be obtained
using existing R packages such as [18]. In the next section we will derive the
asymptotic properties of the WALAD estimator of βQ(α).

From now one we will restrict attention to balanced data (Ti = T ). We
will assume i.i.d. individual vectors {yi, i ∈ (1, · · · , n)}, and also assume
independence of the individual-speci�c e�ects ui and the disturbances vit.

3.2.1 Asymptotic properties of QRRE model

Assume the following regularity conditions:

Condition Q1. Yit is a continuous random variable with absolutely con-
tinuous distribution function Fit and with a continuous density function fit
uniformly bounded away from 0 and ∞ at the points q(α, yit).

Condition Q2. There are positive de�nite matrices D0 and D1 such that:

1. limn→∞N
−1XT{In ⊗ ΣT×T (α)}X = D0

2. limn→∞N
−1XTΩfX = D1

3. max
1≤i≤n,1≤t≤T

‖xit‖2 /
√
N → 0

and for every i ∈ {1, . . . , n} the elements of ΣT×T (α) are de�ned by

σits(α) =

{
α(1− α) if t = s
E[1{εit(α) < 0, εis(α) < 0}]− α2 if t 6= s

and
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Ωf = Diag
[
f11{q(α, y11)|x1}, . . . , f1T{q(α, y1T )|x1}, . . . ,

fn1{q(α, yn1)|xn}, . . . , fnT{q(α, ynT )|xn)}
]
.

Our assumptions are standard in the literature of the QR model. The only
new assumption is related to the individual-random e�ect which introduces
dependency between observations of the same individual. Under the above
set of conditions, we present the main results of the QRRE model parameter
estimators.

Theorem 3.1. Assume model (9) satis�es conditions Q1 and Q2. Let

β̂Q(α) be an estimate of the true parameter βQ(α) obtained from the mini-
mization of the loss function in (10). The following result holds

√
N
(
β̂Q(α)− βQ(α)

)
d−→ N

(
0,D−11 D0D

−1
1

)
.

Note that the variances-covariances matrix of the WALAD estimator
depends on the density fit and on the joint distribution function Fits of
yit and yis, for i ∈ {1, . . . , n} and t, s ∈ {1, . . . , T}. Hence, estimating stan-
dard errors, variances-covariances matrix as well as con�dence intervals of the
WALAD estimator require estimating fit{q(α, yit)}, and Fits{q(α, yit), q(α, yis)}.
Estimation of the density function has been extensively studied [24] in the
context of constructing con�dence interval and test for inference of linear
quantile regression estimator.

Now we present an algorithm for estimating the variances-covariances matrix
of the WALAD estimator.

1. Estimate ε̂it(α) = yit − xitTβ̂Q(α) and q̂(α, yit) = xit
Tβ̂Q(α), with

β̂Q(α) the estimator of Theorem 3.1.

2. Estimate f̂it by one of the consistent estimator of fit suggested in the
literature [24].

3. Estimate the matrix elements σits(α) of ΣT×T (α) by

σ̂its(α) =

{
α(1− α) if t = s

1
T (T−1)(n−1)

∑n
i=1

∑T
l<m 1(ε̂il(α) < 0, ε̂im(α) < 0)− α2 if t 6= s.

4. Estimate D0 by

D̂0 = N−1
n∑
i=1

T∑
t=1

T∑
s=1

xitσ̂its(α)xis
T.
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5. And estimate D1 by

D̂1 = N−1
n∑
i=1

T∑
t=1

f̂it(q̂(α, yit)|xi)xitxitT.

With the estimators D̂0 and D̂1 of the algorithm, we have the following The-
orem:

Theorem 3.2. Under Assumptions Q1 and Q2, for every α ∈ (0, 1) we
have

D̂−11 D̂0D̂
−1
1

P−→ D−11 D0D
−1
1 .

The proofs of Theorems 3.1 and 3.2 are postponed in Section 5.

3.3 Expectile regression for random e�ects model (ERRE)

In this section we derive the asymptotic properties of the ERRE model pa-
rameter estimators and suggest a consistent estimator of their variances-
covariances matrix. The asymptotic properties for the classical expectile
linear regression have been proven by Newey and Powell [25] and Sobotka
et al. [30] has provided the results for the semiparametric regression model
estimators.

Let the conditional expectile regression of the random e�ect model (9) de-
�ned as:

µ(τ, yit,xit) = xit
TβE(τ), t ∈ {1, 2 . . . , T}, i ∈ {1, 2 . . . , n},

for every τ ∈ (0, 1). As with the quantile regression, under a linear ho-
moskedastic regression with one regressor the expectile functions µ(τ, yit, xit) =
βE0 (τ) + xit

TβE1 are parallel lines with βE0 (τ) = βE0 + µ(τ, ε).

The expectile regression estimator of the random e�ects model (9) is de�ned
as solution of:

argmin
β ∈ Rp

1

N

n∑
i=1

T∑
t=1

rEτ
{
yit − xitTβE(τ)

}
. (11)

Contrary to the quantile regression estimator, the expectile regression esti-
mator has an explicit form, computable as iterated weighted least squares
estimators, given by:
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β̂E(τ) =
( n∑
i=1

T∑
t=1

ŵi,t(τ)xitxit
T

)−1( n∑
i=1

T∑
t=1

ŵi,t(τ)xityit

)
,

with ŵit(τ) = |τ − 1(yit < xit
Tβ̂E(τ))|. Since the weighted asymmetric

quadratic loss is convex and di�erentiable, traditional procedure can be ap-
plied to derive the asymptotic properties of the ERRE model parameter
estimators.

3.3.1 Asymptotic properties of ERRE model

The asymptotic properties of this new estimator is presented under the as-
sumptions state below. Without loss of generality, let d be a generic constant.

Assumption E1. For each sample zit = (yit,xit
T), i = 1, . . . , n and t =

1, . . . , T of size N = nT, with T �xed, we assume yi = (yit, . . . , yiT )T is i.i.d
and has a continuous probability density function f(yi|xi).

Assumption E2. There is a constant d > 0 and a measurable function
α(z) such that: f(yi|xi) < α(z) and:∫

‖z‖4+dα(z)dµz < +∞,
∫
α(z)dµz < +∞.

Assumption E3.
∑T

t=1 xitxit
T is nonsingular.

Our assumptions are relatively identical to those set out in [25]. The main
di�erence is the exclusion of a misspeci�cation parameter denoted γ in [25]
and the related assumptions.

For εit(τ) = yit − xitTβ(τ)E and wit(τ) = |τ − 1(εit(τ) < 0)|, let

W = E(W ), W = Diag(w11(τ), . . . wN(τ))

H = XTWX

Σ = XT E(WεεTW )X.

Under the above set of conditions, we present the main results of the ERRE
model parameter estimators.
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Theorem 3.3. Assume model (9) satis�es hypotheses E1-E3. Let β̂E(τ) be
the estimator of the true parameter βE(τ) obtained by minimizing the loss
function

argmin
β ∈ Rp

1

N

n∑
i=1

T∑
t=1

rEτ
{
yit − xitTβ(τ)E

}
then, for every τ ∈ (0, 1), we have

√
N
{
β̂E(τ)− βE(τ)

} d−→ N (0, H−1ΣH−1).

As for the QRRE estimator we present an algorithm for estimating the
variances-covariances matrix of the ERRE estimator.

1. Estimate ε̂it(τ) = yit−xitTβ̂E(τ) and ŵit(τ) = |τ −1(ε̂it(τ) < 0)| with
β̂E(τ) the estimator of Theorem 3.3.

2. Compute Ŵ = Diag(ŵ11(τ), . . . , ŵN(τ)).

3. Compute Ĥ = XTŴX/N.

4. Compute Σ̂ = XTŴ ε̂ε̂TŴX/N.

With the estimators Ŵ, Ĥ and Σ̂, we have the following Theorem:

Theorem 3.4. Under Assumptions E1-E3, for every τ ∈ (0, 1) we have

Ĥ−1Σ̂Ĥ−1
P−→ H−1ΣH−1.

The proofs of Theorems 3.3 and 3.4 are presented in Section 5.

4 Simulation and Application

In the previous section we presented the asymptotic properties of QRRE and
ERRE estimators for the random e�ects model. In this section, we study their
performance in practice through simulations and real data. Performance
comparisons of the proposed approaches are realized with respect to the
penalized quantile regression (PQR) �xed e�ect approach [16].
From now on we replace α by τ and write q(τ) for quantiles.
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4.1 Simulation

4.1.1 Design

Our simulation study follows closely the di�erent scenarios proposed in [16].
The simulated data is generated under two di�erent models: a location shift
and a location-scale shift models given by

yit =

{
xitβ + ui + vit, location shift.

xitβ + ui + (1 + xitγ)vit, location-scale shift.

Regardless which model are used to generate the data, the corresponding
QRRE τth quantile and ERRE τth expectile are respectively:{

q(τ, yit) = βQ0 (τ) + xitβ
Q
1 (τ),

µ(τ, yit) = βE0 (τ) + xitβ
E
1 (τ).

The individual random e�ect ui and the disturbance vit are generated by
the same distribution in three di�erent models: normal distribution N (0, 1),
Student distribution t3 with 3 degree of freedom, and central chi-squared dis-
tribution χ2

3 with 3 degree of freedom. The continuous explicative variable
x is generated by a normal distribution N (0, 1) in the location shift model
and by a central chi-squared distribution χ2

3 with 3 degree of freedom in the
location-scale shift model. We set β = 0 and γ = 1/10.

According to the di�erent models and the di�erent sample sizes n× T ∈
{50, 100, 500}×{5, 15, 15}, we have created 54 di�erent random samples. The
three methods ERRE, QRRE and PQR, were �tted to each sample replica-
tion to estimate quantiles and expectiles of levels τ ∈ {0.1, 0.2, 0.5, 0.8, 0.9}.
The PQR approach requires the tuning parameter λ. We set the tuning pa-
rameter to be the ratio of scale parameters, i.e. λ = σv/σu, as suggested by
[16]. With σ2

u = Var(ui) and σ2
v = Var(vit) in the location shift model and

(1 + xitγ)2 Var(vit) in the location scale-shift scenario.

For the measurement of the quality of the di�erent methods we calculated the

bias

(
1/m

∑m β̂(r)

)
and the root-mean-square error

(√
1/m

∑m(β̂(r) − β̄)2
)

where β̄ = 1/m
∑m β̂(r). The reported results are based on m = 400 replica-

tions.

As we simulated several samples (54), we estimated a small series of asym-

metric point
(
τ ∈ {0.1, 0.2, 0.5, 0.8, 0.9}

)
, and reserved the longer series of
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asymmetric points to the real data set. All results are presented in Figure ??
and Figure 3, while only results for τ ∈ (0.2, 0.5, 0.8) are presented in Table
1 and Table 2 for ease of reading.

All computations are performed with R CRAN software [27]. QRRE, ERRE
and PQR were adjusted using respectively quantreg [18], expectreg [32, 31,
29] and rqpd [19] packages.

4.1.2 Results

In order to compare quantile regression estimators to least squares estima-
tors, Koenker [16] decided to focus exclusively on the performance of the
median slope estimate. With the expectile regression there is no need to
make such restriction, we can compare both methods on any asymmetric
value.

In Table 1 we reported the estimated bias and the estimated root-mean-
squared error (RMSE) of the di�erent location shift error distributions, and
in Table 2 the results for the di�erent location-scale shift error distributions.

The results show that for a �xed T, the bias decreases as n becomes large.
The performance indicators (bias and the RMSE) of the di�erent methods
are in the same order of magnitude with respect to the di�erent simulation
scenarios. We expect poor performance in the location-scale scenario, Table
2. Indeed, in this scenario the e�ect of the covariate x is:{

βQ(τ) = β + γq(τ, v)
βE(τ) = β + γµ(τ, v)

respectively in the quantile regression and expectile regression. For ex-
ample, in the χ2

3 distribution the covariate e�ect for τ ∈ (0.2, 0.5, 0.8) is
(0.1, 0.236, 0.464) and (0.191, 0.3, 0.447) respectively for the quantile regres-
sion and expectile regression. This explains partly the poor performance of
the estimators for the χ2

3 distribution in the location-scale shift scenario in
regard to other distributions. By symmetry, the e�ect of the covariate on the
median or the mean is zero in the Normal and t3 distributions. But adjust-
ment for the true bias has to be made accordingly for τ ∈ (0.1, 0.2, 0.8, 0.9).
This explain why the performance of the di�erent methods (ERRE, QRRE,
PQR) is more noticeable for the median or the mean compared to the other
quantiles or expectiles.

In Table 1, the results showed that the quantile regression estimators (QRRE
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and PQR) do slightly better than the expectile random e�ect (ERRE) esti-
mator, but both are competitive. The QRRE estimator performs as well as
the PQR estimator, but the penalization is worthwhile. In Table 2, we see
that, in general, ERRE is quite competitive with QRRE and PQR except
for the χ2

3 scenario. The performance di�erence between QRRE and PQR
is more remarkable in the location-scale shift scenario (Table 2) where PQR
with the Gaussian tuning parameter (λ = σv/σu) performs better.

One of the main advantages of QR and ER methods is their potential to
evaluate the in�uence of factors in several points of the distribution of the
dependant variable. In order to emphasise this advantage we display graphi-
cally the results of the estimated coe�cient and its con�dence interval. Figure
?? present the results for the di�erent regression methods (ERRE, QRRE
and PQR) in the location shift model, and Figure 3 present the results of the
location-scale shift version. The results of the graphics con�rm that of the
Tables and are easy to read. Overall the di�erent methods are competitive.
We can see clearly in the graphics that the ERRE estimate has lower RMSE.

In conclusion, the performance of the quantile regression and the expectile
regression are comparable despite their merits and weaknesses. The quantile
regression estimates are more robust and the expectile regression estimates
are generalization of the mean regression and are easily computable.

4.2 Application

The progress and technological innovation contribute to the creation and dis-
appearance of employment. This upheaval of the labor market spawned a
renewed interest in the study of economic returns to education. Koop and
Tobias [21] studied this subject with data from the US National Longitudinal
Survey of Youth (NLSY). They adjusted a Bayesian hierarchical models to
the data in order to evaluate the heterogeneity of returns to schooling. Their
results show a presence of heterogeneity and con�rm Card assumptions [4],
who suggested including a random factor (for the intercept and slope) re�ect-
ing the di�erence between individuals and the heterogeneity of the marginal
return to education. QR and ER allow the study of heterogeneity of e�ects
without assuming a prior distribution of the model parameters.

4.2.1 Data

We use Koop and Tobias data for application of the methods, QR and ER,
to real data. The data is from the US National Longitudinal Survey of Youth
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(NLSY), which began in 1979. The cohort contained initially 12,686 respon-
dents aged between 14 and 22 years. The survey was still ongoing and is in
its 25th cycle in 2012. NLSY is an important collection of data that con-
tains information on several topics including education, employment, income,
salary and health, among others. In the data cleansing process, the authors
excluded some observations because education or wages were unusable. In
the end, the database is comprised of Caucasian men aged 16 years (at the
beginning of the survey), who report having worked at least 30 weeks or 800
hours per year and earning an hourly wage between 1 and 100$. Data is
freely available on the journal website (Journal of Applied Econometrics).

The log of the hourly wage is used as the dependent variable and the vari-
able of interest is the education of the respondents. The other explanatory
variables are time invariant characteristics (score on cognitive ability, highest
grade completed by the respondent's mother and father, number of siblings,
lived or not in a broken home as of age 14) and time varying components
(potential labor market experience and its square, and a time trend variable).
Their model includes [21] a continuous measure of the local unemployment
rate in the given year, which we didn't include in our model due to restricted
access. Apart from this variable, our Mincer equation are identical. Sum-
mary sample statistics for the selected variable are reported in [21]. Our
Mincer equation for both methods QR and ER is:

q(τ, log(Wage)) or µ(τ, log(Wage)) =

β0τ + β1τEducation + β2τExperience + β3τ (Experience)
2 +

β4τ (Time trend) + β5τAbility + β6τ (Mother Education) +

β7τ (Father Education) + β8τ (Broken Home) + β9τSibling .

4.2.2 Results

We estimated conditional quantiles and expectiles for the series of asymmet-
ric points (0.05, 0.06, 0.07, . . . , 0.95) of length 91 and generated con�dence
intervals by bootstrap replications m = 1000. The results of time varying
variables, according to the method (QR and ER), are presented in Figure
4 and those of time invariant in Figure 5. The use of asymmetric weight
indicates the presence of heterogeneity in the economic returns to education.
This e�ect is signi�cantly heterogeneous and increases non-linearly with re-
spect to the degree of asymmetry. The results did not show a signi�cant
e�ect of invariant time variables, except for the ability and the size of the
family that appear to have a signi�cant e�ect on salary, Figure 5.



5 CONCLUSION 19

Our �ndings are similar to those found in the literature [4] and particularly
in [21]. However, we see little di�erences here and there. For example, our
results show that the heterogeneity to return to schooling ranges between
0.0708 and 0.1111 for ERRE and between 0.0612 and 0.1148 for QRRE.
While the models in [21] o�ers a variation of heterogeneity between -0.04
and 0.27.

5 Conclusion

We present the QR and ER estimators for the random e�ects model. We
demonstrate their asymptotic properties and propose an estimator of the
variances-covariances matrix. We evaluate their performance in practice
through simulations and a real data set.

The simulation results show that the QR estimate does slightly better than
the ER estimate but both are competitive. The real data analysis show that
the two methods are appropriate to study the heterogeneity of the e�ects of
a factor on the dependent variable. The analysis of the performance of the
ER method relative to the penalized quantile regression suggests that the
extension of the ER to the penalized �xed e�ect model is a promising area
of research.

Expectiles are a reliable alternative to the quantiles. They can not be inter-
preted easily but they have an explicit form and are analytically estimable.
Furthermore, estimates of their variances-covariances matrix can be evalu-
ated without estimating the error density function. This is not the case
for quantiles. Since both methods characterise the c.d.f of the dependent
variable, it is not imperative to �nd each series of quantiles corresponding
to a series of expectiles when applying the ER method. And as expectiles
are to the mean what quantiles are to the median, they should be used and
interpreted as quantilized mean.
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Figure 1: Quantile and expectile of the standard normal distribution N (0, 1).
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Table 1: Bias and root mean squared error (RMSE) for the ERRE, QRRE
and PQR models with di�erent location shift error distributions.

T = 5 T = 15 T = 25

τ 50 100 500 50 100 500 50 100 500

ε ∼ N (0, 1)

ERRE

0.2 0.0372 0.0165 0.0389 0.0398 0.0239 -0.0201 -0.0586 -0.0398 -0.0263
(0.0699) (0.056) (0.0289) (0.0823) (0.0536) (0.0275) (0.0552) (0.0449) (0.022)

0.5 0.0194 0.0328 0.0372 0.0755 0.0461 -0.0084 -0.0703 -0.0327 -0.019
(0.0705) (0.0563) (0.0284) (0.0751) (0.0525) (0.0253) (0.0545) (0.0421) (0.0212)

0.8 -0.002 0.0325 0.0245 0.1137 0.0748 2e-04 -0.0809 -0.0203 -0.0154
(0.0827) (0.0624) (0.0305) (0.0764) (0.0528) (0.0271) (0.0536) (0.0414) (0.0228)

QRRE

0.2 0.0321 0.0088 0.0253 -0.0088 0.004 -0.0159 -0.038 -0.0388 -0.0297
(0.083) (0.0798) (0.0275) (0.0832) (0.0602) (0.0336) (0.0632) (0.0494) (0.025)

0.5 0.0239 0.0749 0.0511 0.0634 0.0322 -0.0044 -0.0581 -0.0462 -0.0101
(0.0858) (0.0643) (0.0321) (0.084) (0.0552) (0.0253) (0.0644) (0.0388) (0.023)

0.8 0.0373 0.0385 9e-04 0.1656 0.0833 0.0111 -0.0976 -0.0208 -0.0092
(0.0946) (0.0598) (0.0407) (0.0977) (0.062) (0.0276) (0.0635) (0.0435) (0.0272)

PQR

0.2 0.028 -5e-04 0.0224 -0.0162 0.0049 -0.01 -0.022 -0.0361 -0.0305
(0.0855) (0.0666) (0.0283) (0.0855) (0.0615) (0.0353) (0.0507) (0.0493) (0.0252)

0.5 0.0081 0.061 0.0475 0.055 0.0357 9e-04 -0.0433 -0.0454 -0.0112
(0.086) (0.071) (0.0342) (0.0784) (0.0614) (0.0267) (0.0637) (0.0423) (0.022)

0.8 0.0122 0.0355 -5e-04 0.1458 0.0894 0.0143 -0.0897 -0.0245 -0.0098
(0.102) (0.0691) (0.0379) (0.0965) (0.0616) (0.0298) (0.0702) (0.0458) (0.0272)

ε ∼ t3

ERRE

0.2 0.2455 -0.0087 0.0651 0.1 0.024 0.0289 0.0685 0.0378 0.0325
(0.153) (0.1734) (0.065) (0.1768) (0.0538) (0.056) (0.0723) (0.0661) (0.0359)

0.5 0.1021 -0.1228 0.0382 0.1964 0.0477 0.0219 0.0796 0.039 0.0202
(0.1333) (0.1301) (0.0516) (0.2144) (0.0512) (0.04) (0.0823) (0.0693) (0.0335)

0.8 -0.0492 -0.3222 0.0019 0.3878 0.0778 0.0315 0.1315 0.0597 0.0214
(0.138) (0.2474) (0.0716) (0.3343) (0.0504) (0.0421) (0.12) (0.0938) (0.0422)

QRRE

0.2 0.3081 -0.0976 0.0747 -0.0364 0.0086 0.04 0.0562 0.0374 0.0389
(0.1388) (0.128) (0.0489) (0.1696) (0.0624) (0.0431) (0.0839) (0.0601) (0.0332)

0.5 0.112 0.0251 0.0498 0.0599 0.0334 -0.0083 0.0507 0.0049 0.0011
(0.1199) (0.0909) (0.0366) (0.1202) (0.0582) (0.0293) (0.0878) (0.0722) (0.0332)

0.8 -0.174 -0.2089 0.0492 0.2207 0.0814 0.021 0.0381 0.0086 -0.0063
(0.2359) (0.1327) (0.0615) (0.178) (0.0651) (0.0337) (0.0918) (0.106) (0.0436)

PQR

0.2 0.2924 -0.1163 0.0729 -0.024 0.0095 0.0443 0.0673 0.0416 0.0428
(0.1498) (0.1268) (0.0518) (0.1606) (0.0634) (0.0395) (0.079) (0.0637) (0.0346)

0.5 0.1199 0.0191 0.0498 0.0641 0.0393 -0.0042 0.0514 0.0162 0.0044
(0.1249) (0.0909) (0.0359) (0.1221) (0.0623) (0.0311) (0.087) (0.0668) (0.0307)

0.8 -0.1614 -0.2213 0.042 0.2226 0.0887 0.0294 0.0471 0.0106 -0.002
(0.2255) (0.1378) (0.0631) (0.1777) (0.0642) (0.0362) (0.0984) (0.1036) (0.0392)

1
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Table 1: Bias and root mean squared error (RMSE) for the ERRE, QRRE
and PQR models with di�erent location shift error distributions.

T = 5 T = 15 T = 25

τ 50 100 500 50 100 500 50 100 500

ε ∼ χ2
3

ERRE

0.2 0.2055 0.0803 0.0635 0.3672 0.1662 0.0082 5e-04 0.0346 0.0399
(0.178) (0.1405) (0.055) (0.1182) (0.0937) (0.0456) (0.1351) (0.1012) (0.0387)

0.5 0.2134 0.0458 0.0969 0.438 0.1823 -0.0021 0.0747 0.0867 0.0815
(0.22) (0.1939) (0.0725) (0.1307) (0.1121) (0.0584) (0.153) (0.1152) (0.0487)

0.8 0.2997 0.136 0.12 0.5093 0.2433 -0.031 0.1878 0.1745 0.1342
(0.2872) (0.261) (0.1007) (0.1592) (0.1605) (0.0792) (0.2112) (0.1529) (0.0634)

QRRE

0.2 0.2054 0.0887 0.0196 0.3119 0.1516 0.0106 -0.1255 -0.0301 -0.0041
(0.1937) (0.1112) (0.0596) (0.1449) (0.1189) (0.045) (0.1721) (0.1051) (0.0429)

0.5 0.0732 -0.1211 0.1107 0.4613 0.1351 0.042 -0.0099 0.0308 0.0458
(0.2308) (0.2067) (0.0666) (0.134) (0.1078) (0.0627) (0.1862) (0.1254) (0.0595)

0.8 0.3619 -0.1012 0.1583 0.4821 0.2339 -0.0878 0.135 0.155 0.2123
(0.4064) (0.3431) (0.1502) (0.2019) (0.2389) (0.0959) (0.2539) (0.1445) (0.0998)

PQR

0.2 0.2681 0.0916 0.022 0.2493 0.1414 0.0223 -0.1407 -0.0223 0.0024
(0.1746) (0.1087) (0.0566) (0.1384) (0.1202) (0.0443) (0.1681) (0.1007) (0.0449)

0.5 0.1107 -0.0976 0.1305 0.3664 0.1245 0.0529 -0.001 0.0487 0.0515
(0.2604) (0.1966) (0.0709) (0.1455) (0.1) (0.0608) (0.193) (0.1232) (0.0601)

0.8 0.3827 -0.0633 0.1524 0.5016 0.205 -0.0777 0.1704 0.1523 0.221
(0.4016) (0.3464) (0.1566) (0.1796) (0.2198) (0.0895) (0.2722) (0.1338) (0.0892)

1
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Table 2: Bias and root mean squared error (RMSE) for the ERRE, QRRE
and PQR models with di�erent location-scale shift error distributions.

T = 5 T = 15 T = 25

τ 50 100 500 50 100 500 50 100 500

ε ∼ N (0, 1)

ERRE

0.2 -0.0338 0.0162 -0.0526 -0.0224 -0.0656 -0.0528 -0.0758 -0.0759 -0.0425
(0.0509) (0.0372) (0.0161) (0.0414) (0.0262) (0.0127) (0.029) (0.0202) (0.0099)

0.5 0.0017 0.0658 -0.0137 0.0317 -0.0092 -0.007 -0.0264 -0.0231 0.0034
(0.0402) (0.031) (0.0152) (0.0346) (0.0268) (0.0115) (0.0299) (0.0176) (0.0095)

0.8 0.0525 0.1055 0.0295 0.0859 0.0445 0.0368 0.0189 0.0313 0.0505
(0.0424) (0.0296) (0.0158) (0.0339) (0.0277) (0.0117) (0.0355) (0.0187) (0.0096)

QRRE

0.2 -0.0246 3e-04 -0.0709 -0.0499 -0.1015 -0.0821 -0.1202 -0.109 -0.066
(0.0707) (0.051) (0.0173) (0.0472) (0.0336) (0.0156) (0.0371) (0.0283) (0.0105)

0.5 -0.0276 0.0681 -0.0243 0.0246 -0.0077 0 -0.0384 -0.0327 -4e-04
(0.0343) (0.0398) (0.0172) (0.0289) (0.033) (0.012) (0.0306) (0.0163) (0.0109)

0.8 0.0666 0.1381 0.0395 0.0923 0.078 0.0653 0.0295 0.047 0.0834
(0.0655) (0.0355) (0.0177) (0.0421) (0.0312) (0.0144) (0.0483) (0.0223) (0.0119)

PQR

0.2 -0.0235 -0.0115 -0.069 -0.0598 -0.1002 -0.0801 -0.1078 -0.1049 -0.0664
(0.0686) (0.0513) (0.0182) (0.0438) (0.0306) (0.0149) (0.043) (0.0284) (0.0101)

0.5 -0.0343 0.06 -0.0234 0.0128 -0.0087 -9e-04 -0.0277 -0.031 -0.0013
(0.0341) (0.0357) (0.0186) (0.033) (0.031) (0.0132) (0.0352) (0.017) (0.0107)

0.8 0.052 0.1286 0.0395 0.0836 0.0773 0.0646 0.0412 0.0462 0.0824
(0.0706) (0.0378) (0.0184) (0.0423) (0.0302) (0.015) (0.0451) (0.0233) (0.0115)

ε ∼ t3

ERRE

0.2 -0.071 0.0603 -0.138 -0.0107 -0.0676 -0.0644 -0.0937 -0.0856 -0.0796
(0.0759) (0.0842) (0.0437) (0.0798) (0.0265) (0.018) (0.0373) (0.0417) (0.0157)

0.5 0.0318 0.0058 -0.0656 0.0916 -0.011 0.0051 -0.0236 -0.0098 -0.0185
(0.0621) (0.0995) (0.0269) (0.1097) (0.027) (0.0151) (0.0335) (0.0368) (0.0139)

0.8 0.1321 -0.0974 -0.0167 0.2273 0.0434 0.0795 0.0467 0.0461 0.0437
(0.0831) (0.2086) (0.0287) (0.1532) (0.0274) (0.0182) (0.0434) (0.0393) (0.0165)

QRRE

0.2 -0.0665 0.0503 -0.1423 -0.0779 -0.1051 -0.0822 -0.0976 -0.0832 -0.1027
(0.1062) (0.0454) (0.0205) (0.0623) (0.0319) (0.0212) (0.0405) (0.032) (0.0164)

0.5 0.021 0.0365 -0.0338 0.0316 -0.0099 0.0119 -0.0118 0.0145 -0.0229
(0.0713) (0.0512) (0.018) (0.069) (0.0303) (0.0135) (0.0394) (0.0293) (0.0121)

0.8 0.1846 0.1096 0.0353 0.236 0.0792 0.0895 0.0743 0.0645 0.0469
(0.1014) (0.0839) (0.0237) (0.159) (0.0297) (0.0216) (0.0413) (0.0413) (0.0146)

PQR

0.2 -0.0645 0.046 -0.1411 -0.079 -0.1051 -0.0825 -0.1045 -0.0796 -0.1052
(0.1079) (0.046) (0.0215) (0.0599) (0.0314) (0.0206) (0.0411) (0.0316) (0.018)

0.5 0.0311 0.0361 -0.0338 0.0299 -0.0134 0.0118 -0.0144 0.0197 -0.0235
(0.0737) (0.0472) (0.0189) (0.0719) (0.0304) (0.0133) (0.0412) (0.0288) (0.0119)

0.8 0.1925 0.1116 0.0337 0.2295 0.0738 0.0893 0.0772 0.0705 0.0466
(0.0974) (0.076) (0.0245) (0.1539) (0.0312) (0.0208) (0.0419) (0.0384) (0.0134)

1



5 CONCLUSION 24

Table 2: Bias and root mean squared error (RMSE) for the ERRE, QRRE
and PQR models with di�erent location-scale shift error distributions.

T = 5 T = 15 T = 25

τ 50 100 500 50 100 500 50 100 500

ε ∼ χ2
3

ERRE

0.2 0.4884 0.131 0.1862 0.2131 0.2196 0.2226 0.2259 0.2427 0.2332
(0.1369) (0.0665) (0.0278) (0.0548) (0.0386) (0.021) (0.0567) (0.0356) (0.0182)

0.5 0.6781 0.2161 0.2834 0.3328 0.282 0.3123 0.3209 0.3375 0.3249
(0.1428) (0.0946) (0.0379) (0.0731) (0.0517) (0.0272) (0.0723) (0.0431) (0.0218)

0.8 0.8936 0.3229 0.4119 0.4926 0.3816 0.4398 0.4439 0.4779 0.4461
(0.1737) (0.1476) (0.0544) (0.103) (0.0682) (0.0361) (0.0953) (0.0601) (0.0286)

QRRE

0.2 0.2112 0.0418 0.1045 0.1336 0.1858 0.1564 0.1354 0.1849 0.1667
(0.1741) (0.0583) (0.0254) (0.0558) (0.0349) (0.0212) (0.0614) (0.0387) (0.0206)

0.5 0.5525 0.1528 0.2496 0.3119 0.2357 0.2527 0.2648 0.2561 0.2764
(0.1717) (0.1011) (0.0485) (0.0864) (0.0462) (0.0284) (0.0956) (0.0479) (0.0256)

0.8 0.8481 0.3288 0.4171 0.5088 0.3688 0.4653 0.4136 0.4378 0.4597
(0.177) (0.1531) (0.074) (0.1077) (0.0763) (0.0486) (0.099) (0.0661) (0.0309)

PQR

0.2 0.2605 0.0371 0.0992 0.084 0.1853 0.1548 0.1335 0.1835 0.1628
(0.1697) (0.0542) (0.0234) (0.0524) (0.0387) (0.0211) (0.0601) (0.0381) (0.0212)

0.5 0.5687 0.1644 0.2346 0.2653 0.2327 0.2531 0.2694 0.2564 0.2737
(0.1723) (0.1014) (0.0485) (0.0953) (0.0503) (0.0304) (0.1039) (0.0493) (0.0272)

0.8 0.8645 0.3399 0.4059 0.4633 0.3717 0.468 0.4287 0.4409 0.4573
(0.1747) (0.1531) (0.0773) (0.1053) (0.0744) (0.0472) (0.1174) (0.0642) (0.0302)

1
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Figure 2: Estimated coe�cient and con�dence interval for the di�erent re-
gression methods in the location-scale shift model.
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Figure 3: Estimated coe�cient and con�dence interval for the di�erent re-
gression methods in the location-scale shift model.
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6 Proofs

Notice that in this section the expectations are conditional to X. As the
proofs on the quantiles and the expectiles are separated we omit the expo-
nents (Q and E) on β and β̂.

Proof of Theorem 3.1.

The proof follows closely that of [?, ?]. Consider the new objective func-
tion

ZN(δ) =
n∑
i=1

T∑
t=1

[
rα
{
εit(α)− xitTδ/

√
N
}
− rα{εit(α)}

]
.

This function {ZN(δ)} and the initial objective function QN{β(α), α} have
the same extremum. ZN(δ) is a sum of convex functions and admits as

minimum δ̂N =
√
N{β̂(α) − β(α)}. The idea of the proof is to give an

approximation of ZN(δ) by a quadratic function, and to show that δ̂N has the
same asymptotic properties as the extreme value of this quadratic function.
The following identity ([17], p.121) provides this approximation.

rα(ε− υ)− rα(ε) = −υψα(ε) +

∫ υ

0

{
1(ε < s)− 1(ε ≤ 0)

}
ds, (12)

with ψα(ε) = α− 1(ε < 0). From this identity (12), the new risk function is
divided in two functions, ZN(δ) = Z1N(δ) + Z2N(δ), where:

Z1N(δ) = − 1√
N

n∑
i=1

T∑
t=1

xit
Tδψα{εit(α)}

= − 1√
N

n∑
i=1

δTXi
Tψα{εi(α)}

and

Z2N(δ) =
n∑
i=1

T∑
t=1

∫ υNit

0

[
1{εit(α) < s} − 1{εit(α) ≤ 0}

]
ds

=
n∑
i=1

T∑
t=1

Z2Nit(δ)
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with υNit = xit
Tδ/
√
N, and ψα{εi(α)} =

[
ψα{εi1(α)}, . . . , ψα{εiT (α)}

]
T.

The �rst and second moment of the component of the random vector ψα{εi(α)}
are:

E
[
ψα{εit(α)}

]
= 0

Var

[
ψα{εit(α)}

]
= α(1− α)

Cov

[
ψα{εit(α)}, ψα{εis(α)}

]
= σits(α) = E

[
1
{
εit(α) < 0, εis(α) < 0

}]
− α2.

Then by the Lindeberg-Feller central limit theorem, with condition Q2 it

can be deduced that Z1N(δ)
d−→ −δTW where W ∼ N (0,D0).

The second term of ZN(δ) can be rewritten:

Z2N(δ) =
n∑
i=1

T∑
t=1

E
[
Z2Nit(δ)

]
+

n∑
i=1

T∑
t=1

[
Z2Nit(δ)− E

{
Z2Nit(δ)

}]
.

We show that:
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n∑
i=1

T∑
t=1

E
{
Z2Nit(δ)

}
=

n∑
i=1

T∑
t=1

∫ υNit

0

E
[
1{εit(α) < s} − 1{εit(α) ≤ 0}

]
ds

=
n∑
i=1

T∑
t=1

∫ υNit

0

[
Fit{q(α, yit) + s} − Fit{q(α, yit)}

]
ds

=
n∑
i=1

T∑
t=1

∫ xit
Tδ

0

1√
N

[
Fit{q(α, yit) + s/

√
N} − Fit{q(α, yit)}

]
ds

= N−1
n∑
i=1

T∑
t=1

∫ xit
Tδ

0

√
N
[
Fit{q(α, yit) + s/

√
N} − Fit{q(α, yit)}

]
ds

= N−1
n∑
i=1

T∑
t=1

∫ xit
Tδ

0

fit{q(α, yit)}sds+ o(1)

= (2N)−1
n∑
i=1

T∑
t=1

fit{q(α, yit)}δTxitxitTδ + o(1)

→ 1

2
δTD1δ.

(13)

The third line of the above equation (13) is obtained through substitution
of s by s/

√
N and by multiplying by

√
N the third line from the bottom

follows by condition Q1. Now noticing that, with condition Q2.3:

Var{Z2N(δ)} ≤ 1

N
max

∥∥xitTδ∥∥ n∑
i=1

T∑
t=1

E{Z2Nit(δ)} → 0

and applying the Chebychev's Inequality, the remaining term converge to 0
in probability:

Z2N(δ)− E
{
Z2N(δ)

} P−→ 0. (14)

From (13) and (14), we obtain: Z2N(δ)
P−→ 1

2
δTD1δ. Now from the properties

of the �rst term Z1N(δ) and the second term Z2N(δ) we can deduce that:

ZN(δ)
d−→ Z0(δ) = −δTW +

1

2
δTD1δ.

Z0(δ) has a unique minimum D−11 W. Now the two convexity lemmas of [?]
state that if a random convex functions ZN(δ) converge in distribution to

some function Z0(δ) which has a unique minimum D−11 W then δ̂N
d−→ D−11 W.

Hence we conclude that:
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√
N{β̂(α)− β(α)} d−→ N (0,D−11 D0D

−1
1 ).

Proof of Theorem 3.2.

Without lost of generality, let FN and F be respectively the joint empiri-
cal and population distribution function of (yit, yis).

By Lemma A1 of [?], we have: FN{xitTβ̂(α),xis
Tβ̂(α)} P−→ F{xitTβ̂(α),xis

Tβ̂(α)}
uniformly.

With β̂(α)
P−→ β(α), we apply Lemma 4 of [?], then:

F{xitTβ̂(α),xis
Tβ̂(α)} P−→ F{xitTβ(α),xis

Tβ(α)}.

Thus:

FN{xitTβ̂(α),xis
Tβ̂(α)} P−→ F{xitTβ(α),xis

Tβ(α)}.

Hence σ̂its(α)
P−→ σits(α), and by the Slutsky theorem D̂1D̂0D̂1

P−→ D−11 D0D
−1
1 .
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Proof of Theorem 3.3.

Let R{β(τ), τ} = E[hi{β(τ)}], with hi{β(τ)} =
∑T

t=1 r
E
τ {yit−xitTβ(τ)}

and,

RN{β(τ), τ} = N−1
n∑
i=1

T∑
t=1

rEτ {yit − xitTβ(τ)}

= N−1
n∑
i=1

hi{β(τ)}

The proof follows closely that of [25]. First we show the consistency of β̂(τ)
with Lemma A of [25]. The application of the second order su�cient opti-
mality condition allows us to have the uniqueness of β(τ). Lemma A1 of [?]
allows us to obtain the uniform convergence in probability of RN{β(τ), τ}
to R{β(τ), τ}. Finally, with the convexity of the risk function RN{β(τ), τ}
we have the consistency result.

hi{β(τ)} is sum of convex and di�erentiable functions in β(τ). Then hi{β(τ)}
is derivable and its derivative, gi{β(τ)}, is bounded by an integrable func-
tion, by assumption E2.

Indeed:

gi{β(τ)} =
∂hi{β(τ)}

∂β

=
T∑
t=1

∂

∂β
rEτ {yit − xitTβ(τ)}

= −2
T∑
t=1

xitψτ{yit − xitTβ(τ)}

= −2Xi
TWi(τ)εi(τ).

With ψτ{yit−xitTβ(τ)} = |τ−1{yit < xitTβ(τ)}|
(
yit−xitTβ(τ)

)
and Wi(τ) =

Diag{wi1(τ), . . . , wiT (τ)}. Then we have:

‖gi{β(τ)}‖ = 2
∥∥ T∑
t=1

xitψτ (yit − xitTβ(τ))
∥∥

≤ 2T ‖z‖2 (d+ d′ ‖β(τ)‖)
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By the dominated convergence theorem of Lebesgue, we can interchange
derivative and integral sign. We have:

∂

∂β
R{β(τ), τ} = E[gi{β(τ)}]

= −2
T∑
t=1

xit

[
τ

∫ +∞

xit
Tβ(τ)

{yit − xitTβ(τ)}f(yit)dyit

+ (1− τ)

∫ xit
Tβ(τ)

−∞
{yit − xitTβ(τ)}f(yit)dyit

]
By Leibniz integral rule [?],

∫ α
−∞(y − α)f(y|x)dy is continuously di�eren-

tiable in α, with derivative −
∫ α
−∞ f(y|x)dy bounded by 1. By the dominated

convergence theorem of Lebesgue, ∂R{β(τ), τ}/∂β is continuously di�eren-
tiable, with derivative:

∂2R{β(τ), τ}
∂β∂βT

= 2
T∑
t=1

xitxit
T

[
τ

∫ +∞

xit
Tβ(τ)

f(yit)dyit + (1− τ)

∫ xit
Tβ(τ)

−∞
f(yit)dyit

]

= 2
T∑
t=1

xitxit
T E
[∣∣τ − 1{yit < xitTβ(τ)}

∣∣]
By denoting δ = min{τ, (1 − τ)}, we show that ∂2R{β(τ), τ}/∂β∂βT is a
positive de�nite matrix.

The fact that the function is twice continuously di�erentiable will allow us to
write the Taylor expansion with a second order of the function R{β(τ), τ}.
With the convexity property, we can show the existence and uniqueness of a
global minimum β(τ) of the function R{β(τ), τ}.

Let β̃(τ) be a point in the neighbour of β(τ), then:

R{β(τ), τ} −R{β̃(τ), τ} =
[
∂R{β̃(τ), τ}/∂β

]
T[β(τ)− β̃(τ)]

+ [β(τ)− β̃(τ)]T
[
∂2R{β̇(τ), τ}/∂β

]
[β(τ)− β̃(τ)]

≥
[ ∂
∂β

R{β̃(τ), τ}
]
T[β(τ)− β̃(τ)] + δmxp|β(τ)− β̃(τ)|2,

β̇(τ) is a point of the segment [β(τ), β̃(τ)], p is the number of explicative
variables and mx is the smallest eigenvalues of

∑T
t=1 xitxit

T. If we choose a
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β(τ) outside the neighbour of β̃(τ) and we divide by |β(τ)− β̃(τ)| to cancel
the �rst term of the inequality, we see that R{β(τ), τ} > R{β̃(τ), τ}. It fol-
lows by continuity that the function R{β(τ), τ} has a minimum, β(τ), within

the neighbour of β̃(τ) and that this minimum is a global minimum. Hence
β(τ) is the unique solution of the equation E[gi{β(τ)}] by the convexity of
R{β(τ), τ}.

With assumptionsE1 andE2RN{β(τ), τ} function verify condition of Lemma
A1 of [?]. Thus RN{β(τ), τ} converge uniformly to R{β(τ), τ} in any com-
pact of β(τ).

We have just shown the uniqueness of β(τ) and the uniform convergence
of RN{β(τ), τ}. All conditions of lemma A of [25] are satis�ed. We can

conclude that β̂(τ) exist with probability approaching 1 and it converges in

probability to the parameter β(τ). In others word, β̂(τ) is consistent.

Now we prove the asymptotic distribution of the estimators.

For every λ ∈ Rp, let:

ZN =
λT∂/∂βRN{β(τ), τ}(

λT Var
[
∂/∂βRN{β(τ), τ}

]
λ

)1/2

=

∑n
i=1 λ

Tgi{β(τ)}(
λT
∑n

i=1 Var
[
gi{β(τ)}

]
λ

)1/2

We have:∫ ∥∥λTgi{β(τ)}
∥∥2 f(yi)dyi =

∫
λTXi

TWi(τ)εi(τ)εi(τ)TWi(τ)Xiλf(yi)dyi

=

p∑
k,l

T∑
t,s

λkλl

∫
xkitx

l
iswit(τ)wis(τ)εit(τ)εis(τ)f(yi)dyi

≤ p2T 2d ‖λ‖2
∫
‖z‖4 α(z) <∞.

(15)

With p the number of explicative variables, T the number of repeated obser-
vations, d a generic constant and wit(τ) = |τ − 1(εit(τ) < 0)|. The conver-
gence of the last equation hold by assumption E3 and for every �xed vector λ.
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Let for every ε > 0,

ANε =

y : ‖λTgi{β(τ)}‖ > ε

√√√√λT
n∑
i=1

Var
[
gi{β(τ)}

]
λ

 .

Since by Chebyshev inequality ANε converges to the empty set and with
equation (15) we have:

lim
n→∞

1

λT
∑n

i=1 Var
[
gi{β(τ)}

]
λ

n∑
i=1

∫
ANε

∥∥λTgi{β(τ)}
∥∥2 f(yi)dyi = 0

Thus the conditions of the Lindeberg-Feller central limit theorem are satis-
�ed, ZN ∼ N (0, 1). And by the Cramer-Wold device,

√
N
[
∂RN{β(τ), τ}/∂β

]
∼ N (0, 4Σ),

with:
Σ = XT E(W (τ)ε(τ)ε(τ)TW (τ))X.

Now consider the Taylor expansion of the function RN{β(τ), τ} in the neigh-
bour of β(τ). As plim β̂(τ) = β(τ) we have:

√
N
[
∂RN{β̂(τ), τ}/∂β

]
=
√
N
[
∂RN{β(τ), τ}/∂β

]
+
[
∂2RN{β̃(τ), τ}/∂β∂βT

]√
N{β̂(τ)− β(τ)}

With β̃(τ) which is located in the segment joining [β̂(τ),β(τ)], and then

plim β̃(τ) = β(τ). Again the assumptions E1 and E2 used to apply Lemma
A1 of [?] and:

sup
β∈B

∥∥∥∥∂2RN{β(τ)}
∂β∂βT

− E
[
∂2h{β(τ)}
∂β∂βT

]∥∥∥∥ P−→ 0.

For every compact B with β(τ) contained in its interior. Applying Lemma
4 of [?], we can write:

plim
∂2RN{β̃(τ)}
∂β∂βT

= plim
∂2RN{β̂(τ)}
∂β∂βT

= E
[
∂2h{β(τ)}
∂β∂βT

]
.

Then,
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√
N [β̂(τ)− β(τ)] = −H−1

√
N
∂RN{β(τ), τ}

∂β
.

Hence: √
N{β̂(τ)− β(τ)} d−→ N (0, H−1ΣH−1)

Proof of Theorem 3.4.

We have:

∣∣Ĥ −H∣∣ ≤ ∣∣∣∣ n∑
i=1

T∑
t=1

ŵit(τ)xitxit
T/N −

n∑
i=1

T∑
t=1

wit(τ)xitxit
T/N

∣∣∣∣
+

∣∣∣∣ n∑
i=1

T∑
t=1

wit(τ)xitxit
T/N −H

∣∣∣∣ (16)

The �rst term after the inequality of equation (16) is bounded by the func-
tion

∑n
i=1

∑T
t=1 xitxit

T|ŵit(τ)− wit(τ)|/N.

We have: |ŵit(τ)− wit(τ)| = 0 if

yit < xit
Tβ̂(τ) < xit

Tβ(τ) or yit < xit
Tβ(τ) < xit

Tβ̂(τ) or

xit
Tβ(τ) < xit

Tβ̂(τ) < yit or xit
Tβ̂(τ) < xit

Tβ(τ) < yit

and |ŵit(τ)− wit(τ)| = |2τ − 1| if

xit
Tβ̂(τ) < yit < xit

Tβ(τ) or xit
Tβ(τ) < yit < xit

Tβ̂(τ).

Thus |ŵit(τ) − wit(τ)| = |2τ − 1|1
(
|εit(τ)| < |xitT(β̂(τ) − β(τ))|

)
and as

plim β̂(τ) = β(τ), we have for every ε > 0,

|ŵit(τ)− wit(τ)| = |2τ − 1|1
(
|εit(τ)| < p|xit|ε

)
= |2τ − 1|1

(
xit

Tβ(τ)− p|xit|ε < yit < xit
Tβ(τ) + p|xit|ε

)
.

Hence:
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∣∣∣∣ n∑
i=1

T∑
t=1

ŵit(τ)xitxit
T/N −

n∑
i=1

T∑
t=1

wit(τ)xitxit
T/N

∣∣∣∣
≤

n∑
i=1

T∑
t=1

|xit|2 × 1

(
|εit(τ)| < |xit|ε

)
≤ |xit|2αε(xit) + ε

With αε(xit) =
∫
I(xit,ε)

α(z)dy, et I(xit, ε) = [xit
Tβ(τ) − ε,xit

Tβ(τ) + ε].

αε(xit) is an increasing and bounded function, thus converges to zero by the
theorem of monotone convergence. The �rst term of the inequality (16) con-
verge to zero in proba. For the second term of the inequality (16), it su�ces
to note that |wit(τ)xitxit

T| ≤ ‖z‖2 , and use the hypothesis E2 which allows

us to apply Lemma A1 [?] to conclude that plim Ĥ = H.

To show consistency of Σ̂, we have |xitwit(τ)εit(τ)wis(τ)εis(τ)xis
T| ≤ ‖z‖4M,

with M constant. This result and the assumption E2 allows to apply again
Lemma A1 of [?] to show that

1

N

n∑
i=1

gi{β(τ)}gi{β(τ)}T =
1

N

n∑
i=1

Xi
TWi(τ)ε(τ)ε(τ)TWi(τ)Xi

P−→XT E[W (τ)ε(τ)ε(τ)TW (τ)]X.

This result and β̂(τ)
P−→ β(τ) allows to invoke Lemma 4 of [?] and to conclude

that: Σ̂
P−→ Σ.
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